UNIVERSITY OF NEVADA RENO -...

28
IAN BUCKLE UNIVERSITY OF NEVADA RENO PACIFIC RIM FORUM EARTHQUAKE RESILIENCE NUCLEAR FACILITIES UNIVERSITY OF CALIFORNIA BERKELEY, JANUARY 23 24, 2017 Experimental validation of computational frameworks for soil structure interaction in nuclear facilities

Transcript of UNIVERSITY OF NEVADA RENO -...

Page 1: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

IAN BUCKLEUNIVERSITY  OF  NEVADA  RENO

PAC I F I C  R IM  FORUM  EARTHQUAKE  RES I L I ENCE  NUCLEAR  FAC I L I T I E S

UN IVERS I T Y  OF  CAL I FORN IA  BERKE L E Y,   JANUARY  23 ‐24 ,  2017

Experimental validation of computational frameworks for soil‐structure‐interaction in nuclear facilities

Page 2: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Acknowledgements◦ Sponsor: Department of Energy / Lawrence Berkeley National Laboratory

◦As part of contract:  A modern computational framework for the nonlinear analysis of nuclear facilities and systems

◦Major co‐investigators: ◦ David McCallen, Lawrence Berkeley National Laboratory◦ Boris Jeremic, University of California Davis◦ Arthur Rodgers, Lawrence Livermore National Laboratory

2

Page 3: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Options for experimental validation of computational frameworks for soil‐structure‐interaction1. Geotechnical centrifuge: accurate soil modeling, but at a scale 

where structural models are not realistic

2. Laminar soil box on shake table: more realistic structural models but soil properties are not modeled correctly   

3. Case studies following major earthquakes: need more instrumented sites and structures 

Conventional wisdom is to build as big‐a‐box (or centrifuge) as possible to minimize limitations of each approach.

3

Page 4: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Large laminar soil box at E‐defense, Japan

E‐Defense Laminar Box: 6m (H) x 8m dia.

Inter‐laminate mechanism: THK LM bearing 

Page 5: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Basic parameters1. Dedicated platform (vs. shared platform with existing shake 

tables) 2. Laminar walls (vs. rigid walls)3. Biaxial (vs. uniaxial excitation)4. Circular (vs. square or rectangular)

Page 6: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Basic performance parameters1. Achievable soil strain: 2% 2. Dense soil: 120 pcf; assume upper bound soil strength3. Two configurations: 

i. 24 ft diameter x 20 ft high (550 tons soil)ii. 24 ft diameter x 15 ft high (410 tons soil)

Page 7: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

To design soil box and platen need to know…  1. Base shear and overturning moment on table platen for both 

cases (550 ton and 410 ton boxes) at 2% strain 

2. Complementary shears at interface of soil and box wall at 2% 

3. Maximum forces and deformations in walls of box

4. Response of foundation (reactive mass) when box is at 2% strain

Page 8: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Using numerical simulations to provide answers1. DEEPsoil for 1D, nonlinear, soil‐column analyses for 

preliminary design

2. LS‐DYNA for 2D and 3D nonlinear analyses of box and soil

3. Suite of 10, 2‐component ground motions taken from PEER database, for sites with similar seismogenic and geotechnicfeatures as found at LANL, and scaled for PGA as follows:   

Scale Factor 1.0 2.0 3.0 4.0

PGA 0.26g 0.52 g 0.78 g 1.04 g

Page 9: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

9

Overview of LS‐DYNA models

10B Y10E Y 0.0010I Y 0.00 Y10K Y 0.33 Y10L Y 1.00 Y11I Y 0.00 Y Y Y11K Y 0.33 Y Y Y11L Y 1.00 Y Y Y11KK Y 0.33 Y Y 1.0011MM Y 0.85 Y Y 1.0011LL Y 1.00 Y Y 1.00

11MM2 Y 0.85 Y Y 1.00

2D ModelsPerfect Contact

Sliding at wall‐soil

Wall‐soil friction 

GapBottom plate

Horiz const

Soil‐Plate 

Examined different ground motions, contact conditions, mesh sizes, element formulations, effect of sliding, friction and gapping at the soil‐wall and soil‐base plate interfaces

Page 10: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Model 10I (μ=0) vs 10K (μ=0.33) vs 10L (μ=1) vs 10B (perfect contact)I

