UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE...

116
UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE CIÊNCIAS MÉDICAS KELLY FRANCISCO DA CUNHA ESTUDO DA ESTABILIDADE DE NOVAS SUBSTÂNCIAS PSICOATIVAS (NPS) EM AMOSTRAS DE SANGUE SECO EM PAPEL (DBS), E SUA APLICAÇÃO EM TOXICOLOGIA FORENSE STABILITY OF NEW PSYCHOACTIVE SUBSTANCES (NPS) IN DRIED BLOOD SPOTS (DBS), AND ITS APPLICATION IN FORENSIC TOXICOLOGY CAMPINAS 2018

Transcript of UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE...

Page 1: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE CIÊNCIAS MÉDICAS

KELLY FRANCISCO DA CUNHA

ESTUDO DA ESTABILIDADE DE NOVAS SUBSTÂNCIAS PSICOATIVAS (NPS) EM

AMOSTRAS DE SANGUE SECO EM PAPEL (DBS), E SUA APLICAÇÃO EM

TOXICOLOGIA FORENSE

STABILITY OF NEW PSYCHOACTIVE SUBSTANCES (NPS) IN DRIED BLOOD

SPOTS (DBS), AND ITS APPLICATION IN FORENSIC TOXICOLOGY

CAMPINAS

2018

Page 2: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

KELLY FRANCISCO DA CUNHA

ESTUDO DA ESTABILIDADE DE NOVAS SUBSTÂNCIAS PSICOATIVAS (NSP) EM

AMOSTRAS DE SANGUE SECO EM PAPEL (DBS), E SUA APLICAÇÃO EM

TOXICOLOGIA FORENSE

STABILITY OF NEW PSYCHOACTIVE SUBSTANCES (NPS) IN DRIED BLOOD

SPOTS (DBS), AND ITS APPLICATION IN FORENSIC TOXICOLOGY

Dissertação apresentada à Faculdade de Ciências Médicas da

Universidade Estadual de Campinas como parte dos requisitos exigidos

para a obtenção do título de Mestra em Ciências, na área de

concentração Patologia Clínica.

Dissertation presented to the Faculty of Medical Sciences, University of

Campinas, in partial fulfillment of the requirements for the Master degree

in Sciences, in the concentration area of Clinical Pathology.

ORIENTADOR: Prof. Dr. José Luiz da Costa

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA

PELA ALUNA KELLY FRANCISCO DA CUNHA, E ORIENTADA PELO PROF. DR. JOSÉ

LUIZ DA COSTA.

CAMPINAS

2018

Page 3: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias
Page 4: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

BANCA EXAMINADORA DA DEFESA DE MESTRADO

KELLY FRANCISCO DA CUNHA

ORIENTADOR: PROF. DR. JOSÉ LUIZ DA COSTA

MEMBROS:

1. PROF. DR. JOSÉ LUIZ DA COSTA

2. PROFA. DRA. MARY ANN FOGLIO

3. PROF. DR. ÁLVARO JOSÉ DOS SANTOS NETO

Programa de Pós-Graduação em Ciências Médicas da Faculdade de Ciências

Médicas da Universidade Estadual de Campinas.

A ata de defesa com as respectivas assinaturas dos membros da banca

examinadora encontra-se no processo de vida acadêmica do aluno.

Data: 23/02/2018

Page 5: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

AGRADECIMENTOS

À Faculdade de Ciências Médicas da Universidade Estadual de Campinas e às

agências de fomento (FAPESP, CNPq e FAEPEX) por viabilizarem este trabalho.

Aos meus pais, Regina e Jorge, e minha irmã, Larissa, por toda compreensão e

apoio.

Ao meu orientador, Prof. Dr. José Luiz da Costa, por todo o ensinamento, orientação

e confiança depositados em mim em todos os momentos.

Ao farmacêutico, MSc Rafael Lanaro, por ter atuado diretamente no estabelecimento

da minha orientação, além de constantemente me co-orientar.

Aos demais funcionários e colegas do Centro de Informação e Assistência

Toxicológica de Campinas (CIATox)/Faculdade de Ciências Médicas, por tornarem o

trabalho diário menos exaustivo.

Aos colegas do Laboratório Thomson de Espectrometria de Massas do Instituto de

Química, por auxiliarem na execução desse trabalho.

