Use of Grain-Size Functions in Unsaturated Soil Mechanics

download Use of Grain-Size Functions in Unsaturated Soil Mechanics

of 15

Transcript of Use of Grain-Size Functions in Unsaturated Soil Mechanics

  • 8/17/2019 Use of Grain-Size Functions in Unsaturated Soil Mechanics

    1/15

    Use of Grain-Size Functions in Unsaturated Soil Mechanics

    Murray D. Fredlund

    G. Ward Wilson2

    Delwyn G. Fredhmd2

    A b s t r a c t

    The grain-size distr ibution is commonly used for soil classification; however, there is

    also potential to use the grain-size distribution as a basis for estimating unsaturated

    soil behavior. Mathematically representing the grain-size distribution provides

    several benefits to soil mechanics. An example is the estimation of the soil-water

    characteristic curve from the grain-size distribution. Much emphasis has recently

    been placed on the estimation of unsaturated soil-property functions from the soil-

    water characteristic curve. Several methods have been proposed that use the grain-

    size distribution as the basic information for the estimation of the soil-water

    characteristic curve.

    Two mathematical forms are presented to represent grain-size distribution

    curves; namely, a tmimodal form and a bimodal form. The equations presented in

    this paper can provide a close representation of a wide variety of grain-size

    distribution for different soil types.

    I In t roduc t ion

    The grain-size distribution is a simple, yet informative classification test routinely

    performed in soil mechanics. Valuable information regarding the amount of each

    particle size can be determined in the laboratory through the use of a series of sieves

    and hydrometer analysis. Recent research has made use of the grain-size distribution

    as the basis for the estimation of soil properties such as the soil-water characteristic

    curve Gupta and Larson, 1979; Arya and Paris, 1981; Haverkamp and Parlange,

    1 9 8 6 . I t

    is of value to be able to mathematically represent the grain-size distribution

    curve as a continuous function that will allow further analysis to be performed. The

    Graduate student Departmemof Civil Engineering,Universityof Saskatchewam Saskatoora Sask.,

    STN 5A9

    : Professor of CivilEngineering,Departmentof Civil Engineering,Universityof Saskatchewan,

    Saskatoom Sask., S7N 5A9

    69

    Advances in Unsaturated Geotechnics

       D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

      s  c  e   l   i   b  r  a  r  y .  o  r  g   b  y   U  n   i  v

      e  r  s   i   t  y  o   f   T  e  x  a  s  a   t   A  r   l   i  n  g   t  o  n  o  n

       1   2   /   0   4   /   1   5 .

       C  o  p  y  r   i  g   h   t   A   S   C   E .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y  ;  a   l   l  r   i  g   h   t  s  r  e

      s  e  r  v  e   d .

  • 8/17/2019 Use of Grain-Size Functions in Unsaturated Soil Mechanics

    2/15

    70 ADVAN CES N UNSATURATEDGEOTECHNICS

    spec i fic ob jec t ive o f this paper i s to de ve lop a m athemat ica l desc r ip tion for the gra in-

    size distribution o f an y given soil . This form s the foun dation step fo r the general

    proced ure to determ ine re lated soil prop er ty functions an d cons t i tut ive re la t ions.

    M athe m atica lly representing the grain -size distribution pro vid es several

    ben efits to soil mechanics. Firstly, the soil can be classified using the best-fit

    parameters . Seco ndly, the mathe m atical equation can be used as the basis for fur ther

    soil analysis and descr ipt ion. A n exam ple is the est imation o f the soi l-w ater

    characteristic curv e fro m the grain-size distribution (Fred iund et al, 1997). Thirdly, a

    mathem at ica l equa t ion can provide a m ethod o f r epresent ing the en t ire curve

    be tween m easured da ta poin ts.

    Two mode ls to f i t g ra in- s ize da ta a re proposed in th is paper . These mode ls

    cons is t o f a un im oda l and a b imoda l m a themat ica l func tion . The two ne w eq ua t ions

    prov ide g reat f lexibi li ty for f i t t ing a w ide va r ie ty o f soils.

    2 De finition o f variables

    The grain -size distr ibution for a soi l is def ined as the re la t ionship betw een perce nt

    passing (by mass) and the par t ic le s ize . I t has a lso been cal led the mass-based

    aggreg ate s ize distribution or the AS D. T he particle size represents the size of

    par t ic les that can pass a par t icular s ieve mesh. The percent passing represents the

    m ass percen tage o f par t ic les passing a par t icular s ieve size .

    3 Background

    ASTM D422-54T (1958) presented a s tandard for de te rmining the gra in- s ize

    distribution. Standard sieve sizes, repor t ing metho ds, and me thod s for perfo rm ing a

    hydro m ete r ana lys is a re presented . Th e s ieve ana lys is a l lowed poin ts on the gra in-

    size distribution to be determined for par t ic le s izes greater than the 200 sieve or

    0 .074 ram. T he hydrom ete r ana lys is presented by A STM , s tandard izes a metho d for

    determ ining the gra in-size distribution for par ticles sm aller than the 200 sieve.

    Interpreta t ion o f the gra in-size distribution is typic al ly carr ied ou t manu ally.

    Gard ner (1956) used a two -param eter , log-norm al distribution to f it gra in-size

    dis tr ibu tion da ta . K em per and Chepi l (1965 ) fur the r conf i rmed the w ork o f Gardner

    ( ioc c it .) . T he lo g-norm al distribution of ten fa i led to provid e a c lose f i t o f the g ra in-

    size distribution a t the extremes o f the curv e (Gardner , 1956; Hag en e t a l, 1987) .

    W agner and D ing (1994) later im proved upo n the log-normal equa t ion by present ing

    three and four parame ter log-n orm al equations.

    Cam pbe l l (1985) presented a c lass if icat ion d iagram based on the assum pt ion

    that the par t ic le-size distribution is appro xim ately log-norm al. This ass um ption led to

    the par t ic le-size distribution being ap prox ima ted with a G aussian distribution

    function. W ith this assumption, any com binatio n of sand, s i lt , and c lay can be

    represented by a g eom etr ic (or log) m ean pa r t ic le d iamete r and a geom etr ic s tandard

    devia tion. Va lues were sum m arized in a mod if ied U SD A textural c lassif ica tion char t

    by Shir iz i and B oersm a (1984) .

    Advances in Unsaturated Geotechnics

       D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

      s  c  e   l   i   b  r  a  r  y .  o  r  g   b  y   U  n   i  v

      e  r  s   i   t  y  o   f   T  e  x  a  s  a   t   A  r   l   i  n  g   t  o  n  o  n

       1   2   /   0   4   /   1   5 .

       C  o  p  y  r   i  g   h   t   A   S   C   E .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y  ;  a   l   l  r   i  g   h   t  s  r  e

      s  e  r  v  e   d .

