Updated Module 4

download Updated Module 4

of 117

Transcript of Updated Module 4

  • 8/15/2019 Updated Module 4

    1/117

    Module -4

    State Space Modeling andAnalysis of Discrete Time System

  • 8/15/2019 Updated Module 4

    2/117

    Review of modeling of continuous-timesystem in state-space

    • State and output equation are given as:

    • State transition equation is given as:

    • where state transition matri !STM" isgiven as:

    )()()(

    )()()(

    t u Dt Cxt  y

    t  But  Axt  xdt 

    +=

    +=

    ∫   −+=

    d  But  xt t  x0

    )()()0()()(   τ τ τ φ φ 

    1

    )()(

      −

    −==  A sI of   Laplaceinverseet  At 

    φ 

  • 8/15/2019 Updated Module 4

    3/117

  • 8/15/2019 Updated Module 4

    4/117

    !a" State Space representation of Discretetime system with sampled signal$

    • )et us consider M&M* discrete-timecomprising of +*, devices andcontinuous-time process:

    • *utputs of ero-order holds are: T k t kT  for kT ekT ut u iii   )1()()()( +

  • 8/15/2019 Updated Module 4

    5/117

    • &nput vector in the state transitionequation of !." are constant (etween twoconsecutive sampling instants:

    • So the can (e placed outside theintegral as u!/T":

    • As range of time starts from t % /T'

    setting initial time

    T k t kT  for kT uu i   )1()()(   +

  • 8/15/2019 Updated Module 4

    6/117

    • State transition equation (ecomes:

    •  The a(ove equation gives state vector

    !t" for all time (etween the samplinginstants' /T and !/0."T$

    • )et us consider:

    • A(ove state transition equation (ecomes:

    T k t kT  for 

    kT u Bd t kT  xkT t t  x

    kT 

    )1(

    )()()()()(

    +

  • 8/15/2019 Updated Module 4

    7/117

    •  To descri(e the !t" only at samplinginstants' put t % !/0."T in a(ovestate transition equation:

    • State transition equation (ecomes:

    • *r

    • 1e have state transition matri !STM" ofgiven continuous-time system as:

    • So'

     At et   =)(φ 

     AT 

    eT   =)(φ 

    )()()()())1(( kT ukT T kT kT  xkT T kT T k x   −++−+=+   θ φ 

    )()()()())1(( kT uT kT  xT T k  x   θ φ    +=+

  • 8/15/2019 Updated Module 4

    8/117

    • 1e have considered:

    • at t % !/0."T' it (ecomes:

    • which on simplifying (ecomes:

    • 2onsider change of varia(le asin integral$ Then

    ∫   −=−

    kT 

     Bd t kT t    τ τ φ θ    )()(

    ∫ 

    +

    −+=−+T k 

    kT 

     Bd T kT kT T kT 

    )1(

    )()(   τ τ φ θ 

    ∫ 

    +

    −+=

    T k 

    kT  Bd T kT T 

    )1(

    )()(   τ τ φ θ τ +−=   kT m

    dmd  =τ 

  • 8/15/2019 Updated Module 4

    9/117

    • 2hange in limits

    • 3pression for (ecomes:

    • *utput equation for continuous-timesystem was given as:

    • At t % !/0."T' the output equation(ecomes:

    • which can (e generalied as:

    T T kT kT mT kT when

    kT kT mkT when

    =++−=+=

    =+−==

    ;

    0;

    τ 

    τ 

    ∫   −=

     BdmmT T 0

    )()(   φ θ 

    )(T θ 

    )()()(   t  Dut Cxt  y   +=

    ))1(())1(())1((   T k  DuT k CxT k  y   +++=+

    )()()(   kT  DukT CxkT  y +=

  • 8/15/2019 Updated Module 4

    10/117

    •  Thus'

    • represents set of rst order di5erenceequations' referred as discrete stateequation of sampled data system$

    • where system matri and input matri iso(tained as:

    • and the output equation is representedas:

    )()()()())1(( kT uT kT  xT T k  x   θ φ    +=+

     AT eT   =)(φ    ∫    −=T 

     BdmmT T 

    0

    )()(   φ θ 

    )()()(   kT  DukT CxkT  y   +=

  • 8/15/2019 Updated Module 4

    11/117

    • 3ample: The discrete-time system'represented (y (loc/ diagram given in 6ig' has a continuous time linear process

    7p!s" which is descri(ed (y followingdynamic equation$

    • and its output equation is given (y :

    • 6ind the state-space representation of theover-all system

    sec1=T 

     ZOH    )( s p)(t r    )(* t r    )(t  y)(t u

     processlinear 

    timeContinuous−

    )(1

    0

    )(

    )(

    56

    10

    )(

    )(

    2

    1

    2

    1t u

    t  x

    t  x

    t  x

    t  x

    dt 

    +

    −−

    =

    [ ]  

    =

    )(

    )(10)(

    2

    1

    t  x

    t  xt  y

  • 8/15/2019 Updated Module 4

    12/117

    S l ti f St t 3 ti

  • 8/15/2019 Updated Module 4

    13/117

    Solution of State 3quation

    • Solution of state equation is called as state transitionequation

    • 1e consider two methods for o(taining state transitionequation:

      !." Recursive Method

    !9" sing +-transform approach$

    !."Recursive Method(•) 6or a nth order system' 7iven the /nowledge of !#"

    and past inputs u!#"'u!."';' u!/-."' we can nd the!/"$

    (•) State equation:(•)

  • 8/15/2019 Updated Module 4

    14/117

  • 8/15/2019 Updated Module 4

    15/117

  • 8/15/2019 Updated Module 4

    16/117

    )(k

  • 8/15/2019 Updated Module 4

    17/117

    • &n terms of state transition matri'' the state equation can (e written as:

    !9" sing the +-transform approach

    • 1e have the state equation as:

    •  Ta/ing the -transform on (oth sides:

    • *n simplifying:

    )(kT ϕ 

    [ ]∑−

    =−−+=

    1

    0)()1()0()()(

      !  ! HuT   !k  xkT kT  x   ϕ ϕ 

    [ ]   )()()1( kT  HukT xT k  x   +=+

    [ ]   )()()0()(  "  H#  " $  x "  $  "    +=−

    [ ] [ ]   )()0()(   11  "  H#  "I  x "I  "  "  $    −−

    −+−=

  • 8/15/2019 Updated Module 4

    18/117

    •  Ta/ing the inverse -transform:

    • 2omparing the two methods' we get:

    [ ]{ }   [ ]{ })()0()(  1111

     "  H#  "I  Z  x "I  "  Z kT  x  −−−−

    −+−=

    [ ]{ }

    [ ]{ })()(

    )(

    111

    0

    1

    11

     "  H#  "I  Z  ! Hu

     "I  "  Z kT 

     !

