University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water...

23
Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following Logging Page 1 of 23 PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy ). Subscriber: Jackson Webster; date: 28 June 2015 University Press Scholarship Online Oxford Scholarship Online Long-Term Response of a Forest Watershed Ecosystem: Clearcutting in the Southern Appalachians Wayne T. Swank and Jackson R. Webster Print publication date: 2014 Print ISBN-13: 9780195370157 Published to Oxford Scholarship Online: May 2015 DOI: 10.1093/acprof:osobl/9780195370157.001.0001 Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following Logging Wayne T. Swank Jennifer D. Knoepp James M. Vose Stephanie N. Laseter Jackson R. Webster DOI:10.1093/acprof:osobl/9780195370157.003.0003 Abstract and Keywords In 1977, Watershed 7 (WS 7) at the Coweeta Hydrologic Laboratory was clearcut and logged using a mobile cable system that could access logs up to 300 m from a road and suspend the logs completely above the ground for transport to the logging deck. Watershed (WS) 2, a 12.6-ha watershed adjacent to WS 7, served as the experimental control. This chapter (1) summarizes and evaluates the long-term hydrologic and water quality responses to forest management; and (2) links stream responses with process

Transcript of University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water...

Page 1: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 1 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

UniversityPressScholarshipOnline

OxfordScholarshipOnline

Long-TermResponseofaForestWatershedEcosystem:ClearcuttingintheSouthernAppalachiansWayneT.SwankandJacksonR.Webster

Printpublicationdate:2014PrintISBN-13:9780195370157PublishedtoOxfordScholarshipOnline:May2015DOI:10.1093/acprof:osobl/9780195370157.001.0001

ResponseandRecoveryofWaterYieldandTiming,StreamSediment,AbioticParameters,andStreamChemistryFollowingLogging

WayneT.SwankJenniferD.KnoeppJamesM.VoseStephanieN.LaseterJacksonR.Webster

DOI:10.1093/acprof:osobl/9780195370157.003.0003

AbstractandKeywords

In1977,Watershed7(WS7)attheCoweetaHydrologicLaboratorywasclearcutandloggedusingamobilecablesystemthatcouldaccesslogsupto300mfromaroadandsuspendthelogscompletelyabovethegroundfortransporttotheloggingdeck.Watershed(WS)2,a12.6-hawatershedadjacenttoWS7,servedastheexperimentalcontrol.Thischapter(1)summarizesandevaluatesthelong-termhydrologicandwaterqualityresponsestoforestmanagement;and(2)linksstreamresponseswithprocess

Page 2: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 2 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

levelresearchconductedwithinthewatershed.

Keywords:watershedecosystemanalysis,waterquality,forestmanagement,streamresponse,resourcesustainability

IntroductionWatershedecosystemanalysisprovidesascientificapproachtoquantifyingandintegratingresourceresponsestomanagement(HornbeckandSwank1992)andalsotoaddressissuesofresourcesustainability(Christensenetal.1996).ThephilosophicalcomponentsoftheresearchapproachatCoweetaare(1)thequantity,timing,andqualityofstreamflowprovidesanintegratedmeasureofecosystemresponsetolandmanagementpracticesand(2)responsetodisturbanceprovidesavaluabletoolforinterpretingecosystembehavior(SwankandCrossley1988).

Ourobjectivesinthischapterareto(1)summarizeandevaluatethelong-termhydrologicandwaterqualityresponsestoforestmanagementand(2)linkstreamresponseswithprocesslevelresearchconductedwithinthewatershed.

Thedetailsofgeneralandspecificforeststudysites,experimentaldesign,managementprescriptions,andnaturaldisturbancesspanningthe32-yearhistoryofthestudyatCoweetaaredescribedbySwankandWebsterinchapter1ofthisvolume.Briefly,a59-hasouth-facingmixedhardwoodcoveredwatershedwasclearcutandloggedin1977usingamobilecablesystemthatcouldaccesslogsupto300mfromaroadandsuspendthelogscompletelyabovethegroundfortransporttotheloggingdeck.Watershed(WS)2,a12.6-hawatershedadjacenttoWS7servedastheexperimentalcontrolforassessinghydrologicandwaterqualityresponsestothetreatmentonWS7.

(p.37) Hydrology

Methods

PrecipitationInputPrecipitationinputsweremeasuredusingstandardraingageslocatedwithintheCoweetabasin.Precipitationinputforeachwatershedwascalculatedusingestablishedrelationshipsbetweenspecificwatershedlocationswithinthebasinandindividualormultipleraingages.

StreamflowandAnnualWaterYieldWeusedthepairedorcontrolcatchmentmethodofanalysis(Hewlettetal.1969)toquantifytheeffectsofloggingtreatmentonthequantity,timing,andqualityofstreamflow.Inthismethod,therelationshipofstreamattributesbetweenreferenceandtreatedwatershedsforthecalibrationperiodisdeterminedbyregressionanalysiswhichincorporatesexperimentalcontrolforclimaticandbiologicalvariationswithinandbetweenyears.Thecalibrationperiodforhydrologicanalysisinthisstudyspanned11years,from1966to1976,withcontinuousmeasurementofdischargeusingsharp-crestedV-notchweirs(figure3.1).MeanannualdischargefromWS7duringthisperiodaveraged106cmandrangedfrom76to149cm.

Page 3: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 3 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

Figure3.1 Upstreamviewof90ºV-notchweirinstallationonWS7,November2012.(USDAForestServicephoto)

(p.38) Thecoefficientofdetermination(r2)fortotalannualflowbetweenWS7andWS2duringthecalibrationperiodwas0.99.Theerrorterm(p<0.05)forpredictedindividualannualflowsfortreatmentyearsaveraged±5cm.Regressionanalysisusingmonthlyflowdatawasusedtoquantifythewithin-yearchanges;r2duringthecalibrationperiodrangedfrom0.96to0.99.

EarlyPostharvestSlashInterceptionLossAnimportantcomponentofevapotranspirationinforestsisinterceptionloss,whichhasseldombeenstudiedafterlogging.Forestcanopiesinterceptandaltertheamountandchemistryofprecipitationaswaterpassesthroughfoliage(throughfall)orflowsdownthestem(stemflow).ClearcuttingandharvestonWS7removedthecanopystructureforseveralyearsandaddedalargequantityofwoodyresiduetotheforestfloor.Several(1yrand8yraftercutting)studieswereconductedtoquantifytheeffectsoninterceptionloss(thischapter)andonnutrientleaching(seeKnoeppetal.,chapter4,thisvolume).