  • 8/17/2019 Use of Grain-Size Functions in Unsaturated Soil Mechanics

    3/15

    ADVANC ES IN UNSATURATEDGEOTECHNICS 71

    T he f i r st l im i t a t i on a s soc i a t e d w i t h u s i ng a l og - no r m a l type o f e qu a t i on i s t he

    assumpt ion tha t the gra in-s i ze d i s t r ibu t ion i s symmet r i c . In rea l i ty , the gra in-s i ze

    d i s t r i bu t i on i s o f t e n non - s ym m e t r i c a nd c a n be be t t e r f i t by a d i f f e r e n t t ype o f

    e qua t ion . S e c ond l y , a m e t hod f o r f i tt i ng s o i l s t ha t a r e b i m o da l o r ga p - g r a de d i s o f t en

    o f va l ue a nd t he f ou r - pa r a m e t e r l og - no r m a l e qua t i ons ha ve no t be e n f ound t o be

    s a t i sf a c t o r y f o r f i t ti ng ga p - g r a de d g r a i n - s iz e d i s tr i bu t ions .

    T he r e a r e t h r e e p r i m a r y type s o f g r a i n - s iz e d i s t ri bu t ions . T he s e t h r e e t ype s o f

    d i s t r i bu t i ons a r e know n a s well graded soi ls , uniform s o i l s , a nd gap graded soi ls .

    F i gu r e 1 i l lu s t r a te s e a c h t ype o f g r a i n - s i z e d is t ri bu t ion . T h i s pa pe r f oc us e s on t he s e

    t h r e e c a t e go r i e s o f g r a i n - s i z e d i s t r i bu t i ons a nd p r ov i de s e qua t i ons t o f i t t he

    e xpe r i m e n t a l da t a f o r e a c h c a t e go r y . We l l - g r a de d s o i l s a nd un i f o r m s o i l s a r e

    e xa m i ne d a nd a un i m oda l m e t hod o f f i t t i ng a n e qua t i on i s de ve l ope d . T he n a

    m a t he m a t ic a l m e t hod o f r e p r e s e n t ing a g a p - g r a de d s o il i s s ubs e que n t l y p r e s en t e d .

    S i e v e

    U . S . S t a n d a r d )

    N o . 2 0 0 1 0 0 4 0 1 0 4 3 i n .

    I U n i f o r m

    9 , ,

    o 1

    0 . 0 0 1 0 . 0 1 0 .1 1 1 0 1 0 0

    Grain-size diameter mm )

    t

    2 0 ~

    m

    ~ o

    10

    F i g . 1

    T hr e e p r i m a r y t ype s o f g r a in - s i z e d i s t r ibu t i on c u r ve s H o l m a n d

    Kovacs , 1981)

    4. Un imod al Equ ation or the Gra in size Distribution

    T he s e l e c ti on o f a n a pp r op r i a t e , m a t he m a t i c a l e qua t i on i nvo l ve s a r e v i e w o f a va r i e t y

    o f e qua t i ons tha t c ou l d be u s e d t o f i t s o i l s da t a. I t ha s be e n obs e r ve d t ha t t he s o i l -

    w a t e r c ha r a c t e r i st i c c u r ve p os s e s s e d a s ha pe s i m i l a r t o t ha t o f the g r a i n - s iz e

    d i s t ri bu t i on . T h i s i s t o b e e xpe c t e d s i nc e t he s o i l - w a t e r c ha r a c t e r i s ti c c u rve de s c r i be s

    Advances in Unsaturated Geotechnics

       D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

      s  c  e   l   i   b  r  a  r  y .  o  r  g   b  y   U  n   i  v

      e  r  s   i   t  y  o   f   T  e  x  a  s  a   t   A  r   l   i  n  g   t  o  n  o  n

       1   2   /   0   4   /   1   5 .

       C  o  p  y  r   i  g   h   t   A   S   C   E .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y  ;  a   l   l  r   i  g   h   t  s  r  e

      s  e  r  v  e   d .

  • 8/17/2019 Use of Grain-Size Functions in Unsaturated Soil Mechanics

    4/15

    72 ADVANCES1N UNSATURA TEDGEOTECHNICS

    the void d is t r ibu t ion in a so il w hi le the gra in s ize curve provides inform at ion on the

    dis t ribu t ion o f the so l id phase of the so i l. S ince the so l ids p lus the voids add up to

    the to ta l so i l vo lum e, i t is to be expec ted tha t the d is t ribu t ion o f the so l ids phase i .e .,

    g ra in- s ize d is t r ibu t ion) would tend to bea r an inverse type re la t ionship to the

    distr ibution o f vo ids i .e ., soil-water c haracter is t ic curve) , and vic e versa .

    Equa t ions used to f i t the so i l -wa te r charac te r i s t ic curve have been proposed

    by Broo ks and Corey , 1964; Gardner , 1974; van Genuch ten , 1980; Burdine , 1953;

    M ualem, 1976; F redlund and Xing , 1994. Bro oks and Co rey 1964) and Gardner

    1974) presented three pa ramete r equa t ions whi le van Gen uchten 1953) and

    Fredlund and X ing I99 4) presented four pa ram ete r equa tions . I t w ou ld app ear tha t

    a s im i la r forms o f equa t ions could be used to represent the gra in- s ize d is tr ibu tion .

    A n accu ra te representa tion o f the c lay f rac t ion o f the gra in- s ize d is tr ibu t ion

    was cons ide red necessa ry in orde r to comple te the mathemat ica l func t ion . The

    F r e d lund a nd X ing 1994) e qua tion al lows inde pe nde n t c on t ro l ove r the low e r e nd o f

    the curv e i .e ., th e f ine par ticle s ize range) , and w as se lected as the ba sis for the

    deve lo pm ent o f a gra in-s ize d is t r ibu t ion equa t ion . T he reversed sca le o f the gra in-

    size distr ibution as well as character is t ics unique to the gra in-size distr ibution,

    requi red tha t the or ig ina l F redlund and X ing 1994) equa t ion to be mod if ied to the

    f o r m s h o w n b e l o w :

    where :

    a~ = pa ram ete r equa l to the inf lec t ion poin t on the curve an d re la ted to

    the ini tial b reaking poin t o f the curve ,

    ngr pa ramete r r e lated to the steepes t s lope of the curve ,

    mg~ = pa ramete r r e la ted to the shape o f the curve ,

    d~g - - param eter re la ted to th e d iam eter o f the f ines in a soi l,

    d = d iamete r of any pa rt ic le s ize und er cons ide ra t ion , and

    dm = diam ete r o f the m inim um a l lowable s ize par ticle.

    Equ a t ion [ 1 i s r efer red to as the un im oda l equ a t ion and c an be used to f i t a

    wid e va r ie ty of so il s a s show n in F igs . 2 , and 3 . A q uas i -New ton leas t squares

    regress ion a lgo r i thm w as used to ad jus t t iuee o f the f ive pa ramete r s to f i t the

    equa t ion to each so i l. T he a lgor ithm pro gress ive ly m m imiges the squared d i f fe rences

    betw een the equ ation and exper imental data . T he be st- f it par t ic le s ize distr ibution

    func t ion can be p lo t ted over the gra in- s ize d is t r ibu t ion da ta , typ ica l ly on a

    logar i thm ic scale.

