Using GC-MS, LC-MS and FT-ICR-MS data for structure...

42
COSMOS – Small Molecule Conference San Jose, California, July 28 th 2008 Tobias Kind - fiehnlab.ucdavis.edu UC Davis Genome Center –Metabolomics Using GC-MS, LC-MS and FT-ICR-MS data for structure elucidation of small molecules

Transcript of Using GC-MS, LC-MS and FT-ICR-MS data for structure...

COSMOS – Small Molecule Conference San Jose, California, July 28th 2008

Tobias Kind - fiehnlab.ucdavis.eduUC Davis Genome Center –Metabolomics

Using GC-MS, LC-MS and FT-ICR-MS data for structure elucidation of small molecules

Techniques and metabolite coverage

Image source: © Gert Wohlgemuth – The nice lab series

Techniques and tools @ FiehnLab

LC-MSUPLC-MS

monolithic LCHILIC, RP, NP

GC-TOF-MSGCxGC-TOF-MSQuadrupole-GC-MSPyrolysis-GC-MS

BioInformatics and ChemInformatics

BinBase and SetupXStatistics and machine learning

Open Source + commercial software

LTQ-FT-MSvia CoreLab

Gas Chromatography FT-ICR-MS Liquid Chromatography

Metabolomic profiling:• provides spatial and temporal snapshots of all metabolites• includes primary and secondary metabolites (no proteins)• diverse species and organs

Problem: • small sample amounts from diverse individuals• diverse sets of molecules and molecule classes• large sample sets

Therefore: • each run requires high chromatographic resolution• identification via RT, MS , MSn library search• instead of unique identification – annotation of unknown compounds

• identification of new unknowns requires sample fractionation and identification is usually performed by NMR

Metabolomic profiling

SetupX LIMS covers plants, animals, fungi, bacteria

Arabidopsis lyrata subsp. lyrataAcyrthosiphon pisumArabidopsis thalianaBrassica napusBeta vulgaris subsp. vulgarisCitrus sinensisCucumis meloChlamydomonas reinhardtiiHomo sapiensLupinus albusLactuca sativaLycopersicon esculentumMus musculus domesticusMalus x domesticaMus musculusMus sp.Medicago sativaNicotiana tabacumOvis ariesRattus norvegicusSaccharophagus degradansTriticum aestivumVitis rotundifoliaVitis sp.Vitis viniferaZea mays

Picture source: SetupX; Wikipedia

BinBase GC-MS platform performance parameters

BinBase:• screens for 700 metabolites

in each single run

• identifies 130 known metabolites per single run

• annotates 200 unknown metabolites per run

• can process Hundreds of samples

• contains 2.6 million mass spectra and RI sets from 11,000 samples

Problem:481 known compounds but 2220 unknown compoundsare annotated in all acquired samples.

Solution:Elucidate unknown structures and update annotation for all old and new samples in BinBase

18% known

82% unknown

metabolites

sam

ples

Creative solutions using existing technology

Image source: © Gert Wohlgemuth – The nice lab series

25-3-solanin-LTQ-pos-0V #31-282 RT: 0.10-0.89 AV: 252 NL: 1.27E4T: ITMS + p NSI Full ms [120.00-2000.00]

866 868 870 872 874m/z

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

868.54548

869.54548

870.54548

871.54548866.45457 873.54548

Before centroiding

Enhancing mass accuracy on a linear iontrap MSSelecting the correct centroiding algorithm

After centroiding

45.66Result [ppm]

868.505820Calculated M

868.545480Experimental M

25-3-solanin-LTQ-pos-0V #31-282 RT: 0.10-0.89 AV: 252 NL: 1.27E4T: ITMS + p NSI Full ms [120.00-2000.00]

866 868 870 872 874m/z

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

868.51274

869.54054

870.56176

871.56164866.46886 873.75101

45.6 ppm 7.9 ppm

7.96Result [ppm]

868.505820Calculated M

868.512740Experimental M

Example: Solanine; PubChem CID: 30185 ; ZGVSETXHNHBTRK-OTYSSXIJBP

Only LTQ linear ion trap used for this example (no Orbitrap, no FT-MS)Also useful for high resolution modes with Orbitrap or FT-MSSoftware approach for profile mode