Page 6: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

RESUMO

Introdução: A classe de drogas de abuso conhecida como novas substâncias

psicoativas ou, ainda, drogas desenhadas (do inglês new psychoactive substances

(NPS) ou designer drugs) é composta por substâncias químicas obtidas a partir de

alterações estruturais de substâncias ou mistura de substâncias psicoativas já

existentes (e ilícitas), a fim de mimetizar e/ou potencializar os efeitos proporcionados

por estas, com a vantagem de circundar a legislação antidrogas vigente. Dentro da

classe das NPS, os grupos de maior destaque atualmente são das catinonas

sintéticas, dos canabinóides sintéticos e dos NBOMes (feniletilaminas N-2-

metoxibenzil substituídas). As catinonas sintéticas, vendidas pela internet como “sais

de banho” ou bath salts, são substâncias estruturalmente relacionadas a catinona, um

alcalóide presente no Catha edulis (Khat), com propriedades estimulantes. A classe

dos NBOMes é derivada da classe dos alucinógenos 2C, a partir da adição de um

grupo N-2-metoxibenzil na amina primária. Os NBOMes possuem ação agonista nos

receptores de serotonina, especialmente do subtipo 5-HT2A, o que confere os efeitos

alucinógenos. Objetivos: Desenvolver e validar métodos para identificação e

quantificação de algumas das NPS de maior relevância em amostras de manchas de

sangue seco em papel (do inglês dried blood spots, DBS) e comparar a estabilidade

entre dois tipos de amostras (DBS e sangue total), em três diferentes temperaturas

(ambiente, 4 °C e -20 °C) e períodos de armazenamento. Metodologia: As amostras

de DBS e sangue total foram analisadas em cromatógrafo líquido acoplado à

espectrômetro de massas com analisador de massas triplo quadrupolar (LC-MS/MS),

utilizando os métodos primeiramente desenvolvidos e validados para cada classe de

NPS (catinonas sintéticas e NBOMes). Resultados: A técnica de DBS apresentou um

aumento significativo da estabilidade das NPS em comparação à técnica convencional

de armazenamento de sangue total. Para os NBOMes, observou-se que os compostos

eram estáveis no DBS por período de tempo de até 6 meses, nas três temperaturas

estudadas, enquanto que no sangue total, os analitos tiveram uma queda maior que

20% da concentração em 15 ou 30 dias em temperatura ambiente e 180 dias para 4

°C. Para as catinonas, em temperatura ambiente, observou-se baixa estabilidade nas

duas matrizes. Porém, para armazenamento à 4 °C, observou-se uma queda na

concentração inicial maior que 20% com 60 e 90 dias para mefedrona e benzedrona

Page 7: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

em DBS, respetivamente, contra 45 e 25 dias. Catinonas que possuem grupamento

metilenodioxi em sua estrutura, como a butilona e a pentilona, foram mais estáveis,

independente da matriz, em comparação àquelas com grupamento alquila no anel

aromático, como mefedrona e benzedrona. Conclusão: A técnica de DBS se mostrou

vantajosa para análises forenses em comparação à técnica convencional de

armazenamento de sangue total. Além de facilitar o armazenamento (por ocupar

menos espaço), sua extração se torna mais rápida e facilitada, já que envolve menos

etapas, além de tornar possível a identificação dos analitos de interesse por um maior

período de tempo, podendo facilmente ser aplicada na rotina laboratorial.

Palavras-chave: teste em amostras de sangue seco; drogas desenhadas; toxicologia

forense; cromatografia líquida; espectrometria de massas.

Page 8: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

ABSTRACT

Introduction: New psychoactive substances (NPS) or designer drugs is a class of

drugs of abuse composed of chemical substances obtained from structural alterations

of substances or mixture of existing psychoactive substances (and illicit), in order to

mimic and/or maximize their effects, with the advantage of circumventing existing anti-

drug legislation. Within the NPS class, the most prominent groups currently are

synthetic cathinones, synthetic cannabinoids and NBOMes (phenylethylamines N-2-

methoxybenzyl substituted). Synthetic cathinones, sold by the internet as "bath salts",

are substances structurally related to cathinone, an alkaloid present in Catha edulis