    The u nim oda l equat ion provides s ign i f icant improvem ents in the f i t o f gra in-

    size data ov er prev ious mathematical represen ta t ions i .e ., log-n orm al distribution)

    Advances in Unsaturated Geotechnics

       D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

      s  c  e   l   i   b  r  a  r  y .  o  r  g   b  y   U  n   i  v

      e  r  s   i   t  y  o   f   T  e  x  a  s  a   t   A  r   l   i  n  g   t  o  n  o  n

       1   2   /   0   4   /   1   5 .

       C  o  p  y  r   i  g   h   t   A   S   C   E .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y  ;  a   l   l  r   i  g   h   t  s  r  e

      s  e  r  v  e   d .

  • 8/17/2019 Use of Grain-Size Functions in Unsaturated Soil Mechanics

    5/15

    ADVAN CES IN UNSATURATEDGEOTECHNICS 73

    o f pa r t i c le s p r e s e n t i n a s o i l. A no t he r f o r m c a n a l s o be u s e d t o v i s ua l i z e t he

    d i s t r ibu t ion of pa r t i c l e s i zes by d i f fe ren t i a t ing the pa r t i c l e s i ze d i s t r ibu t ion curve .

    T he d i f f e r e n t i a t ion p r odu c e s a pa r t i c l e - s iz e p r ob a b i l i t y de ns i t y f unc t i on P D F ) . T he

    d i f f e re n t i a te d fo r m o f t he t m i m oda l g r a i n - s iz e e qua t ion c a n be s e e n i n E q . [ 2] . T he

    pa r a m e t e r s p r e s e n t e d i n t he p a r t i c le - s i z e p r oba b i l i t y de ns i t y f unc t i on , P D F , a r e t he

    sam e as de f in ed in Eq . [ 1 .

    7 0 M F r e d l u n d / ~

    c ~ U n i m o d a l ~ / ,,~

    ._

    6 0

    == 5 0 ~ , t ' s e .

    =

    o . 4 0 J ~ ' , \ L o g P D F

    7

    3 0 ~

    /

    o 2 0 \

    | 1 0 - -- ~ f i : ~

    Q" 0 ~ " ;

    0 . 0 0 0 1 0 . 0 0 1 0 . 0 1 0 . 1 1

    P a r t i c l e s i z e ( m m )

    1 0 1 0 0

    9 E x p e r i m e n t a l ._ U S C S % S i l t

    - - U S C S % C la y -- - U S C S % S a n d

    Fig . 2 Lo gar i thm ic pro bab i l i ty den s i ty func t ion for un i form s i l t fxom the P i lo t But t e

    a r e a o f S a s ka t c he w a n op t i m um c om p r e s s ion ) be s t fi t w i t h the un i m o da l

    equa t ion .

    1 0 0

    9 0

    8 0

    7 0

    6 0

    5 0

    O

    o . 4 0

    E

    3 0

    2

    9 10

    0

    0 . 0 0 0 1

    - - ] C l a y [ : S i l t ; p a n d ~

    : r ,

    ~, P a r t i c le - s i z e : ~ ' !

    0 0 0 1 0 0 1 0 1 I 1 0

    P a r t ic l e s i ze ( m m )

    9 E x p e r i m e n t - - U S C S % S i lt

    .... U S C S % C l a y " U S C S % S a n d

    1 0 0

    F i g . 3 L og a r i t hm i c p r ob a b i l i t y de ns i t y f unc t ion f o r Rub i c on S a n dy L oa m be s t f i t

    w i t h t he un i m o da l e qua t ion .

    Advances in Unsaturated Geotechnics

       D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

      s  c  e   l   i   b  r  a  r  y .  o  r  g   b  y   U  n   i  v

      e  r  s   i   t  y  o   f   T  e  x  a  s  a   t   A  r   l   i  n  g   t  o  n  o  n

       1   2   /   0   4   /   1   5 .

       C  o  p  y  r   i  g   h   t   A   S   C   E .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y  ;  a   l   l  r   i  g   h   t  s  r  e

      s  e  r  v  e   d .

  • 8/17/2019 Use of Grain-Size Functions in Unsaturated Soil Mechanics

    6/15

    74 ADVAN CES N UNSATURATEDGEOTECHNICS

    dd

    d

    1 1+ -'x n

    [lfexp 1 )+ l~ -Ig r 1 ~ 1 + ~ 1 7 7 j ~ e ~ l)+ I~ ln g r ]ln [ ex ~ l)+ I~ ln g e ll

    n l +

    7 d ,~ [2]

    Th e par t ic le s ize distributions presented in this pap er are calcula ted u sing E q. [2].

    The h ighes t po in t on the PDF p lo t i s the mode or the most f requent pa r t ic le s ize .

    S ince Eq. [2] is a PD F, the na tura l laws o f probab i l i ty hold a nd the a rea under the

    di f fe ren t ia ted curve m ust equa l 1 as sho wn b e low.

    7 t ]

    ~ d d

    w here: x = par t ic le-size diam eter .

    Equ a t ion [2] can a lso be used to ca lcu la te probabi li ties . Equ a t ion [4] show s ho w to

    calcula te the probabil i ty that a soi l par t ic le diameter wil l fa l l in a cer ta in range.

    Eq uation [2] can be ar ithmetical ly integrated betw een spec if ied par t ic le diameter

    s izes and the probabi l i ty can be de te rm ined b y the fo l low ing rela t ionship .

    x--d2

    p r o b a b i l i t y d 1 < d < d 2 ) = I p x ) d x [4]

    I t i s convenien t to represent the PD F fun c t ion in a d i f fe ren t man ner w hen p lo t t ing on

    a logar i thmic scale. T he a ri thmetic PD F fun c t ion wi l l o f ten appear d is tor ted w hen

    plo t ted on a logar i thmic scale. T he peak o f Eq . [4] wi l l no t r epresent the mo st

    f requent par t ic le s ize be cause o f the logar i th mic distr ibution o f the par t ic le-size

    sca le . T o ov ercom e th is l imi ta tion , the PD F func t ion i s o f ten represented as show n in

    Eq. [5] . Tak ing the log of pa r tic le s ize and d i f fe ren t ia t ing the gra in- s ize equa t ion

    produces a PD F tha t appears more phy s ica l ly real is tic. Th e peak o f Eq . [5] wi l l

    represent the most frequent particle size.

    p , ( d ) = d P p - - d P p i n 1 0 ) ~ [ 5 ]

    dlog(d) dd

    where: pl(d) = logar i thmic probabil i ty densi ty function.