Forces in Walls

K

L

Increasing the friction coefficient increases the forces in the walls significantly. This coefficient is a key parameter. As the coefficient increases (10L) the model approaches the behavior of the perfect contact model (10B)

μ=0

μ=0.33

μ=1.0

Perfect

Reaction Forcesright wall

The forces in the soil‐box walls are out‐of‐phase during shaking due to the overturning moment

Page 11: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Model 10E vs 10I (μ=0) vs 10K (μ=0.33) vs 10L (μ=1) vs 10B (perfect contact)

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

1 2 3 4 5

Force (kips)

Models

Max base Shear

0.000

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

450.000

1 2 3 4 5

Mom

ent (kip‐ft)

Models

Max OTM

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

1 2 3 4 5

Force (kips)

Models

Max Tension in Left Wall

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

1 2 3 4 5

Force (kips)

Models

Max Tension in Right Wall

Sliding and gapping at the soil‐wall interface have little effect on the base shear, a slight effect on overturning moment (OTM) and a major effect on the axial forces in the walls

ModelNumber Name

1 10E2 10I

3 10K4 10L

6 10B 

Page 12: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Model 10I (μ=0) vs 10B (perfect contact)Response histories of vertical reactions at base of the soil box

Small coefficients of friction at the soil‐wall interface allow soil to slide which introduces non‐uniform shear stresses in soil close to the walls indicating a significant boundary layer. To minimize the size of this layer and increase the area of uniform shear stresses, a larger coefficient of friction is required at both the soil‐wall and soil‐base plate interfaces

Page 13: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Model 10I (μ=0) vs 10B (perfect contact)Snapshot of vertical  reactions at base of the soil box as a function of location:

Small coefficients of friction at the soil‐wall interface allow soil to slide which introduces non‐uniform shear stresses in soil close to the walls indicating a significant boundary layer. To minimize the size of this layer and increase the area of uniform shear stresses a larger coefficient of friction is required at both the soil‐wall and soil‐base plate interfaces

Page 14: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Sensitivity to input motions

Number  Name1 4x Cerro 2372 4x El Centro 1803 4x Hector 0904 4x Landers 260

Ground Motion0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 2 3 4

Force (kips)

Ground motion

Base Shear

Model 10B_perfect contact

Model 11K_frictioncoefficient=0.33

200.00220.00240.00

260.00280.00300.00320.00340.00360.00380.00400.00

1 2 3 4

Mom

ent (kip‐ft)

Ground motion

OTMs

Model 10B_perfect contact

Model 11K_frictioncoefficient=0.33

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 3 4

Force (kips)

Ground motion

Max Tension in Left Wall

Model 10B_perfectcontact

Model 11K_frictioncoefficient=0.33

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 2 3 3 4 4

Force (kips)

Ground motion

Max Tension in Right Wall

Model 10B_perfectcontact

Model 11K_frictioncoefficient=0.33

Page 15: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

3D models

15

3D_1B Y3D_1I Y 0.00 Y3D_1K Y 0.33 Y3D_2I Y 0.00 Y Y 1.003D_2K Y 0.33 Y Y 1.003D_2M Y 0.85 Y Y 1.003D_3M Y 0.85 Y Y 1.003D_4M Y 0.85 Y Y 1.003D_5M Y 0.85 Y Y 1.003D_6M Y 0.85 Y Y 1.003D_7M Y 0.85 Y Y 1.003D_8M Y 0.85 Y Y 1.00

 ModelsPerfect Contact

Sliding at wall‐soil

Wall‐soil friction 

Gap ottom plaSoil‐Plate 

Examined different ground motions, magnitudes, contact conditions, directions of shaking (uniaxial vs biaxial shaking), mesh sizes, element formulations, wall types

3D

Page 16: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Motion in X                            Motion in Y                              Biaxial Motion

16

Effect of biaxial shaking –Model 3D_2M (μ=0.85)X

Y

Page 17: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

LS‐DYNA 2D vs LS‐DYNA 3D: Wall Forces

17

The 2D LS‐DYNA analyses gave maximum tensile forces in the walls that were up to 23% less than the forces obtained from the 3D analyses. This indicates the significance of 3D effects, which cannot be captured by simplified 2D analyses

2D Models Contact soil‐wall

Ground Motion

2D Max NetTension (kips/ft)