Thebasicexperimentaldesignofthefirststudywastheestablishmentofeighteen4x4mplotsat9locationsinWS7,whichwerestratifiedtoproportionallyrepresenttheforesttypesbeforeclearcutting.One2x2mplotwasnestedinonecornerofeach4x4mplot;thus,therewereatotalof36plots.Inthefirstyearaftercutting,coarsewood(CW;i.e.,logsandbrancheswithdiameters≥5cm)wasmeasuredforenddiametersandlengthofCWlyingwithineach4x4mplottocalculatevolumeandsurfacearea.Disksweretakenfromrepresentativelogstodeterminewooddensityandmass.CWsamplingwasrepeatedinyears6,7,and11inalong-termstudyofwooddecompositiononWS7(Mattsonetal.1987;seealsoMattsonandSwank,chapter7,thisvolume).

Finewood(branchesandstems<5cmindiameter)wassampledinthe2x2mplotsnestedinthecornerofeachCWplot.Theseplotswereselectedtorepresenttherangeofslashdominatedbystems,“brush,”ormixedslash,all<5cmindiameter.Woodwasalsosampledontheseplotstoestimatesurfaceareaandbiomassoffinewood.

Page 4: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 4 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

Throughfallwascollectedbyinserting15x200cmV-shapedaluminumtroughsbeneaththeslash,attachedto19-Lpolypropylenecollectionjugs(seefigure4.1,inchapter4,thisvolume).Sampleswerecollectedonastormeventbasisandvolumesusedtoestimateinterceptionlossandleachingofnutrientsfromslash.

LaterPostharvestForestInterceptionLossAdetailedstudyofinterceptionloss,atmosphericdeposition,andfoliageleachingwasconductedonWS7whentheregeneratingforestwas8yearsold(Potteretal.1991;Potter1992)(figure3.2).InterceptionfindingsarereportedhereandcanopynutrientfluxesarereportedbyKnoeppetal.(seechapter4,thisvolume).Three20x20mplotswerelocatednearthemiddleofWS7inachestnutoak(Quercusprinus)community.A10-mtowerwaslocatedinthemiddleofthestudysiteandinstrumentedtocollectincidentrainfallanddryparticulateinputstothecanopy.(p.39)

Figure3.2 WS7eightyearsafterclearcutting.(USDAForestServicephoto)

Thirtytroughs(1.0x0.1m)wererandomlyplacedinthethreeplotstocollectthroughfall;stemflowwasmeasuredinnine1x2mplots(Potteretal.1991).Datawerecollectedonastorm-eventbasisandincluded20storms,14duringthegrowingseasonand6duringthedormantseason,throughouttheperiodJuly1984throughAugust1986.

ResultsandDiscussion

InitialWaterYieldandInterceptionResponsesIn1978,thefirstfullwateryear(MaytoApril)followinglogging,streamflowincreased26.5cm,orabout28%abovetheflowexpectediftheforesthadnotbeencut(figure3.3).Insubsequentyears,annualdischargeincreasesdeclinedatarateof5to7cmperyearuntilthefifthyearaftercutting,whenannualflowwasjust4cmabovepretreatmentlevels.Thereafter,changesinflowwerenotsignificant(p>0.05)anddischargefluctuatedaroundexpectedbaselinevalues.

ThepatternofinitialresponseandearlyrecoveryofannualstreamflowafterclearcuttingWS7areconsistentwithotherforestcuttingexperimentsatCoweeta(Swanketal.1988)

Page 5: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 5 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

andinotherlocationsoftheAppalachianregionoftheUnitedStates(seeAdamsandKochendenfer,chapter12andHornbecketal.,chapter13,thisvolume).Wateryieldincreasesaretypicallygreatestinthefirstyearaftercuttingbecausetranspirationismostreducedduetominimalleafareaindex(LAI).Insubsequentyears,assproutsandseedlingsregrow,LAIandtranspirationincrease(seeBoringetal.,chapter2,thisvolume)resultinginalogarithmicdeclineinstreamflowoverthefirstsixyearsofsuccession.

(p.40)

Figure3.3 AnnualdeviationsinstreamflowonWS7priortoandfollowingclearcuttingandcommercialloggingatCoweetaHydrologicLaboratory,1967–2012.*Denotessignificantchange;p<0.05).

Loggingslashinterceptionwasmeasuredforatotalof36storms,rangingfrom5to12mmfromDecember1977throughApril1979.Interceptionloss(precipitationminusthroughfall)wasalinearfunctionofrainfallamountforalltypesofslash.Statisticalanalysesofregressionslopesshowednosignificantdifferencesamongtheslashtypes<5cm,soalldatafromthesmallmaterialwerecombinedintheregressions.However,theregressionslopeofthecoarsewood(logsandbranches≥5cm)wasdifferentfromalloftheothertypesofslashandresultedinadifferentregressionequation.

Linearregressionsforestimatinginterceptionlossfromslashare:

(Eq.1)

(Eq.2)

whereILisinterceptionlossandPisprecipitation,bothinmm.

EstimatesofannualinterceptionlossusingEqs.1and2werederivedfortheperiod

IL (CWD) = −0.44 + 0.2098 (P) ; = 0.70r2

IL (otherslash) = −0.82 + 0.1516 (P) ; = 0.47r2

Page 6: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 6 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

September1977–August1978;stormprecipitationwasmeasuredmonthlyonagagelocatedonWS7andadjustedforeachmonthbasedonpreviouslydevelopedseasonalweightingfactors(Swiftetal.1988).Precipitationforthe12-monthperiodtotaled1,731mm,withamonthlyrangeof22to265mmdeliveredin76stormsovertheyear.InterceptionlossforCWwasestimatedtobe324mm,or18.7%ofprecipitation,comparedtoanestimatedinterceptionlossof197mm,or11.4%ofprecipitationforsmallerslash.Acombinedwoodinterceptionlosswasderivedbyweightingtheamountofthetwoslashtypesmeasuredonthe36plotsbasedonwoodsurfacearea.Themeanwoodsurfaceareaperplotareawas0.448m2/m2forCWand0.898m2/m2forsmallerslash,foratotalwoodsurfaceareaof(p.41) 1.346m2/m2.Usingtheappropriateweightingfactors,annualinterceptionlossforwoodwasestimatedtobe239mm,or13.8%ofprecipitation.

Similarstudiesofinterceptionbyloggingresiduearenotavailableforcomparisonwiththesefindings.However,HelveyandPatric(1988)reportedanannualinterceptionlossformaturehardwoodsatCoweetaof250mm,or13%totalprecipitation,including3%litterinterceptionloss.Thus,theearlypostharvestinginterceptioncomponentofthehydrologicbudgetonWS7wasnotsubstantiallyalteredandthefirstseveralyearsofannualwateryieldincreasesmeasuredaftercuttingandharvest(figure3.3)weremainlyduetoreductionsintranspiration.Thereareseveralfactorscontributingtotheinitialhighinterceptionloss.First,onlysawlogswereharvestedandtheremainingvegetationwascutaspartofthesitepreparationtreatment,whichcontributedtoahighloadingofwoodyresidue.Secondly,WS7isasouth-facingslope;previousresearch(Swift1972)foundradiationavailableforevapotranspirationisgreateronsouth-thannorth-facingslopes,animportantfactorthatwasincludedinamodelusedtopredictwateryieldresponseonWS7(table3.1).