    Advances in Unsaturated Geotechnics

       D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

      s  c  e   l   i   b  r  a  r  y .  o  r  g   b  y   U  n   i  v

      e  r  s   i   t  y  o   f   T  e  x  a  s  a   t   A  r   l   i  n  g   t  o  n  o  n

       1   2   /   0   4   /   1   5 .

       C  o  p  y  r   i  g   h   t   A   S   C   E .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y  ;  a   l   l  r   i  g   h   t  s  r  e

      s  e  r  v  e   d .

  • 8/17/2019 Use of Grain-Size Functions in Unsaturated Soil Mechanics

    7/15

    ADVANCES IN UNSATURATED GEOTECHNICS 7

    T h e p r o b a b i l i t y o f t h e l o g a r it h m i c P D F c a n b e c a l c u l a te d a s f o l lo w s .

    x=log d 2 )

    prob ab i l iO : d 1 < d < d 2 ) = I p / x ) d r

    x = l og d l )

    [6]

    T h e p r o b a b i l i t y d e n s i t y f u n c t i o n f o r v a r i o u s g r a i n - s iz e c u r v e s c a n b e s e e n i n F i g s . 2 ,

    a n d 3 .

    5. Pa ram etric Stud y o f the Pr op ose d Grain-size Distribution Equ ation

    A p a r a m e t r i c s t u d y o f th e p r o p o s e d u n i m o d a l e q u a t i o n s h o w s b e h a v i o r s i m i l a r t o t h a t

    o f t h e o r ig i n a l F r e d l u n d a n d X i n g 1 9 9 4 ) e q u a t i o n . T h e a g , p a r a m e t e r i s r e la t e d t o t h e

    i n i ti a l b r e a k o f t h e e q u a t i o n a n d i ts e f fe c t o n t h e g r a i n - s iz e d i s t r ib u t i o n c u r v e c a n b e

    s e e n i n F i g . 4 w h e r e a g~ i s v a r i e d a n d t h e o t h e r e q u a t i o n p a r a m e t e r s a r e h e l d c o n s t a n t .

    T he a~,,p a r a m e t e r p r o v i d e s a n i n d i c a t i o n o f t h e l a r g e s t p a r t i c l e s i z es .

    t

    E

    o

    r

    100

    9

    8

    70

    60

    50

    40

    30

    2 0

    1 0

    0

    I I I I

    0 0 0 1 0 0 1 0 1 1 1 0 1 0 0

    P a r t i c l e d i a m e t e r m m )

    Fig . 4 Ef fec t o f va ry ing the ag~ pa ra m e te r w h i l e ng~ = 4 .0 , mgr = 0 .5 , drg~= 1000,

    a n d d m = 0 . 0 0 1 .

    F i g u r e 5 s h o w s h o w t h e p a r a m e t e r n g , i n f l u e n c e s t h e s l o p e o f th e g r a i n - s iz e

    d i s tr i b u ti o n . T h e p o i n t o f m a x i m u m s l o p e o f t h e g r a i n - si z e d i s tr i b u t i o n in d i c a te s t h e

    g r a d a t i o n o f t h e p a n i c l e s i z e s i .e . , o n a l o g a r i t h m s c a l e ) i n t h e s o i l a s s e e n i n F i g . 5 .

    T h e p a r a m e t e r

    mg

    c o n t r o l s th e b r e a k o n t o t h e f i n e r p a r ti c l e s iz e o f t h e s a m p l e . T h e

    e f f e c t o f t h e

    m g

    p a r a m e t e r c a n b e s e e n i n F i g . 6 . T h e p a r a m e t e r , d rg ,, a f f e c ts t h e s h a p e

    o f t h is f i n e p a r t ic l e s i ze o f th e c u r v e . H o w e v e r , t h e a m o u n t o f v a r i a t i o n p r o d u c e d o n

    t h e c u r v e i s q u i t e m i n i m a l a s s h o w n i n F i g . 7 . I n s o m e c a s e s t h e d rg ~ c a n b e m o d i f i e d

    t o i m p r o v e th e f i t o f t h e o v e r a l l e q u a t i o n . I t w a s f o u n d t h a t a v a l u e o f 0 .0 0 1 f o r d rg ,

    p r o v i d e d a r e a s o n a b l e f i t i n m o s t c a s es .

    Advances in Unsaturated Geotechnics

       D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

      s  c  e   l   i   b  r  a  r  y .  o  r  g   b  y   U  n   i  v

      e  r  s   i   t  y  o   f   T  e  x  a  s  a   t   A  r   l   i  n  g   t  o  n  o  n

       1   2   /   0   4   /   1   5 .

       C  o  p  y  r   i  g   h   t   A   S   C   E .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y  ;  a   l   l  r   i  g   h   t  s  r  e

      s  e  r  v  e   d .

  • 8/17/2019 Use of Grain-Size Functions in Unsaturated Soil Mechanics

    8/15

    76 ADVANCES IN UNSATURATED GEOTECHNICS

    t -

    tO

    t ~

    rt

    100

    9 0

    8

    7 0

    6 0

    5 0

    4 0

    3 0

    2 0

    10

    0

    I I I I

    0.001 0.01 0.1 1 10 100

    P a r t ic l e d i a m e t e r m m )

    F i g . 5 E f f e c t o f v a r y i n g t h e n ~ p a r a m e t e r w h i l e a g = 1 .0 m g~ = 0 .5

    drg

    = 1 0 0 0 a n d

    dm= 0 . 0 0 1

    100

    9O

    o i i i i i

    0

    g _ o

    2 0

    10

    0

    0.001 0.01 0.1 1 10 100

    P a r t ic l e d i a m e t e r m m )

    F i g . 6 E f f e c t o f v a r y i n g t h e m g~ p a r a m e t e r w h i l e a g = 1 .0 ng~ = 4 . 0 dr~ = 1 0 0 0 a n d

    d = 0 . 0 0 1

    Advances in Unsaturated Geotechnics

       D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

      s  c  e   l   i   b  r  a  r  y .  o  r  g   b  y   U  n   i  v

      e  r  s   i   t  y  o   f   T  e  x  a  s  a   t   A  r   l   i  n  g   t  o  n  o  n

       1   2   /   0   4   /   1   5 .

       C  o  p  y  r   i  g   h   t   A   S   C   E .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y  ;  a   l   l  r   i  g   h   t  s  r  e

      s  e  r  v  e   d .

  • 8/17/2019 Use of Grain-Size Functions in Unsaturated Soil Mechanics

    9/15

    ADVANCES IN UNSATUR ATEDGEOTECHNICS 77

    t ~

    t /

    t /

    t~

    r

    G

    13.