3D Max Net Tension (kips/ft) Ratio 2D/3D

11MM μ = 0.85 4x Cerro 237 12.6116.43 0.7715.10 0.84

10B perfect 4x Cerro 237 15.85 18.00 0.88

Page 18: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

System Predicted  Performance Against Requirements: 3X Motions, 550 tons soil

650 Ton 3X Motions

Max Abs Top Soil Disp (in)

Max Abs Base Shear (kips)

Max Soil Strain Any 

Layer (%)Max OTM (kip‐ft)

Max Surface PGA (g)

Max Shake Table Disp X

Max Shake Table Disp Y

Min Shake Table Disp X

Min Shake Table Disp Y

Min Shake Table Vel X

Max Shake Table Vel Y

Min Shake Table Vel X

Min Shake Table Vel Y

Max Shake Table Force X

Max Shake Table Force Y

Min Shake Table Force X

Min Shake Table Force Y

Max Servo Valve X

Max Servo Valve Y

Min Servo Valve X

Min Servo Valve Y

Blowdown

Cerro 3.4/5.3 771/877 2.6/5.8 8471/8763 0.9/1.0 27 29 ‐22 ‐39 39 73 ‐49 ‐58 99 122 ‐96 ‐105 100 100 ‐100 ‐100 2884Denali 1.7/3.3 691/903 1.3/1.8 7701/8952 0.8/0.8 23 31 ‐35 ‐33 47 57 ‐44 ‐64 105 100 ‐106 ‐93 100 100 ‐100 ‐100 3863ElCen 3.5/5.5 878/925 2.2/3.8 8881/9770 0.8/0.9 36 33 ‐25 ‐31 56 64 ‐49 ‐55 103 114 ‐121 ‐136 100 100 ‐100 ‐100 3748Erzican 3.3/2.7 885/859 1.9/1.7 8513/8646 0.8/0.7 74 38 ‐31 ‐32 91 68 ‐105 ‐40 106 89 ‐121 ‐70 100 100 ‐100 ‐30 4395Gilroy 2.2/4.1 818/866 1.4/2.6 8410/9937 0.7/0.9 12 16 ‐15 ‐9 52 42 ‐56 ‐33 79 109 ‐106 ‐86 89 100 ‐100 ‐57 4795Gilroy2 4.0/3.3 892/838 2.1/1.6 9188/8452 0.8/0.8 42 26 ‐53 ‐23 70 42 ‐69 ‐56 138 113 ‐123 ‐83 100 100 ‐100 ‐64 4219Hector 1.9/4.9 709/850 1.1/4.2 7686/9435 0.7/1.0 18 48 ‐17 ‐42 45 75 ‐32 ‐79 91 125 ‐70 ‐89 100 100 ‐25 ‐100 3946Landers 1.0/0.6 546/543 0.6/0.4 6109/5849 0.7/0.6 16 16 ‐22 ‐9 31 20 ‐29 ‐25 72 65 ‐84 ‐63 23 15 ‐28 ‐19 4923Nishi 5.1/4.0 889/756 5.4/3.0 9357/8839 1.0/0.9 16 22 ‐16 ‐23 47 52 ‐36 ‐56 84 116 ‐78 ‐116 67 100 ‐30 ‐100 4351Takatori 5.1/2.8 832/733 3.4/3.4 9477/7446 0.9/0.9 37 80 ‐31 ‐83 60 106 ‐50 ‐78 92 105 ‐97 ‐86 60 100 ‐100 ‐100 2972

Page 19: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

19

Model 7 vs Model 8: Tall vs Short box

Model 7 Model 8 Height=20ft                                                    Height=15ft        

Page 20: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Base Shear in X                           OTM in X                           Wall Forces

20

Tall vs Short boxX

Y

Tall Box

Short Box

Page 21: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Tall (20ft) vs Short box (15ft)

21

kips kips kip‐ft kip‐ft kips/ft3D_7Mxy 3 x Cerro 237 & 147 710 732 7733 8209 16.343D_8Mxy 3 x Cerro 237 & 147 574 614 4520 4921 8.99

Ratio squat/tall 0.81 0.84 0.58 0.60 0.55

Models Ground MotionMax Base Shear X

Max Base Shear Y

Max OTMx Max OTMyMax Net Tension

There are significant reductions of the OTMS and Wall Forces in the squat box

Page 22: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

System Predicted  Performance Against Requirements: 3X Motions, 410 tons soil, short

490 Ton Squat 3X Motions

Max Abs Top Soil Disp (in)

Max Abs Base Shear (kips)

Max Soil Strain Any 

Layer (%)Max OTM (kip‐ft)

