UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6....

24
© COPYRIGHT UPM UNIVERSITI PUTRA MALAYSIA PHYTOCHEMICAL CONSTITUENTS OF Hymenophyllum javanicum SPRENG., Huperzia carinata (DESV. EX POIR.) TREVIS AND Huperzia nummolarifolia (BLUME) JERMY HAZWANI BINTI MOHD RANI IB 2016 27

Transcript of UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6....

Page 1: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

UNIVERSITI PUTRA MALAYSIA

PHYTOCHEMICAL CONSTITUENTS OF Hymenophyllum javanicum

SPRENG., Huperzia carinata (DESV. EX POIR.) TREVIS AND Huperzia nummolarifolia (BLUME) JERMY

HAZWANI BINTI MOHD RANI

IB 2016 27

Page 2: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

i

PHYTOCHEMICAL CONSTITUENTS OF Hymenophyllum javanicum SPRENG., Huperzia carinata (DESV. EX POIR.) TREVIS AND

Huperzia nummolarifolia (BLUME) JERMY

By

HAZWANI BINTI MOHD RANI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

November 2015

Page 3: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

ii

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia. Copyright © Universiti Putra Malaysia

Page 4: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PHYTOCHEMICAL CONSTITUENTS OF Hymenophyllum javanicum SPRENG., Huperzia carinata (DESV. EX POIR.) TREVIS AND

Huperzia nummolarifolia (BLUME) JERMY

By

HAZWANI BINTI MOHD RANI

November 2015 Chairman : Professor Khozirah Shaari, PhD Institute : Bioscience Huperzia carinata and Huperzia nummolarifolia were chosen to be studied along with Hymenophyllum javanicum due to their relation in their phylogeny. These plants have been used traditionally for the treatment of contusions, strains, swellings, schizophrenia, myasthenia gravis and organophosphate poisoning. The purpose of this study is to isolate and purify the chemical constituents for these species and elucidate the structures of the compounds isolated. The isolation procedures were carried out by using a few separation methods such as column chromatography, Sephadex and SPE. As a result, four compounds have been isolated from both Huperzia species. They are 14β,21α-dihydroxyserrat-3β-yl acetate (S4), 14β,21β-dihydroxyserrat-3β-yl acetate (S6), serratenediol (N2211-1-4) and 14β,21β-trihydroxyserrat-3β-yl-p-dihydrocaffeate (E377). Whereas, four compounds have been isolated from Hymenophyllum javanicum which are, Hymenoside W (KS-5), [6-(3,4-dihydroxy-2-methylenebutoxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl-2-(3,4 dihydroxyphenyl)acetate] (KS-10-2) [6-(3,4-dihydroxy-2-methylenebutoxy)-2-{[2-(3,4-dihydroxyphenyl)acetoxy]methyl}-4,5-dihydroxy-tetrahydro-2H-pyran-3-yl-2-phenylacetate] (KS-8-10-4) and [6-(3,4-dihydroxy-2-methylenebutoxy)-5-hydroxy-2-{(2-phenylacetoxy)methyl}tetrahydro-2H-pyran-3,4-diyl-bis{2-(3,4-dihydroxyphenyl)acetate}] (KS-8-10-6). The structures of isolated compounds were identified based on spectroscopic data including 1D and 2D NMR and comparison with the literature.

Page 5: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

ii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KANDUNGAN KIMIA Hymenophyllum javanicum SPRENG., Huperzia carinata (DESV. EX POIR.) TREVIS DAN Huperzia nummolarifolia