     !k 

    −−−

    =

    −−

    −−

    −=

    −==

    ϕ 

    l i ( f d l d

  • 8/15/2019 Updated Module 4

    19/117

    !a"6rom state-space to Transfer function model

    ()&f the discrete-data system is given as:

    () Ta/ing the -transformation

    ()*n simplication:

    ( )1 ( ) ( )

    ( ) ( ) ( )

     x k T x kT H u kT 

     y kT C x kT Du kT 

    + = + = +

    &nter-relation (etween -transform model andstate ?varia(le model

    ( )   (0) ( ) ( )

    ( ) ( ) ( )

     "$ " "x $ " H# " 

    % " C $ " D# "  

    − = +

    = +

    ( ) ( ) ( )1 1

    (0) ( )

    ( ) ( ) ( )

     $ " " "I x "I H# " 

    % " C $ " D# "  

    − −= − + −

    = +

    ( i f f i ! " d ! "

  • 8/15/2019 Updated Module 4

    20/117

    •  To o(tain transfer function !" and @!"'!#" is made to (e null matri:

    • So the output equation (ecome:

    •  The pulse transfer function is given (y: 

    • &f the system contains ero-order hold 'them pulse transfer can (e given as:

    ( ) ( )  1

    ( ) $ " "I H# " −

    = −

    ( )  1

    ( ) ( )% " C "I H D # "  − = − +

    ( )  1

    C "I H D− = − +

    ( )

      1

    ( ) ( )C "I T T Dφ θ 

    = − +

  • 8/15/2019 Updated Module 4

    21/117

  • 8/15/2019 Updated Module 4

    22/117

    i f

  • 8/15/2019 Updated Module 4

    23/117

    • or in form :

    • or in form of di5erence equation:

    • Aim is to o(tain the state space equation:

    1 2

    1 2

    ( ) ( 1) ( 2) ( )

    ( ) ( 1) ( 2) ( )

    n

    o n

     y k a y k a y k a y k n

    & u k &u k & u k & u k n

    + − + − + − =

    + − + − + −

    )

    )

    )()()(

    )()()1(

    k  Duk Cxk  y

    k  Huk xk  x

    +=

    +=+

    n

    nnn

    n

    nnn

    a " a " a " 

    & " & " & " &

     " # 

     " % 

    ++++++++

    = −−−−

    2

    2

    1

    1

    2

    2

    1

    10

    )(

    )(

    . 2 t ll (l i l f ! l ll d

  • 8/15/2019 Updated Module 4

    24/117

    .$ 2ontrolla(le canonical form:!also calledas phase canonical form"$ The Stateequation is given as:

    and output equation:

    )(

    10

    0

    0

    )(

    )(

    )(

    1000

    0100

    0010

    )1(

    )1(

    )1(

    2

    1

    121

    2

    1

    k u

    k  x

    k  x

    k  x

    aaaak  x

    k  x

    k  x

    nnnnn 

    +

    −−−−

    =

    +

    ++

    −−

    ( ) ( ) ( )[ ]   )(

    )(

    )(

    )(

    )( 02

    1

    0110110   k u&

    k  x

    k  x

    k  x

    &a&&a&&a&k  y

    n

    nnnn   +

    −−−=   −−

    3 l 643)( 123

  • 8/15/2019 Updated Module 4

    25/117

    • 3ample:

    •  The given transfer function can (emodied as:

    427

    6543

    )(

    )(23

    123

    ++++++

    = "  "  " 

     "  "  " 

     " # 

     " % 

    321

    321

    4271

    6543

    )(

    )(−−−

    −−−

    ++++++

    = "  "  " 

     "  "  " 

     " # 

     " % 

    321

    321

    4271)4*36()2*35()7*34(3

    )()( −−−

    −−−

    +++ −+−+−+=  "  "  "  "  "  " 

     " #  " % 

    )(4271

    )6()1()17(

    )(3)( 321

    321

     " #  "  "  " 

     "  "  " 

     " #  " %  −−−

    −−−

    +++

    −+−+−

    +=

    )()(3)(^

     " %  " #  " %    +=

    )6()1()17( 321^

  • 8/15/2019 Updated Module 4

    26/117

    • Rewriting the a(ove equation as:

    • 6ollowing two equations can (e writtenas:

    • Dene the state varia(les as:

    )(4271

    )6()1()17()(

    321

    321^

     " #  "  "  " 

     "  "  "  " %  −−−

    −−−

    +++−+−+−

    =

    )(4271

    )(

    )6()1()17(

    )(321321

    ^

     " ' "  "  " 

     " # 

     "  "  " 

     " % =

    +++=

    −+−+−   −−−−−−

    )()6()()1()()17()(

    )()(4)(2)(7)(

    321^

    321

     " ' "  " ' "  " ' "  " % 

     " #  " ' "  " ' "  " ' "  " '

    −−−

    −−−

    −+−+−=

    +−−−=

    )()();()();()(  3

    1

    2

    2

    1

    3

      " ' "  "  $  " ' "  "  $  " ' "  "  $    −−− ===

    &t ( h th t

  • 8/15/2019 Updated Module 4

    27/117

    • &t can (e shown that:

    • &n term of di5erence equation:

    • Su(stituting the state varia(les inequation a(ove:

    );()(

    )()(

    32

    21

     "  $  "  "$ 

     "  $  "  "$ 

    =

    =

    )()1(

    )()1(

    32

    21

    k  xk  x

    k  xk  x

    =+

    =+

    )()6()()1()()17()(

    )()(4)(2)(7)(

    123

    ^

    1233

     "  $  "  $  "  $  " % 

     " #  "  $  "  $  "  $  "  "$ 

    −+−+−=+−−−=

    T /i th i t f d

  • 8/15/2019 Updated Module 4

    28/117

    •  Ta/ing the inverse -transform ando(taining the di5erence equation' we get:

    • 1riting in matri form' we getcontrolla(le or phase canonical form:

    )()6()()1()()17()(

    )()(4)(2)(7)1(

    123

    ^

    1233

    k  x "  xk  xk  y

    k uk  xk  xk  xk  x

    −+−+−=

    +−−−=+

    [ ]   )(3

    )(

    )(

    )(

    1716)(

    )(

    1

    0

    0

    )(

    )(

    )(

    724

    100

    010

    )1(

    )1(

    )1(

    3

    2

    1

    3

    2

    1

    3

    2

    1

    k u

    k  x

    k  x

    k  x

    k  y

    k u

    k  x

    k  x

    k  x

    k  x

    k  x

    k  x

    +

    −−−=

    +

    −−−

    =

    +

    ++

  • 8/15/2019 Updated Module 4

    29/117

    3ample 6543)( 123%

  • 8/15/2019 Updated Module 4

    30/117

    • 3ample:

    • The given transfer function can (emodied as:

    • 2ross Multiplying ' we gets:

    • Rearranging in powers of :

    427

    6543

    )(

    )(23

    123

    ++++++

    = "  "  " 

     "  "  " 

     " # 

     " % 

    ( ) ( )321321 6543)(4271)(   −−−−−− +++=+++   "  "  "  " #  "  "  "  " % 

    ( ) ( ) ( )

    ( )   0)(6)(4

    )(5)(2)(4)(7)(3)(

    3

    21

    =−+

    −+−+−−

    −−

     "  " #  " % 

     "  " #  " %  "  " #  " %  " #  " % 

    321

    321

    4271

    6543

    )(

    )(−−−

    −−−

    ++++++

    = "  "  " 

     "  "  " 

     " # 

     " % 

    ( ) ( ) 21 )(5)(2)(4)(7)(3)( −− ++++ ""#"%""#"%"#"%

  • 8/15/2019 Updated Module 4

    31/117

    •Rewriting the a(ove equation as:

    • Dening the state varia(les as:

    • y putting the state varia(le' a(ove

    equation (ecomes:

    ( ) ( ) ( ){ }{ })(6)(4)(5)(2)(4)(7)(3)(

    111 "#  "%  " "#  "%  " "#  "%  "

     "#  "% 

    +−++−++−+

    +=−−−

    ( ){ }

    ( ){ }

    ( ))(6)(4)(

    )()(5)(2)(

    )()(4)(7)(

    1

    1

    1

    1

    2

    2

    1

    3

     " #  " %  "  "  $ 

     "  $  " #  " %  "  "  $ 

     "  $  " #  " %  "  "  $ 

    +−=

    ++−=

    ++−=

    )()(3)( 3  "  $  " #  " %    +=

    ( ) ( )

    ( )   3)(6)(4

    )(5)(2)(4)(7)(3)(

    −+−++−++−+=

     "  " #  " % 

     "  " #  " %  "  " #  " %  " #  " % 

    • 6rom the epression of state varia(les:

  • 8/15/2019 Updated Module 4

    32/117

    • 6rom the epression of state varia(les:

  • 8/15/2019 Updated Module 4

    33/117

    •  Ta/ing the inverse -transform:

    • and epression

    • 1riting the a(ove equations in the matriform:

    )(6)(4)1(

    )()(2)()1(

    )(17)(7)()1(

    31

    312

    323

    k uk  xk  x

    k uk  xk  xk  x

    k uk  xk  xk  x

    −−=+

    −−=+

    −−=+

    )(3)()( 3   k uk  xk  y   +=

    [ ]   )(3

    )(

    )(

    )(

    100)(

    )(

    17

    1

    6

    )(

    )(

    )(

    710

    201

    400

    )1(

    )1(

    )1(

    3

    2

    1

    3

    2

    1

    3

    2

    1

    k u

    k  x

    k  x

    k  x

    k  y

    k u

    k  x

    k  x

    k  x

    k  x

    k  x

    k  x

    +

    =

    −−

    +

    −−

    =

    +

    ++

    • ote that: oftranspose =

  • 8/15/2019 Updated Module 4

    34/117

    • ote that:

    =" Diagonal 2anonical 6orm:

    &f the poles of -transfer function are alldistinct' then state-space representationcan (e put in the diagonal form:

    &f are poles of the systemand

    are correspondingresidues$ !o(tained (y partial fraction

    -

    n p p p   ,,, 21  

    oc

    oc

    oc

    oc

     D D

     H of  transposeC 

    C of  transpose H 

    of  transpose

    =

    =

    ==

    n ( ( (   ,,, 21  

    • State equation can (e given as:

  • 8/15/2019 Updated Module 4

    35/117

    • State equation can (e given as:

    • And output equation:

    )(

    1

    1

    1

    1

    )(

    )(

    )(

    0000

    0000

    0000

    0000

    )1(

    )1(

    )1(

    2

    1

    1

    2

    1

    2

    1

    k u

    k  x

    k  x

    k  x

     p

     p

     p

     p

    k  x

    k  x

    k  x

    nn

    n

    n  

    +

    =

    +

    +

    +

    [ ]   )(

    )(

    )(

    )(

    )( 02

    1

    21   k u&

    k  x

    k  x

    k  x

     ( ( (k  y

    n

    n   +

    =

    4" Bordan 2anonical 6orm

  • 8/15/2019 Updated Module 4

    36/117

    4" Bordan 2anonical 6orm

    &f the pulse transfer function involves amultiple pole of order m at % p. andother poles are distinct' the stateequation can (e given as:

    )(

    1

    11

    0

    0

    0

    )(

    )(

    )(

    000000

    0000000000

    00000

    00010

    00001

    )1(

    )1()1(

    )1(

    )1(

    )1(

    2

    1

    2

    1

    1

    1

    1

    1

    3

    2

    1

    k u

    k  x

    k  x

    k  x

     p

     p p

     p

     p

     p

    k  x

    k  xk  x

    k  x

    k  x

    k  x

    n

    nn

    m

    m

    +

    =

    +

    ++

    +

    +

    +

    +

    • And output equation is given (y:

  • 8/15/2019 Updated Module 4

    37/117

    • And output equation is given (y:

    STAT3 D&A7RAMS *6 A D&7&TA) S@ST3M1hen the a digital system is represented

    (y di5erence equation' a state diagram

    can (e drawn to represent therelationships (etween the discrete statevaria(les$

  • 8/15/2019 Updated Module 4

    38/117

    asic linear operation on a digitalcomputer are multiplication (y aconstant' addition of varia(les and time

    delay or storage$Mathematical epression of these

    operation and its corresponding -

    domain representation:." Multiplication (y a constant

    9" Summing operation

    )()(

    )()(

    12

    12

     "  $  a "  $  

    k  xak  x

    =

    =

    )()()(

    )()()(

    123

    123

     "  $   "  $   "  $  

    k  xk  xk  x

    +=

    +=

  • 8/15/2019 Updated Module 4

    39/117

    • 9"

  • 8/15/2019 Updated Module 4

    40/117

    • 9"

    • ="

    • 3planation wor/ing of delay mechanism:

  • 8/15/2019 Updated Module 4

    41/117

    • 3planation wor/ing of delay mechanism:

    • )et;;;;;;;;;$!."