Max Surface PGA (g)

Max Shake Table Disp X

Max Shake Table Disp Y

Min Shake Table Disp X

Min Shake Table Disp Y

Min Shake Table Vel X

Max Shake Table Vel Y

Min Shake Table Vel X

Min Shake Table Vel Y

Max Shake Table Force X

Max Shake Table Force Y

Min Shake Table Force X

Min Shake Table Force Y

Max Servo Valve X

Max Servo Valve Y

Min Servo Valve X

Min Servo Valve Y

Blowdown

Cerro 3.2/4.2 671/739 3.0/5.6 5559/5206 1.0/1.1 27 29 ‐22 ‐39 39 73 ‐49 ‐58 84 104 ‐81 ‐88 59 100 ‐60 ‐100 2882Denali 1.3/2.2 611/731 1.4/1.6 4792/5148 0.9/0.9 23 31 ‐35 ‐33 47 57 ‐44 ‐64 91 84 ‐95 ‐83 48 45 ‐49 ‐93 3851ElCen 3.2/4.8 759/810 3.0/4.3 5318/6193 1.0/1.1 36 33 ‐25 ‐31 56 64 ‐49 ‐55 94 100 ‐112 ‐118 100 100 ‐100 ‐100 3727Erzican 2.7/1.7 686/680 2.1/1.5 5536/4771 0.9/0.8 74 38 ‐31 ‐32 91 68 ‐105 ‐40 92 75 ‐96 ‐62 100 93 ‐100 ‐30 4334Gilroy 1.9/3.9 685/769 1.7/2.9 4884/6064 0.8/1.0 12 16 ‐15 ‐9 52 42 ‐56 ‐33 73 96 ‐88 ‐77 66 100 ‐73 ‐37 4786Gilroy2 3.5/2.5 758/707 3.6/2.0 5408/4940 0.9/0.9 42 26 ‐53 ‐23 70 42 ‐69 ‐56 118 95 ‐111 ‐71 100 100 ‐100 ‐52 4214Hector 1.5/4.3 625/732 1.0/4.7 4723/5727 0.8/1.1 18 48 ‐17 ‐42 45 75 ‐32 ‐79 79 107 ‐71 ‐78 67 100 ‐23 ‐100 3928Landers 0.8/0.6 504/484 0.7/0.5 4011/3618 0.8/0.8 16 16 ‐22 ‐9 31 20 ‐29 ‐25 63 62 ‐79 ‐55 23 15 ‐23 ‐18 4926Nishi 4.6/3.3 769/669 6.2/3.3 5683/5330 1.0/1.1 16 22 ‐16 ‐23 47 52 ‐36 ‐56 71 105 ‐74 ‐104 43 100 ‐27 ‐100 4329Takatori 4.0/2.2 712/618 3.6/3.1 5689/4634 1.1/1.1 37 80 ‐31 ‐83 60 106 ‐50 ‐78 80 87 ‐81 ‐66 55 100 ‐40 ‐100 2948

Page 23: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Location of platen in Large‐Scale Structures Laboratory

150 ft

50 ft

Page 24: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Schematic of platen for 550/410‐ton biaxial soil box

Platen is 24 x 24 ftstiffened steel box supported on 8/12 hydrostatic bearing actuators and tie down struts.

Eight, 220 K actuators, (4 at each end of platen) +/‐ 10 inch dynamic stroke

Page 25: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Octagonal Box – (15 ft high, 21 frames, 75 tons)

Page 26: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Octagonal Box –Wall Section

560 elastomeric bearings◦ 32 bearings/frame for lower 14 frames◦ 16 bearings/frame for the top 7 frames

Page 27: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Additional acknowledgements◦UNR Design Team: ◦ Anastasia Bitsani, Graduate Student, numerical modeling ◦ Sherif Elfass, Research Faculty, soil box design◦ Denis Istrati, Graduate Student, numerical modeling◦ Patrick Laplace, Research Faculty, platen design◦ Ramin Motamed, Academic Faculty, geotechnical modeling◦ Raj Siddharthan, Academic Faculty, geotechnical modeling

27

Page 28: UNIVERSITY OF NEVADA RENO - PEERpeer.berkeley.edu/UCPRForum/wp-content/uploads/2016/08/7_1_Buckl… · UNIVERSITY OF NEVADA RENO ... parameter. As the ... larger coefficient of friction

Thank you!