    1 0 0

    9 0

    8 0

    70

    6 0

    5 0

    4 0

    30

    2 0

    10

    0

    r l J l l l

    0.001

    I I I

    t t t l

    7 7 0

    0.01

    III ] l llll llfl ELll lff IIIIIIII

    ~

    IIII I I I I I ~ I L I } I J l I I I

    1 1 1 11 1 1 /1 1 1 1 L l ] _ l ~ ~ i ~

    111 I I ~ I I U [ I I ] ] ] B I I J J l ~

    III _ ~ l J J l [ l I 1 I IIH II

    ~ [ J J J J J J J L l J I I I I I I

    ' , ~ I i i i i i i i H - l t , l l l l l l l l

    0.1 1 10

    I

    P a r t ic l e d i a m e t e r m m )

    0 0

    F i g . 7 E f f e c t o f v a r y i n g t h e

    drg~

    pa ram ete r w hi l e as , , = 1 .0 , ng~ = 4 .0 , mg~ = 0 .5 , and

    d m = 0 . 0 0 1

    T h e u n i m o d a l e q u a t i o n ( E q . [ 1 ] ) a p p e a r s t o h a v e v e r s a t i l i t y i n h a n d l i n g a w i d e

    v a r i e t y o f s o i l ty p e s .

    6 . B i m o d a l E q u a t i o n f o r t h e G r a i n si z e D i s t r ib u t i o n C u r v e

    T h e r e i s a l i m i t a t i o n i n u s i n g t h e u n i m o d a l e q u a t i o n ( i . e . , E q . [ 1 ] ) w h e n t h e s o i l s a r e

    g a p - g r a d e d . I n t h i s c a s e , i t i s n e c e s s a r y t o c o n s i d e r t h e u s e o f a b i m o d a l , b e s t -f i t.

    S o i l s f r e q u e n t l y h a v e p a r t i c l e s i z e d i s t r i b u t i o n s t h a t a r e n o t c o n s i s t e n t w i t h a

    u n i m o d a l d i s t ri b u t i o n a n d a s a r e s u lt , a t te m p t s t o f i t t h e u n i m o d a l e q u a t i o n t o c e r t a i n

    da t a s e t s can o f t en l ead t o unsa t i s f ac t o r y r e su l t s .

    T h e c h a r a c t e r i s t ic s h a p e o f a b i m o d a l o r g a p g r a d e d s o i l i s t h e d o u b l e ' h u m p

    s e e n i n t h e e x p e r i m e n t a l d a t a . T h e s e a n o m o l i e s i n d i c a t e t h a t t h e p a r t i c l e s a r e

    c o n c e n t r a t e d a ro u n d t w o s e p a r a t e p a r t i c l e s i z e r a n g e s . F r o m a m a t h e m a t i c a l

    s ta n d p o in t , a g a p - g r a d e d s o il c an b e v i e w e d a s a c o m b i n a t i o n o f t w o o r m o r e

    s e p a r a te s o il s ( D u m e r , 1 9 9 4 ) . T h i s a l l o w s f o r t h e s t a c k i n g o f m o r e t h a n o n e

    u n i m o d a l e q u a t i o n .

    Advances in Unsaturated Geotechnics

       D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

      s  c  e   l   i   b  r  a  r  y .  o  r  g   b  y   U  n   i  v

      e  r  s   i   t  y  o   f   T  e  x  a  s  a   t   A  r   l   i  n  g   t  o  n  o  n

       1   2   /   0   4   /   1   5 .

       C  o  p  y  r   i  g   h   t   A   S   C   E .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y  ;  a   l   l  r   i  g   h   t  s  r  e

      s  e  r  v  e   d .

  • 8/17/2019 Use of Grain-Size Functions in Unsaturated Soil Mechanics

    10/15

    78 ADV ANCES IN UNSAT URAT EDGEOTECHNICS

    .ca =

    l l I j 7 ]

    lnlexp(1)+l~_lng~ll 'g~- 1 ~ 1 + ~

    [7]

    w h e r e :

    k = t h e n u m b e r o f s u b s y s t e m s f o r t h e t o ta l p a r t ic l e - s iz e

    d i s t r i bu t i on ,

    w i = t h e w e i g h t i n g f a c t o r s f o r t h e s u b c u r v e s , s u b j e c t t o 0 < w i < 1 a n d

    Ew i = 1 .

    F o r a b im o d a l c u r v e , k w o u l d b e e q u a l t o 2 a n d th e n u m b e r o f p a r a m e t e r s t o b e

    d e t e r m i n e d w o u l d b e 4 t i m e s [ k + ( k - 1 ) ] . T h e u n i m o d a l e q u a t i o n i s u s e d a s t h e b a s i s

    f o r t h e b i m o d a l e q u a t io n . T h e f i n a l e q u a t i o n f o r a b i m o d a l c u r v e i s s h o w n b e l o w i n

    i t s e x t e n d e d f o r m .

    w h e r e :

    ab i = p a r a m e t e r r e l a te d t o t h e i n i ti a l b r e a k i n g p o i n t s o n t h e c u r v e ,

    n bi = p a r a m e t e r r e l a t e d t o t h e s t e e p e s t s l o p e o n a p o r t i o n o f t h e c u r v e ,

    m b i = p a r a m e t e r r e l a t e d t o t h e s h a p e o f t h e c u r v e ,

    jb i = p a r a m e t e r r e l a t e d to t h e s e c o n d b r e a k i n g p o i n t a l o n g t h e c u r v e ,

    k bi = p a r a m e t e r r e l a t e d t o th e s e c o n d s t e e p s l o p e a l o n g t h e c u r v e ,

    lbi = p a r a m e t e r r e l a t e d t o t h e s e c o n d s h a p e o f t h e c u r v e ,

    d rb i = p a r a m e t e r r e l a t e d t o t h e a m o u n t o f f r e e s i n a s o i l ,

    d = d i a m e t e r o f a n y p a r t i c l e s i z e u n d e r c o n s i d e r a t i o n , a n d

    dm = d i a m e t e r o f t h e m i n i m u m a l l o w a b l e s i z e p a r ti c le .

    T h e b i m o d a l d a t a s e t s c a n b e c l o s e l y f it u s i n g t h e b i m o d a l b e s t - f it e q u a t i o n ( F i g . 8 ).

    H o w e v e r , t h e b i m o d a l f i t p r o v i d e d o n l y a n adequatei t o f u n i m o d a l d a t a s e ts . I n

    o t h e r w o r d s , u n i m o d a l d a t a s e ts w e r e b e t t e r f it u s i n g t h e u n i m o d a l e q u a t i o n . T h e

    r e s u l ts o f f i tt i n g t h e b i m o d a l c u r v e t o s e v e r a l d i f f e r e n t s o i ls c a n b e s e e n i n F i g s . 8 to

    10.

    Advances in Unsaturated Geotechnics

       D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

      s  c  e   l   i   b  r  a  r  y .  o  r  g   b  y   U  n   i  v

      e  r  s   i   t  y  o   f   T  e  x  a  s  a   t   A  r   l   i  n  g   t  o  n  o  n

       1   2   /   0   4   /   1   5 .