(Khat), with stimulant properties. The class of NBOMes is derived from the

hallucinogen class 2C, from the addition of an N-2-methoxybenzyl group to the primary

amine. NBOMes have agonist action at serotonin receptors, especially the 5-HT2A

subtype, which confers the hallucinogenic effects. Objectives: To develop and

validate methods to identify and quantify some of the most relevant NPS in dried blood

spots (DBS) samples and to compare the stability between two matrixes (DBS and

whole blood), at three different temperatures (ambient, 4 °C and -20 °C) and storage

periods. Method: DBS and whole blood samples were analyzed using a liquid

chromatography tandem mass spectrometer with a triple quadrupole analyzer (LC-

MS/MS), using the developed and validated methods for each class of NPS (synthetic

cathinones and NBOMes). Results: The DBS technique showed a significant increase

in the NPS stability compared to the conventional whole blood storage technique. For

the NBOMes, the compounds were found to be stable in DBS for a time period of up

to 6 months, at the three temperatures studied, whereas in whole blood, the analytes

had a decreased higher than 20% of the initial concentration in 15 or 30 days at room

temperature and 180 days at 4 °C. For the cathinones, at room temperature, low

stability was observed in both matrixes. However, for storage at 4 °C, the initial

concentration decreased more than 20% at 60 and 90 days for mephedrone and

benzedrone in DBS, respectively, against 45 and 25 days. Cathinones having

methylenedioxy group in their structure, such as butylone and pentylone, were more

stable, independent of the matrix, compared to those with alkyl group on the aromatic

ring, such as mephedrone and benzedrone. Conclusion: The DBS technique proved

to be advantageous for forensic analysis compared to the conventional storage

Page 9: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

technique. In addition to occupying less storage space, DBS extraction becomes faster

and easier, since it involves fewer steps, besides to make possible to identify the

analytes of interest for a longer period of time, which can easily be applied in the

laboratory routine.

Key words: dried blood spot testing; designer drugs; liquid chromatography; mass

spectrometry; forensic toxicology.

Page 10: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

LISTA DE ABREVIATURAS E SIGLAS

4-MBC – Mefedrona (do inglês, mephedrone)

4-MMC – Benzedrona (do inglês, benzedrone)

ANOVA – Análise de variância (do inglês, one-way analysis of variance)

Ar – Argônio

bk-MBDB – Butilona (do inglês, butylone)

bk-MBDP – Pentilona (do inglês, pentylone)

CE – Energia de Colisão (do inglês, collision energy)

CEP – Comitê de Ética em Pesquisa da UNICAMP

CXP – Potencial de saída da cela de colisão (do inglês, collision cell exit potential)

DBS – Mancha de sangue seco em papel (do inglês, dried blood spots)

DEA – United States Drug Enforcement Administration

DP – Potencial do orifício (do inglês, declustering potential)

EMCDDA – European Monitoring Centre for Drugs and Drug Addiction

EP – Potencial de entrada (do inglês, entrance potential)

ESI – Fonte de ionização por electrospray

EWS – Early Warning System

FIA – Análise por injeção direta (do inglês, flow injection analysis)

GS1 – Pressão do gás de nebulização (do inglês, nebulizer gas)

GS2 – Pressão do gás de secagem (do inglês, auxiliary gas)

IS – Padrão interno (do inglês, internal standard)

LC-MS – Cromatógrafo líquido acoplado à espectrômetro de massas

LC-MS/MS - Cromatógrafo líquido acoplado à espectrômetro de massas sequencial

LLE – Extração líquido-líquido (do inglês, liquid-liquid extraction)

LOD – Limite de detecção (do inglês, limit of detection)

LOQ – Limite de quantificação (do inglês, limit of quantification)

Page 11: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

LSD-d3 – Padrão deuterado da dietilamida do ácido lisérgico

MDMA-d5 – Padrão deuterado de metilenodioximetanfetamina

MRM – Monitoramento de reações múltiplas (do inglês, multiple reaction monitoring)

MTBE – Éter butil t-metílico

m/z – massa/carga

N2 – Nitrogênio

NA – Não informado (do inglês, not available), para o artigo dos NBOMes; Não

avaliado (do inglês, not evaluated) para o artigo das catinonas sintéticas

NPS – Novas substâncias psicoativas (do inglês, new psychoactive substances)

PP – Precipitação de proteínas (do inglês, protein precipitation)

Q1 – Quadrupolo 1

Q3 – Quadrupolo 3

QC – Controle de qualidade (do inglês, quality control)

RSD – Desvio padrão relativo (do inglês, relative standard deviation)

SPE – Extração em fase sólida (do inglês, solid-phase extraction)

SWGTOX – Scientific Working Group for Forensic Toxicology

UNODC – United Nations Office on Drugs and Crime

Page 12: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

SUMÁRIO

1. INTRODUÇÃO .................................................................................................................... 13

1.1 Novas Substâncias Psicoativas (NPS) ........................................................................... 13

1.1.1 Feniletilaminas .................................................................................................................... 15

1.1.2 Catinonas sintéticas ........................................................................................................... 15

1.2 Estabilidade em análises toxicológicas.........................................................................16

1.3 Mancha de sangue seco em papel (DBS) ...................................................................... 17

2. OBJETIVOS ........................................................................................................................ 20