LaterPostharvestForestInterceptionLossIntheregenerating8-year-oldforest(Potteretal.1991;Potter1992),datawerecombinedforallstorms.Throughfallandstemflowwereestimatedtobe83.3%and5.8%ofprecipitation,respectively,foranestimatedinterceptionlossof10.9%ofprecipitation.ThesewaterfluxesfortheregeneratingstandweresimilarinmagnitudetothosethatwereconcurrentlymeasuredintheadjacentreferencehardwoodforestonWS2(Swanketal.1992).

TherecoveryofcanopyinterceptionlossearlyinsuccessioncanbemainlyattributedtoarapidrecoveryofleafareaonWS7(seeBoringetal.,chapter2,thisvolume).Thecontributionsofinterceptionlosstowatershedevaporotranspiration(Et)andstreamflowrecoveryisadynamicprocess.Theimportanceofinterceptionlossfromwoodmeasuredthefirstyearaftercuttingdeclinedovertimewithdecomposition.However,11yearsaftercutting,thequantityofCWwasstillsignificant(seeMattsonandSwank,chapter7,thisvolume),whichcontributedto

Table3.1Comparisonofannualobservedvs.predictedincreaseinwateryieldfollowingclearcuttingonCoweetaWS7.

Page 7: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 7 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

Yearfollowingclearcutting

Increasedpredictedbymodel(cm)

ObservedIncrease(cm)

1 25 262 17 203 12 174 8 125 6 46 3 4Total 71 83Source:Swanketal.(1988).

(p.42) waterstorageandinterceptionlossfromtheforestfloor.Overthesametimeperiod,canopyinterceptionlosswasreturningtoprecuttinglevels.Thus,duringthefirstdecadeofregrowth,thecombinedinterceptionlossfromwoodandtheregrowingcanopyprobablyexceededthatforamaturehardwoodforestandmayhavecontributedtosomeofthevariabilityinannualwateryield(figure3.3).

Longer-TermWaterYieldResponsesThesignificantincreaseinstreamflowin1992,whentheforestwas15yearsold(figure3.3)hasbeenattributedtoareductioninbothstemdensityandLAIassociatedwithcompetitionandself-thinning(stemexclusionstage)ofrapidgrowingcoppicevegetation(Swanketal2001;Elliottetal.1997),ahighmortalityrateofRobiniapseudoacaciacausedbystemborers(seeBoringetal,chapter2,thisvolume),declineofdogwood(Cornusflorida)duetoadisease,dogwoodanthracnose(Chellemietal.1992),andlossofabundantAmericanchestnut(Castaneadentata)sproutsduetothechestnutblight(seeBoringetal.,chapter2,thisvolume).Similarpatternsofchangesinstandstructure,wateruse,andstreamflowhavebeenfoundinotherclearcuttingexperimentsatCoweeta(SwiftandSwank1981).

Canopyopeningscreatedduringthestemexclusionstageofsuccessionwereshort-lived;andby1994to1995,17yearsaftercutting,thestandbasalareawas23m2/ha,whichissimilartothe25m2/habasalareaoftheoriginalforest(Elliottetal.1997)andLAIalsoincreasedtoprecuttinglevels(seeBoringetal.,chapter2,thisvolume).IntheensuingdecadeafterLAIstabilized,therehasbeenapatternofannualstreamflowreductionsthatfrequentlyexceed2.5cm(figure3.3).WehypothesizethathigherEtfortheregrowingversusmatureforestisrelatedtohighertranspirationlossassociatedwithmajorshiftsinspeciescomposition.Forexample,therewereverylargeincreasesinbasalareaofLiriodendrontulipifera,Acerrubrum,andRobiniapseudoacaciainthesuccessionalforestandanequallylargedeclineforcombinedCaryaandQuercusspp.(seeBoringetal.,chapter2,thisvolume).ThishypothesisissupportedbyrecentphysiologicalresearchatCoweetathathasshownlargedifferencesincanopytranspirationratesamonghardwoodspecies.Specifically,diffuseporousspecies,suchas

Page 8: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 8 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

yellowpopularandredmaple,havemuchhighertranspirationratescomparedtooakandhickoryspecies(Fordetal.2010;Fordetal.2011).PersistentdecreasesinannualwateryieldwerealsoobservedatHubbardBrookfollowingaharvestandattributedtohighertranspirationratesforringporousearlysuccessionspeciescomparedtomaturenorthernhardwoodforests(Hornbecketal.1977;seealsoHornbecketal.,chapter13,thisvolume).

WaterYieldModelOneoftheoriginalobjectivesofthecuttingexperimentonWS7wastoobtainwateryieldresponsedataforasouth-facingwatershed.PrevioussynthesesofwatershedexperimentsintheAppalachianHighlandsPhysiographicregion(DouglassandSwank1972,1975)establishedempiricalequationsbetweenfirst-yearwateryield(p.43)increasesasafunctionofpercentbasalareacutandaninsolationindex(energyvariablerelatedtoslopeaspect)foracatchment.Inaddition,anotherempiricalequationwasdeveloped(DouglassandSwank1975)forpredictingwateryieldincreasesforanyyearfollowingharvestuntilstreamflowreturnstobaselinelevels.Themodelscontainlittledatafromsouth-facingclearcutwatershedswithnaturalforestsuccession.However,predictionsfromthesemodelsgenerallyshowedgoodagreementwithannualwateryieldresponsesmeasuredonsouth-facingWS7(table3.1).Thefirstyearaftercutting,streamflowincreasedabout26cmcomparedto25cmpredictedbythemodel.Subsequently,inthenext2years,predictedincreasesweresubstantiallybelowobservedincreases.TheseyearscoincidedwiththewettestyearonrecordandoneofthedriestyearsatCoweeta.Intheensuing3years,predictionswereincloseagreementwithobservedincreasesinwateryieldandthetotalchangepredictedforthe6-yearperiodwaswithin17%oftheobservedchange.