    • So its -transform will (e:

    •So to o(tain .!/":

     

    ( )[ ]

    ( ))0()()(

    1)(

    112

    12

     x "  $  "  "  $ 

    T k  xkT  x

    −=

    +=

    )0()()( 121

    1  x "  $  "  "  $    +=  −

    [ ]

    [ ]

    [ ]

    [ ]

    [ ]T  xT  xk if  

    T  xT  xk if  

    T  xT  xk if  

    T  xT  xk if  

    T  x xk if  

    5)4(;4

    4)3(;3

    3)2(;2

    2)(;1

    )0(;0

    12

    12

    12

    12

    12

    ==

    ==

    ==

    ==

    ==

    • 7etting 9!/" from

  • 8/15/2019 Updated Module 4

    42/117

    7etting 9!/" from.!/" is the left shift of.!/"

    • ut if one has o(tained.!/" from the given9!/"'

    •  Then'

    • 1ay is to delay thesignal 9!/" ! Right shift

    the signal 9!/""• And Then add .!#" tothe shifted 9!/"$

     

    • State diagram can (e used to o(tained the

  • 8/15/2019 Updated Module 4

    43/117

    State diagram can (e used to o(tained thefollowing from a given di5erence equation of asystem$

      !a" State equation and *utput equation  !(" *verall Transfer function

      !c" State transition equation ! in the -domain"

    *ne advantage of using the state diagram' isthat state transition equation and overalltransfer function can (e o(tained (y using theMasonEs 7ain 6ormula

    Saves the e5ort of performing the inverse ofmatri !& - 7"$

    State transition equation in time-domain can (eo(tained (y ta/ing inverse -transform of -

    domain state transition equation$

  • 8/15/2019 Updated Module 4

    44/117

    • 3ample:

    • 6or a discrete-time system whosedynamics is represented (y followingdi5erence equation$

      with initial conditions:

    Draw the state diagram for the system',ence using it ' 6ind

    !a" State equation and *utput equation

    !(" State transition equation in -domain

    !c" *verall -transfer function (etween @!"

    )()(2.0)1(2.1)2( k uk  yk  yk  y   =++−+

    7.0)1(5.0)0(   ==  yand  y

  • 8/15/2019 Updated Module 4

    45/117

    • Solution:

    • Arrange the di5erence equation as:

    • Drawing the state diagram as:

     

    )()(2.0)1(2.1)2( k uk  yk  yk  y   +−+=+

  • 8/15/2019 Updated Module 4

    46/117

  • 8/15/2019 Updated Module 4

    47/117

    • !(" state Transition equation in -domain:

    • sing the Mason 7ain 6ormula'

    can (e found as:• 2onsidering

    )()(

    )(

    )0(

    )0(

    )()(

    )()(

    )(

    )(

    2

    1

    2

    1

    2221

    1211

    2

    1  " #  "  L

     "  L

     x

     x

     "  +  "  + 

     "  +  "  + 

     "  $ 

     "  $ 

    +=

    )(11  "  + 

    :)(1)0( 11 output as "  $ and nput as x

    )2.02.1(1

    1

    )0(

    )()(

    31

    1

    111

    −− −−=∆

    ∆==

     "  " where

     x

     "  $  "  + 

  • 8/15/2019 Updated Module 4

    48/117

    • &n same way:

    ==

    ∆==

    1

    1

    2

    21

    1

    2

    112

    2.0

    )0(

    )(

    )(

    )0(

    )()(

     "

     x

     " $ 

     " + 

     "

     x

     " $  " + 

  • 8/15/2019 Updated Module 4

    49/117

    • And

    ==  1

    )0(

    )()(

    2

    222

     x

     " $  " + 

    ∆==

    ∆==

    1

    22

    21

    1

    )(

    )()(

    )(

    )()(

     "

     "# 

     " $  " L

     "

     "# 

     " $  " L

    Response (etween sampling instants

  • 8/15/2019 Updated Module 4

    50/117

    Response (etween sampling instantsusing state varia(le approach

    • evaluation of system responses (etweenthe sampling instants of discrete-datacontrol systems$

    • represents a modern alternative to the

    modied -transform$

    • State transition equation:

    • where

    )()()()()( 0000   t ut t t  xt t t  x   −+−=   θ φ 

    ∫    −=−t 

    t o

     Bd t t t    τ τ φ θ    )()( 0

  • 8/15/2019 Updated Module 4

    51/117

    • &f one wants response (etween samplinginstant' then put and

    • and where / % #' .' 9'; and

    •  Then state equation (ecomes:

    • Farying the value of (etween # and .'all information on !t" for all t can (e

    o(tained$

    [ ]   )()()()()(   kT uT kT  xT T k  x   ∆+∆=∆+   θ φ 

    kT t   =0   T k t    )(   ∆+=

    10   ≤∆≤

    2ontrolla(ility

  • 8/15/2019 Updated Module 4

    52/117

    2ontrolla(ility• 2onsider a discrete-time system as shown in

    gure:

    • A controlled process is said to (e controlla(le ifevery state of system can (e a5ected orcontrolled in nite time (y same un-constrainedcontrol signal u!/"$

    • &f any one state is not accessi(le from control'

    u!/"' there is no way of driving that particularstate to a desired state in nite time (y means ofsame control e5ort$

    • Such a state varia(le is said to (e uncontrolla(le

    and system is said to (e uncontrolla(le

    • 1e consider two type of controlla(ility:

  • 8/15/2019 Updated Module 4

    53/117

    1e consider two type of controlla(ility:

      !." 2omplete state controlla(ility$

      !9" 2omplete output controlla(ility$

    !."2omplete state controlla(ility$

    (•)System is said to (e completely statecontrolla(le if for any initial time !/ % #"'there eist a set unconstrained controlu!/"' / % #'.'9';'!-."' which transferseach initial state !#" to any nal state

    !" for a nite $(•) Theorem: System is completely statecontrolla(le if only if the matri'

    is of ran/ GnH

    [ ] H  H H  H ,    -   12   −=  

  • 8/15/2019 Updated Module 4

    54/117

  • 8/15/2019 Updated Module 4

    55/117

     

    • writing a(ove equation in a condensedform:

    • *(>ective is nd such that a initial

    vector !#" is driven to !"$

    [ ]

    =   −

    )0(

    )1(

    )2(

    )1(

    )(   12

    u

    u

     - u

     - u

     H  H H  H  - +    - 

    ,#  -  +    =)(

  • 8/15/2019 Updated Module 4

    56/117

    psimultaneous linear equations given (ya(ove equations for a given S' !"' !#"$

    • 6or solution to eit' equations mustlinearly independent

    • 6or this necessary and suIcient condition

    is that matri S has a ran/ of GnH or inother word' S must have least G n Gindependent columns$

    • &f state equation is given as:

    •  Then State controlla(ility matri is given

    (y:

    )()()()())1(( kT uT kT  xT T k  x   θ φ    +=+

    [ ] [ ][ ])()()()()()()(  12

    T T T T T T T , 

     - 

    θ φ θ φ θ φ θ 

      −

    =   • 9" 2omplete *utput controlla(ility

  • 8/15/2019 Updated Module 4

    57/117

    " p p y

    • System is said to (e completely outputcontrolla(le if for any initial stage !time"' /

    % #' there eit a set unconstrained controlsu!/"' / % #' .' 9' $$$' !-."' such that anynal output y!" can (e reached from

    ar(itrary initial states in nite time' $• ecessary condition for a system to

    completely output controlla(le is thatoutput controlla(ility matri'

  • 8/15/2019 Updated Module 4

    58/117

    • 6rom the state transition equation' we have:

    •  The a(ove equation can modied as:

    • 1riting the ),S of a(ove equation in thematri form:

    )()()(  -  Du - Cx -  y   +=

    )()()0()(1

    0

    1 -  Du  ! Hu xC  -  y

     - 

      !