3. METODOLOGIA ................................................................................................................. 21

3.1 Análise de NBOMes ........................................................................................................... 21

3.1.1 Reagentes ........................................................................................................................... 21

3.1.2 Instrumentação ................................................................................................................... 21

3.1.3 Extração das amostras de sangue total para análise de NBOMes ............................ 22

3.1.4 Preparo e extração do DBS ................................................................................................ 22

3.1.4.1 Teste de saturação dos discos de DBS..................................................................23

3.1.4.2 Otimização de misturas...........................................................................................24

3.2 Catinonas sintéticas ........................................................................................................... 25

3.2.1 Reagentes ........................................................................................................................... 25

3.2.2 Instrumentação ................................................................................................................... 25

3.2.3 Extração das amostras de sangue total para análise de catinonas sintéticas ......... 26

3.2.4 Preparo e extração do DBS .............................................................................................. 27

3.2.4.1 Otimização de misturas...........................................................................................27

3.3 Validação ............................................................................................................................. 28

4. RESULTADOS .................................................................................................................... 29

4.1 Artigo 1 ................................................................................................................................. 29

4.2 Artigo 2 ................................................................................................................................. 53

4.3 Artigo 3 ................................................................................................................................. 70

5. DISCUSSÃO GERAL ......................................................................................................... 99

6. CONCLUSÃO ................................................................................................................... 102

7. REFERÊNCIAS ................................................................................................................ 103

8. ANEXOS ............................................................................................................................ 107

Page 13: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

13

1. INTRODUÇÃO

1.1 Novas Substâncias Psicoativas (NPS)

A classe de drogas de abuso conhecida como novas substâncias

psicoativas (do inglês new psychoactive substances (NPS) ou ainda designer drugs)

é composta por substâncias químicas obtidas a partir de alterações estruturais de

substâncias ou mistura de substâncias psicoativas já existentes (e ilícitas), a fim de

mimetizar e/ou potencializar os efeitos proporcionados por estas, com a vantagem de

circundar a legislação antidrogas vigente (já que não são listadas nas convenções

antidrogas mundiais - 1961 Single Convention on Narcotic Drugs e 1971 Convention

on Psychotropic Substances), mas que podem representar um problema de saúde

pública [1].

As NPS se iniciam, primeiramente, na União Europeia e EUA, e vem sido

vendidas através da internet ou lojas físicas em embalagens com dizeres “impróprio

para consumo humano” e com finalidade fictícia como sais de banho, incensos,

desodorizador de ambiente ou adubo de plantas, etc, circundando assim as

legislações de drogas de abuso. Atualmente, também podem ser comercializadas

virtualmente com a insígnia fictícia de padrões analíticos, com finalidade exclusiva de

pesquisa [2].

Dentro da classe das NPS, os grupos mais expressivos (em número de

substâncias) são os canabinóides sintéticos, as catinonas sintéticas e os derivados

das feniletilaminas. Além destes grupos, atualmente as NPS já se expandiram aos

análogos da triptamina, derivados dos alucinógenos psilocibina e fenilpiperazinas,

análogos dos fentanil e análogos dos benzodiazepínicos, os dois últimos grupos ainda

agrupados genericamente como “outras substâncias” pela classificação da United

Nations Office on Drugs and Crime (UNODC). Essas substâncias são usualmente

sintetizadas na Ásia, principalmente na China [3].

Uma das maiores preocupações associadas ao uso das NPS está

relacionado aos diversos casos de intoxicações agudas e/ou fatais já reportados em

diversos países [4-9]. Além disso, seu potencial de causar intoxicações mesmo em

Page 14: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

14

baixas doses exigem o desenvolvimento de métodos que utilizam técnicas analíticas

sensíveis, além de alta qualificação por parte dos toxicologistas para interpretar os

resultados obtidos.

Outros fatores de risco associados ao uso de NPS incluem a grande

variabilidade de concentração entre e/ou dos produtos, mais de um composto

psicoativo em um único produto, diferentes produtos vendidos sob o mesmo nome

comercial, falta de informação confiável relacionado aos efeitos adversos. Além disso,

pouco se conhece do seu metabolismo e interação com outras drogas e/ou fármacos

[10].

