UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf ·...

25
UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR OF PRE-CAST CONCRETE SANDWICH PANEL UNDER AXIAL AND LATERAL LOADING ABDELFATTAH ELNUR ABBAKER FK 1999 37

Transcript of UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf ·...

Page 1: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

  

UNIVERSITI PUTRA MALAYSIA

STRUCTURAL BEHAVIOUR OF PRE-CAST CONCRETE SANDWICH PANEL UNDER AXIAL AND LATERAL LOADING

ABDELFATTAH ELNUR ABBAKER

FK 1999 37

Page 2: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

STRUCTURAL BEHAVIOUR OF PRE-CAST CONCRETE SANDWICH PANEL UNDER AXIAL AND LATERAL LOADING

By

ABDELFATTAH ELNUR ABBAKER

Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of

Engineering Universiti Putra Malaysia.

April 1999

Page 3: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

Dedicated to my beloved Father, Mother,

Brothers and Sisters

Page 4: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

ACKNOWLEDGMENTS

PRAISES and THANKS belong ONLY to ALLAH S.W.T for giving me the

opportunity to work with the following wonderful people and friends through-out the

course of this study. They are:

The chairman of the supervisory committee, Dr. Waleed Abdel Malik Thanoon

and the members, Prof. Abang Abdullah Abang Ali, Assoc. Prof. Dr. Abdul Aziz Abdul

Samad and Assoc. Prof. Dr. Mahgoub Osman Mahgoub, whose excellent supervision,

continuous encouragement, guidance, and numerous discussion were instrumental for

the completion of the thesis, and Prof. Dr. D. N. Trikha whose comments and support

are appreciated. The Head of the department, Dr. Mohd. Razali whose support is also

appreciated: I would appreciate the support of En. Abdul Halim, Tn. Hj. Ghazali of the

Concrete Laboratory, my kind relatives, and friends, without whose support and

encouragement it would not had been easy to finish my study; finally all who have

helped directly or indirectly I hope Allah will bless them.

ALHAMUIJLLAH

iii

Page 5: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS.................. ...... ... ...... ... ... ... ...... .......... 111 LIST OF TABLES... ... ... ... ... ... ... ... ... ... ... ... ........ ... ... ... ... ... ... ..... VI LIST OF FIGURES ... ... ... ... .. , ... ... ... ... ... ... ... ... ... ... ... ... '" ... ... ... . V111 LIST OF PLATES ......... ... ... .... , . ..................... ... . ,. ... ... ... ... ... ... x LIST OF ABBREVIATIONS ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .. Xl ABSTRACT... .. . ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... Xlll ABSTRAK......... ... ............... ... ......... ... ... ... ...... ...... ... ... ...... ... xv

CHAPTER

I INTRODUCTION General. ..... ......... . , .... ........................ ...... ... ... ... ... ... .. . Industrialised Building Systems ......... ... ... ... ... ... ...... ... ...... . Scope and Objective of the Study ...... ...... ...... ...... ... ... ........ . Layout of the Thesis ... ... ... ... ... ......... ...... ... ... ... ... ... ......... .

1 1 2 3 4

n LITERATURE REVIEW ......... ... ...... .... ,. ... ... ... ... ........ ... 5 Introduction ....... ... . ,. ... ... ... ... ... . .. ... . . . . . . . .. ... ... ... ... . .. . .. ... . 5 Review of Literature ..................... . ,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Concluding Remarks. .. . . . . .. ... ... ... . . . ... ... ... ... ... ... ... .. . . 19 ill METHODOLOGY ... ...... ... ...... ...... ... ......... ... ... ... ........ 21

Introduction ... ....... , . .................. ... ...... ... ... ...... '" . .. ... .. . . 21 Experimental Test ................................. ....... ...... ...... .... 22

Sandwich Panel/Specimen ... ... ... ... .. . ... ... ... . .. . .. ... ... ... 22 Materials ... ... . , . ... ... ............ ....... ......... ... ...... ........... 23 Testing Set-up ...... ...... ... ...... ... ................ ... ...... ........ 27 Loading Condition ............ ............ .................. ......... 32

Finite Element modelling ... ...... ... ... ... ... ... ... ... ... ... ... ... ... ... 32

