[upload]Introduction of Trinity of science[short] · Beta-rayabsorptionexperiment Experiment 2-1...

20
INTRODUCTION OF TRINITY OF INTRODUCTION OF TRINITY OF SCINCE: PHYSICS, EXPERIMENT AND MATHEMATICS FOR INTERNATIONAL STUDENTS INTERNATIONAL STUDENTS S.Fujii *,a and H.Ohno a National Institute of Technology, Tokyo College, Department of Liberal Arts, Hachiohji, Tokyo, Japan “13th International Symposium on Advances in Technology Education Engineering Education for Sustainable Development in 21st Century”, 19 th , August, 2019 @Shunancity, Yamaguchi prefecture 1

Transcript of [upload]Introduction of Trinity of science[short] · Beta-rayabsorptionexperiment Experiment 2-1...

  • INTRODUCTION OF TRINITY OFINTRODUCTION OF TRINITY OF SCINCE: PHYSICS, EXPERIMENT ,

    AND MATHEMATICS FOR INTERNATIONAL STUDENTSINTERNATIONAL STUDENTS

    S.Fujii*,a and H.Ohnoa

    National Institute of Technology, Tokyo College,

    Department of Liberal Arts, Hachiohji, Tokyo, Japan

    “13th International Symposium on Advances in Technology Education Engineering Education for Sustainable Development in 21st Century”, 19th, August, 2019 @Shunan‐city, Yamaguchi prefecture 1

  • Research QuestionsResearch Questionsin physics education

    • How can we introduce “difficult concept in physics” in more intuitive way?→experiences and experiment (f i t ti l t d t )(for international students)

    [Situation]Curriculum gap→lots of unfamiliar phenomena→lots of ambiguous questions→difficult!

    • How can we realize intuitive and deeper understanding of physics?(for whole students)

    2

  • C t tContents• Introduction

    • Background• Our method

    • Materials and methods [Concrete procedure in class ]• β‐ray absorption experiment setup and devices• Pre‐experiment by instructors• Short summarySt d t i t• Student experiment

    • Linear / semi‐log ploting• Students activity/ instructor feedback• Students activity/ instructor feedback

    • Discussion• class design philosophy• class design philosophy• Review Questions in physics education

    3

  • IntroductionIntroduction

    4

  • B k d

    Background

    Background• Ability to wonder→think→consider→reason

    Shimamune (2008) [Psychologist]

    • Smaller learning step:• Target behavior↓×more trial×a littile more time            

    l=same goal⇒chance of reinforcement of learning ↑

    • Motivation↑ ?• Motivation ↑ ?

    physics

    goal

    4.5.

    6.goal

    p y

    start3.

    2.1.start

    Conventional Step by step class

    Experiment mathematics

    Conventional experimental class

    Step by step class

    ※Too smaller steps can make student bored (Depends on learning level of students) 

    trinity of science complete  status map

    5

  • Perspective of studentsBackground

    Perspective of students (Starting point)

    • Interesting theme choiceEx. theme involving with social problems…g p• Lacks primitive physics experience of daily life

    ex radioactive phenomena any ‘new’ idea (even acceleration)emphasis

    ex. radioactive phenomena, any  new  idea (even acceleration)……

    • [where to start] Sharing situation in physics, experimental setting, pre‐experiment

    • [how to think] intuition under logic; physics, experiment and mathematics 

    physicsimportant piecesto fill

    (Liking known knowledge altogether)

    • [why ?] naïve questions (→discovery)mathematics

    • Toward unified understandingtrinity of science complete  status map

    Experiment

    6

  • Materials andMaterials and methodsmethods

    7

  • β b ti i t 01

    Setup and devices

    β-ray absorption experiment 01

    G i Müll t bGeiger‐Müller tube [GM‐tube](Detector)

    counting deviceVolume

    HV ADJ

    SHIMADZU RADIATION DETECTOR      RMS‐6N

    cpmV

    GM PROBE

    START RESETβ‐ray absorption instruments

    8

  • β b ti i t 02

    Setup and devices

    β-ray absorption experiment 02

    To dector(GM tube)

    30mm30mm

    40mm source board (β‐ray source fixed)

    absorption board

    plates tray β‐ray source

    β ray is partially0.1mm, 0.2mm, 0.3mm, 0.5mm, 1.0mm, 2.0mm, 3.0mm, 5.0mm 

    β‐ray absorption instruments

    aluminum plates and its thickness

    β‐ray is partially absorbed by the aluminiumplatesplates

    configuration(front) 9

  • Worksheet and pre-experiment by

    Pre‐experiment

    Worksheet and pre experiment by instructors

    Beta-ray absorption experimentExperiment2-1

    the 1st time the 2nd time the 3rd timeavrage

    Beta ray absorption experiment

    background radiationAttention:Average  value should be rounded  to the first decimal placeexample:14.32≒14.3

    [cpm]0N

    Experiment2-2

    beta ray source B

    Net intensity (onlyone time) [cpm]

    intensity of β-raysource [cpm]