Enhancing resolving power – the LTQ UltraZoom mode

Reserpin-ULTRAZOOM-highres #12-36 RT: 0.09-0.30 AV: 25 NL: 2.30E5T: ITMS + p ESI u Z ms [604.00-614.00]

609 610 611 612 613m/z

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

609.27339R=10922

610.26196R=10210

611.25899R=9223 612.26364

R=13004613.25787R=10714

609.94414R=13662

610.78327R=28050

Normal profile scan mode UltraZoom SIM mode

A01-reserpine-nanomate_080117183750 #23-112 RT: 0.05-0.25 AV: 90 NL: 4.47E5T: ITMS + p ESI sid=30.00 Full ms [150.00-1300.00]

608 609 610 611 612 613 614m/z

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

609.28486R=1343

610.30113R=1296

611.32037R=1309 612.32978

R=1293613.24466

R=1179

Resolving Power: 1343 Resolving Power: 10992

Switching from normal profile scan mode to UltraZoom mode enhances the true mass resolving power by factor 10 for linear iontrap (no Orbitrap, no FT-MS for this example)Problem: low scan speed and scan range

D:\Opteron-Saver\...\Reserpine-ionmapReserpine-iontree

Reserpine-ionmap RT: 0.01 - 4.99 Mass: 100.00 - 650.00 NL: 7.36E3

1 2 3 4Time (min)

100

200

300

400

500

600

m/z

Reserpine-iontree3 #45-45 RT: 0.48-0.48 AV: 2 NL: 5.64E5T: ITMS + c ESI d Full ms3 [email protected] [email protected] [110.00-460.00]

150 200 250 300 350 400 450m/z

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

195.00

236.06

416.17204.01167.05144.08 384.15332.24248.21286.15 430.21

Reserpine-iontree3 #215 RT: 2.75 AV: 1 NL: 3.15E4T: ITMS + c ESI d Full ms4 [email protected] [email protected] [email protected] [50.00-250.00]

60 80 100 120 140 160 180 200 220 240m/z

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

204.10

163.03120.05

144.05 172.12148.03 206.11178.98106.98 141.1691.01 218.23

MS3

MS4

Ion Map – for all m/z valuesIn mass range 100-650 Da one MS/MS spectrum

Ion Tree – performdata dependent MS2,MS3,MS4

scans over whole mass range

Use all mass spectral fragmentation modes on a linear iontrap

Comprehensive ion mapping and ion tree experiments using diverse compound sets will solve many fragmentation mysteries

Pic

ture

: Wat

ers

GC

T H

elp

fil

e

Increase intensity of low abundant molecular ions GCT high mass tune electron impact (EI)

Component at scan 685 (9.669 min) [Model = +1 putrescine_RI 58829850 80 110 140 170 200 230 260 290 320 350 380

0

50

100

50

100

5973

86

86

100

100

114 130

130

146

146

174

174

200

200

214

214 228

361

361

376

376

Putrescine 4TMSMW = 376.25814

Idea: Salvatore Abate (FiehnLab)

• lowering EI energy would result in huge abundance loss• creative idea: change TOF beam steering and focus on GCT• tune abundance in higher mass regions• works good with alkanes, FAMES, N-TMS, O-TMS cmpds.• molecular ion needed for molecular formula determination• additional confirmation with chemical ionization possible

GCT High Mass Tune EI70 eV

Normal Electron Impact (EI)70 eV

09-Jul-2008 14:22:4570eV; 200uATrap Current; mass range 65-800; ScanRate0.15-0.03; source tempe 250C;PushInter 40

m/z60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360

%

0

100

%

0

100AlkaneFAMEmix_split50_07-09-08_EI_70eV_matchingLibrery_acq55-800_RT30min_5 2436 (12.869) Cm (2433:2440-2392:2425x1.100) TOF MS EI+

2.21e471.0810;-99.1190

85.0970-85.1030

99.1150-71.0850

113.1313-57.0687

127.1480;-43.0520169.1969-1.0031 183.2130;13.0130211.2441;41.0441239.2762;69.0762 338.3982