IV RESULTS AND DISCUSSION ... ...... ... ... ... ................... 38 Introduction ... ....... ,. ... ... ... ... . .. ... ... ... ... ... ... . .. ... ... ... ... ... .. 38 Theoretical Analysis (FEM).... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 38

Vertical Axial Load-Strain Relationship... ... ..... ... ... ... .... 39 Lateral Load Deflection Relationship... ... . . . . . . . . . . . . . 44 Flexural Stress Distribution... . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Shear Stress Contours... ... ... ... ... ... ... ... ... ... ... ..... 55 Concluding Remarks on the Finite Element Analysis 56

Analysis of the Experimental Results ...... ... ... ... ... ... ... ......... ... 58 Elastic Response of Panels to Axial Vertical Compression .... 58 Elastic Response of Panels to Lateral Load ... .. . .. ... ... .. . .. . .. 61 Post-cracking Structural Behaviour ... ... ... ... .... ... ... ... ..... 63 Cracks Pattern... ... ... .... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 67

IV

Page 6: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

Concluding Remarks on the Experimental Analysis ... . . . 69

V CONCLUSION AND RECOMMENDATION FOR FUTURE WORK ... . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Conclusion ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Structural Response of the Sandwich Panel Subjected to Vertical load .. . ... . . . ... ... ...... . . . . .. . . . . . .... . .. ... 77 Structural Response of the Sandwich Panel Subjected to Lateral load .. . . .. .. . . . ... ... ...... . . . . . ... . . . . . . . .. . .. . 77 Structural Response of the Sandwich Panel Subjected to Combined load... . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Recommendation for Future Work.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

REFERENCES... ... ..................... .................. ...... ............. ... ... ... 80

APPENDIX A...... ... ...... ... ... ... ... ... ......... ... ...... ............ ...... ... ... 83 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 C...... ... ...... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 03

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

v

Page 7: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

LIST OF TABLES

�� hp

1 Detail of test panels . .. '" . . . . . . '" . . . . . . '" . . . . . . . " . . . . . . . . . . . . . . . '" . . . 25

2 Compressive Strength of the Cubes . . . . . . . . . . . . . . . . . . . . . '" . . . . . . . . . . . . 26

3 Yield Stress of the Reinforcement Steel . . . . . . '" . . . . . , '" . . . . . . . . . . . , . 26

4 Axial Load Carrying Carried by Shear Connectors . . . '" . . . . . . . . . . . . . . 43

5 Lateral Load Carrying Carried by Shear Connectors . . . . . , . . . . . . . . . . . . 49

6 Cracking and Collapse Loads, Max. Deflection and Behaviour. . . 67

7 Node displacement and reactions . . . . . . '" . . . . . . '" . . . . . . '" . . . . . . . . . . . . 85

8 Member forces . . . . . . . . . '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '" . . . . 85

9 Vertical load-strain of panel-I . . . . . . . . . . . . . . . . . . '" . . . . . . '" . . , . . . '" . . . . 89

10 Vertical load-strain of panel-2 . . . . . . . . . . . . . . . . . . '" . . . . . . '" . . , . . . '" . . . . 90

1 1 Vertical load-strain of panel-3 . . . . . . . . . '" . . , . . . '" . . . . . . '" . , . . . . '" . . . . 9 1

12 Vertical load-strain ofpanel-4 . . . . . . . . . . . . . . . . . . '" . . . . , . '" . . . . . . '" . . . . 92

1 3 Vertical load-strain of panel-5 . . . . . . . , . . . . . . . . . . '" . . . . . . . . . . . . . . . '" . . . . 93

14 Vertical load-strain of panel-6 . . . . . . . . . . . . . . . . . . '" . . . . . . '" . . . . . . '" . . . . 94

1 5 Lateral load-displacement of panel-I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

16 Lateral load-displacement ofpanel-2 . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

17 Lateral load-displacement of panel-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

1 8 Lateral load-displacement ofpanel-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

19 Lateral load-displacement of panel-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

20 Lateral load-displacement ofpanel-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

vi

Page 8: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

2 1

22

23

24

25

26

Combined load-displacement of panel- 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Combined load-displacement ofpanel-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Combined load-displacement of panel-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Combined load-displacement of panel-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Combined load-displacement of panel-5 . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .

Combined load-displacement of panel-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vii

97

98

99

1 00

10 1

1 02

Page 9: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

LIST OF FIGURES

Figure Page

1 . Typical Bending Specimen Cross-section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 . Flexural Rigidity of Panel-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '" . . . . . . . . . . . . . . . . . . . 9

3 . Concentrated One-way Shear Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0

4 . Continuous One-way Shear Connectors . . . . . . . . . . . . . . . . . . '" . . . . . . . . . . . . . . . . . 1 1

5. Details of Test Panels . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 . C-Core Sandwich Panel PI2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . '" . . . . . . . . . . . . . . . 1 8

7. Correction Factors for Calculating Maximum Deflection and Stress. . . . 19

8 . Types of Tested Panels . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '" . . . . . . . . . . . . . . . . 22

9. Sandwich Panel Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . 24

1 0. Support Arrangement and Loading . . . . . . . . . . . . . . . . . . . . . . . . '" . . . . . . . . . . . . . , . . . . 27

1 1 . Dial Gauges Locations . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . '" . . . . . . . . . . . . . . . . . 28

12. Strain Gauges Locations . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1 3 . Assumed Stress Distribution for Plate Bending Action. . . . . . . . . . . . . . . . . . . . . 33

14 . Typical Finite Element Mesh of Panel-A . . . . . . . . . . . . . . . . . . '" . . . . . . . . . . . . . . . . 34

15 . Typical Finite Element Mesh of Panel-B . . . . . . . . . . . . . . . . . . '" . . . . . . . . . . . . . . . . 35

1 6. Typical Finite Element Mesh of Panel-C . . . . . . . . . . . . . . , . . . ' " . . . . . . . . . . . . . . . . 36

1 7. Comparison of Vertical Load VS. Strain Curves of Panels by FEM.. . . . . . . 39

1 8. Element Local Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' " . . . . . . . . . . 40

19. Direct Stress Contours under Vertical Load of Tested Panels . . . . . . . . , . . . . 45

20 Comparison of Lateral Load VS. Deflection Curves of Panels by FEM. . . . . . . . . 46

viii

Page 10: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

2 1 .

22.

23.

24.

25.

26.

27.

28.

29.

30.

3 1 .

32.

33.

34.

35.

36.

37

38

39

40

41

42

Locations of the Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Flexural Stress Distribution at Section A A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Flexural Stress Distribution at Section B B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stress Gradient at Section A A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shear Stress Contours under Lateral Load of Tested Panels . . . . . . . . . . . . . . .

Vertical Load-Strain Curves of the panel-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vertical Load-Strain Curves of the panel-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vertical Load-Strain Curves of the panel-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Comparison of Experimental Vertical Load vs. Deflection Curves of Panels .. .

Lateral Load vs. Deflection Curves of Panel-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lateral Load vs. Deflection Curves ofPanel-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lateral Load vs. Deflection Curves ofPanel-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Comparison of Experimental Lateral Load vs. Deflection Curves of Panels .. . .

Combined Load vs. Central Deflection Curves of the Panel-A . . . . . . . . . . . .

Combined Load vs. Central Deflection Curves of the Panel-B . . . . . . . . . . . .

Combined Load vs. Central Deflection Curves of the Panel-C . . . . . . . . . . . .

Deflected Shape along the Vertical Centreline of the Panel-A . . . . . . . . . . . .

Deflected Shape along the Vertical Centreline of the Panel-B. . . . . . . . . . . . .

Deflected Shape along the Vertical Centreline of the Panel-C . . . . . . . . . . . . .

Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Loading Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Panel Cross-section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IX

5 1

52

53

54

57

59

59

59

60

6 1

62

62

62

64

64

64

66

66

66

84

87

88

Page 11: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

Plate

1

2

3

4

5

6

7

8

9

1 0

LIST OF PLATES

Testing Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Top Edge Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bottom Edge Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lateral loading arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Crack Pattern of Panel A-I at Maximum Load . . . . . . . . . . . . . . . . . . . . . . . . . . .

Crack Pattern of Panel A-2 at Maximum Load . . . . . . . . . . . . . . . . . . . . . . . . . . .

Crack Pattern of Panel B-1 at Maximum Load . . . . . . . . . . . . . . . . . . . . . . . . . .

Crack Pattern of Panel B-2 at Maximum Load . . . . . . . . . . . . . . . . . . . . . . . . . .