Diante dessas preocupações, acrescido do constante avanço e

surgimentos praticamente semanal de novas substâncias, países de todo mundo

estão tentando adequar seus sistemas de saúde e de repressão às drogas ao

problema das NPS. A título de exemplo, viu-se a necessidade de alterar na União

Europeia o seu recorrente Early-Warning System (EWS) [11]. Até 2005, o European

Monitoring Centre for Drugs and Drug Addiction (EMCDDA) recolhia dados sobre um

restrito número de medicamentos, a maioria controlados pelas convenções antidrogas

mundiais. A partir de 2005, o principal objetivo é divulgar rapidamente informações a

respeito das NPS – que não são controladas pelas leis antidrogas, seus possíveis

riscos sociais e de saúde, além de tentar controlar e identificar novos compostos em

circulação na Europa. Relatórios anuais são publicados pelo EMCDDCA. Em 2014,

101 novas substâncias foram notificadas ao EWS, entre elas 31 catinonas sintéticas,

30 canabinoides sintéticos e 9 feniletilaminas [12].

De acordo com o relatório mundial de drogas publicado pela UNODC de

2017, 739 NPS foram identificadas no mundo entre 2009 e 2016; apenas em 2015,

500 NPS estavam disponíveis no mercado mundial. Os grupos com maiores

quantidades de representantes ainda são os das catinonas sintéticas e canabinóides

sintéticos que apresentam uma proporção de 36% e 33%, respectivamente, frente aos

demais grupos das NPS [13].

O expressivo número de NPS se deve ao constante lançamento de

moléculas que possuam o efeito psicoativo desejado, mas ainda não são enquadradas

como ilegais dentro das legislações de drogas vigentes em cada país. Uma vez que a

grande maioria dos países mantem uma legislação baseada na substância, a

Page 15: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

15

alteração estrutural mínima pode, muitas vezes, manter o efeito psicoativo, mas tornar

legalizada essa nova molécula, até que uma atualização do instrumento legal do país

seja feita. Assim, na mesma rapidez com que essas moléculas surgem, acabam

desaparecendo do mercado em poucos meses [14].

1.1.1 Feniletilaminas

O grupo das feniletilaminas são de substâncias derivadas dos alucinógenos

2C, bastante consumidos na década de 80. Os primeiros derivados do 2C foram os

NBOMes, feniletilaminas N-benzil substituída, o que aumenta sua ação agonista sob

o receptor 5-HT2A, responsável pela propriedade alucinógena. Além disso, são

farmacologicamente ativos em baixas doses (microgramas). Efeitos alucinógenos

podem ser alcançados com doses que vão de 50 µg até 800 µg. A duração dos efeitos,

dependente da via de administração, pode variar de 3 a 10 horas. Podem ser

consumidos na forma de comprimidos, pó, líquido, spray ou, mais comumente, em

papéis conhecidos como “selo” (forma comumente utilizada para venda/uso do

alucinógeno LSD). Além dos efeitos alucinógenos, outros efeitos já reportados incluem

euforia, aumento da sociabilidade, aumento das sensações visuais, auditivas, olfativas

e táteis, além de efeitos de despersonalização. Já os efeitos adversos incluem

náusea, vômito, dor de cabeça, sudorese, ansiedade, pânico, agitação, agressividade,

insônia, psicose aguda, rabdomiólise, taquicardia, hipertensão e hipertermia [15].

Diversos casos de morte relacionados ao uso de NBOMes já foram descritos na

literatura [15-17].

1.1.2 Catinonas sintéticas

As Catinonas sintéticas derivam da catinona, molécula naturalmente

presente na planta Khat (Catha edulis), que apresenta efeitos semelhantes ao da

anfetamina. O ato de mascar folhas do Khat, principalmente na região da Península

Arábica e Leste da África, é antigo e tem como benefícios reportados por seus

Page 16: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

16

usuários o de aumentar a sociabilidade, aumento de energia e bem-estar, melhorando

a capacidade de trabalho e estado de alerta [18].

Usualmente, as catinonas sintéticas são vendidas sob o rótulo de sais de

banho, mas também podem ser encontradas em comprimidos e vendidos como 3,4-

metilenodioximetilanfetamina (MDMA, ecstasy), substância com ação estimulante do

sistema nervoso central, aumentando os níveis de noradrenalina, dopamina e

serotonina extracelularmente, além de inibir sua receptação. As catinonas sintéticas

apresentam entre si diferentes seletividades para esses três neurotransmissores [19].

Até março de 2015, 77 catinonas sintéticas foram reportadas ao EWS. Só em 2014,

foram 31 catinonas reportadas, o que mostra o crescimento exponencial dessas

substâncias. Vale ressaltar que esse número se restringe apenas aos casos

reportados ao EWS, o que provavelmente não condiz com o número de catinonas

sintéticas disponíveis no mercado ilícito global [20].