168.1982267.3086;97.1086

AlkaneFAMEmix_split50_07-09-08_EI_70eV_HighMass_acq55-800_RT30min_6 2435 (12.866) Cm (2432:2439-2396:2422x1.100) TOF MS EI+ 3.79e385.0995;-85.1005

99.1162-71.0838

127.1485-43.0515

141.1648;-29.0352

169.1965;-1.0035183.2132;13.0132197.2275;27.0275 338.3980

168.1980225.2596;55.0596239.2765;69.0765267.3074;97.1074

295.3436;125.1436339.3988;169.1988

GCT high mass tune in electron impact mode

Abund. (M•+) = 4%

EI (70 eV)

TOF High Mass TuneEI (70 eV)

Increase abundance of molecular ion for reliable molecular formula determinationExample; Tetracosane; C24H50; MW = 338.39123 InChIKey: POOSGDOYLQNASK-UHFFFAOYAT

Abund. (M•+) = 24%

Idea: Salvatore Abate (FiehnLab)

Component at scan 792 (10.313 min) [Model = +307u] in c:\ ma D-Fructose, 1,3,4,5,6-pentakis-O-(trimethylsilyl)-, O-methyloxime50 90 130 170 210 250 290 330 370 410 450 490 530 570

0

50

100

50

100

58

59

73

73

89

103

103

133

133

147

147

204

217

217

231

231

277

277

291

307

307

335

335

364

364

376390 434

437464464

492492

522 554

554

O

O

O

SiN

Si

Si

O

O

O

Si

Si

MS DB Search is possible with high mass tune spectra

• NIST Hybrid search gives correct results• Hybrid search uses both the logic of normal searching plus

the logic of neutral loss searching• Absolute intensity for molecular ion is sufficiently high

for molecular formula determination(Text File) Component at scan 792 (10.313 min) [Model = +30

345 385 425 465 505 5450

5

10364

376 407

437

464 492 523

554569

ZOOM

EI (70 eV)

High tuneEI (70 eV)

Machine learning in metabolomics

Image source: © Gert Wohlgemuth – The nice lab series

Idea of automated substructure detection

NSi

OOSi s1

s2

s3

s4

s5

O

Si N

Si O

O

O

160 170 180 190 200 210 220 230 240 250 260 270 280 2900

50

100

250 260 270 280 2900

50

100

91

105

120

126

134 148

162

176

192

206

222

234 242 250

266

281

80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 2900

50

100

91

105

120

126

134 148

162

176

192

206

222

234 242 250

266

281

Aim1: take unknown mass spectrum – predict all substructuresAim2: classification into common compound classes (sugar, amino acid, sterol)SuperAim1: database lookup of formula and refine with detected substructures SuperAim2: generation of complete structure using isomer generators

Pioneers: Dendral project at Stanford University in the 1970s Varmuza at University of ViennaSteve Stein at NISTMOLGEN-MS team at University Bayreuth

MS Spectrum f1 f2 f3 f4 f5 fnMS1 100 20 50 60 0 0MS2 100 20 50 60 0 20MS3 100 20 60 50 0 0MS4 0 40 20 50 0 40MS5 0 40 20 50 0 40

MS Feature matrixMS Feature matrix

Substructure s1 s2 s3 s4 s5 snMolecule1 Y Y N Y Y NMolecule2 Y Y N Y Y NMolecule3 Y Y N Y Y NMolecule4 N N N Y Y YMolecule5 N N N Y Y Y

Substructure matrixSubstructure matrix

NSi

OOSi s1

s2

s3

s4

s5

O

Si N

Si O

O

O

Principle of mass spectral features

160 170 180 190 200 210 220 230 240 250 260 270 280 2900

50

100

91

105

120

126

134 148

162

176

192

206

222

234 242 250

266

281

Mass Spectral Features• m/z value• m/z intensity• delta ( m/z)• delta ( m/z) x intensity• non linear functions • intensity series

f2

f3

f1

80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 2900

50

100

91

105

120

126

134 148

162

176

192

206

222

234 242 250

266

281

80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 2900

50

100

91

105

120

126

134 148

162

176

192

206

222

234 242 250

266

281

Mass Spectral Features• m/z value• m/z intensity• delta ( m/z)• delta ( m/z) x intensity• non linear functions • intensity series

f2

f3

f1

Automated machine learning workflow in Statistica Dataminer

Use of meta-learning principles: combined use of neural networks, support vector machines, CARTto find reliable and robust models (tree models sometimes topple)