Crack Pattern of Panel C-l at Maximum Load . . . . . . . . . . . . . . . . . . . . . . . . . .

Crack Pattern of Panel C-2 at maximum Load . . . . . . . . . . . . . . . . . . . . . . . . . . .

x

Page

30

30

3 1

3 1

70

7 1

72

73

74

75

Page 12: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

LIST OF ABBREVIATIONS

A Element cross-sectional area

b Breadth of the section

d Effective depth

Ee Modulus of elasticity of concrete

feu Characteristic strength of concrete

fy Characteristic strength of reinforcement

FX X -axis membrane force

FY Y-axis membrane force

FXY Membrane shear force

Gk The characteristic dead load

h Overall depth of the section

I Second moment of area

L Span between end restraints

MX Bending moment about X-axis

MY Bending moment about Y-axis

MXY Torsion moment

Mab Bending moment at support A

Mba Bending moment at support B

FEM Fixed end moment

Ra Reaction at support A

Rb Reaction at support B

xi

Page 13: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

SMAX Maximum principal stress

SMIN Minimum principal stress

TMAX Maximum shear stress

QX X -axis shear force

QY Y-axis shear force

� The characteristic imposed load

Sa Angle of rotation at support A

Sb Angle of rotation at support B

y Concrete unit weight

p Percentage of reinforcement

crt Flexural stress at top of the wall

crb Flexural stress at bottom of the wall

xu

Page 14: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

Abstract of thesis submitted to the Senate ofUniversiti Putra Malaysia in partial fulfillment of the requirements for the degree of Master of Science.

STRUCTURAL BEllA VIOUR OF PRE-CAST CONCRETE SANDWICH PANEL UNDER AXIAL AND LATERAL LOADING

By

ABDELFATTAHELNUR ABBAKER

April 1999

Chariman: Waleed Abdel Malik Thanoon, Ph.D.

Faculty: Engineering

The sandwich panel is a layered structural system composed of a low density

core material bonded to and acting integrally with, a relatively thin high strength facing

materials held together by shear connectors which gives different degree of composite

action. In a load bearing wall the two facings act as slender columns continuously

supported by shear connectors. Core material usually act as insulation material to

reduce the temperature inside the building. The bending action due to eccentric load or

lateral load is resisted by the tensile and compressive forces developed in outer layers

while shear forces are resisted by the shear connectors. Sandwich panels are used as

exterior walls in multi-unit, residential, commercial and ware house building, providing

structurally and thermal efficient building element.

In this study, the structural behaviour of reinforced concrete sandwich wall

panels has been investigated experimentally in pre and post-cracking phase. Each panel

consists of two outer reinforced concrete layers, interconnected together by different

layout reinforced concrete ribs, which act as shear connectors. Three layouts of shear

xiii

Page 15: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

connectors have been selected for the study; these are continuous vertical concrete ribs

and truss type layout ribs inclined at 45° and 67.5° with the vertical.

Finite element method has been used in analysis for comparison with the

experimental test results in the pre-cracking phase and to determine the stress

distribution developed in the different components of the sandwich panel under

different loading conditions. Six specimens of reinforced concrete sandwich panels (two

identical specimens for each shear connector layout) each of size 1200 x 2400 mm

(width x height) have been cast in the laboratory and tested in vertical position under

incremental vertical axial, lateral, and combined axial and lateral loading. The effect of

different shear connector layout on the overall structural behaviour of the panel is

highlighted. Moreover the composite behaviuor of the sandwich panels, the percentage

of load transferred to the ribs and the crack pattern have been investigated and

discussed. The structural response of the sandwich panel in term of deflections have

been found equal to 35 mm, 27 mm and 22 mm for panels type A, B and C respectively.

The lateral collapse load of the tested panels, have been found equal to 97 KN, 40 KN

and 45 KN for panels type A, B and C respectively.

From the results obtained in this study, it has been found that the sandwich panel

with vertical shear connector has a better overall structural response as reflected in the

integrity of the sandwich wall panel systems under the action of combined axial and

lateral loads, in �omparison to sandwich panels with inclined layout shear connectors.

XIV

Page 16: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

Abstrak tesis yang dikemukakan Kepada Senat Universiti Puutra Malaysia sebagai memenuhi Keperluan untuk ijazah Master Sains.