(BLUME) JERMY

Oleh

HAZWANI BINTI MOHD RANI

November 2015

Pengerusi : Profesor Khozirah Shaari, PhD Institut : Biosains Huperzia carinata dan Huperzia nummolarifolia dipilih untuk kajian bersama Hymenophyllum javanicum disebabkan oleh hubungan antara filogeni. Tumbuhan ini digunakan secara tradisional untuk merawat lebam, strain, bengkak, skizofrenia, myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan dan menulenkan juzuk kimia serta menjelaskan sebatian kimia yang diasingkan. Hasilnya, empat sebatian telah diasingkan daripada kedua-dua spesis Huperzia. Kaedah pengasingkan yang dijalankan termasuklah kromatografi kolum, Sephadex dan SPE. Antaranya 14β,21β-dihidroksiserrat-3β-yl acetate (S4), 14β,21β-dihidroksiserrat-3β-yl acetate (S6), serratenediol (N2211-1-4) dan 14β,21β-trihidroksiserrat-3β-yl-p-dihidrocaffeate (E377). Manakala, empat sebatian telah diasingkan daripada Hymenophyllum javanicum iaitu Hymenosid W (KS-5), [6-(3,4-dihidroksi-2-metilenebutoksi)-3,4,5-trihidroksitetrahidro-2H-piran-2-il)metil-2-(3,4-dihidroksifenil)asetik] (KS-10-2), [6-(3,4-dihidroksi-2-methilenebutoksi)-2-{[2-(3,4-dihidroxifenil)acetoxy]methil}-4,5-dihidroksi-tetrahidro-2H-pyran-3-il-2-fenilasetik] (KS-8-10-4) dan [6-(3,4-dihidroksi-2-metilenebutoksi)-5-hidroksi-2-{(2-fenilasetoksi)methil}tetrahidro-2H-pyran-3,4-diyl-bis{2-(3,4-dihidroksifenil)asetik}] (KS-8-10-6). Semua struktur yang diasingkan dikenal pasti berdasarkan kaedah spektroskopi termasuklah 1D dan 2D NMR serta perbandingan dengan literatur.

Page 6: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

iii

ACKNOWLEDGEMENTS

All praise to Allah (SWT), the Most Gracious and Merciful, for giving me the strength to complete this thesis despite of many obstacles stumbled during the studies. I wish to express my sincere gratitude to my supervisor, Professor Dr. Khozirah Shaari, for her guidance and constant supervision as well as support during my studies. I am highly indebted to my supervisory committee, Associate Professor Dr. Intan Safinar Ismail for kindly assisting me in solving NMR problems. My appreciations are extended to the science officers; Mr. Salahuddin, Mrs. Zurina and Mrs. Mazina for their effort in obtaining spectroscopy data. I also wish to thank my labmates at Laboratory of Natural Products, especially Athifah, Amal, Kak Yana, Kak Ya for their encouragement and moral support which made my studies here more enjoyable. Last but not least, I would like to thank my beloved parents, family and fiancé Mohamed Affan, who have always believe in me and their never ending support. I am very thankful.

Page 7: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

Page 8: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

v

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of Supervisory Committee are as follows: Khozirah Shaari, PhD Professor Institute of Bioscience Universiti Putra Malaysia (Chairman) Intan Safinar Ismail, PhD Associate Professor Institute of Bioscience Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Page 9: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

vi

Declaration by graduate student I hereby confirm that: � this thesis is my original work; � quotations, illustrations and citations have been duly referenced; � this thesis has not been submitted previously or concurrently for any other degree

at any institutions; � intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;

� written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;

� there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: Date: Name and Matrics No.: Hazwani Binti Mohd Rani, GS30830

Page 10: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

vii

Declaration by Members of Supervisory Committee This is to confirm that: � the research conducted and the writing of this thesis was under our

supervision; � supervision responsibilities as stated in the Universiti Putra Malaysia

(Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to. Signature: Name of Chairman of Supervisory Committee:

Professor Dr. Khozirah Shaari,

Signature: Name of Member of Supervisory Committee:

Associate Professor Dr. Intan Safinar Ismail

Page 11: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

viii

TABLE OF CONTENTS

Page ABSTRACT i ABSTRAK ii ACKNOWLEDGEMENTS iii APPROVAL iv DECLARATION vi LIST OF TABLES x LIST OF FIGURES xi LIST OF ABBREVIATIONS xv CHAPTER 1 INTRODUCTION 1

1.1 Medicinal importance of natural products 1 1.2 Ferns and lycophytes as a source of useful natural products 2 1.3 Problem statement 3 1.4 Objectives of the research 3