      ! -  -  +

    +=   ∑

    =

    −−

    )()()0()(1

    0

    1 -  Du  ! HuC xC -  y

     - 

      !

      ! -  -  +

    =−   ∑

    =

    −−

    =− )0()( xC-y  - 

  • 8/15/2019 Updated Module 4

    59/117

    • *utput controlla(ility matri'

  • 8/15/2019 Updated Module 4

    60/117

  • 8/15/2019 Updated Module 4

    61/117

    •  State transition equation of the system isgiven as:

    • *utput equation is given as:

    • &f we consider the instant as forinitial state:

    •  Then state transition equation (ecomes:

    )()()( k  Duk Cxk  y   +=

    =

    −−

    +=

    1

    0

    1

    )()0()(

      !

      !k k 

      ! Hu xk  x

    th / 

    ∑−=

    −−+=+1

    0

    1)()()(

      !

      !k k   ! Hu /  xk  /  x

    • And output equation (ecomes

  • 8/15/2019 Updated Module 4

    62/117

    p q

    • Su(stituting the epression for !M0/"from state transition equation into outputequation:

    • 1hen / assumes values from . to !-."'we get p!-." equation$

    •1e have from output equation:

    )()()( k  /  Duk  / Cxk  /  y   +++=+

    .1,,1,0

    )()()()(1

    0

    1

    −=

    ++

    +=+

      ∑

    =

    −−

     - k  for 

    k  /  Du ! Hu /  xC k  /  yk 

     !

     !k k 

    )()()(  /  Du / Cx /  y += • Altogether we have p linear alge(raic

  • 8/15/2019 Updated Module 4

    63/117

    g p gequations that can (e put in a matriform as follows:

    +

    =

    −+

    +

    +

    )(

    )1(

    )2(

    )1(

    )(

    1

    2  /  x

    C

    C

    C

     -  /  y

     /  y

     /  y

     /  y

     - 

    0000 D

  • 8/15/2019 Updated Module 4

    64/117

    −+

    +

    +

    ×

    +

    −−−

    )1(

    )2(

    )1(

    )(

    00

    000

    0000

    432

     -  / u

     / u

     / u

     / u

     DCH  H C H C H C

     DCH CH 

     DCH 

     -  -  - 

  • 8/15/2019 Updated Module 4

    65/117

  • 8/15/2019 Updated Module 4

    66/117

    2ontrolla(le?uncontrolla(le decomposition

  • 8/15/2019 Updated Module 4

    67/117

    p

    • &f a system is not completely controlla(le'

    it can (e decomposed into a controlla(leand a completely uncontrolla(lesu(system$

  • 8/15/2019 Updated Module 4

    68/117

  • 8/15/2019 Updated Module 4

    69/117

    • *utput has a componentthat does not depend on manipulated

    input' u!/"$

    • 2aution must (e eercised when

    controlling a system which is notcompletely controlla(le$

    •  The controllable subspace of a state-space model is composed of all statesgenerated through every possi(le

    com(ination of the states in $

    )(k  xC  ncnc

    c x

    c A

  • 8/15/2019 Updated Module 4

    70/117

    )oss of controlla(ility and

  • 8/15/2019 Updated Module 4

    71/117

    )oss of controlla(ility ando(serva(ility due to sampling

    • Sampling of a continuous time system gives adiscrete-time system with system matrices thatdepend on the sampling period

    • 1hen a continuous-time control system with

    comple poles is discretied' the introduction ofsampling may impair the controlla(ility ando(serva(ility of the resulting discrete system$

  • 8/15/2019 Updated Module 4

    72/117

    •  To get a controlla(le sampled system' it isnecessary that the continuous-time system is also(e controlla(le

    • ecause it allowa(le control signals for the samplesystem !piecewise constant signals" are a su(setof allowa(le control signals for the continuous-time system$

    • ,owever it may happen that controlla(ility is lostfor some sampling period$

    •  The condition for uno(serva(ility are more

    restricted in the continuous time system$• ecause for eample: the output has to (e ero

    over a time interval' while the sampled timesystem output has to (e ero only at the sampling

    instants$

  • 8/15/2019 Updated Module 4

    73/117

  • 8/15/2019 Updated Module 4

    74/117

    • oth controlla(ility and o(serva(ility is21T

  • 8/15/2019 Updated Module 4

    75/117

    lost for:

    •  That is when sampling interval is half theperiod of the oscillation of the harmonicoscillator or an integer multiple of that

    period$

    • )oss of controlla(ility and o(serva(ilitydue to sampling only when the

    continuous time s stem has oscillator

    ,2,1,2

    ,2,1,2

    ,2,1,

    ==

    ==

    ==

    nT nT 

    nnT T 

    nnT 

    os

    os

    π π 

    π ω 

    A system' that was completely statell (l d l l ( (l i

  • 8/15/2019 Updated Module 4

    76/117

    controlla(le and completely o(serva(le inthe a(sence of sampling' remains

    completely state controlla(le andcompletely o(serva(le after introductionof sampling'

      if and only if' for every eigen-value !rootof the characteristic equation" for thecontinuous-time control system' the

    relation 

    implies

      !i   λ λ    ReRe   =

    ( )T 

    n  !i

    π λ λ   2

    Im   ≠−

    ,3,2,1   ±±±=n

  • 8/15/2019 Updated Module 4

    77/117

  • 8/15/2019 Updated Module 4

    78/117

    • 6or any / C n (y repeatedly applying the

  • 8/15/2019 Updated Module 4

    79/117

    6or any / C n' (y repeatedly applying thetheorem'

    can (e eventually (e epressed interms of 7$

    Second Method

    1e are concerned a(out ndingepression or value of functions which arerepresented as a series of the powers of a

    matri2onsider a matri polynomial as:

    • This can (e computed (y consideration of

      ++++++=   ++1

    1

    2

    210)(n

    n

    n

    n aaaa I a  f  

      ++++++=   ++1

    1

    2

    210)(n

    n

    n

    n aaaaa  f     λ λ λ λ λ 

    • 2haracteristic equation is given (y

  • 8/15/2019 Updated Module 4

    80/117

    .0)(

    0)(

    1

    2

    2

    1

    1   =+++++=∆

    =−=∆

    −−

    nn

    nnn

     I 

    α λ α λ α λ α λ λ 

    λ λ 

    ).()()()(

    :.)(

    : !o"nomina)(

    )(

    )(

    )()(

    )(

    ,)()(

    1

    1

    2

    210

    λ λ λ λ 

    λ β λ β λ β β λ 

    λ 

    λ 

    λ 

    λ λ 

    λ 

    λ λ 

     0 *  f  

    aswritten&ecane*autiona&ove 0 

      formof  remainder is 0 where

     0 

    *

      f  

     0et we&y  f   Dividin0 

    n

    n

    +∆=

    ++++=

    ∆+=∆

    −−

    ofsei0envaluetheAt λλλ

  • 8/15/2019 Updated Module 4

    81/117

    .)()(

    :,)(

    ).()()()(

    :,.,,,,

    ,,2,1);()(

    :

    ,,2,1;0)(

    ,,,,

    1

    1

    2

    210

    1210

    21

    −−

    ++++==∆

    +∆=

    ==

    ==∆

    n

    n

    n

    ii

    i

    n

     I  0   f  

      followsit  "ero yidenticall is A,ince

     0 *  f  

     0et we  for n0 ,u&stituticomputed &ecant CoefficienThe

    ni 0   f  

    havewethen

    ni

    of   sei0envaluethe At 

    β β β β 

    λ β β β β 

    λ λ 

    λ 

    λ λ λ 

    • &f matri 7 has an 3igen-value ofpλ 

  • 8/15/2019 Updated Module 4

    82/117

    gmultiplicity of m  ' then only oneindependent equation can (e o(tained (ysu(stituting $

    •  The remaining !m-." equations can (eo(tained (y di5erentiating (oth sides ofthe equation$

    • Since

    • &t follows that

     pi   λ λ   =

     p

    )1(,2,1,0;0)(   −==    

       ∆

    =

    m  !d d 

     p

      !

      !

    λ λ 

    λ λ 

    )1(,2,1,0;)()(   −=  

     

     =  

     

     

    ==

    m ! 0 d 

    d  f  

     p p

     !

     !

     !

     !

    λ λ λ λ 

    λ λ 

    λ λ 

  • 8/15/2019 Updated Module 4

    83/117

    9$ sing the -transform method of ndingSTM

     C STM of matri 7 can (e epressed as:

    ) &t involves the nding of inverse of !&-7"' then applying inverse -transform$

    )6or the second order systems' thesesteps can (e carried out with ease$

    )6or higher order systems' it (ecometedious (y hand calculation$

    ( ){ }1−−−=  "I  " of  transform " inversek 

     Tas/ of nding inverse -transform of( )  "  "I    1−−

  • 8/15/2019 Updated Module 4

    84/117

    for given 7' can (e simplied (y thefollowing method:

    )et:

  • 8/15/2019 Updated Module 4

    85/117

  • 8/15/2019 Updated Module 4

    86/117

    •  Thus' result of repeated pre-multiplying(y !& 0 7"' can (e o(tained (y putting >% 4' ' ;' n to form to equation !4" toequation !n":

     I  "  "  "  " +  +  " 

     I  "  "  "  "  " +  +  " 

     I  "  "  "  " +  +  " 

    nnnnnn +++++=

    +++++=

    ++++=

    −−−   1221

    542332455

    3322344

     ,,4,3,2,1

    :),3(),2(),1(

    1221

    n  !  for 

     I  "  "  "  " +  +  " 

    as 0enerali"ecanonee*uationat  Lookin0 

      !  !  !  !  !  !

    =

    +++++=   −−−

    • )et the characteristics equation of 7 (eas: 021 −− nnn

  • 8/15/2019 Updated Module 4

    87/117

    as:

    • 1e modify the GnH equations o(tained (yusing the coeIcients of the characteristicequation as given:

    0012

    2

    1

    1   =+++++  −

    −−

    −   a " a " a " a "   n

    n

    n

    n

    n

    1sides $ot%m&ti!iedis(n)'&ation

     $"sides $ot%m&ti!iedis1)(n'&ation

     $"sides $ot%m&ti!iedis(2)'&ation

     $"sides $ot%m&ti!iedis(1)'&ation

    1

    2

    1

    &y

    a

    a

    a

    n−

    0

    t%

    t%

     $"sides $ot%m&ti!iedis1)(n'&ation

    ** 

    :ase&ation1)(ncreate+e

    a+

    =

    +

    Th di d ! ." i i

  • 8/15/2019 Updated Module 4

    88/117

     I  " " " " +  +  "

     I  "a "a "a + a +  "a

     I  "a "a "a + a +  "a

     I  "a "a + a +  "a

     "I a+ a "+ a + a + a

    nnnnnn

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    +++++=

    ++++=

    +++=

    ++=

    +==

    −−−

    −−

    −−

    −−

    −−

    −−

    1221

    1

    1

    2

    1

    2

    1

    1

    1

    1

    1

    3

    3

    2

    3

    2

    3

    3

    3

    3

    3

    2

    22

    2

    2

    2

    2

    111

    00

    •  Thus' modied !n0." equations as writtenas:

    •  The a(ove equations can (e summed onthe (oth sides to give:

  • 8/15/2019 Updated Module 4

    89/117

    the (oth sides to give:

    •  The a(ove equation can (e representedas:

    1

    11

    1

    22

    2

    1

    100

    =

    ++

    +++=−+−

    −=

    =

    ===

    ∑∑∑∑∑

    n

    nnnin

    ni

    i

    in

    ii

    in

    ii

    in

    ii

    in

    ii

    awhere

     I  "  " a

     " a " a + a +  " a

    ∑ ∑∑∑= =

    ==    

      

      + 

      

      = 

      

       n

      !

    n

      !i

      !i

    i

      !n

    i

    i

    i

    in

    i

    i a "  + a +  " a100

    • Due to 2ayley-,amilton theorem' The

  • 8/15/2019 Updated Module 4

    90/117

    y yrst term on the right-hand side of theequation (ecome a null matri' whichlead to epression of 6 as:

     "I 

    a "  + 

     " a

    a " 

     + 

    n

      !

    n

      !i

      !i

    i

      !

    in

    i

    i

    n

      !

    n

      !i

      !i

    i

      !