Mass spectral deconvolution -spectral search and MS prediction

Image source: © Gert Wohlgemuth – The nice lab series

Peak picking and mass spectral deconvolutionare needed for LC-MS and GC-MS

44

0

22

33

11

15.40 15.50 15.60 15.70 15.80 15.90 16.00 16.10 16.20 16.30 16.40 16.50

100

0

50

75

25

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

137.1

260.2

245.2216.2

284.3190.2 322.2 340.221.0

Time [min]

(A) Automation can detect peaks under baseline (B) Automation can detect and clean overlapping (non-resolved) peaks

m/z

Case (A)

Case (B)

Baseline

Extracted clean mass spectrumwith red triangle above

Example with MassFrontier(Not to be confused with simple feature detection)

Mass Spectral Trees in Mass Frontier

MassFrontier searches MSn and CID mass spectraSource: MassFrontier Helpfile

In-silico fragmentation with MassFrontierusing fragmentation library of 20,000 mechanisms from literature

Retention time prediction

Image source: © Gert Wohlgemuth – The nice lab series

LC retention time prediction

Troublemakers: Compounds withmultiple ionizable groups and complexpKa and logD profiles.

Metabolites like thymidine monophosphatehave multiple micro species depending on pH

LC retention time prediction is possible,but only useful with large datasets (n>500) covering a broad range of metabolites.

Each model specific to special columnand solvent profile.

pkA and descriptor calculation with ChemAxon Marvin

y = 1.0191x + 0.5298R2 = 0.8744

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40

experimental RT [min]

pred

icte

d R

T [m

in]

Retention time prediction for LC

32Observations

3.775187Standard Error

0.8702Adjusted R Square

0.874387R Square

0.935087Multiple R

Regression Statistics Test Set

Development set n = 48 (60%)

logDpH=1.00 <= -3.71 : | aromaticatomcount <= 7.5 : | | logDpH=1.00 <= -5.335 : LM1 (9/4.109%)| | logDpH=1.00 > -5.335 : | | | logDpH=5.00 <= -4.58 : LM2 (5/3.77%)| | | logDpH=5.00 > -4.58 : LM3 (15/3.734%)| aromaticatomcount > 7.5 : LM4 (11/24.165%)logDpH=1.00 > -3.71 : | ssCH2 <= 0.5 : | | logDpH=1.00 <= -1.99 : LM5 (4/0.468%)| | logDpH=1.00 > -1.99 : | | | logDpH=1.00 <= -0.865 : LM6 (8/20.756%)| | | logDpH=1.00 > -0.865 : LM7 (3/2.039%)| ssCH2 > 0.5 : | | Count_N <= 1.5 : | | | logDpH=1.00 <= -2.44 : LM8 (3/4.862%)| | | logDpH=1.00 > -2.44 : LM9 (3/26.501%)| | Count_N > 1.5 : LM10 (19/20.042%)

LM num: 1RTd (minutes) =

0.3176 * aromaticatomcount+ 0.8153 * logDpH=1.00 + 0.1985 * logDpH=5.00 - 0.3533 * logDpH=9.00 + 0.4969 * sOH+ 0.3158 * dO+ 0.7638 * ssCH2

…cut + 7.3651

Exa

mpl

e Cl

assif

icat

ion

tree

mod

el, d

iffer

ent f

rom

gra

phic

s

• Development set too small (n= 48), multi ionizable compounds, large errors• Model is a hybrid voting approach using multiple regression trees• Based on logD (distribution coefficient at different pH) and Kier&Hall• RT models can be used as post-screening filter after database search