2 LITERATURE REVIEW 4

2.1 The evolution of ferns and lycophytes 4 2.2 The family Hymenophllyaceae 6 2.3 The Hymenophyllum genus 6

2.3.1 The phytochemistry of Hymenophyllum 7 2.4 The plant family Lycopodiaceae 10

2.4.1 Ethnomedicinal uses 10 2.5 The genus Huperzia 11

2.5.1 The phytochemistry of Huperzia 12 3 EXPERIMENTAL 22

3.1 General instrumentation 22 3.2 Chromatography 22 3.3 Solvents 23 3.4 Plant materials 23 3.5 Extraction, fractionation and isolation of chemical constituents

from Hymenophyllum javanicum 23 3.6 Extraction, fractionation and isolation of chemical constituents

from Huperzia carinata 25 3.7 Extraction, fractionation and isolation of chemical constituents

from Huperzia nummularifolia 28 3.8 Spectroscopic data of isolated compounds 30

Page 12: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

ix

4 RESULTS AND DISCUSSION 34 4.1 Phytochemical constituents of Hymenophyllum javanicum 34

4.1.1 Identification of KS-5 as Hymenoside W or 2-methylenebutan-1,3,4-triol-O-�-glucoside 34

4.1.2 Identification of KS-10-2 as Javanoside A or 6-(3,4-dihydroxy-2-methylenebutoxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl-2-(3,4-dihydroxyphenyl)acetate 40

4.1.3 Identification of KS-8-10-4 as Javanoside B or 6-(3,4-dihydroxy-2-methylenebutoxy)-2-{[2-(3,4-dihydroxyphenyl)acetoxy]methyl}-4,5-dihydroxy-tetrahydro-2H-pyran-3-yl 2-phenylacetate 52

4.1.4 Identification of KS-8-10-6 as Javanoside C or 6-(3,4-dihydroxy-2-methylenebutoxy)-5-hydroxy-2-{(2-phenylacetoxy)methyl}tetrahydro-2H-pyran-3,4-diyl bis{2-(3,4-dihydroxyphenyl)acetate} 64

4.2 Phytochemical constituent of Huperzia carinata 79 4.2.1 Identification of S6 as 14β,21α-dihydroxyserrat-3β-yl

acetate 79 4.2.2 Identification of S4 as 14β,21β-dihydroxyserrat-3β-yl

acetate 89 4.3 Phytochemical constituents of Huperzia nummularifolia 98

4.3.1 Identification of N2211-1-4 as serratenediol 99 4.3.2 Identification of E377 111

5 CONCLUSIONS AND SUGGESTIONS 124 REFERENCES 126 APPENDICES 129 BIODATA OF STUDENT 140

Page 13: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

x

LIST OF TABLES

Table Page

2.1 The three most common classifications of Lycopodiales 10

4.1 Comparison 1H and 13C NMR of KS-5 (1H: 400 MHz and 13C:100 MHz) in C5D5N with reported Hymenoside W (1H: 400 MHz and 13C:100 MHz) in C5D5N (Toyota et al., 2002) 40

4.2 1H (400 MHz), 13C (100 MHz), HMBC and selected COSY spectral data of KS-10-2 in CD3OD 52

4.3 1H NMR (400 MHz), 13C NMR (100 MHz), HMBC and selected COSY data of KS-8-10-4 in CD3OD 64

4.4 1H NMR (400 MHz), 13C NMR (100 MHz), HMBC and selected COSY data of KS-8-10-6 in CD3OD 78

4.5 13C NMR (125 MHz) and 1H NMR Data (500 MHz ) for S6 and 13C NMR (100 MHz) and 1H NMR Data (400 MHz) for 3-O-acetyltohogenol (Tong et al., 2003) 88

4.6 Comparison between 13C NMR (125 MHz) data for S4 and S6 in CDCl3 98

4.7 1H NMR (500 MHz), 13C NMR (125 MHz), HMBC data of N2211-1-4 in CDCl3 109

4.8 Comparison 13C NMR of N2211-1-4 (13C: 125 MHz) with reported Serratanediol (13C: 75 MHz) in CDCl3 (Fang et al., 1991) 110

4.9 1H NMR (500 MHz), 13C NMR (125 MHz), HMBC and selected COSY data of E377 in CDCl3 122