       

      

     

    =

       

      

     

    =

    ∑ ∑

    ∑ ∑

    = =

    =

    = =

    1

    0

    1

  • 8/15/2019 Updated Module 4

    91/117

    ( ) ( ) +=++=)3()1()3)(1(

    )4(  B A "I  I  + 

  • 8/15/2019 Updated Module 4

    92/117

    ( ) ( )

    ( ) ( )

    −+−−−−−

    −−−−−−=

    −  

     

     

        +

    −−  

     

     

        +

    =

    +

     

     

     

     

        +−

    +

     

     

     

     

        +=

    +−=

    +=

    ++++

    +++

    +

    111

    1

    )3()1()3()1(3

    )3()1()3(3)1(

    2

    1

    )3(2)1(2

    3

    :transorm-inerse)3(2)1(2

    3,

    2

    )( ;2

    )3()1()3)(1(

    k k k k 

    k k k k 

    k k k   I  I 

    takin0  " 

     "  I 

     " 

     "  I  +  so

     I  B

     I  A

     "  "  "  "  " 

  • 8/15/2019 Updated Module 4

    93/117

    6eed(ac/• &f system is controlla(le and o(serva(le' the

    poles of the closed-loop system (e placed atany desired locations (y means of statefeed(ac/ through an appropriate state-feed(ac/ gain matri$

    • 2onsider an open-loop system whose stateequation is given as:

    • where 7 is !n 8 n" system matri' , is !n 8 ."input matri and !/" is state vector of !n 8

    ."$

    )()()1( k  Huk xk  x

      +=+

    • Aim is to design a control law:

    )()( k+xku =

  • 8/15/2019 Updated Module 4

    94/117

    where 6 is !. 8 n" state-feed(ac/ gain matri

    such that it can place eigen-values of theclosed-loop system at desired location in -plane$

    • )et the desired location of the closed-looppoles (e at:

    •  The characteristic equation of open-loopsystem is given (y:

    • 6ollowing are 6our Methods  to nd the state

    feed(ac/ 7ain matri 6:

    ;,;; 21 n "  "  "    µ  µ  µ    ===  

    nn

    nnn

    a " a " a " a "  "I    +++++=−   −−−

    1

    2

    2

    1

    1  

    )()( k  +xk u   −=

    !."Method-. !2ontrolla(le 2anonical 6ormmethod"

  • 8/15/2019 Updated Module 4

    95/117

    method"

    [ ]

    =

    =

    =

    −−

    −−

    0001

    001

    011

    :

    ,:matrition/ransormaeine

    1

    32

    121

    12

    a

    aaaaa

     / 

    &y 0ivenis / and 

     H  H H  H , where

    ,/ ' x

    nn

    nn

    n

    • Ran/ of Matri M should (e equal to J n K$

    sing the Transformation matri we

  • 8/15/2019 Updated Module 4

    96/117

    • sing the Transformation matri ' wetransform the representation of the

    system from given state space to anotherstate space domain dened (y:

    • State equation and output equation of the

    system (ecomes:

    )()()(

    )()()1(

    k  Duk C'vk  y

    k  Huk 'vk 'v

    +=+=+

    )()(

    )()(  1

    k 'vk  xor 

    k  x'k v

    =

    =   −

  • 8/15/2019 Updated Module 4

    97/117

    inverse of :

    • Dening

    • Modied state-space representation ofthe system (ecomes:

    • y this transformation' will (e incontrolla(le canonical form$

    •  The 2hosen control law is change to:

     H ' H and ''  11   −

    ∧−

    ==)()()(

    )()()1(  11

    k  Duk C'vk  y

    k  Hu'k 'v'k v

    +=

    +=+   −−

    )()()1( k u H k vk v∧∧

    +=+∧∧

     H and 

    )()()( kv+k+'vku

    ==

  • 8/15/2019 Updated Module 4

    98/117

    •  The closed loop system characteristicsequation (ecomes:

  • 8/15/2019 Updated Module 4

    99/117

    equation (ecomes:

    • 1hich on simplication (ecomes:

    •  The desired closed loop systemcharacteristics equation can (e o(tainedas:

    0

    )()()(

    0

    00

    01

    1111

    =

    ++++

    −−   δ δ δ  a " aa

     " 

     " 

    nnnn  

    0)()(

      1

    11   =+++++

      −

    nn

    nn

    a " a "    δ δ  

    0)())(( 21 =n""" µµµ • 1hich when epended' we gets:

    01 ++++ −nn ααα

  • 8/15/2019 Updated Module 4

    100/117

    • 2omparing the coeIcients of li/e-powers

    and ndingas:

    • sing the inverse transformation' o(tainfeed(ac/ gain matri in the -domain$

    011

    1   =++++   − nnnn

     "  "  "    α α α   

    1221   ,,,   δ δ δ δ δ    −− nnn

    111

    111   ;

    ;

    a

    a

    a

    nnn

    nnn

    −=

    −=

    −=

    −−−

    α δ 

    α δ 

    α δ 

    1−∧

    '++ 3ample: Determine a state feed(ac/ gain

    matri Q such that system will have the closed

  • 8/15/2019 Updated Module 4

    101/117

    matri Q such that system will have the closedloop poles at:

    7iven the open loop system matrices as:

    Solution:

    2ontrolla(ility matri

      ! "    3.02.0,.0   ±=

    =

    =

    1

    0

    1

    ;

    4.01.00

    013.0

    2.005.0

     H 

    3)(;

    10401

    51.03.0043.07.01

    =

    = , rank , 

  • 8/15/2019 Updated Module 4

    102/117

    • System matri in the new domain: 0010

  • 8/15/2019 Updated Module 4

    103/117

    • )et

    • 2losed loop system matri will (e

    •   2losed loop system characteristicsequation :

    ==

    ==   −∧

    −∧

    1

    0;

    .11.1206.0

    100 11  H ' H ''

    [ ];321   f    f    f   +  =∧

    −−−−

    =−  ∧∧∧

    ).1()1.1()206.0(

    100

    010

    321   f    f    f  

     +  H 

    0)206.0()1.1().1( 122

    3

    3 =−−−−−−−   f   "   f   "   f   " 

    • 2losed loop system characteristicsequation can also made with desired

  • 8/15/2019 Updated Module 4

    104/117

    equation can also made with desiredclosed loop 3igen-value:

    • 2omparing the coeIcient of li/e-powers

    in two equation:

    • 2alculating un/nown parameters f.'f9'f=:

    • 6 in original domain

    0117.04.03.1

    0)3.02.0)(3.02.0)(.0(

    23 =−+−

    =+−−−−

     "  "  " 

      ! "   ! "  " 