Intra-AnnualWaterYieldDuringthefirst3postcuttingyears,themonthlydistributionsofwateryieldincreases(figure3.4)weresimilartootherlow-elevationcuttingexperimentsatCoweeta(Swanketal.1988).Flowincreasesoccurredineverymonth,withthesmallestamountsinthespring(AprilandMay),atthesametimethatsoilmoistureinanundisturbedforestisusuallyfullyrecharged.Concurrentwiththegrowingseason,streamflowincreasesbecomelargerduetoreducedEtonWS7.SubstantialflowincreasescontinuedintothelatefallandwintermonthsandpartiallyreflectthelagbetweenwhenreducedEtoccursonthecutwatershedandwhenthewatersavingsreachtheweirduringtheperiodofhighprecipitation(figure3.4).

Page 9: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 9 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

Figure3.4 Meanmonthlychangesinwateryieldduringthefirst4postcuttingyearsonCoweetaWS7.(ModifiedfromSwanketal.,1982)

(p.44) Ofnotableimportanceisthattwoofthelargestflowincreases(1.6cm,or28%increase)occurredinSeptemberandOctoberwhenflowsarenormallylowandwaterdemandsarehigh.

StormHydrographResponsesDetailedanalysisofeightstormhydrographparameterswasconductedforWS7usingpretreatmentstormdataonWS7regressedagainstthesameparametersasthereferencecatchment(WS2).Theanalysisuseddatafor75storms(≥2cm)fromthefirst4yearsaftertreatment,whichencompassedtheperiodofmaximumwateryieldincrease(Swanketal.2001).

Followingharvest,statisticallysignificantchangesinregressioninterceptsandslopeswerefoundforallstormparametersexcepttimetostormpeak(table3.2).Thelargestincreasesoccurredinpeakflowrates(15%)andinitialflowrates(14%);thelatterisduetoelevatedratesofbaseflowfromthewatershed.Quickflow(stormflow)volumeincreased10%,whichwasassociatedwitha10%increaseinrecessiontime.Takencollectively,thehydrographresponsesareconsideredtobeofminorimportancetodownstreamflooding.Forexample,inthefirst4yearsaftercuttingandharvest,theaverageprecipitationstorm,≥2cm,increasedthequickflowvolumebyonly0.03cm,or2.43m3/ha,andthepeakflowrateby1.7m3/ha.

Stormhydrographresponsestoharvestarepartlydependentupon(1)themagnitudeandmethodofloggingandassociatedroaddisturbanceand(2)theinherentresponsivenessofthewatershedtoprecipitationeventsintheabsenceof

Table3.2Stormhydrographparametersandchangesduringthefirst4yearsfollowingclearcuttingandloggingonWS7.Parameter Meanfor

treatmentwatershed

Significanceofregressioncoefficients

Percentchangeinparameteraftertreatmentformeanstorm

Page 10: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 10 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

WS7 WS2 Intercept SlopeInitialflowrate(m3s−1km−2)

0.037 0.27 ** ** 14

Peakflowrate(m3s−1km−2)

0.136 0.127 ** ** 15

Timetopeak(h)

8.0 8.0 NSb NS 0

Totalquickflowvolume(cm)

0.32 0.40 ** ** 10

Quickflowafterpeak(cm)

0.08 0.09 ** ** 6

Quickflowafterpeak(cm)

0.24 0.31 * NS 11

Quickflowduration(h)

27.6 28.3 ** * 5

Recessiontime(h)

20.0 21.0 ** NS 10

aDerivedfromdifferencebetweenvaluepredictedfromcalibrationregressionandmeasuredvalue.

(b)Nonsignificant.

(*)p<0.05.

(**)p<0.01.

Source:ModifiedfromSwanketal.(1982).

(p.45) disturbance.Inherentresponsivenessisdrivenbyavarietyofphysicalfactorssuchaswatershedsize,soildepth,slopeandtopographiccomplexity,andinfiltrationrates.Theresponsefactor(meanannualquickflow/meanannualprecipitation)forWS7wasverylow(0.04),whichaccountsforsomeofthesmallchangesinstormhydrographparameters.Furthermore,thelowdensityofloggingroads,minimaldisturbanceofthesurfacesoilbycablelogging(seeSwankandWebster,chapter1,thisvolume),andcarefuldesignofroads(Swift1988)alsolimitedchangesinstormflowonWS7.

AbioticResponsestoClearcutting

SoilMoistureandTemperature

Regenerationcuttingcanproducesignificantchangesinthemicroenvironmentoftheforestfloorandsoilthatinturnregulateecosystemprocesses,suchasdecomposition;microbialactivity;nutrientcycles;andthegermination,sprouting,survival,andgrowthofvegetation.BeginninginAugust1977,studieswereinitiatedonWS7toevaluatetheeffectsofharvestingonsoilmoistureandtemperature.Soilmoisturewasmeasuredat

Page 11: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 11 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

biweeklyintervalsintheO1andO2(organic)litterlayersoftheforestfloorand0to10-cmand10–30-cmdepthsinthesoilonWS7andalsoWS2,theadjacentcontrolwatershed(SwankandVose1988).Inthefirstautumn(Aug–Nov)afterharvest,littermoisturewas20%to30%belowthatfoundonWS2(table3.3).Inthesubsequentwinterquarter,littermoisturewassimilaronbothwatersheds.However,intheensuingyear(1978),littermoisturewasconsistently30%to50%lowerintheclearcutcomparedtoWS2.Incontrast,surfacesoilmoisture(0–10cm);increasedmorethan11%thefirstyearaftercutting(table3.3).Deeperinthesoilprofile,moistureincreasesweresmallorshowednochanges.

Soiltemperaturesweremeasuredatthelitter-soilinterfaceonWS7duringtheprecutyear(1976)priortoclearcuttingandinthefirstgrowingseasonaftercuttingandlogging(SwankandVose1988).Meanmonthlytemperatureswere7°Cto10°CaboveprecutlevelsintheperiodMaythroughOctoberinthefirstyearaftercutting.Meanmonthlymaximumsoiltemperaturesshowedlargeincreaseswithvaluesbeing10°Cto35°Caboveprecutlevelsanddailymaximumtemperaturesfrequentlyexceeded45°Cduringthisperiod.Insubsequentyears,increasesinsurfacesoiltemperaturesweremoderatedbyshadefromregeneration.

StreamChemistry

Methods

Streamchemistrymeasurementsbeganinlate1971onbothWS7andWS2.Weeklygrabsampleshavebeencollectedatafixedlocationjustabovetheweirfromeachwatershedsince1971,andflowproportionalsampleswerealsocollectedintheperiod1975–1981.SolutedeterminationsincludeNO3−,NH4+,SO4−2,PO4−3,Cl−,and(p.46)

Table3.3Quarterlyforestfloorandsoilmoistureaverages(percent)formixedhardwoodforestsduringthefirstyearafterclearcutting(WS7)andforthereferencewatershed(WS2).Treatmentanddepth

YearandQuater

Aug–Nov1977

Dec–Mar1977–78

Apr–Jul1978

Aug–Nov1978

Watercontent(percentbyweight)ClearcutO1 70 124 88 51O2 95 170 97 580to<10cm 46 70 55 3110to30cm 36 40 34 23ControlO1 92 121 120 105O2 126 211 120 109

Page 12: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 12 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

0to<10cm 35 59 36 2810to30cm 32 40 29 24Note:O1=includesfreshorslightlydecomposedorganicmaterials.