Page 14: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

xi

LIST OF FIGURES

Figure Page 2.1 Phylogeny of embryophyte based on nucleotide sequences of genes,

focussing on lycophytes, monilophytes and gymnosperms (Hsieh and Harris, 2012) 5

2.2 Hymenophyllum javanicum 7

2.3 Huperzia carinata 11

2.4 Huperzia nummolarifolia 12

2.5 The different classes of lycopodium alkaloids 13

3.1 Fractionation scheme for Hymenophyllum javanicum crude extract 24

3.2 General fractionation scheme for both whole plants of Huperzia 26

3.3 Isolation procedure of compounds from chloroform fraction of H. carinata 27

3.4 Isolation procedure for compounds from chloroform fraction of H. nummolarifolia 29

3.5 Isolation procedure for ethyl acetate fraction of H. nummolarifolia 30

4.1 Structure of KS-5 35

4.2 1H (400 MHz) spectrum of KS-5 in C5D5N 36

4.3 13C (100 MHz) spectrum of KS-5 in C5D5N 37

4.4 HSQC (100 MHz) spectrum of KS-5 in C5D5N 38

4.5 HMBC (100 MHz) spectrum of KS-5 in C5D5N 39

4.6 Structure of Javanoside A (KS-10-2) 41

4.7 HRESIMS of KS-10-2 (+ve ion mode) 42

4.8 1H (400 MHz) spectrum of KS-10-2 in CD3OD 43

4.9 1H (400 MHz) spectrum of KS-10-2 in CD3OD (expanded) 44

4.10 13C (100 MHz) spectrum of KS-10-2 in CD3OD 45

Page 15: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

xii

4.11 HSQC (100 MHz) spectrum of KS-10-2 inCD3OD (expanded) 46

4.12 HSQC (100 MHz) spectrum of KS-10-2 in CD3OD (expanded) 47

4.13 HMBC (100 MHz) spectrum of KS-10-2 in CD3OD (expanded) 48

4.14 HMBC (100 MHz) spectrum of KS-10-2 in CD3OD (expanded) 49

4.15 HMBC (100 MHz) spectrum of KS-10-2 in CD3OD (expanded) 50

4.16 COSY (100 MHz) spectrum of KS-10-2 in CD3OD (expanded) 51

4.17 Structure of Javanoside B (KS-8-10-4) 53

4.18 HRESIMS of KS-8-10-4 54

4.19 1H (400 MHz) spectrum of KS-8-10-4 in CD3OD 55

4.20 1H (400 MHz) spectrum of KS-8-10-4 in CD3OD (expanded) 56

4.21 13C (100 MHz) spectrum of KS-8-10-4 in CD3OD (expanded) 57

4.22 13C (100 MHz) spectrum of KS-8-10-4 in CD3OD (expanded) 58

4.23 HSQC (100 MHz) spectrum of KS-8-10-4 in CD3OD (expanded) 59

4.24 HSQC (100 MHz) spectrum of KS-8-10-4 in CD3OD (expanded) 60

4.25 HMBC (100 MHz) spectrum of KS-8-10-4 in CD3OD (expanded) 61

4.26 HMBC (100 MHz) spectrum of KS-8-10-4 in CD3OD (expanded) 62

4.27 COSY (100 MHz) spectrum of KS-8-10-4 in CD3OD (expanded) 63

4.28 Structure of Javanoside C(KS-8-10-6) 65

4.29 HRESIMS of KS-8-10-6 66

4.30 1H (400 MHz) spectrum of KS-8-10-6 in CD3OD (expanded) 67

4.31 1H (400 MHz) spectrum of KS-8-10-6 in CD3OD (expanded) 68

4.32 13C (100 MHz) spectrum of KS-8-10-6 in CD3OD (expanded) 69

4.33 13C (100 MHz) spectrum of KS-8-10-6 in CD3OD (expanded) 70

4.34 HSQC (100 MHz) spectrum of KS-8-10-6 in CD3OD 71

Page 16: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

xiii

4.35 HSQC (100 MHz) spectrum of KS-8-10-6 in CD3OD (expanded) 72

4.36 HSQC (100 MHz) spectrum of KS-8-10-6 in CD3OD (expanded) 73