A dose usual das catinonas sintéticas pode variar entre 25 e 250 mg e sua

forma de uso mais usualmente se encontra na administração oral, na forma de

comprimidos (semelhante aos de ecstasy) ou cápsulas, ou nasal e intravenosa [21].

Assim como os derivados da feniletilaminas, diversos casos de

intoxicações são reportados na literatura em associação ao uso de catinonas

sintéticas, nem sempre sendo possível determinar como a causa da morte,

principalmente devido a associação de outras drogas de abuso (ou até mesmo outras

NPS) [22-24].

1.2 Estabilidade em análises toxicológicas

Em análises toxicológicas, resultados falsos negativos podem levar a

interpretações erradas, assim como dados quantitativos sem conhecimento das

condições de transporte e armazenamento das amostras podem levar à super- ou

subestimativa dos efeitos. Conhecer a estabilidade dos analitos de interesse na matriz

biológica de estudo é importante para a interpretação dos resultados obtidos na

análise e, juntamente com o histórico do caso, fundamentar a causa mortis [25].

Page 17: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

17

Estudos de estabilidade das substâncias em diferentes matrizes se tornou

parte do desenvolvimento e validação de novos métodos de análise. A ideia principal

é manter as amostras de estudo dentro das condições reais de armazenamento que

uma amostra verdadeira estaria sujeita até a análise ou mesmo para uma reanálise e,

assim, determinar o tempo que o analito se mantém com a concentração inicial do

estudo. A maior parte dos guias de validação aceitam uma variação de ±15 ou ±20%

para considerarem o analito estável naquela matriz e condição de estocagem [26].

Durante o período de estocagem pode ocorrer degradação da droga bruta,

por ação enzimática e/ou pela instabilidade química da substância. Dependendo da

velocidade da degradação, é possível não mais detectar o produto, já completamente

convertido no seu produto de degradação. A velocidade de degradação também será

dependente de fatores como temperatura, pH, exposição à luz e tipo de matriz. Soh e

Elliott avaliaram a estabilidade de 13 NPS em sangue total e plasma, de diferentes

classes, em temperatura ambiente e por até 37 dias. 4-methylethcathinone (4-MEC) e

α-methyltryptamine (AMT) se mostraram instáveis após 21 dias nas duas matrizes

[27]. O fato de diversas NPS serem detectadas em ordem de concentração abaixo de

ng/mL exige não só equipamentos sensíveis, como maior cuidado e conhecimento da

estabilidade desses analitos, para chegar a interpretações corretas.

1.3 Mancha de sangue seco em papel (DBS)

O sangue (e seus derivados soro e plasma) é o fluido biológico mais

utilizado em análises toxicológicas, isto porque a concentração do xenobiótico neste

material frequentemente apresenta boa correlação com seu efeito (tóxico). Contudo,

uma vez que a coleta desta matriz biológica é sempre invasiva, vários cuidados devem

ser tomados para garantir a segurança do paciente e a qualidade da amostra coletada,

tais como assepsia do local da coleta, a qualidade e a quantidade de anticoagulante

empregado (escolhido de acordo com a análise que será realizada), o tipo de

armazenagem (temperatura ambiente, sob refrigeração ou congelado) e o tempo

decorrido entre a coleta e a análise [28].

Page 18: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

18

A técnica de DBS (dried blood spots ou manchas de sangue seco em papel)

é utilizada desde a década de 60 na determinação de casos de fenilcetonúria em

recém-nascidos. Crescente é o número de publicações mostrando estudos nas áreas

de monitorização terapêutica de fármacos, diagnóstico de doenças, identificação de

drogas de abuso em eventos esportivos (controle antidopagem) e na toxicologia

ocupacional para a monitorização da exposição de trabalhadores, já que possuem

vantagens em comparação com as amostras convencionais. As técnicas que

empregam o conceito de manchas secas (como a DBS), são exemplos de técnicas de

microamostragem, que pode ser definida como a utilização de uma quantidade inferior

a 50 μL de amostra biológica para realização as análises (toxicológicas) [29].

A técnica de DBS oferece inúmeras vantagens em relação a outras formas

de obtenção de amostras de sangue que se têm disponíveis, que dependem da

punção da veia do paciente por pessoa especializada, são invasivas, com risco de

surgimento de edemas ou flebites, além de necessitarem de um volume maior de

amostra (mínimo de 0,5 mL para neonatos), o que leva a maior desconforto do doador,

principalmente crianças ou animais. Já o DBS necessita de um pequeno volume de

amostra, resultando em menores custos de transporte e armazenamento, e torna

menos invasiva para pacientes ou para animais de experimentação, podendo ser

treinado para coleta na própria residência. E, ainda, há estudos que têm demonstrado

que, por ter sido submetida a processo de secagem, há redução da degradação de

compostos contendo ésteres e carbonatos, por hidrólise química e enzimática,

oferecendo maior estabilidade aos analitos ali presentes [30].