Data Source: Lu W, Kimball E, Rabinowitz JD. J Am Soc Mass Spectrom. 2006 Jan;17(1):37-50; LC method using 90 nitrogen metabolites on RP-18 QSRR Model: Tobias Kind (FiehnLab) using ChamAxon Marvin and WEKA

Retention index prediction for GC

Use of RI prediction algorithm:Having correct molecular formulas from the Waters GCT we can use the Seven Rules and lookupthese formulas in isomer databases and further refine candidates with retention index data

Conclusion: NIST RI prediction can be used for removal of outliers and class detectionAlgorithm is not accurate enough for TMS compounds and single isomer identificationNIST RI DB: 20 column types; 50 different phase ratios; 22 different column lengths;

700

800

900

1000

1100

1200

1300

1400

1500

1600

0 2000 4000 6000 8000 10000 12000 14000

All C8H16O2 isomers

Kov

ats

rete

ntio

n in

dex

Esters andEther isomers

Alcohols Carboxylic acids and diverse isomers

Applications and examples for GC-MS

Image source: © Gert Wohlgemuth – The nice lab series

Workflow for GC-MS structure elucidation

EI/CIGC-MS

SetupX BinBase DB

Plan experimentCollect MSI meta data

Acquire EI and CIAccurate mass, M+

Align true metabolitesuse spectral meta data

EI mass spectra

Substructure algorithmInterpret mass spectra

SetupX / BinBaseWeb GUI

MS, RI, RAWmeta data

CImass spectra

Rank and refine molecular formulas

Substructurealgorithm

Accurate massMolecular ion

Seven GoldenRules

DB

PubChem PUGChemspider API

Isomersstructures

Retention Indexprediction

Bellerophon

Set of possible isomer structures

Exclude wrong candidates

Combine + refineall informationassign MetaboScore

Highly reproducibleEI mass spectra

Molecular ions, accurate masses and accurate isotopic abundances

60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

0

50

100

50

100

73 87

89

99 114

117

131 147

147

165

175

191

191

203

219

219

233

247

249

265267

307

307324327

340353

381

381

396

397

425

437 469 493

Chemical Ionization (+)

ElectronImpact (+)

[M+H]+

[M+28]+

[M+40]+

m/z394.0 396.0 398.0 400.0 402.0 404.0 406.0

%

0

100

70eV; 500uA Emission; 40% CI gas; mass range 65-800; ScanRate0.2-0.03; source tempe 200C;PushInter 40

TOF MS CI+

1.43e+003

397.1690

396.1648

395.2110

398.1729

399.1714

400.1689 401.1606

m/z394.0 396.0 398.0 400.0 402.0 404.0 406.0

%

0

100

70eV; 500uA Emission; 40% CI gas; mass range 65-800; ScanRate0.2-0.03; source tempe 200C;PushInter 40

TOF MS CI+

1.43e+003

397.1690

396.1648

395.2110

398.1729

399.1714

400.1689 401.1606

[M+H]+ is very abundant in CI; even election species (not a radical)M+28.02=[M+C2H5]+ and M+40.04=[M+C3H5]+ are used for verification of [M+H]+

Mass accuracy and isotopic abundance accuracy depend heavily on ion statistics Set accurate mass limit (+/- 5 ppm) and accurate isotopic abundance limit (+/- 5%)

Accurate mass [u] 397.1690Mass accuracy [ppm] 5Isotopic abundance error [%] 5A+1 [%] 37.90A+2 [%] 17.84A+3 [%] 5.03

The molecular formula space of small moleculescalculated by the Seven Golden Rules

Source http://fiehnlab.ucdavis.edu/projects/Seven_Golden_Rules/Molecular-Formula-Space/

Each molecular formula can expand to billions of structural isomers.Molecular Formula ≠ Molecular Isomer