    βN 0NN −βInstructor chose the pure i ll d i

    thicknessaverage

    [cpm]Net intensity

    [cpm]

    d[cm] the 1st time the 2nd time the 3rd time

    0.10

    0.15

    intensity [cpm]

    Attention:Average  value should be rounded

    βN 0NN −β

    exponentially decreasing region of counting rate for the thickness by pre‐

    0.20

    0.25

    0.30

    Experiment After the removal of all aluminum plates

    Attention:plot linear graph on the corridor of experiment room withapproximated curve (show it by thick color curves).

    be rounded  to the first decimal place

    example:220.45≒220 5

    experiment

    2-3After the removal of all aluminum plates

    Thcknessof air

    ℓ[cm]

    4.0

    5.0

    intensity [cpm]

    (Only one time)

    only if youhave time

    ≒220.5

    Worksheet6.0

    8.0

    12.0

    Attention:plot linear graph on the corridor of experiment room withapproximated curve (show it by thick black curves).

    Worksheet(Gray part is differentamong other groups)

    10

  • Sh tShort summary• For (international) students who are poor at physicsFor (international) students who are poor at physics

    • Socially important theme choice: radioactivity• Make every procedure easier to achieve (small step:primitive experiences, discovery by themselves)

    • Find links between physics, experiment and mathematics (completing jigsaw puzzle)

    Unified understanding of physics physics6

    goal

    3.2.

    1.

    4.5.

    6.

    start Experiment

    trinity of science complete  status map

    mathematics

    (Physics, experiment and mathematics)

    Experiment

    11

  • St d t i t

    Student experiment

    Student experiment

    • Overview• 120 minutes class 9 international students120 minutes class, 9 international students (divided into 3 groups)

    • Part1: 30 minutes Introduction of basic• Part1: 30 minutes, Introduction of basic radioactivity (ppt. slide)

    • Part2: 45minutes Experiment and data• Part2: 45minutes, Experiment and data plot/analysis

    P t3 15 i t Di i d f db k• Part3: 15minutes, Discussion and feedback from instructor

    56.

    goal

    3.2.

    1.

    4.5.

    start 12

  • D t l t i Li l

    Student experiment

    physics

    Data plot in Linear scale8000

    Graph A

    physics

    • Primitive experience• Plot in large linear 

    h ( h A)

    7000

    Graph A

    1m1 t i it f i

    mathExperiment

    graph (graph A)         (8m×1m area)

    6000

    5000

    m]

    1m trinity of science complete  state map

    • Pre‐chosen area is plotted in Graph B

    4000

    Graph B

    Inte

    nsity

    [cpm

    171cm 

    • Exponential decreasing can be experienced as

    3000

    2000

    Graph B height

    can be experienced as primitive level

    • even of recreation (fun)1000

    0Thickness [mm]

    13

  • Data re-plot in semi-logStudent experiment

    Data re plot in semi log scale 10000• Semi‐log plotting coresponding to  

    100

    1000

    ty [cpm

    ]

    p ggraph B       (previous page) 10

    100

    Intensit

    • Three groups had1

    0 1 2 3 4 5

    Thickness [mm]Three groups had different intensity  semi‐log graph with 

    [ ]physics

    g g psame tangent.

    mathematicsExperiment

    trinity of science complete  status map

    p

    14

  • Students activity/Instructor

    Student experiment

    Students activity/Instructor feed backSt d t ’ ï ti• Students’ naïve questions

    • why background radiation is not zero, remembering i d i f di i i ?introduction of radioactivity?

    • why the same tangent appears in semi‐log graph?

    Instructors comment on●[Physics]physic interpretation●[Data analysis, mathematics] 

    physics

    ymathematical relation between exponential and logarithm mathematicsExperimentp g(quantative level)  trinity of science 

    complete  status map

    p

    15

  • short break: pasting 160 h t f A4 !sheets of A4 papers!

    (1m×1m:5×4=20sheets)(1m×1m 5×4 20sheets)

    16

  • Discussion

    DiscussionDiscussion

    17

  • O l d i hil h

    Discussion

    Our class design philosophy

    Separate and Linkpprimitive stage, discovery  stage

    physicsphysics

    Unified understanding of 

    trinity of science complete status map

    mathematicsExperimentPhysics, experiment and mathematics

    complete  status map

    18

  • Review of initial questionsand temporal answer

    Q1 How can we introduce “difficult concept in physics” inQ1.How can we introduce  difficult concept in physics  in more intuitive way?

    A1 Introduce primitive experiments or contents as aA1. Introduce primitive experiments or contents as a buffer to standard one, which will grow intuition and enable them to link(relation) between physics,enable them to link(relation) between physics, experiments and mathematics. 

    Q2.How can we realize intuitive and deeperQ2.How can we realize intuitive and deeper understanding of physics?

    A2 Transform students’ difficulty into primitiveA2. Transform students  difficulty into primitive experiences and start from there.  Then make them naïve questions based on experiments. The answer has q palready set in the experiment. Just repeat this in every direction (physics, experiment and mathematics) 19

  • DISCOVER the universal law of physics

    Ph iTh kPhysicsThank youy(Let us discuss)

    E i t M th ti

    ( )

    Experiment Mathematics

    20