TINDAKLAK PANEL APIT KONKRIT PASANG SlAP DI BAWAH BEBANAN PAKSI DAN SISI

Oleh

ABDELFATTAHELNUR ABBAKER

April 1999

Pengerusi: Waleed Abdul Malik Thanoon, Ph.D.

Fakulti: Kejuruteraan

Panel apit adalah satu sistem struktur berlapis yang mengandungi bahan teras

berketumpatan rendah. Bahan teras ini akan bersepadu dan bertindak serasi dengan

bahan permukaan luar yang nipis tetapi berdaya tahan yang tinggi, dan kedua-duanya

akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

juga akan memberi kekuatan dan kekukuhan yang unggul bagi suatu kuantiti bahan

yang digunakan. -Dalam dinding galas beban ini, dua permukaan luar dalam sistem

tersebut akan bertindak sebagai tiang langsing yang disokong berterusan oleh bahan

teras untuk merintangi daya mampatan dan lengkokan. Untuk lenturan yang disebabkan

oleh beban hidup atau beban angin, bahan permukaan luar akan menanggung

kebanyakan daripada daya tegangan dan mampatan, manakala bahan teras akan

merintangi daya ricihan. Panel apit biasanya digunakan sebagai dinding luaran dalam

bangunan berbilang unit, rumah kediaman, bangunan komersial dan gudang, yang mana

dapat memberikan effisiensi yang tinggi terhadap struktur dan penghabaan dalam

elemen bangunan. Dalam kajian ini, tindaklaku struktur panel apit berkonkrit tetulang

telah diselidik pada keadaan pra dan pascaretakan. Setiap panel terdiri daripada dua

xv

Page 17: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

lapisaan konkrit tetulang luaran, disambung bersama oleh konkrit rusuk yang bertindak

sebagai penyambung ricih. Tiga jenis penyambung ricih telah dipilih dalarn kajian ini; ia

terdiri daripada rusuk konkrit tegak berterusan dan rusuk jenis kekuda dengan

kecondongan 45° dan 67.5° dari garis tegak.

Disarnping itu, kaedah unsur terhingga telah digunakan untuk menentukan

ketepatan bagi keputusan eksperimen pada fasa pascaretakan bagi struktur panel apit

berkonkrit tetulang. Pada masa yang sarna, kaedah unsur terhingga juga dipakai untuk

mencari agihan tegasan yang terhasil daipada komponen komponen berlainan dan

penyarnbung ricih. Enam contoh panel apit berkonkrit tetulang (dua contoh yang sama

bagi setiap bentangan penyambung ricih) dengan setiap satu bersaiz 1200 x 2400 mm

(lebar x tinggi) telah siap dituang di dalam makmal dan diuji dalam keadaan tegak di

bawah tokokan beban paksi, sisi dan gabungan kedua-dua beban paksi dan sisi. Kesan

penggunaan bentangan penyambung ricih yang berlainan terhadap tindaklaku struktur

panel apit secara keseluruhannya telah dititikberatkan. Nilai-nilai tindakbalas struktur

panel apit dari segi pesongan, telah ditentukan iaitu 35 mm untuk panel jenis A, 27 mm

untuk panel jenis B dan 22 mm untuk panel jenis C. Nilai-nilai kapasiti muktamad juga

telah ditentukan untuk ketiga-tiga jenis panel iaitu 97 kN, 40 kN dan 45 kN untuk panel

A, B dan C mengikut turutan. Selain itu, sifat panel apit, pratusan rusuk pembawa

kapasiti dan corak corak retakan telah diselidiki dan dibincangkan.

Hasil daripada kajian ini, mendapati struktur panel apit berkonkrit tetulang

dengan penyarnbung ricih tegak memberi pre stasi kestrukturan yang lebih baik,

sepertimana yang ditunjukkan oleh sistem panel apit di bawah tindakan kedua-dua

bebanan paksi dan sisi, dibandingkan dengan penyambung ricih condong.

XVI

Page 18: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

CHAPTER I

INTRODUCTION

General

The conventional construction method of multi-storeyed building is to use

framing system consisting of columns to support beams which hold up the roof, floors,

internal partitions and external cladding. The main structural elements are the beams

and the columns. The walls are normally considered as non-load-bearing walls. The

strength of these walls can be exploited because of their high compressive strength. The

use of a pre-cast concrete sandwich panel load-bearing wall can provide an alternative

economical construction method, by eliminating the need for a beam-column frame for

multi-storeyed buildings.