8,000,000,000possible elemental compositions< 2000 Da, CHNSOP, Lewis+Senior

600,000,000highly probable formulasusing Seven Golden Rules

The molecular formula space

700,000 formulae inPubChem covering10,000,000 isomers

50,000 elemental compositionsNaturals, Drugs, Toxicants

Molecular formula refinement using the Seven Golden Rules

0C19H10NC25H26NSi2C25H28NSi2C25H27NSi293.52152.064.340.07

0N.A.C12H34N3O4Si4C12H36N3O4Si4C12H35N3O4Si495.0510.191.942.82

177C9H8O4C18H32O4Si3C18H34O4Si3C18H33O4Si395.115.51.121.222.55

3C10H4N4C19H28N4Si3C19H30N4Si3C19H29N4Si397.5710.51.031.190.20

PC Isomers (-TMS)(-TMS)M-HM+HClean Formula

7GR scoreDUd(A+3)d(A+2)d(A+1)

DBE/DU check - for positive chemical ionization [M+H]+ must be oddAdduct removal [+H] and TMS removal (SiC3H9) for database searchCheck TMS free compounds in PubChem (PC) and retrieve isomers

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00

Isotopic Abundance [A+1]

Isot

opic

Abu

ndan

ce [A

+2]

Element number restrictions

Lewis and Senior check

Isotopic pattern filter

Hydrogen/carbon ratio check

NOPS ratio check

Element probability check

TMS check

Database search of molecular formulas

A

B

C

D

CSLS: 250 hits for C9H8O4

ChemSpider: 480 for C9H8O4Programmatic access via Chemspider MS API

PubChem: 177 for C9H8O4Programmatic access via PubChem PUGPower User Gateway web-services

Molgen (Demo) constructed isomers: 402,560,255 for C9H8O4

Refine isomer DB search results by hydrogen bond donors and biological databases

• Limit number of H bond donor groups known from number of TMS groups

4H-Bond Acceptor

3H-Bond Donor

1.5XLogP

C9H8O4Molecular Formula

180.15742 [g/mol]Molecular Weight

689043Compound ID

3,4-dihydroxycinnamic acid

• Use only KEGG metabolic pathways as source database – two possible results left

p-Hydroxyphenylpyruvic acid4H-Bond Acceptor

3H-Bond Donor

1.4XLogP

C9H8O4Molecular Formula

180.15742 [g/mol]Molecular Weight

636708Compound ID

Final result:2 isomers

out of 19 isomersout of 177 isomers

19 isomers out of 177 results

Applications and examples for LC-MS

Image source: © Gert Wohlgemuth – The nice lab series

General LC-MS data processing for small molecules

Confirm with MS/MS or MSn fragmentation

100

0

50

200 400 600

MS2

UPLC_C8_DataDependent_Chlamy_07030703... 3/7/2007 3:21:28 AM

RT: 0.00 - 44.99

0 5 10 15 20 25 30 35 40Time (min)

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e Ab

unda

nce

18.3017.80

19.11

29.36

28.7420.16 30.30

11.27 43.9730.5523.00

43.6817.49 23.80

10.31 16.079.55 31.531.56 6.37 43.0937.19

NL: 1.68E6m/z= 70.00000-2000.00000 F: FTMS + p NSI Full ms [200.00-1200.00] MS UPLC_C8_DataDependent_Chlamy_070307032128

UPLC_C8_DataDependent_Chlamy_070307032128 #1414 RT: 18.30 AV: 1 NL: 8.23E5F: FTMS + p NSI Full ms [200.00-1200.00]

754 755 756 757 758 759 760 761 762m/z

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

756.57745R=55401

757.58209R=55100

758.58636R=56100

759.59546R=60400

762.29700R=49901

755.57501R=60200

756.89417R=86600

760.60144R=52200

756.26086R=87000

754.57471R=50200

757.90027R=79200

761.59888R=62600

LC-MS run 40 minutesC8 column, Agilent-UPLCChlamydomonas extract

FT-ICR-MS mass spectrumMS1 @ 50,000 resolving powerCheck charge state = 1756.57 represents [M+H]+

+

Deconvolution and evaluation of LC-MS data

Picture: nrel.gov

Chromatogram Source: N.Saad, DY Lee FiehnLab

LC-MSChromatogram

ExtractedMass spectrum

100

0

50

75

25

10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

100

0

50

75

25

200 300 400 500 600 700 800 900 1000 1100 1200

756.577

706.568585.457 871.588324.209 436.437 951.566 1107.90237.733 1196.27516.755 805.909