Na área de monitoramento terapêutico, onde se estuda a possibilidade de

o paciente realizar a coleta da amostra de DBS em sua residência e enviar o cartão

por correio, Silva et al analisaram a estabilidade da fluoxetina e norfluoxetina em

amostra de DBS mantidas a 25 e 45 °C por 14 dias e ambos analitos foram estáveis

nessas condições [31], ou seja, mantiveram suas concentrações dentro de ±20% da

concentração inicial, critério de estabilidade adotado pela Scientific Working Group for

Forensic Toxicology (SWGTOX) [32].

Linder et al também avaliaram a estabilidade de amostras de DBS para os

fármacos carbamazepina, lamotrigina, levetiracetam e ácido valpróico por um ano em

Page 19: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

19

temperatura ambiente, 48 horas para 50 °C e 3 meses para -80 °C e todos analitos se

mantiveram estáveis nas três condições estudadas [33].

Atualmente, devido o baixo custo da coleta e um menor espaço de

armazenamento para replicatas de uma mesma amostra, é discutido o uso de DBS

para construção de biobancos de proteínas que poderiam se tornar futuros

biomarcadores de doenças. Björkesten et al estudou a estabilidade de noventa e duas

proteínas com relevância na área de oncologia a temperaturas de 4 e -24 °C por 30

anos e mostrou que não houve prejuízo na detecção da maioria das proteínas

estudadas, principalmente quando mantidas a -24 °C [34].

Page 20: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

20

2. OBJETIVOS

Estudar a estabilidade de algumas das mais relevantes NPS, pertencentes

aos grupos dos NBOMes e das catinonas sintéticas, em amostras de manchas de

sangue seco em papel.

Para atingir este objetivo, foram delineados os seguintes objetivos

específicos:

• Desenvolver e validar método analítico para identificação e quantificação

de NPS em amostras de DBS;

• Desenvolver e validar método analítico para identificação e quantificação

de NPS em amostras de sangue total;

• Comparar a estabilidade das NPS nas duas matrizes, quando

armazenadas em diferentes condições de temperatura (ambiente, 4 °C e -

20 °C) por até 6 meses.

Page 21: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

21

3. METODOLOGIA

3.1 Análise de NBOMes

3.1.1 Reagentes

Os padrões analíticos certificados do 25B 100%, 25C 100%, 25D, 25E,

25G, 25H 100% e 25I-NBOMe 100% foram adquiridos da Cayman Chemical (Ann

Arbor, MI, EUA) e do LSD-d3 99,7%, usado como padrão interno, da Cerilliant®

(Round Rock, TX, EUA). Acetonitrila, metanol e ácido fórmico, grau HPLC, foram

adquiridos da Scharlau (Barcelona, Espanha). Éter butil t-metílico (MTBE) foi obtido

da Sigma-Aldrich® (St Louis, MO, EUA). Tetraborato de sódio foi adquirido da LS

Chemicals (Ribeirão Preto, SP, Brasil). Água ultra-pura foi obtida de equipamento Milli-

Q® RG da Millipore (Billerica, MA, USA).

3.1.2 Instrumentação

As análises de NBOMes nas matrizes DBS e sangue total foram realizadas

em sistema de cromatografia líquida 1260 Infinity (Agilent Technologies, Santa Clara,

CA, USA) acoplado a espectrômetro de massas com analisador de massas híbrido

triplo quadrupolo-iontrap linear 5500-QTRAP® (ABSciex, Concord, ON, Canadá). Foi

utilizada fonte de ionização do tipo electrospray em modo positivo. Nitrogênio foi

usado como gás de secagem, de nebulização e de colisão. Os parâmetros otimizados

da fonte de ionização foram: temperatura de 700 °C; voltagem do spray de 3,5 kV;

potencial de entrada (EP), 10 V; pressão do gás de nebulização (GS1), 40 psi; pressão

do gás de secagem (GS2), 50 psi; pressão do gás de dessolvatação (curtain gas), 25

psi. A aquisição de dados foi realizada no modo de aquisição por monitoramento de

reações múltiplas (MRM), sendo monitorada duas transições para cada analito, a mais

intensa usada para a quantificação e a segunda como qualificadora (para

confirmação). A otimização das voltagens de transmissão e energias de fragmentação

de cada MRM foi realizada por infusão direta de soluções padrões de cada analito (20

ng/mL, em água/metanol, 1:1, v/v). Software Analyst® 1.6.2 foi usado para aquisição

Page 22: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

22

dos dados e MultiQuant™ 3.0.1 para o processamento (ABSciex, Concord, ON,

Canadá).