       C  o  p  y  r   i  g   h   t   A   S   C   E .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y  ;  a   l   l  r   i  g   h   t  s  r  e

      s  e  r  v  e   d .

  • 8/17/2019 Use of Grain-Size Functions in Unsaturated Soil Mechanics

    11/15

    A D V A N C E S 1 N U N S A T U R A T E D G E O T E C H N I C S 7 9

    t

    O

    r

    1 0 0

    9 0

    8 0

    70

    60

    50

    4 0

    3 0

    2 0

    10

    0

    0 . 0001

    I C l ay I

    0.001

    I I

    S i l t i

    i ;

    i

    i F , ? o , - ,

    ~ 7 ; ~ ~

    i ,,~.

    0.01 0.1

    I s a n d I ~ ~

    M . F r e d l u n d

    B i m o d a l

    ,.

    Par t i c l e -s i ze

    , ~

    10

    P a r t i c l e s i z e ( m m )

    100

    9

    Ex per im enta l . ... US CS % S i l t

    .... U S C S % C l ay - U S C S % S an d

    F i g . 8 L o g a r i t h m i c p r o b a b i l i ty d e n s i t y f u n c t i o n fi tt e d w i t h a b i m o d a l e q u a t i o n , fo r a

    g a p - g r a d e d S a p r o l it ic S o i l te s te d a t t h e U n i v e r s i t y o f S a s k a t c h e w a n

    O )

    t -

    u )

    r

    Q .

    ~

    OJ

    D_

    100

    9 0

    80

    70

    6 0

    5 0

    4 0

    3 0

    2 0

    10

    0

    0.0001

    JC l a y J

    i

    i jsi I s a o o

    i M . F re d l und i

    i U n i m oda l / / I =

    , = / / I i

    i i /=w M Fredlund

    / d ~ , / B im o d a l ,

    I

    i 1

    0 001 0 01 0 1 I 10 100

    P a r t i c l e s i z e ( m m )

    9 E x p e r i m e n t a l - - U S C S % Si l t

    .... U S C S % C l ay - - - U S C S % S an d

    F i g . 9 E x a m p l e o f a b i m o d a l f i t o n a g a p - g r a d e d S a p r o l i t i c S o i l t e s t e d a t t h e

    U n i v e r s i t y o f S a s k a t c h e w a n R 2 = 0 . 9 9 9 )

    Advances in Unsaturated Geotechnics

       D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

      s  c  e   l   i   b  r  a  r  y .  o  r  g   b  y   U  n   i  v

      e  r  s   i   t  y  o   f   T  e  x  a  s  a   t   A  r   l   i  n  g   t  o  n  o  n

       1   2   /   0   4   /   1   5 .

       C  o  p  y  r   i  g   h   t   A   S   C   E .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y  ;  a   l   l  r   i  g   h   t  s  r  e

      s  e  r  v  e   d .

  • 8/17/2019 Use of Grain-Size Functions in Unsaturated Soil Mechanics

    12/15

    80 ADVANCES IN UNSATURATEDGEOTECHNICS

    t

    3

    u

    r

    o .

    O

    0-

    1 0 0

    9 0

    8 0

    7 0

    6 0

    5 0

    4 0

    3 0

    2 0

    10

    0

    0.0001

    c l a y l i s i l i

    M . F r e d l u n d - -

    U n im od al :;~11V i

    . ~ . ~ M . F red lu n d

    i

    0.001 0.01 0.1

    P a r t i c l e s i z e ( m m )

    10 100

    9 E x p e r im e n t - - U S C S %

    " " U S C S % C l a y - - U S C S % S a n d

    F i g 1 0 E xa m p l e o f a b i m oda l f i t o f a ga p - g r a d e d S a p r o l i t ic S o i l te s t e d a t the

    U n i v e r s i ty o f S a s k a tc h e w a n ( R 2 = 0 .999)

    7. Appl ica t ion o f the Mathema t ica l Func t ion fo r the Grain s i ze Dis tr ibu tion

    T he g r a i n s i z e d i s t r i bu t ion ha s be e n u s e d e x t e ns i ve l y f o r t he c l a s s i f ic a t i on o f s o i l s .

    T he a p p l i c a t i on o f the m a t he m a t i c a l e qua t i ons i n t h is pa pe r c a n be a pp l i e d to

    ge o t e c hn i c a l e ng i ne e r i ng p r a c t ic e . T he u s e o f e qua t ions t o f it t he g r a i n - s i z e

    d i s t r ibu t ion pro vide s severa l advan tages . F i r s t ly , the equa t ions presen ted in th i s

    pa pe r p r ov i de a m e t hod f o r e s t i m a t i ng a c on t i nuous f unct ion . S e c ond l y ,

    qua n t i f i c a t i on o f s o i l s ba s e d on t he i r g r a i n s i z e d i s t r i bu t i on i s pos s i b l e w he n

    equa t ions a re f it t o da tase t s o f so i l s in form at ion . Th i rd ly , equa t ions pro vide a

    c ons i s t e n t m e t hod f o r de t e r m i n i ng phys i c a l i nd i c e s s uc h a s pe r c e n t c l a y , pe r c e n t

    sand , pe rce nt s i l t , and pa r t i c l e d iam ete r va r i ab les such as d /~ d.,c~ dz~ ds~ and d6o.

    I t has a l so been found tha t the gra in s i ze d i s t r ibu t ion i s cen t ra l to mos t

    m e t hods o f e s t i m a t i ng t he s o i l -w a t e r c ha ra c t e r is t ic c u r ve ( G up t a a nd L a r s on , 1979 ;

    Ar ya and Par is , 1981; Haverk am p and Par lange , 1986 , Ranj i tka r and S under , 1989).

    A n a c c u r a t e r e p r e s e n t a ti on o f t he s o i l pa r t i c l e si z e s i s e ss e n t i al w he n t he g r a i n - s i z e

    d i s t ri bu t i on c u r ve i s u s e d a s t he b a s i s f o r the e s t i m a t i on o f t he s o i l - w a t e r

    c ha r a c t e r is t ic c u r ve . T he e qua t i ons p r e s e n t e d i n th i s pa pe r a ppe a r t o p r ov i de an .

    exce l l en t bas i s for the es t ima t ion o f the so i l -w a te r charac te r i s t i c curve (F red lun d e t .

    al, 1997).

    7.1 Pa ram eters o f the grain size distribution equation s

    T he un i m od a l f i t o f t he g r a i n - s i z e d i s t ri bu t i on ha s be e n f i t t o m a ny e xpe r i m e n t a l l y

    Advances in Unsaturated Geotechnics

       D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

      s  c  e   l   i   b  r  a  r  y .  o  r  g   b  y   U  n   i  v

      e  r  s   i   t  y  o   f   T  e  x  a  s  a   t   A  r   l   i  n  g   t  o  n  o  n

       1   2   /   0   4   /   1   5 .