    117.0)206.0(;4.0)1.1(;3.1).1( 123   −=−−=−−−−=−−   f   f   f  

    [ ] [ ]6.061.00.0321   −===∧

      f    f    f   + 

    [ ]033.0333.06333.01 −==   −∧

    ' +  + 

    Method 9: Ac/ermannHs 6ormula• The desired closed loop system

  • 8/15/2019 Updated Module 4

    105/117

    •  The desired closed loop systemcharacteristic equation is given:

    • Dene

    •   2ayely-,amilton Theorem states that 1satises its own characteristic equation$

    •  Then

    ( )0

    0)())((

    1

    1

    1

    21

    =++++==−−−=+−

    −−

    nn

    nn

    n

     "  "  " 

     "  "  "  H+  "I 

    α α α 

     µ  µ  µ 

    1  H+    =−

    0)( 11

    1   =++++=   −−  I 1 1 1 1  f   nn

    nn α α α   

    • 2onsider the following identities:

  • 8/15/2019 Updated Module 4

    106/117

    ( )

    ...(3) 

    )2(

    ...(2a) ))((

    )(

    ..(2). 

    (1)... 

    22

    2

    2

    22

     H+1 H+ 1 

      from

     H+  H+ H+ 

     H+H+  H+H+  H+  H+ 

     H+ 1 

     H+ 1 

     I  I 

    −−=

    −−−=

    −−−=−−=

    −=−=

    =

    )(33

     H+ 1  −=

  • 8/15/2019 Updated Module 4

    107/117

    )4( 

    :),2()2() 

    ....()(

    ... 

    ...

    ))((

    ))()(( 

    223

    223

    223

    2

     H+1 H+1  H+ 

     0et weaand   from H+H+  H+H+ 

     H+  H+ H+  H+ 

     H+H+H+  H+H+ H+H+ 

     H+H+H+ H+ H+ 

     H+H+  H+H+  H+ 

     H+  H+  H+ 

    =

    −−−

    −+−−=+++

    +−−−−=

    −−−−=

    −−−=

  • 8/15/2019 Updated Module 4

    108/117

    = nn  I  I  α α 

  • 8/15/2019 Updated Module 4

    109/117

     

    and adding the ),S and R,S of a(ove!n0." equation' we get:

    )(

    )(

    )(

    )(

    121

    00

    223

    3

    3

    3

    2

    2

    2

    2

    11

    −−−

    −−

    −−

    −−

    −−−−=

    −−−=

    −−=

    −=

    nnnnn

    nn

    nn

    nn

    nn

     H+1  H+1  H+ 1 

     H+1 H+1  H+ 1 

     H+1 H+ 1 

     H+ 1 

    α α 

    α α 

    α α 

    α α 

    0

    2

    21 −− =++++n

    nnn 1 1 1  I  α α α α 

  • 8/15/2019 Updated Module 4

    110/117

    )(

    )(

    )(

    121

    0

    22

    3

    2

    1

    0

    2

    21

    021

    −−−

    −−

    −−−−+

    −−−+−−+

    − ++++

    nnn

    n

    n

    n

    n

    nnn

    nnn

     H+1  H+1  H+ 

     H+1 H+1  H+ 

     H+1 H+ 

     H+  I 

    α 

    α 

    α 

    α α α α α 

    • 1riting in terms of closed loop systemcharacteristics equation and epress the

  • 8/15/2019 Updated Module 4

    111/117

    characteristics equation and epress therest term as factor of ,' 7,' 79,:

    )(

    )(

    )(

    )(

    )()(

    0

    1

    3

    043

    2

    2

    032

    1

    021

    +H

     +1  +1  +  H 

     +1  +1  + H 

     +1  +1  +  H 

     f  1  f  

    n

    n

    nn

    n

    nn

    n

    nn

    α

    α α α 

    α α α 

    α α α 

    −−

    −−−

    −−−

    ++−

    ++−

    +++−=

    • 1riting the a(ove equation in matriform: = f1f )()(

  • 8/15/2019 Updated Module 4

    112/117

    [ ]

    ++++

    +++×−

    =

    −−−

    −−−

    −−−

     + 

     +1  +1  + 

     +1  +1  + 

     +1  +1  + 

     H  H H  H 

     f  1  f  

    n

    nn

    nnn

    n

    nn

    n

    0

    3

    043

    2032

    1

    021

    12

    )(

    )(

    )(

    )()(

    α 

    α α α 

    α α α 

    α α α 

    • Since we have f!1" % # and since systemis controlla(le controlla(ility matri' S is

  • 8/15/2019 Updated Module 4

    113/117

    y 'of ran/ J n K and so its inverse eist$ So

    we can write:

  • 8/15/2019 Updated Module 4

    114/117

    •  This epression for nding the matri'6 is

    commonly called as A/ermannHs formula$• 3ample: Ta/ing previous pro(lem:

    • 2losed loop system characteristics

    equation can also made with desiredclosed loop 3igen-value:

    • 6inding the value of closed loop

    [ ]   )(1000  f  ,  +   

    117.04.03.1)(

    )3.02.0)(3.02.0)(.0()(

    23

    −+−=

    +−−−−=

     "  "  "  "   f  

      ! "   ! "  "  "   f  

     I   f     117.04.03.1)(   23 −+−=

  • 8/15/2019 Updated Module 4

    115/117

    −−

    =05.00230.001.0

    0360.007.007.0

    014.0012.0066.0

    )(  f  

    • &nverse of controlla(ility matri:

    •  Then (y Ac/ermannHs formula

    −−−−=−

    7037.37037.37037.3

    263.6630.2263.614.2415.014.1

    1, 

    [ ] [ ]033.0333.06333.0)(100   1 −==   −   f  ,  + 

    Method-= !3igen-vector method"

  • 8/15/2019 Updated Module 4

    116/117

    Method = !3igen vector method"

    •  if desired 3igen-values

    are distinct' then desired state feed(ac/gain matri ' Q can (e found (y:

    •   is the 3igen-vectors of the matri !7 ?,6" that is satisfy the equation:

    n µ  µ  µ    ,,, 21  

    [ ][ ]

    .,,2,1;)(

    :

    1111

    1

    1

    121

    ni H  I 

    e*uation satisfywhere

     + 

    ii

    i

    nn

    =−=

    =

     µ ξ 

    ξ 

    ξ ξ ξ ξ 

    iξ 

    iiiH+ ξµξ)(

  • 8/15/2019 Updated Module 4

    117/117

    Method-4 !Direct 2alculation method"

    • &f the order of system is low' su(stitute:

    • &nto the characteristic equation:

    • Match coeIcients of powers of in a(ovecharacteristic equation with li/e power of

    [ ]n +  +  +  +    21=

    0=+−   H+  "I