Sandwich panels are composed of two facing shell element boned together

through shear connectors, separated by a layer of insulation. The insulated shell reduces

heating and cooling cost for structure. Pre-cast concrete sandwich panel system can be

constructed to achieve up to 1 OOpercent composite action, depending on the ability of

embedded connectors to transfer the shear generated by longitudinal flexures.

1

Page 19: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

2

In general, panels are neither fully composite nor non-composite, but lie some

where in between. When used as a wall, roof or floor element in housing, the sandwich

panel provides exceptional strength, for the amount of the material used. In load bearing

wall the facing shells act as slender columns continuously supported by the shear

connectors, to resist compression and buckling. In bending due to eccentric load or

lateral load, the facing elements resist most of the tensile and compressive forces and

the shear connectors provide resistance to shear forces. The shear connectors and facing

elements act integrally to provide exceptional stiffness to the member.

Industrialised Building Systems

Industrialised building system is a common practice now ill construction

industry and it is possible to obtain factory produced structural elements such as pre-cast

frame, roof and wall. These industries are well developed, and some have facilities,

which are capable of producing almost any precast structural element desired. There are

many commercial types of load bearing pre-cast sandwich panel available in the market.

Few firms have pre-designed elements, catalogued for consumer selection. With a

known building size and loading, the elements for a complete structure are quickly

fabricated from detailed standards and shipped to the site. Other firms fabricate the

elements direct from consumer-supplied designs and details. A recent development of

the concrete products industry has been the specialisation in the production of pre-cast

concrete wall panels. Because manufacturers are looking for new viable product lines,

architects and engineers are pleased with the energy performance and general aesthetics

Page 20: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

3

of the panels. In addition contractors have found that the use of sandwich panels allows

their project site to be quickly dried in allowing other trades to work in clean

comfortable environment.

Scope and Objective of the Study

The complexity of the interaction between the various components of the pre­

cast concrete sandwich panel systems has led researchers to rely on experimental

observations supplemented with simplified analytical studies. Most experimental work

on the load resistance of the panel has included shear and lor flexural tests. The shear

test performed by applying shearing forces, in the mid-thickness planes of the concrete

wythes to fmd shear capacity of the connectors and the contribution of the insulation to

shear interaction between the concrete wythes. The interface shear is important in

determining the degree of composite action. In a flexural test, a panel is sUbjected to

out-of plane transverse loads to determine the over all flexural capacity of the panel.

The main scope of this research is to investigate the effect of different types of

shear connectors on the structural behaviour of pre-cast concrete sandwich wall panels,

subjected to vertical axial load, lateral load in pre-cracking phase and combined vertical

axial and lateral loading in post cracking phase. Three layouts of shear connectors have

been selected; these are continuos vertical ribs and truss type layout ribs inclined at 45°

and 67.5° with vertical. The study aims to identifY the most efficient type of the shear

connectors, in transferring the load between the outer shells and to study the effect of

Page 21: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

4

different shear connector layouts on the overall structural performance of the sandwich

wall panels. In addition, the effect of different layouts shear connector on the crack

patterns, stability, failure mode and ultimate load capacity of the panels are investigated.

Layout of the Thesis

This thesis is divided into 5 chapters, a brief description of the content of these

chapters is presented below:

The first Chapter contains the introduction and the scope of the study. Chapter

IT is devoted to the literature review, which includes topics, related to the structural

behaviour of pre-cast concrete sandwich panel. The methodology used in present study

is covered in Chapter ill that includes the procedure implemented to conduct the

experimental and theoretical investigation. In Chapter IV, results from both theoretical

and experimental results were presented and discussed in details. Chapter V contains

.the conclusion and recommendations for future work.

Page 22: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

CHAPTER II

LITERATURE REVIEW

Introduction

Pre-cast concrete sandwich panels are a layered structural system composed of a

low-density core material bonded to, and acting integrally with, relatively thin, high

strength facing materials. The insulated shell reduces heating and cooling cost. In a

load-bearing wall, the two facings act as slender columns continuously supported by the

shear connectors to resist compression and buckling. In bending due to eccentric load

and/or lateral load, the two layers resist most of the tensile and compressive forces,

while the shear connectors provide resistance to shear forces. The sandwich panel offers

high flexural-to-stiffness and high strength-to-weight ratios, compared to other standard

forms of structural sections. The use of sandwich panels offers attractive solutions to

many terrestrial, offshore, and space engineering applications when combined with

lightweight materials such as aluminium. Therefore the sandwich panels used as

cladding for containers and exterior walls in multi-unit residential, commercial and

warehouse buildings throughout the world.