4.37 HMBC (100 MHz) spectrum of KS-8-10-6 in CD3OD (expanded) 74

4.38 HMBC (100 MHz) spectrum of KS-8-10-6 in CD3OD (expanded) 75

4.39 HMBC (100 MHz) spectrum of KS-8-10-6 in CD3OD (expanded) 76

4.40 COSY (100 MHz) spectrum of KS-8-10-6 in CD3OD (expanded) 77

4.41 Structure of S6 79

4.42 HRESIMS of S6 80

4.43 1H (500 MHz) spectrum of S6 in CDCl3 81

4.44 1H (500 MHz) spectrum of S6 in CDCl3 (expanded) 82

4.45 13C (125 MHz) spectrum of S6 in CDCl3 83

4.46 13C (125 MHz) spectrum of S6 in CDCl3 (expanded) 84

4.47 13C (125 MHz) spectrum of S6 in CDCl3 (expanded) 85

4.48 HSQC (125 MHz) spectrum of S6 in CDCl3 86

4.49 HSQC (125 MHz) spectrum of S6 in CDCl3 (expanded) 87

4.50 Structure of S4 89

4.51 HRESIMS of S4 90

4.52 1H (500 MHz) spectrum of S4 in CDCl3 91

4.53 1H (500 MHz) spectrum of S4 in CDCl3 (expanded) 92

4.54 13C (125 MHz) spectrum of S4 in CDCl3 93

4.55 13C (125 MHz) spectrum of S4 in CDCl3 (expanded) 94

4.56 13C (125 MHz) spectrum of S4 in CDCl3 (expanded) 95

4.57 HSQC (125 MHz) spectrum of S4 in CDCl3 (expanded) 96

4.58 HSQC (125 MHz) spectrum of S4 in CDCl3 (expanded) 97

Page 17: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

xiv

4.59 Structure of N2211-1-4 99

4.60 EIMS of N2211-1-4 99

4.61 1H (500 MHz) spectrum of N2211-1-4 in CDCl3 100

4.62 1H (500 MHz) spectrum of N2211-1-4 in CDCl3 (expanded) 101

4.63 13C (125 MHz) spectrum of N2211-1-4 in CDCl3 102

4.64 13C (125 MHz) spectrum of N2211-1-4 in CDCl3 (expanded) 103

4.65 13C (125 MHz) spectrum of N2211-1-4 in CDCl3 (expanded) 104

4.66 HSQC (125 MHz) spectrum of N2211-1-4 in CDCl3 105

4.67 HSQC (125 MHz) spectrum of N2211-1-4 in CDCl3 (expanded) 106

4.68 HMBC (125 MHz) spectrum of N2211-1-4 in CDCl3 (expanded) 107

4.69 HMBC (125 MHz) spectrum of N2211-1-4 in CDCl3 (expanded) 108

4.70 Structure of E377 111

4.71 1H (500 MHz) spectrum of E377 in CDCl3 (expanded) 112

4.72 1H (500 MHz) spectrum of E377 in CDCl3 (expanded) 113

4.73 13C (125 MHz) spectrum of E377 in CDCl3 114

4.74 13C (125 MHz) spectrum of E377 in CDCl3 (expanded) 115

4.75 13C (125 MHz) spectrum of E377 in CDCl3 (expanded) 116

4.76 HSQC (125 MHz) spectrum of E377 in CDCl3 117

4.77 HSQC (125 MHz) spectrum of E377 in CDCl3 (expanded) 118

4.78 HMBC (125 MHz) spectrum of E377 in CDCl3 (expanded) 119

4.79 HMBC (125 MHz) spectrum of E377 in CDCl3 (expanded) 120

4.80 COSY (125 MHz) spectrum of E377 in CDCl3 (expanded) 121

Page 18: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

xv

LIST OF ABBREVIATIONS

δ Chemical shift in ppm br Broad 13C Carbon-13 COSY Correlation Spectroscopy d Doublet dd Doublet of doublets ddd Doublet od doublets of doublets dt Doublet of triplets 1H Proton HMBC Heteronuclear Multiple Bond Correlation HSQC Heteronuclear Single-Quantum Coherence EIMS Electron Impact Mass Spectrum Hz Hertz J Coupling constant in Hz m Multiplet m/z Mass per charge MHz Megahertz nm Nanometer NMR Nuclear Magnetic Resonance s Singlet t Triplet