       C  o  p  y  r   i  g   h   t   A   S   C   E .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y  ;  a   l   l  r   i  g   h   t  s  r  e

      s  e  r  v  e   d .

  • 8/17/2019 Use of Grain-Size Functions in Unsaturated Soil Mechanics

    13/15

    ADVAN CES IN UNSATURATEDGEOTECHNICS 81

    m e a s u r e d g r a i n - s i z e da t a s e t s e x t r a c t e d f r om r e s e a r c h pa pe r s . T he un i m oda l f i t

    pe r f o r m e d w e l l w i t h t he e xc e p t ion o f s o i ls e xh i b i t i ng b i m oda l be ha v i o r. T he

    pa r a m e t e r s o f t he un i r noda l e qua t ion va r y i n a m a nne r s i m i l a r t o t he pa r a m e t e r s i n

    t he F r e d l und a nd X i ng ( 1994 ) s o i l - w a t e r c ha r a c t e r is t ic c u r ve e qua t i on . T h i s s t udy

    a l s o i nve s t iga t e d w he t he r e qua t ion pa r a m e t e r s c ou l d be g r oupe d a c c o r d i ng t o s o i l

    t e x t u r a l c la s s i f ic a t i ons . F o r e xa m pl e , i s t he r e a r a nge o f t he ns~ pa r a m e t e r t yp i c a l f o r

    s i l ty sands? The resu l t s o f th i s re sea rch ind ica te tha t general p a r a m e t e r g r o u p s c a n b e

    ident i f i ed bu t specific pa r a m e t e r g r oup i ngs c a nno t be i de n t i f i e d . T he i n f l ue nc e o f

    e qua t i on pa r a m e t e r s on e a c h o t he r doe s no t a l l ow f o r specific group ings . I t wa s

    f ound t ha t g r oup i ng s o i l s i s m or e s uc c e s s f u l w he n pa r a m e t e r s w i t h phys i c a l

    s i gn i fi c a nc e a r e s e l ec t e d . S uc c e s s f u l g r oup i ngs o f s o i l p r ope r t i e s ha s be e n a c h i e ve d

    by c om bi n i ng s o i l s a c c o r d i ng t o phys i c a l pa r a m e t e r s s uc h a s pe r c e n t c l a y , pe r c e n t

    s i lt , and pe rcent s and and through the use o f va r i ab les such as d t~ ~ d3~ ds~ and

    d6o.

    7.2 Determining physical parameters fro m the grain-size dis tribution equat ion

    O ne o f t he be ne f i t s o f t he t w o g r a i n - s iz e e qua ti ons p r e s e n t e d i n t h i s pa pe r i s t ha t

    c onve n t i ona l phy s i c a l va r i a b l e s c a n be c om pu t e d f r om the c u r ve s . T he m o s t

    c om m onl y u s e d va r i a b l e s a re pe r c e n t c l a y , pe r c e n t s a nd , a nd pe r c e n t s il t. A l s o u s e d

    are d iam ete r va r i a b les such d lc~ d . ,~ d36 ds~ and d6o. The e qua t i ons p r e s e n t e d a re o f

    t he f o r m , Pp d) w he r e d i s pa r t ic l e d i a m e t e r ( ra m ) . T h e p e r c e n t c l a y , pe r c e n t s i l t, a nd

    pe r c e n t s a nd c a n t he r e f o r e be a c om pu t e d by s ubs t i t u t i ng i n t he a pp r op r i a t e

    d i a m e t e r s. T he d i a m e t e r s u s e d de pe nd upon t he c r i t e r ia a s soc i a t e d w i t h t he va r i ous

    c l a s s if i c a ti on m e t hods . T he d i v i s i ons c a n be de t e rm i ne d f o r a ny c l a s s i f ic a t i on

    m e t hod by s ubs t it u t ing i n t o t he e qua t i ons t he a pp r op r i a t e d i a m e t e r s a s s how n i n F i g .

    l l .

    F i g 1 1

    r

    r

    o

    r

    n

    100

    90

    80

    70

    60

    50

    30

    20

    10

    0 00001 0 0001

    Sand

    Coarse

    o ool O Ol o 1 1 lO lOO

    Par ticle D ia m ete r m m )

    De te rmin a t ion o f the so i l f rac t ions ( i .e , , c l ay , s i lt , and sand) when

    us i ng the u n i m o da i e qua t i on

    Advances in Unsaturated Geotechnics

       D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

      s  c  e   l   i   b  r  a  r  y .  o  r  g   b  y   U  n   i  v

      e  r  s   i   t  y  o   f   T  e  x  a  s  a   t   A  r   l   i  n  g   t  o  n  o  n

       1   2   /   0   4   /   1   5 .

       C  o  p  y  r   i  g   h   t   A   S   C   E .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y  ;  a   l   l  r   i  g   h   t  s  r  e

      s  e  r  v  e   d .

  • 8/17/2019 Use of Grain-Size Functions in Unsaturated Soil Mechanics

    14/15

    82 ADVANCES IN UNSATURATEDGEOTECHNICS

    T he d i a m e t e r va r i a b l e s m u s t be c om pu t e d i n a n i nve r s e m a nne r . T he pa r t i c l e

    s i z e d i a m e t e r a ns w e r s t o t he qu e s t i on , ' W ha t pa r t i c l e d i a m e t e r ha s 10 pe r c e n t o f t he

    t o t a l m a s s s m a l l e r t ha n t h i s s i z e ? T a k i ng t he i nve r s e o f e i t he r t he un i m od a l o r

    b i m oda l e qua t i on i s d i f fi c u lt . A h a l f - le ng t h a lgo r i t hm w a s t he r e f o r e u s e d t o c om pu t e

    d i a m e t e r s f r om t he g r a i n s i ze c u r ve . A n i n i t ia l gue s s d i a m e t e r w a s s e l e c t e d a nd t he

    c o r r e c t i on d i s ta nc e w a s p r og r e s s i ve l y ha l ve d un t i l the i t e ra t i on p r oc e s s y i e l de d a

    m i n i m a l e r ro r .

    8 . Conc lus ions

    U n i m od a l a nd b i m oda l e qua t i ons a r e p r e s e n te d t o f i t e s s e n t ia l l y a ny g r a i n - s i z e

    d i s t r i bu t i on da t a s e t . T he un i m oda l e qua t i on w a s f ound t o p r ov i de a good f i t o f a

    va r i e t y o f s o i l s . T he e x t r e m e s o f the g r a i n - s iz e d i st r i bu t ion w e r e a l s o w e l l - f i t by t he

    equa t ion .

    G a p - g r a de d s o i l s c a n be f i t u s ing a b i m o da l e qua ti on . T he b i m o da l e qua t i on

    a l l ow s f o r a m a t he m a t i c a l r e p r e s e n t a t i on o f a ny g r a i n - s i z e d i s t r i bu t i on w he r e t he

    s a m p l e c on t a i n s t w o d i s t i nc t l y d i f f e re n t , bu t dom i na n t pa r t i c l e s i z e g r oups .