5

Page 23: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

6

Review of Literature

Palms et al. (1978) engineers in Forest Service U.S. Department of Agriculture

designed experimental unit, to evaluate the long-term performance of different types of

sandwich panels used for house construction. The sandwich panels used consist of two

facing boards separated by paper honeycomb core, different material were used for the

boards; plywood, aluminium and hardboard. Over the 31 years, panels have been

periodically removed, from the house unit and tested for bending strength, and stiffness

of the panels was calculated. From the test results, it has been found that the deflection

of the panels did not exceed the original design limit except the aluminium faced

panels, in which the deflection exceeded the original design limit. However, the

stiffness of the panels is unchanged over the exposure period. Moreover, the panels

faced with aluminium and hard board show a decrease in strength with time.

Nanni et al. (1986) carried out tests on ferrocement sandwich panels subjected

to bending and edge-wise compression load. Eight panels subdivided into two groups

were cast. A typical panel cross-section consisted of two ferrocement facings; 10 mm

thick reinforced with one layer of welded wire mesh is shown in Figure 1. The core of

the sandwich was made of a polystyrene sheet, laterally confined by mortar ribs.

Bending tests were carried out using a universal testing machine, with load and

deflection readings taken at pre-set load increments before cracking occurred, and pre­

set deflection increments thereafter. Deflections were measured by using pairs of dial

gauges, at centreline and support locations.

Page 24: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

Loyer wire mesh (2)(.2 gouge 19 ) I

�----4---------���==�====�==�'�' '-i -'

I Core depth

I .l-.

10

��=-=====-':"'-------;7--;--1 �' -r ' � I "'-----Wire bar ----

Core depth' -= 76 or 102

Rib = 25 or 51

457

Wire bar = Non or W2 or 05

I ,

�I

dimensions in mm

Figure 1: Typical Bending Specimen Cross-section

7

Four group of panel were cast. Each group differed from the others in total

length has been tested under' compression load, using universal testing machine.

Specimen has been capped by using a steel channel, the full contact between the two

surfaces was provided with thin layer of plaster of Paris. To ensure the vertical

alignment and fixed end conditions for the facings, the bottom edge of the specimen

was fully supported by the testing machine frame base. The load was applied through a

spreader beam in-order to distribute the resulting stress uniformly over the entire

specimen cross-section. Once properly positioned, the specimens were loaded to failure.

The performance of the test apparatus, was checked by controlling, the strain

distribution on both facing of panel. A total of six strain gauges were attached at mid-

Page 25: UNIVERSITI PUTRA MALAYSIA STRUCTURAL BEHAVIOUR …psasir.upm.edu.my/10370/1/FK_1999_37_A.pdf · akan disatukan oleh penyambung ricih yang akan memberi pelbagai tindakan rencam. Ia

8

length of the specimen. The result indicates that for specimens of identical cross-section

the load bearing capacity decreases when the length of the specimen increases.

Moreover, instability of the facings governs the ultimate capacity of sandwich panels

subjected to uniform in-plane compressive load.

Davies (1987) analysed sandwich panels, consisting of metal faces and a rigid

foam core, subjected to combine axial compressive load and bending moment using

fInite element method. In addition to the theoretical analysis, two profIles were tested,

denoted as profIles A and B. Panel A was tested in both bending and axial compression

whereas panel B was tested in axial compression only. From bending tests on panel A,

the load deflection has been obtained then the value of the apparent flexural rigidity EI

was determined. The corresponding theoretical curves were obtained for various values

of the core shear modulus. The comparison between the experimental and theoretical

value of EI is given in Figure 2, from which it can be deduced that the average value of

G in the tested panels was 2 Nlmm2.

Three tests on panel B were carried out with nominal eccentricities of 0 mm, 57

mm and 114 mm, respectively. It has been observed that the eccentric loading has a

profound influence on the results. The failure load reduces dramatically with increasing

eccentricity.