O2=includesintermediateandhighlydecomposedorganicmaterials.

Source:ModifiedfromSwankandVose(1988).

basecations(Ca+2,Mg+2,K+,Na+)usingestablishedanalyticalmethodsatCoweeta(Brownetal.2009).Comparisonof3-yearaverageannualexportofsolutescalculatedfromweeklygrabsamplesversusflow-proportionalsamplesshowedgoodagreementformostsolutes(SwankandWaide1988).Annualchangeinexportofeachsoluteduetotreatmentthefirst6yearswasestimatedfrompretreatmentregressionsofmonthlyexportsbetweenWS7andWS2.Relationshipsofmonthlyexportsbetweenthetwocatchmentsweregood(r2values≥0.92)formostions.

ResponsetoTreatment

Streamchemistryresponsestotreatmentwererelativelysmall(table3.4)asdescribedinanearlieranalysis(Swanketal.2001).IncreasesinexportofPO4,K,Ca,andMginthefirstfullyearfollowingloggingarepartiallyrelatedtoreleasefromthefertilizerappliedtoroads.LackofsignificantNO3responsewasdueinparttosedimentdenitrificationthatdepletedNO3beforeitreachedtheweir(SwankandCaskey1982).DenitrificationinBigHurricaneBranch(WS7)wasremeasuredin2004aspartofalargeregionalstudyin49streamswithvaryingland-usecategories(Mulhollandetal.2009).Theyfoundmeasureablebutlowerratesofdenitrificationthanthosefoundin1977bySwankandCaskey(1982).However,differencesinbothmethodsandthesupplyofNO3ofthetwostudieslimitdirectquantitativecomparisons.

ThemagnitudeofnutrientexportisdeterminedbybothchangesinsoluteconcentrationsandincreasesindischargeresultingfromreducedEtfollowingcutting.Thefirsttwoyearsaftercutting,annualflowincreasedanaverageof23.5cm/y,but(p.47)

Table3.4Annualchangesinstreamflowandsolutesfollowingclearcuttingandlogging(posttreatment–pretreatment)onWS7.Timesincetreatment(May–Aprilwateryear)

Flow(cm)

Increaseordecreaseinstreamflowandsoluteexport(kgha−1)a

NO3-N

NH4-N

PO4-P

K Na Ca Mg SO4-S

Cl

First4months 0.5 0.01 <0.01

0.01 0.43 0.42 0.24 0.26 0.39 0.68

Firstfullyear 26.5 0.26 0.03 0.04 1.98 1.37 2.60 0.96 0.27 1.13Year2 20.5 1.12 <

0.010.01 1.95 2.22 2.51 1.15 −0.08 1.62

Page 13: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 13 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

Year3 17.3 1.27 0.05 0.02 2.40 2.68 3.16 1.42 0.39 2.08Year4 11.9 0.25 0.15 0.02 0.80 1.07 1.63 0.46 0.31 0.59Year5 4.3 0.28 0.01 <

0.010.52 0.13 1.19 0.18 0.04 0.10

Year6 4.1 0.62 0.06 <0.01

0.73 0.69 0.89 0.42 −0.06 0.33

(a)Annualincreaseordecreasederivedfromsumofdeviationsusingmonthlycalibrationregressions.

Source:ModifiedfromSwanketal.(2001).

maximumconcentrationsofmostsolutesdidnotoccuruntilthethirdyearwhenwateryieldonWS7wasstillmorethan17cmabovepretreatmentlevels(table3.1).Bythesixthyearofpostdisturbance,streamflowwasnearpretreatmentlevelsandsoluteexportsalsoappearedtobeapproachingpretreatmentlevels.Thelonger-termresponsesofmostsolutesshowedasimilarpattern.Forexample,small(5µeq/L)increasesinCaconcentrationswereobservedafterloggingbutlaterreturnedtoexpectedpretreatmentlevels(figure3.5).Similarly,followingtheinitialincreaseinKconcentrations,interannualconcentrationsofKafter1983werehighlyvariable,andtherewerenoconsistentdifferencesinconcentrationsbetweenWS7andWS2(figure3.5).ThesamepatternwastrueforMg(figure3.6).TherewaslittlechangeinSO4concentrationsonWS7aftercutting,butbeginningin1989therehasbeenaconsistentdeclineinSO4concentrationsonbothWS7andreferenceWS2(figure3.6).ConcentrationsofNH4andPO4werelowandalmostidenticalforWS7andWS2duringtheentireperiodofrecord.Incontrast,thelong-termrecordforNO3showedinteresting,significantdynamicsfollowingcuttingandforestsuccession(figure3.7).

TheinitialincreaseinNO3concentrationsonWS7wasattributedtoincreasesinsoilNpoolsandconcentrationsthefirstthreeyearsafterlogging(Waideetal.1988;seealsoKnoeppetal.,chapter4,thisvolume).DeclineinstreamNO3concentrationsuntilabout1987areassociatedwiththerapidsequestrationandstorageofnutrientsinsuccessionalvegetation(Boringetal.1988;seealsoBoringetal.,chapter2,thisvolume).However,majorshiftsininternalecosystemNcyclingareevidentinalarge,sustainedpulseofNO3tothestreamfromabout1987through1997(figure3.7).MeanannualpeakNO3concentrations20yearsafterdisturbanceareaboutdoublethevaluesintheearlypostharvestyears.Thereafter,NO3concentrationsdeclinedabout8µeq/Lovera5-yearperiod,followedbyanotherincreaseduringtheensuing5yearsthatreachedamaximumof12µeq/Lin2008(figure3.7).

(p.48)

Page 14: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 14 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

Figure3.5 MeanannualconcentrationsofCa(a)andK(b)instreamwaterofWS7andWS2duringcalibration(1971–1976),treatmentactivities(1976–1977),andpostharvestperiod(1978–2010).