    M a t he m a t i c a l r e p r e s e n t a ti on o f the g r a i n - s iz e d i s t r ibu t i on p r ov i de s num e r ous

    be ne f i ts . Cu r ve s c a n b e i de n t i f ie d a nd c a t e go r i z e d . L i ke w i s e , the g r a i n - s i z e c u rve s

    c a n be l oc a t e d i n a da t a ba s e u s i ng s e a r c h i ng t e c hn i qu i e s. G r a i n - s i z e va r i a b l e s (i .e . ,

    clay, dlo~ d6g

    e t c .) c a n be m a t he m a t i c a l l y de t e r m i ne d f r om t he e qua t ion . T he

    un i m oda l a nd b i m o da l e qua t ions p r ov i de a m e t hod f o r f i t ti ng t he t h r e e p r i m a r y type s

    o f w e l l - g r a de d s o i l s , un i f o r m s o i ls , a nd ga p - g r a d e d s o i ls .

    T he p r opos e d c on t i nuous m a t he m a t i c a l f unc t i on f o r t he g r a i n - s i z e c u r ve s e t s

    the s t age for fur the r ana ly s i s to e s t im a te the so i l -wa te r charac te r i s t i c curve o f a so i l .

    9 . Re f e rences

    A r y a , L . M . , a nd P a r i s J. F . , 1981, A phys i c o e m pi r i c a l m ode l t o p r e d i c t t he s o i l

    m o i s t u r e c ha r a c t e r is t ic f r om pa r t i c l e - s i z e d i s t r ibu t i on a nd bu l k de ns i t y da t a , S o i l

    Sc ience S oc ie ty o f A m er ica Journa l , Vol . 45 , pp . 1023-1030.

    Br ooks R . H . a nd C or e y A . T . , 1964 , H ydr a u l i c P r ope r t i e s o f P o r ous M e d i a ,

    Co lorad o S ta te Un iv . Hyd ro l . Paper , No . 3 , 27 , pp . M arch 1964.

    Burd ine , N . T . , 1953, R e la t ive pe r m eab i l i ty ca lcu la t ion s f rom p ore s i ze

    d i s t r ibu t ion da ta , Journa l o f Pe t ro leu m T echno logy , Vol . 5 , No . 3 , pp . 71-78 .

    Ca m pbe l l , G . S . , 1985 , Soi l Phy s ics wi th Bas ic , E l sev ie r , N ew York .

    Fred lun d , D . G . , and X ing , A . , 1994 , Equa t ion s for the so i l -wa te r charac te r i s t i c

    curve , Can adian G eotech nica l Journa l , Vol . 31 , No . 3 , pp . 521-532 .

    Fred lun d , M. D . , F red lun d , D . G . , and W i l son , G . W. , 1997, P red ic t ion o f the

    S o i l - W a t e r Cha r a c t e r is t ic Cur ve f r om G r a i n - S i z e D i s t r i bu t ion a nd V o l um e - M a s s

    Advances in Unsaturated Geotechnics

       D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

      s  c  e   l   i   b  r  a  r  y .  o  r  g   b  y   U  n   i  v

      e  r  s   i   t  y  o   f   T  e  x  a  s  a   t   A  r   l   i  n  g   t  o  n  o  n

       1   2   /   0   4   /   1   5 .

       C  o  p  y  r   i  g   h   t   A   S   C   E .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y  ;  a   l   l  r   i  g   h   t  s  r  e

      s  e  r  v  e   d .

  • 8/17/2019 Use of Grain-Size Functions in Unsaturated Soil Mechanics

    15/15

    ADVANCES N UNSATURATEDGEOTECHNICS 83

    Proper ties, 3rd Brazi l ian Sym po sium on Unsaturated Soils , R io de Janeiro, Apri l 22-

    25.

    Gardner , W . R. , 1974, The perm eabil i ty problem, So il Science, 117, 243-249.

    Gupta , S . C. , and W. E. I_arson, 1979, Est imating soi l-water re tention

    characteristics fro m particle size distribution, orga nic m atter perce nt, and bulk

    density, W ater Resou rces Research Journal , Vo l. 15, N o. 6, pp. 1633-1635.

    Hagen, L . J . , Sk idmore , E . L . and Fryrea r , D.W. , 1987, Using two s ieves to

    characterize dry soi l aggreg ate s ize distribution, Transact ion s o f the A SA E, 30 1) ,

    162-165.

    Ha verkam p, R. , and Parlange, J . Y. , 1986) , Predic t ing the water- re tention curve

    fro m a particle -size distribution: 1. Sa nd y soils w itho ut organ ic matter, S oil Science,

    Vo l. 142, No . 6, pp. 325-339.

    Hol tz , R . D. and Kovacs , W. D. , 1981, An in t roduc t ion to geotechnica l

    engineering, Prentice-Hall, Inc., En gle w oo d Cliffs, N ew Jersey .

    Kem per , W. D. and Chepil , W . S., 1956, Size distribution o f aggregates. In

    M ethods o f Soil Ana lys is, pa r t 1 . ed . C .A. B lack Ag ron om y 9 :499-510.

    Koh nke , H., 1968, Soil Phys ics , M cGraw -Hi l l Book Com pany , N ew Y ork .

    M ualem, Y. , 1976, A new mo de l for pred ic ting the hydraul ic condu c t iv i ty o f

    unsaturated po rou s m edia , W ater Resource s Res. , 12, 513-522.

    Ran ji tkar S ., and Sun der B., 1989, Predic t ion o f hyd raulic proper t ies of

    unsaturated granular soils based on g rain size data , Ph.D T hesis , Un iversi ty of

    Massachusetts, 75-131.

    Shirizi M . A, and B oersm a L., 1984, A u nifyin g quanti ta t ive analysis o f soil

    texture , Soil Science So cie ty o f A m erica Journal, 48, 142-147.

    van Genuch ten , M. T , 1980, A c losed form equa t ion for pred ic t ing the hydraul ic

    cond uc t iv i ty o f unsa tura ted so il s, Soi l Sc ience Soc ie ty Am er ica Journa l, pp . 892-890.

    W agner , L. E. , and Ding, D. , 1994, Rep resenting aggre gate s ize distributions as

    m odif ied lognormal d is tr ibu tions , Am er ican Soc ie ty of Agr icu l tura l Eng ineers, Vo l .

    37, No. 3, pp. 815-821.

       D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

      s  c  e   l   i   b  r  a  r  y .  o  r  g   b  y   U  n   i  v

      e  r  s   i   t  y  o   f   T  e  x  a  s  a   t   A  r   l   i  n  g   t  o  n  o  n

       1   2   /   0   4   /   1   5 .

       C  o  p  y  r   i  g   h   t   A   S   C   E .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y  ;  a   l   l  r   i  g   h   t  s  r  e

      s  e  r  v  e   d .