Page 19: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

1

CHAPTER 1

1 INTRODUCTION

1.1 Medicinal importance of natural products

Natural products chemistry is a chemistry branch dealing with chemical compounds produced by living organisms. It has been a source of food, clothing, cosmetics, constructions of shelters and traps, tools and weapons, poisons for game and fish, medicine or crop protection agents for the past thousands of years. In particular, it has played a major role in early medicine and contributed immensely in drug discovery and the development of modern medicine. It has provided alleviations for many of the world major diseases such as cancer, AIDS and infectious diseases. According to Newman and his co-workers (2012), from 1940s to date, of the 175 anticancer lead molecules, about 49% of them are natural products or derived from natural products (Newman et al., 2012).

Natural products will have great importance of in future drug discovery as biochemical probes for the discovery of biochemical and pharmacological processes (Clark, 1996). Natural products may also serve as novel pharmacophores for chemical modification and drug design, which have great potential to generate clinically useful drugs. It is anticipated that biologically active natural products will continue to serve as lead compounds for drug development (Lahlou, 2013). Some important examples of clinically used drugs derived from natural products include the cornerstone discoveries of the antimalarial drugs quinine (1) and artemisinin (2), and the anticancer drugs etoposide (3) and paclitaxel (4).

1 2

Page 20: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

2

3 4

The search for new drug leads from natural resources is based on several approaches. The most popular approach has been based on the biological and ecological rationale. This is because natural resources such as plants, microorganisms and marine species produce biologically active compounds for their defence from attack against external threats and predators (Strobel et al., 2004). For instance, plants that coexisting with animals and microorganisms develop defence strategies to ensure their survival in such a competitive environment. Productions of toxic and other bioactive traits (bitter tasting, pungent and irritant) are common strategies in providing such defences and protection against predators. Often times, these compounds will find some important use or applications in combating human diseases.

1.2 Ferns and lycophytes as a source of useful natural products

Ferns and lycophytes are groups of green plants that lack in flower. They reproduced by means of spores rather than seeds. Ferns cannot be defined by a single character as one group is easily recognised by its highly divided fronds with branching veins and sporangia on the margins or undersides while the other group is not as leafy, and contains members that look quite dissimilar from each other. On the other hand, sporangia of lycophytes are on the upper surface of small leaves with unbranched veins with leaves spirally arranged around the stem. Ferns and lycophyes share similar reproductive cycle where mature plants produce fertile fronds with sori on their edges or undersides. They also reproduce by non-sexual or vegetative. http://www.teara.govt.nz/en/ferns-and-lycophytes/page-1(accessed 30 January 2014).

In the last decade, a variety of natural compounds have been identified from different species of ferns during last decades such as bioactive flavonoids like chalcones, dihydrochalcones, avanones, dihydro-flavonols, flavones, flavonols, and bisflavonoids as being reviewed by Wollenweber and Schneider (2000). As for

Page 21: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

3

lycophytes especially in various species of huperzia, several chemical compounds like triterpenes, flavones, phenolic acids and alkaloids have been discovered (Ma and Gang, 2004).

1.3 Problem statement

Due to the side effects of most the synthetic drugs available in the market in treating several diseases, the researchers are trying to find alternative medicines from natural resources. The difficulty in the access to the medicines because of the high cost is also reason to find cheap source from plants. The increasing demand for natural medicines has resulted in huge commercial values of these medicines. This has led to the growing interest in searching potent natural drugs and testing their benefits. Ferns and lycophytes present an interesting family of plants for the discovery of new molecules that may have important biological properties. These plants have been used in different systems of medicine such as the Unani, Ayurveda, Homeopathy and Traditional Chinese Medicine. Considering the used of ferns and lycophytes species in many traditional preparation in Malaysia, not many compounds are isolated from these plants to be separately tested on several bioactivities. There exist a huge body of literature on the taxonomy, ecology and distribution of ferns and its other allies. However, compared to other forest plants, ferns and lycophytes have not received enough attention in terms of their utilization despite that they could have equal economic importance as food or medicine. The phytochemistry of many genera within this class of plants has yet to be studied. In fact, very little literature exists for many of the species found in Malaysia. These include the interesting filmy fern species Hymenophyllum javanicum and various Huperzia species that thrives in the tropical rainforests of Malaysia.

