Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255...

18
Use of in situ UV fluorometry for water catchment monitoring Dr Cathy Rushworth Chelsea Technologies Group 18 th March 2015

Transcript of Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255...

Page 1: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

Use of in situ UV fluorometry for water catchment monitoring

Dr Cathy Rushworth

Chelsea Technologies Group

18th March 2015

Page 2: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

Overview

• Target markers

• Multi-wavelength UV fluorometry of natural

water samples

• Fluorometer standardisation

• Background correction

• Examples

Page 3: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

Target markers

• Fuel

• Polycyclic aromatic hydrocarbons

• Tryptophan

• Optical brighteners

Phenanthrene

BTEX

FWA-5

Page 4: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

Tryptophan

• Tryptophan sensor reports

fluorescence in ppb Tryptophan,

as determined via calibration of

pure tryptophan in deionised

water

1 µM Tryptophan

The development of a fluorescence sensor for

monitoring microbial processes of freshwater

systems

Page 5: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

UV fluorescence in freshwaters

• Peak C: 350ex/450em (Humic-like)

• Peak T: 275ex/340em (Tryptophan-like)

• Peak A: 230ex/420em (Humic-like)

P. G. Coble, Marine Chemistry, 51, 325-346 (1996)

Reservoir Canal

T

C

A

Page 6: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

CDOM calibration

100 ppb PTSA

• Water soluble, stable, non-

toxic, also used as tracer

• CDOM sensor is calibrated to

report fluorescence in ppb

PTSA

Page 7: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

Fluorometer standardisation

• NIST-traceable, certified reference

material

• Fluorescence reported in QSU

where 1 QSU is equivalent to the

fluorescence intensity recorded

from 1 ppm quinine sulphate at

λex = 347.5 nm, λem = 450 nm

Blue line: Aqualog

Orange line: Cal. Cert.

Page 8: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

UviLux specifications

Parameter PAH

Fuel

PAH CDOM

255

Tryptophan CDOM

280

Optical

Brightener

Sensitivity / QSU0.0015 0.0004 0.0008

Calibrated range

/ QSU 24 12 50

Example

compound:

Sensitivity -

Range / ppb

BTEX*:

3.0 - 50,000

NDSA**

0.40 - 6,500

Carbazole:

0.005 - 80

Phenanthrene:

0.010 - 150

Perylene:

0.003 - 50

Tryptophan:

0.02 - 600

PTSA:***

0.02 - 400

PTSA:***

0.04 - 2,400

*BTEX is Benzene, Toluene, Ethylbenzene, p-Xylene, m-Xylene, o-Xylene at equal ppb

concentrations

**NDSA is naphthalene disulphonic acid

***PTSA is pyrene tetrasulphonic acid

Page 9: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

Tryptophan & CDOM

• Tryptophan conversion

factor: 0.0199 QSU ppb-1

• CDOM conversion factor:

0.0307 QSU ppb-1

• Equal sensitivity in terms

of QSU, CDOM 1.54 times

more sensitive in terms of

ppb

BACTI-Wader Pro system

• UviLux Tryptophan & CDOM

• Dual-Lux dongle

• Hawk hand-held data logger

Page 10: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

Example T/C fluorescence ratios

Ref. F1 – Tryptophan

Indicator of

microbial activity

F2 – CDOM

Provides stable

baseline

Comments on the ratio F1/F2

Baker 2001 276 - 281ex

340 - 370em

326 – 339ex

414 - 422em

EEM of STW outflows - Treated effluent ~1.0

Untreated sewage 2.7 – 3.1 in river waters

Baker 2002 275ex

350em

320 - 240ex

410 - 430em

EEM of farm wastes: silage liquor > 20, cattle/pig slurries

~2-5, sheep barn wastes ~0.5 – 4

Reynolds

2002

280ex

350em

280ex

440em

Not used as ratio, but correlate 350 nm to biodegradable

and 440 nm to non-biodegradable DOM through STW

Henderson et

al. 2009

275ex

340em

300 - 370ex

400 - 500em

Review

Ghervase et

al. 2010

266ex

300-350em

266ex

410-460em

Emission scans using laser excitation

~ 0.3 clean water

> 2 sewage impacted rivers

Guo et al.