AcomplexcombinationofecologicalprocessescontributetothemagnitudeandtemporaldynamicsinstreamNO3.AcceleratedNO3releasetothestreamcoincideswithstemexclusionin1992,andthus,someoftheNO3losswasprobablyduetothereduceduptake.However,thelargestcontributortoincreasedNavailabilitywasextensiveblacklocustmortalityduetolocustborerinfestation,whichisasimilarresponseobservedinanotherearlysuccessionwatershed(WS6)atCoweetawithlargelocustinfestationsandmortality(SwankandWaide1988).Blacklocustisasymbioticnitrogenfixer;inthe4-year-oldlocuststandsonWS7,fixationwasestimatedtobe30kgNha−1yr−1whilefixationcatchmentwidewasestimatedat10kgNha−1yr−1(BoringandSwank1984).Moreover,blacklocustisknowntoaccumulatelargequantitiesofNinfoliage,roots,branches,andstems(BoringandSwank1984).DecompositionoftheN-richorganicmatterfromthedeadtrees(330stems/ha)couldbeamajorsourceofstreamNO3laterinsuccession(figure3.7).(p.49)

Page 15: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 15 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

Figure3.6 MeanannualconcentrationsofSO4(a)andMg(b)instreamwaterofWS7andWS2duringcalibration(1971–1976),treatmentactivities(1976–1977),andpostharvestperiod(1978–2010).

Figure3.7 MeanannualconcentrationsofNO3instreamwaterofWS7andWS2duringcalibration(1971–1978),treatmentactivities(1976–1977),andpostharvestperiod(1978–2010).

(p.50) Decomposingloggingresidue(seeMattsonandSwank,chapter7,thisvolume)isalsoapotentialsourceoflong-termstreamNO3enrichmentthatappearsinthestream.OtherpossiblereasonsforincreasedstreamNO3concentrationsareelevatedratesofsoilNmineralizationandnitrificationandreductioninthesoilC/Nratio.

Page 16: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 16 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

MeasurementoftheC/Nratioshowednosignificantchangeoverthe18-yearperiodfollowingcutting(KnoeppandSwank1997).However,long-termassessmentofsoilNtransformationsshowcontinuedincreaseinNavailabilityinsurfacesoils20yearsfollowingharvest(seeKnoeppetal.,chapter4,thisvolume).

ThestreamNO3responsesobservedonWS7demonstratethevalueoflong-termstudiesinforestecosystemsandtheprocessesregulatingsystemresponses.Forexample,thefirst10-yeartrendinconcentrationssuggestedthatNO3concentrationshadreturnedtonearpretreatmentlevels.However,inthesubsequent30-yearperiod,concentrationsshowedverylargeincreasesanddecreasesthatgreatlyexceededtheinitialresponses.Thus,earlyterminationofthestudyandassociatedconclusionswouldhavebeenincompleteandpartlyinaccurate.

Theimportanceoftheinteractionbetweensuccessionalvegetation(e.g.,blacklocust)andinsectinfestationsonstreamNO3isclearlyevidentonWS7;however,thisdoesnotexplainallofthetemporalvariationinstreamNO3.Forexample,interannualmagnitudeandvariabilityofstreamNO3concentrationarealsorelatedtohydrologicvariables.AnnualstreamflowonWS7,rangedfrom45to130cm/yfrom1990to2009,andexplained36%oftheannualvariationinstreamNO3concentrationsfollowingcutting(figure3.8).

Takencollectively,nutrientlossesonWS7shouldnothaveanadverseimpactonthesustainabilityandgrowthofthesuccessionalforest.Atmosphericdepositionofnutrientsexceededtheelevatedlossesofnutrientsinmostyearsofthestudy(Swanketal.2001).Moreover,thehighN-fixationratesofblacklocustandavailabilityofNtoothertreespeciescanbeviewedasabenefittotreegrowthandforesthealth.Furtherdiscussionontherelevanceoffindingstomanagementandecologicalvaluesisfoundinchapter14ofthisvolume.

Figure3.8 TherelationshipbetweenmeanannualNO3-NconcentrationsandannualstreamflowonCoweetaWS7overa20-yearperiod.

(p.51) Sediment

Methods

Page 17: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 17 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

TheeffectsofthemanagementpracticesonsoillosstostreamsonWS7weredeterminedatperiodicintervalsbymeasuringsedimentaccumulationsintheweirpondingbasinandalsoontheapproachapronofthepondingbasinofbothWS7andWS2.Thisapproachdoesnotaccountforsuspendedsedimentthatpassesacrosstheweirblade;therefore,totalsedimentexportwasunderestimated.Sedimentvolumeswereestimatedbymeasuringsedimentelevationsalongpermanenttransectswithatransitandlevelrodbeforeandaftercleaningthepondingbasinandapproachaprons.Bulksampleswerecollectedateachelevationmeasurementandprocessedtoestimatedryweight.Apretreatmentcalibrationregressionequationofperiodicsedimentlossovera2-yearperiodbetweenWS7andWS2wasderived(r2=0.91)toestimatechangesinsedimentlossduetomanagement.

SoillossesonsubdrainageswithinWS7werealsomeasuredtoseparateandquantifysedimentsourcesduetoroadsversuslogging.DischargeandsoilexportweresampledwithanHflumeandaCoshoctonwheelusingproceduresdescribedbyDouglassandVanLear(1983).Oneinstallationwaslocatedinaperennialstreambelowthemiddleloggingroad(figure3.9)andthreeinstallationswerelocatedabovetheinfluenceofloggingroadstoevaluateeffectsofcuttingandloggingonly.

Figure3.9 OnefootH-FlumeandCoshoctonsampler(no.701)onWS7—oneoffoursuchinstallationsusedtoassesswaterqualityaboveandbelowroads,1976.(USDAForestServicephoto)

(p.52) Results

Sedimentyieldinthe2yearsofpretreatmentcalibrationfromWS7andWS2averaged230and135kgha−1yr−1respectively.Thesebaselinesedimentyieldsaresimilartothemeanvaluesforsmall,forestedcatchmentsintheeasternUnitedStatessummarizedbyPatricetal.(1984).Inmid-May1976,roadsinWS7werefertilizedandseededbutroadfillsandtherunningsurfacewereunsettledandwithoutgrassorgravelcover.ThethirdweekofMay1976,a16-cmstormoccurredandwasfollowedMay28byalargerstormof22cmwithintensitiesof7cm/h.ThesecondstormproducedthegreatestdischargeratesmeasuredonmostcatchmentsatCoweetaduringtheprevious62yearsoftheLaboratorygaginghistory.Thesetwoeventsgreatlyacceleratedsedimentyieldonboth

Page 18: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 18 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

WS7andWS2withanincreaseinsoillossinMayonWS7of1,470kgha−1yr−1(figure3.10).Roadsweretheprimarysourceofincreasedsedimentyieldasillustratedbysoillossmeasuredatoneofthegagingstationsinastreamimmediatelybelowaroadcrossingthemiddleofthecatchment(figure3.11).FollowingtheMaystorms,sedimentyieldatthestationwasnearly50tfrom0.086haofroadcontributingareacomprisedofroadbed,cut,andfill.FollowingroadstabilizationandminimumuseovertheperiodofJunethroughDecember1976,soillossfromtheroadwaslow,butitacceleratedagainduringthepeakofloggingactivities(figure3.10).Inensuingyears,soillossreturnedtobaselinelevels.Inthesametimeperiod,samplerslocatedaboveroads,whichwereonlyinfluencedbycuttingandyarding,onlycollectedsmallamountsofmaterialcomprisedmainlyoforganicmatter.