1.4 Objectives of the research

In a continuous effort of enriching the phytochemical knowledge on tropical rainforest plants including ferns and lycophytes, in search of novel and useful natural product compounds, the present study was initiated with the following objectives:

1) To isolate the chemical constituents of the filmy fern, Hymenophyllum javanicum

2) To isolate the chemical constituents of two lycophytes i.e, Huperzia nummularifolia and H. carinata

3) To elucidate the chemical structures of the isolated compounds using spectroscopic methods.

Page 22: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

126

6 REFERENCES

Ayer, W.A., Trifonov, L.S. (1994) Lycopodium alkaloid. The Alkaloids: Academic New York. Vol. 45, pp 233-266.

Benzing, D.H. (1990). Vascular epiphytes. Cambridge University Press.

Bruchmann H. Die Keimung der Sporen und die Entwicklung der Prothallien von Lycopodium clavatum L., L. annotinum L., und L. selago L. Flora. 2015;101:220-267.

Ching. R.C. (1978). The Chinese fern families and genera: systematic arrangement and historical origin. Acta Phyotaxonomica Sinica. 16, 1-9

Clark, A. (1996). Natural products as a resource for new drugs. Pharmaceutical Research, 13(8).

Coffey, T. (1993). The history and folklore of North American Wild Flowers. Houghton Mifflin Company Press, New York, USA

Copeland, E.B. (1939). Genera Hymenophyllacearum. Phillipine Jounal of Science 67(1): 1-110.

Ebihara, A., Dubuisson, J., Iwatsuki, K., Hennequin, S., & Ito, M. (2006). A taxonomic revision of Hymenophyllaceae. Blum - J Plant Tax And Plant Geog, 51(2), 221-280.

Fang J, Tsai W, Cheng Y. Serratene triterpenes from Pinus armandii bark. Phytochemistry. 1991;30(4):1333-1336.

Hanuš, L., Řezanka, T., & Dembitsky, V. (2003). A trinorsesterterpene glycoside from the North American fern Woodwardia virginica (L.) Smith. Phytochemistry, 63(8), 869-875.

Hennequin, S., Ebihara, A., Ito, M., Iwatsuki, K., & Dubuisson, J. (2003). Molecular systematics of the fern genus Hymenophyllum s.l. (Hymenophyllaceae) based on chloroplastic coding and noncoding regions. Molecular Phylogenetics And Evolution, 27(2), 283-301.

Holub, J. (1985). Transfer of Lycopodium species to Huperzia with a note on generic classification in Huperziaceae. Folia Geobot. Phyotax. 20: 67-80.

Hsieh, Y., & Harris, P. (2012). Structures of xyloglucans in primary cell walls of gymnosperms, monilophytes (ferns sensu lato) and lycophytes. Phytochemistry, 79, 87-101.

Page 23: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

127

Hu, T. & Chandler, R.F. (1987). Obscurinine: a new Lycopodium alkaloid. Tetrahedron Letters. 28, 5993-5996.

Inubushi, Y., Hibino, T., Harayama, T., Hasegawa, T., & Somanathan, R. (1971). Triterpenoid constituents of Lycopodium phlegmaria L. J. Chem. Soc., C, 3109.

Ishiuchi, K., Kubota, T., Ishiyama, H., Hayashi, S., Shibata, T., & Kobayashi, J. (2011). Lyconadins C and F, new Lycopodium alkaloids from Lycopodium complanatum. Tetrahedron Letters, 52(2), 289-292.

Iwatsuki, K. (1984). Studies in the systematic of filmy fern VII. A scheme of classification based chiefly on Asiatic species. Acta Phytotaxonomy and Geobotany. 35: 165-169.

Lahlou, M. The Success of Natural Products in Drug Discovery. Pharmacology & Pharmacy. 2013;04(03):17-31.

Lawrence, G.H.M. (1989). Taxonomy of vascular plant. Macmilan Publishing Co, New York, USA. pp 337-338.