Deconvolution and evaluation of LC-MS data

LC-MS detected compoundMarked with blue triangle

Extracted MS1 peakLibrary search useless(only single peak)

LC-MS detected compoundMarked with blue triangle141 peaks extracted

Example with HighChem Mass Frontier

UPLC-FT-MS data extraction with MassFrontier

100

0

50

75

25

250 300 350 400 450 500 550 600 650 700

478.45496.46

236.20

434.52391.34 687.72335.56271.06

Mass Frontier 5.0 Report

File MS1 FTMS + p NSI Full #1414

100

0

50

755 760

756.577

File MS 2 ITMS + c NSI d Full 756.58 #1415

100

0

50

200 400 600

478.45 496.46

335.56

100

0

50

75

25

751 752 753 754 755 756 757 758 759 760 761 762

756.577MS1

MS2

MS1

MS2

Fragment peaks m/z 478.45 and 496.46

Approach: generate molecular formula using Seven Golden Rules;find matching isomers in molecular databases;confirm possible matches by in-silico fragmentation (usually impossible);

Isotopic pattern equally important as accurate mass

0.00

5.00

10.00

15.00

20.00

25.00

0.00 20.00 40.00 60.00 80.00

Isotopic Abundance A+1 [%]

Isot

opic

Abu

ndan

ce A

+2 [%

]

756.5 757.0 757.5 758.0 758.5 759.0 759.5m/z

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

756.57745R=55401

757.58209R=55100

758.58636R=56100

759.59546R=60400

756.5 757.0 757.5 758.0 758.5 759.0 759.5m/z

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

756.57745R=55401

757.58209R=55100

758.58636R=56100

759.59546R=60400

m/z Intensity Relative Resolution

756.5765 589034.1 100 54901757.5814 279455.2 47.44 55100758.5862 64293.3 10.92 56100756.5526 19173.8 3.26 52000759.593 9656.4 1.64 56000

A+1 = 47.44%

A+2 = 10.92 %

We can discard all other resultsoutside the error box.Current box reflect +/- 10% error.

Experimental result Abundances for all molecular formulae

Seven Golden Rules – generate possible molecular formulas

5 formula candidates left with 30 ppm mass accuracy and 10% isotopic abundancesThese are candidates with good isotopic pattern match. These 5 were found in PubChem.C42H78NO8P - 1 isomer hitC42H77NO10 - 1 isomer hitC39H73N5O9 - 0 isomer hitC43H82NO7P - 2 isomers foundC43H73N5O6 -2 isomers foundC45H77N3O6 - 1 hit foundC45H69N7O3 - 1 hit found

Scan speed problem: Due to poor ion statistics only few scans are collectedMass accuracy and isotopic abundance accuracy are bad

Structural isomer lookup example in ChemSpider

In-silico fragmentation and metabolite scoring

C42H78NO8P fragments N.A.

Experimental peaks m/z 478.45 and 496.46 were detected in MS/MS spectrum

In-silico fragmentation should match the experimental fragmentation.In-silico - using a computer library of 20,000 fragmentation rules from the MS literature within MassFrontier

Assign metabolite score according toretention range (logP/logD) or accurate RI prediction and MS/MS match between experimental and predicted spectra

The metabolite score is computed from multiple orthogonal match factors.

C42H77NO10 no fragments N.A.

C45H69N7O3 fragments: m/z 496

C43H82NO7Pfragments m/z 478 and 496

C43H82NO7PH no fragments N.A.

High Metabolite Score

Low Metabolite Score

Thank you!

Fiehn LabDr. Oliver Fiehn (PI)Martin Scholz (SetupX)Mine Palazoglu (Library)Dr. Tobias Kind Dinesh Kumar Barupal (pyrGC)Do Yup Lee (Library)Gert Wohlgemuth (BinBase)Kirsten Skogerson (NMR, GCxGC)Kwang-Hyeon Liu (LC, Pharma)Minhye Shin (Biofuels) Salvatore Abate (GCT)Dr. Yun Gyong Ahn (GC-MS)

Former Lab MembersSeema Data (FT-MS)Nabil Saad (LC-MS)Yun Lu (Library)