FollowingtheinitialpulseofsedimentfromtheMay1976storms,sedimentyieldshowedmuchdifferenttemporalpatternsattheweir(figure3.10)comparedtosedimentlossfromtheroads.Sedimentyieldremainedsubstantiallyelevated

Figure3.10 SedimentyieldmeasuredinthepondingbasinonWS7followingloggingcomparedtothesedimentyieldpredictedfromWS2,theadjacentreferencewatershed,overa35-yearperiod.

(p.53)

Figure3.11 Cumulativesedimentyieldmeasuredinafirst-orderstreambelowaloggingroadduringthefirst32monthsafterlogging.

Page 19: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 19 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

duringandafterloggingdisturbancesandcontinuedtohavesedimentlossesthatwerefrequentlyinexcessof500kgha−1yr−1aboveexpectedlossesovertheperiod1978—1985(figure3.10).AlargepulseofsedimentwasdeliveredtoweirsonbothWS2andWS7in1989inresponsetothewettestyearonrecordatCoweeta.SedimentyieldonWS7wasabout800kgha−1yr−1abovetheexpectedyield.In1991sedimentyieldonWS7returnedtopretreatmentlevels(234kgha−1yr−1)andremainedataboutthesamelevel(179kgha−1yr−1)basedonthreesampleperiodsinsubsequentyears(figure3.10).

Thelong-termsedimentyieldresponsesillustratethedelayorlagbetweenpulsedsedimentinputstoastreamandroutingofsedimentsthroughthewatershed.Soillossderivedfromroadswasverylowfollowingstabilizationwithgrassandgravelcover.Moreover,followinglogging,roadtravelwasminimal—roadswereonlyusedforaccesstoresearchsites.Also,basedonlong-termcross-sectionmeasurementsonthemainstreamonWS7,therehaveonlybeeninfrequentandminorinstancesofstreambankerosion(Websteretal.unpublisheddata).Thus,intheabsenceofsignificantadditionalsourcesofsedimenttoWS7streams,thelong-termsedimentincreasesobservedattheweironWS7wereduetoacontinuedreleaseofsedimentfromupstreamstorage,whichwasdepositedfromthreeroadcrossingsonperennialstreamsandfourcrossingsofintermittentstreamsonWS7intheMay1976storms.

Theuniqueconditionsthatproducedthesesedimentresponsesshouldberecognized,thatis,recordstormsoccurredattheprecisetimewhenroadswerefreshlyconstructedandwithoutvegetationcover,andthusmostvulnerabletoerosion.Itisalsoimportanttopointoutthatbestmanagementpracticeswereusedinharvesting(p.54)andinloggingroadlocationanddesign.Thelong-termeffectofthismanagementprescriptiononwater,soil,vegetationsustainabilityandhealth,andthestructureandfunctionofbenthicinvertebratesisfurtherdiscussedinaconcludingsynthesis(seeWebsteretal.,chapter14,thisvolume).

LiteratureCited

Bibliographyreferences:

Boring,L.R.,andW.T.Swank.1984.Theroleofblacklocust(Robinapseudo-acacia)inforestsuccession.JournalofEcology72:749–766.

Boring,L.R.,W.T.Swank,andC.D.Monk.1988.DynamicsofearlysuccessionalforeststructureandprocessesintheCoweetabasin.Pages161–179inForestHydrologyandEcologyatCoweeta.W.T.SwankandD.A.Crossley,Jr.,editors.Springer-Verlag,NewYork,NewYork.

Brown,C.L.,C.Harper,N.Muldoon,andS.Cladis.2009.ProceduresforchemicalanalysisattheCoweetaHydrologicLaboratory.CoweetaFiles.CoweetaHydrologicLaboratory,Otto,NorthCarolina.

Page 20: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 20 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

Chellemi,D.O.,K.O.Britton,andW.T.Swank.1992.InfluenceofsitefactorsondogwoodanthracnoseintheNantahalaMountainRangeofWesternNorthCarolina.PlantDisease76:915–918.

Christensen,N.L.,A.M.Bartuska,J.H.Brown,S.Carpenter,C.D’Antonio,R.Francis,J.F.Franklin,J.A.MacMahon,R.F.Noss,D.J.Parsons,C.H.Peterson,M.G.Turner,andR.G.Woodmansee.1996.ThereportoftheEcologicalSocietyofAmericaCommitteeontheScientificBasisforEcosystemManagement.EcologicalApplications6:665–691.

Douglass,J.E.,andW.T.Swank.1972.Streamflowmodificationthroughmanagementofeasternforests.ResearchPaperSE-94.USDAForestService,SoutheasternForestExperimentStation.Asheville,NorthCarolina.

Douglass,J.E.,andW.T.Swank.1975.Effectsofmanagementpracticesonwaterqualityandquantity:CoweetaHydrologicLaboratory,NorthCarolina.Pages1–13inProceedingsofthemunicipalwatershedmanagementsymposium.GeneralTechnicalReportNE-13.U.S.DepartmentofAgriculture,ForestService,NortheasternForestExperimentStation,Broomall,Pennsylvania.

Douglass,J.E.,andD.H.VanLear.1983.PrescribedburningandwaterqualityatephemeralstreamsinthePiedmontofSouthCarolina.ForestScience29:181–189.

Elliott,K.J.,L.R.Boring,W.T.Swank,andB.R.Haines.1997.Successionalchangesinplantspeciesdiversityandcompositionafterclear-cuttingasouthernAppalachianwatershed.ForestEcologyandManagement92:67–85.

Ford,C.R.,R.M.Hubbard,andJ.M.Vose.2010.QuantifyingstructuralandphysiologicalcontrolsonvariationincanopytranspirationamongplantedpineandhardwoodspeciesinthesouthernAppalachians.Ecohydrology3.doi:10.1002/eco.136

Ford,C.R.,S.H.Laseter,W.T.Swank,andJ.M.Vose.2011.Canforestmanagementbeusedtosustainwater-basedecosystemserviceinthefaceofclimatechange?EcologicalApplications21:2049–2067.

Helvey,J.D.,andJ.H.Patric.1988.Researchoninterceptionlossesandsoilmoisturerelationships.Pages129–137inForestHydrologyandEcologyatCoweeta.W.T.SwankandD.A.Crossley,Jr.,editors.Springer-Verlag,NewYork,NewYork.