Ma, X., & Gang, D. (2004). The Lycopodium alkaloids. Nat. Prod. Rep., 21(6), 752.

Markham, K.R & J.W.Wallace (1980). C-Glycoxyxanthones and flavonoid variation within the Hymenophllaceae. An introduction to a chemotaxonomic approach. Phytochemistry. 19: 415-420

Morton, C.V. (1968). The genera, subgenera and sections of Hymenophllaceae. Contribution from the United States National Herbarium, 38(5): 153-214.

Newman, D., & Cragg, G. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 75(3), 311-335.

NorShahidah, S., Chee, Y., A., L., & Razali, J. (2012). Variations of huperzine A content in Lycopodiaceae species from tropics. Chinese Journal Of Natural Medicines, 10(2), 125-128.

Oiso, Y., Toyota, M., & Asakawa, Y. (2001). Hymenosides A-F, six new hemiterpene glucosides from the Japanese fern Hymenophyllum barbatum. Chemical & Pharmaceutical Bulletin,49(1), 126-128.

Ollgaard, B. (1989). Index of Lycopodiaceae. Biol. Skr. 34: 1-135.

Orhan, I., Küpeli, E., Şener, B., & Yesilada, E. (2007). Appraisal of anti-inflammatory potential of the clubmoss, Lycopodium clavatum L. Journal Of Ethnopharmacology, 109(1), 146-150.

Page 24: UNIVERSITI PUTRA MALAYSIA UPMpsasir.upm.edu.my/id/eprint/69739/1/IB 2016 27 IR.pdf · 2019. 6. 25. · myasthenia gravis, dan keracunan organofosfat. Tujuan kajian adalah untuk mengasingkan

© COPYRIG

HT UPM

128

Pichi Sermolli, R.E.G. (1977). Tentamen pteridophytorum genera in taxonomicum ordinem redigendi. Webbia 31 : 313-512

Pryer, K., Schuettpelz, E., Wolf, P., Schneider, H., Smith, A., & Cranfill, R. (2004). Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. American Journal Of Botany, 91(10), 1582-1598.

Singh, H., & Singh, M. (2010). Huperzia serrata: a promising medicinal pteridophyte from northeast India, 1(1).

Strobel G, Daisy B, Castillo U, Harper J. Natural products from endophytic microorganisms . J Nat Prod. 2004;67(2):257-268.

Tong, X.T., Tan, C.H., Ma, X.Q., Wang, B.D., Jiang, S.H., Zhu, D.Y. (2003). Miyoshianines A and B, two new Lycopodium alkaloid form Huperzia miyoshiana. Planta Med. 69, 576-579.

Toyota, M., Oiso, Y., & Asakawa, Y. (2001). New bitter-tasting hemiterpene glycosides from the Japanese fern Hymenophyllum barbatum. Chemical & Pharmaceutical Bulletin, 49(12), 1567-1572.

Toyota, M., Oiso, Y., & Asakawa, Y. (2002). New glycosides from the Japanese fern Hymenophyllum barbatum. Chemical & Pharmaceutical Bulletin, 50(4), 508-514.

Wang, Y., Zeng, Q., Zhang, Z., Yan, R., Wang, L., & Zhu, D. (2010). Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata. Journal Of Industrial Microbiology & Biotechnology, 38(9), 1267-1278.

Wikstrӧm, N., Kenrick, P., & Chase, M. (1999). Epiphytism and terrestrialization in tropical Huperzia (Lycopodiaceae). Pl Syst Evol, 218(3-4), 221-243.

Wittayalai, S., Sathalalai, S., Thorroad, S., Worawittayanon, P., Ruchirawat, S., & Thasana, N. (2012). Lycophlegmariols A–D: Cytotoxic serratene triterpenoids from the club moss Lycopodium phlegmaria L. Phytochemistry, 76, 117-123.

Wollenweber, E., & Schneider, H. (2000). Lipophilic exudates of Pteridaceae – chemistry and chemotaxonomy. Biochemical Systematics And Ecology, 28(8), 751-777.

Zhou, H., Tan, C., Jiang, S., & Zhu, D. (2003). Serratene-type triterpenoids from Huperzia serrata. J. Nat. Prod., 66(10), 1328-1332.