2010

275ex

339em

380ex

467em

EEM-PARAFAC study

Marker of sewage

Stedmon et

al. 2011

270 - 290ex

325 - 350em

270 - 290ex

480 - 505em

EEM-PARAFAC study

Monitoring drinking water quality, indicator of microbial

contamination

A. Baker, Environ. Sci. Technol., 35, 948-953 (2001); A. Baker, Water Research, 36, 189-195 (2002); D. M. Reynolds, J. Chem. Technol. & Biotechnol., 77, 965-

972 (2002); R. K. Henderson, A. Baker, K. R. Murphy, A. Hambly, R. M. Stuetz, S. J. Khan, Water Research, 43, 863-881 (2009); L. Ghervase, E. M. Carstea, G.

Pavelescu, D. Savastru, R. Rep. Phys., 62(3), 652-659 (2010); W. Guo, J. Xu, J. Wang, Y. Wen, J. Zhuo, Y. Yan, J. Env. Sci., 22(11), 1728-1734 (2010); C. A.

Stedmon, B. Seredyńska-Sobecka, R. Boe-Hansen, N. Le Tallec, C. K. Waul, E. Arvin, Water Research, 45, 6030-6038 (2011)

Page 11: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

Local Tryptophan/CDOM levels

• Tryp/CDOM - JA

Sample 5

Sample 6

Sample 3

Sample 4

Sample 1

Sample 2

Chelsea Technologies

Page 12: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

EEMs of local samples

Sample 1 Sample 2

λex = 280 nm

Page 13: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

WwTW event detection

BOD/CDOM ratio smoothes out daily variation making Tryptophan peaks clearer

0

50

100

150

200

250

300

13/10 15/10 17/10 19/10 21/10 23/10 25/10 27/10 29/10 31/10 02/11 04/11 06/11 08/11 10/11

DATE

[TR

YP

TO

PH

AN

] (u

g/l

)

0

2

4

6

8

10

12

UV

ILU

X C

DO

M (

ug

/l)

Tryptophan/CDOM

diurnal correlation

Tryptophan anomalies

No cleaning during

this time frame

Page 14: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

35

34 34

WwTW event detection

BOD/CDOM ratio smoothes out daily variation making Tryptophan peaks clearer

PEN-Y-BONT WATER TREATMENT WORKS

Overnight 6-7/11/2013

0

2

4

6

8

10

12

14

06/11

06:00

06/11

09:00

06/11

12:00

06/11

15:00

06/11

18:00

06/11

21:00

07/11

00:00

07/11

03:00

07/11

06:00

07/11

09:00

07/11

12:00

07/11

15:00

07/11

18:00

DATE

UV

ILU

X B

OD

/ U

VIL

UX

CD

OM

0

10

20

30

40

50

60

70

80

90

LA

B B

OD

5 (

mg

/l)

UviLux BOD

UviLux CDOM

Lab BOD

Similar rise in both

sensor and lab resultsCDOM signal attenuated by

Tryptophan absorbance

Tryptophan peak

correlating with BOD5

& bacterial counts

E.Coli:

74,000 cfu/100ml

Enterococci:

22,000 cfu/100ml

Page 15: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

35

34 34

Tryptophan/CDOM ratio

BOD/CDOM ratio smoothes out daily variation making Tryptophan peaks clearer

0

50

100

150

200

250

300

13/10 15/10 17/10 19/10 21/10 23/10 25/10 27/10 29/10 31/10 02/11 04/11 06/11 08/11 10/11

DATE

[TR

YP

TO

PH

AN

] (u

g/l

)

0

50

100

150

200

250

300

TR

YP

TO

PH

AN

/ C

DO

M

Ratio smoothes diurnal variation,

but anomalies are still clear

Page 16: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

35

Fluorescence & Turbidity

BOD/CDOM ratio smoothes out daily variation making Tryptophan peaks clearer

Page 17: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

35

34 34

85

113

93

324

45

Single Tryptophan sensor

Page 18: Use of in situ UV fluorometry for water catchment monitoring · Parameter PAH Fuel PAH CDOM 255 Tryptophan CDOM 280 Optical Brightener Sensitivity / QSU 0.0015 0.0004 0.0008 Calibrated

Conclusions

• In situ UV fluorometers can be configured to target a

range of water quality markers

• Single fluorescence sensor can be used locally to trace

pollution sources or highlight deviations from baseline

in installations

• Site-to-site comparison of absolute fluorescence

intensities requires background CDOM fluorescence

correction

• OB monitoring is particularly susceptible to CDOM

background