Hewlett,J.D.,H.W.Lull,andK.G.Reinhart.1969.Indefenseofexperimentalwatersheds.WaterResourcesResearch5:306–316.

Hornbeck,J.W.,andW.T.Swank.1992.Watershedecosystemanalysisasabasisformultiple-usemanagementofeasternforests.EcologicalApplications2:238–247.

Hornbeck,J.W.,C.W.Martin,andC.Eagar.1997.SummaryofwateryieldexperimentsatHubbardBrookExperimentalForest,NH.CanadianJournalofForestResearch27:2043–2052.

Page 21: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 21 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

Knoepp,J.D.,andW.T.Swank.1997.Long-termeffectsofcommercialsawlogharvestonsoilcationconcentrations.ForestEcologyandManagement93:1–7.

Mattson,K.G.,W.T.Swank,andJ.B.Waide.1987.Decompositionofwoodydebrisinaregenerating,clearcutforestintheSouthernAppalachians.CanadianJournalofForestResearch17:712–721.

Mulholland,P.J.,R.O.Hall,D.J.Sobota,W.K.Dodds,S.E.G.Findlay,N.B.Grimm,S.K.Hamilton,W.H.McDowell,J.M.O’Brien,J.L.Tank,L.R.Ashkenas,L.W.Cooper,C.N.Dahm,S.V.Gregory,S.L.Johnson,J.L.Meyer,B.J.Peterson,G.C.Poole,H.M.Valett,J.R.Webster,C.P.Arango,J.J.Beaulieu,M.J.Bernot,A.J.Burgin,C.L.Crenshaw,A.M.Helton,L.T.Johnson,B.R.Niederlehner,J.D.Potter,R.W.Sheibley,andS.M.Thomas.2009.Nitrateremovalinstreamecosystemsmeasuredby15Nadditionexperiments:denitrification.LimnologyandOceanography54:666–680.

Patric,J.H.,J.O.Evans,andJ.I.Helvey.1984.SummaryofsedimentyielddatafromforestedlandintheUnitedStates.JournalofForestry82:101–104.

Potter,C.S.1992.Stemflownutrientinputstosoilinasuccessionalhardwoodforest.PlantandSoil140:249–254.

Potter,C.S.,H.L.Ragsdale,andW.T.Swank.1991.AtmosphericdecompositionandfoliarleachinginaregeneratingSouthernAppalachianforestcanopy.JournalofEcology79:97–115.

Swank,W.T.,andW.H.Caskey.1982.Nitratedepletioninasecond-ordermountainstream.JournalofEnvironmentalQuality11:581–584.

Swank,W.T.,andD.A.Crossley,Jr.1988.Introductionandsitedescription.Pages3–16inForestHydrologyandEcologyatCoweeta.W.T.SwankandD.A.Crossley,Jr.,editors.Springer-Verlag,NewYork,NewYork.

Swank,W.T.,J.E.Douglass,andG.B.Cunningham.1982.ChangesinwateryieldandstormhydrographsfollowingcommercialclearcuttingonasouthernAppalachiancatchment.Pages583–594inHydrologicalResearchBasinsandtheiruseinWaterResourcePlanning.SwissNationalHydrologicalServiceSpecialPublication,Berne,Switzerland.

Swank,W.T.,L.J.Reynolds,andJ.M.Vose.1992.Annualmeanatmosphericdeposition,throughstemflow,andsoilsolutionfluxesformajorionsatCoweetahardwoodsite.Page634inAtmosphericDepositionandForestNutrientCycling,D.W.JohnsonandS.E.Lindberg,editors.Springer-Verlag,NewYork,NewYork.

Swank,W.T.,L.W.Swift,Jr.,andJ.E.Douglass.1988.Streamflowchangesassociatedwithforestcutting,speciesconversions,andnaturaldisturbances.Pages297–312inForestHydrologyandEcologyatCoweeta.W.T.SwankandD.A.Crossley,Jr.,editors.Springer-Verlag,NewYork,NewYork.

Page 22: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 22 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015

Swank,W.T.,andJ.M.Vose.1988.Effectsofcuttingpracticesonmicroenvironmentinrelationtohardwoodregeneration.Pages71–88inGuidelinesforRegeneratingAppalachianHardwoodStands.H.C.Smith,A.W.Perkey,andW.E.Kidd,Jr.,editors.SAFPubl.88-03.WestVirginiaUniversityBooks,Morgantown.

Swank,W.T.,J.M.Vose,andK.J.Elliott.2001.Long-termhydrologicandwaterqualityresponsesfollowingcommercialclearcuttingofmixedhardwoodsonasouthernAppalachiancatchment.ForestEcologyandManagement143:163–178.

Swank,W.T.,andJ.B.Waide.1988.Streamchemistryresponsestodisturbance.Pages339–357inForestHydrologyandEcologyatCoweeta.W.T.SwankandD.A.Crossley,Jr.,editors.Springer-Verlag,NewYork,NewYork.

Swift,L.W.,Jr.1972.Effectofforestcoverandmountainphysiographyontheradiantenergybalance.Dissertation.DukeUniversity,Durham,NorthCarolina.

Swift,L.W.,Jr.1988.Forestaccessroads:design,maintenance,andsoilloss.Pages313–324inForestHydrologyandEcologyatCoweeta.W.T.SwankandD.A.Crossley,Jr.,editors.Springer-Verlag,NewYork,NewYork.

Swift,L.W.,Jr.,G.B.Cunningham,andJ.E.Douglass.1988.Climatologyandhydrology.Pages35–55inForestHydrologyandEcologyatCoweeta.W.T.SwankandD.A.Crossley,Jr.,editors.Springer-Verlag,NewYork,NewYork.

Swift,L.W.,Jr.,andW.T.Swank.1981.Longtermresponsesofstreamflowfollowingclearcuttingandregrowth.HydrologicalSciencesBulletin26:245–256.

Waide,J.B.,W.H.Caskey,R.L.Todd,andL.R.Boring.1988.Changesinsoilnitrogenpoolsandtransformationsfollowingforestclearcutting.Pages221–232inForestHydrologyandEcologyatCoweeta.W.T.SwankandD.A.Crossley,Jr.,editors.Springer-Verlag,NewYork,NewYork.

Notes:

(*)Correspondingauthor:CoweetaHydrologicLaboratory,USDAForestService,3160CoweetaLabRoad,Otto,NC28763USA

Accessbroughttoyouby: JacksonWebster

Page 23: University Press Scholarship Online Oxford Scholarship Online · Response and Recovery of Water Yield and Timing, Stream Sediment, Abiotic Parameters, and Stream Chemistry Following

Response and Recovery of Water Yield and Timing, Stream Sediment, AbioticParameters, and Stream Chemistry Following Logging

Page 23 of 23

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: JacksonWebster; date: 28 June 2015