Para a separação cromatográfica foi utilizada coluna de fase reversa C18

Atlantis® T3 (150 x 3 mm, 3 µm, Waters Dublin, Irlanda), termostatizada a 40 °C. A

fase móvel foi composta de água ultra-pura na fase A e acetonitrila na fase B, ambas

contendo ácido fórmico (0,1%, v/v) como aditivo, com vazão de 0,5 mL/min. O

gradiente de eluição iniciou-se com 10% de B, seguido do aumento linear até 95% em

15 min, mantido nesta condição por 2 min e retornando à condição inicial em 0,5 min

e resultando em um total de análise de 22 min.

3.1.3 Extração das amostras de sangue total para análise de NBOMes

Para a extração das amostras de sangue total para análise de NBOMes, foi

realizada extração líquido-líquido em tubo de polipropileno de 2 mL, para onde foram

transferidos inicialmente 300 µL de sangue total adicionado, seguido por 50 µL de

solução de LSD-d3 (10 ng/mL, utilizado como padrão interno), 300 µL de solução

saturada de tetraborato de sódio e 1,2 mL de MTBE. Essa mistura foi agitada com

auxílio de vórtex por 5 min, centrifugada a 8.000 rpm por 5 min e 900 µL da fase

orgânica foi transferida para outro tubo para ser evaporada completamente, sob fluxo

constante de N2 e aquecimento (40 °C). As amostras foram ressuspendidas com 500

µL de metanol e 5 µL foram injetados no sistema cromatográfico descrito

anteriormente.

3.1.4 Preparo e extração do DBS

Para preparo das amostras de sangue adicionado, às amostras de sangue

total branco foi adicionada solução de trabalho nas concentrações do calibrador ou

controle. Estas amostras foram então aplicadas, à volume fixo de 15 µL, nos discos

de DBS previamente cortados (6 mm) e mantidos em temperatura ambiente (25 °C)

para completa secagem (3 h). A Figura 1 mostra um esquema do preparo das

amostras de DBS.

Page 23: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

23

Fig. 1 Fluxograma do preparo da amostra de sangue total adicionado e sua

aplicação nos discos de DBS previamente cortados do cartão Whatman®.

Para a extração, cada disco foi transferido para tubo de polipropileno de 2

mL, onde foram adicionados 300 µL de solvente extrator (metanol/água, 75:25 v/v)

contendo o padrão interno LSD-d3 (0,5 ng/mL). As amostram foram agitadas com

auxílio de vórtex por 10 min, centrifugadas a 10.000 rpm por 5 min, 150 µL da solução

extratora sobrenadante foi transferida para vials e 20 µL foi injetado no sistema

analítico descrito no item 3.1.2.

3.1.4.1 Teste de saturação dos discos de DBS

Para que o máximo de sangue total fosse utilizado no preparo do DBS,

sem que houvesse seu extravasamento devido a saturação do papel, testou-se,

em duplicata, a aplicação volumes de amostra crescentes aos discos de DBS. O

volume de 15 µL foi adotado para os ensaios, por ser o maior volume de sangue

aplicado ao disco, sem que houvesse seu extravasamento para a bancada (Figura

2).

Page 24: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

24

Fig. 2 Resultado do teste de saturação dos discos de DBS. Utilizando 20

µL de amostra de sangue total, observou-se o seu extravasamento. Dessa forma, foi

padronizado o uso de 15 µL de amostra por disco.

3.1.4.2 Otimização de misturas

Para determinar qual seria o melhor solvente extrator ou a mistura

destes, foi realizado um. Amostras de DBS foram preparadas na concentração de 10

ng/mL e, após secagem completa, foram extraídas, em duplicata, utilizando como

solvente extrator: metanol, acetonitrila, água, metanol-acetonitrila 1:1, metanol-água

1:1, acetonitrila-água 1:1 e metanol-acetonitrila-água 1:1:1. Essas amostras foram

injetadas e as áreas absolutas de cada analito foram avaliadas por planejamento

experimental do tipo centroide simplex, em software Unscrambler® X 10.3 (CAMO

Software AS, Oslo, Norway). Dessa forma, foi determinado que a melhor proporção

entre os solventes testados para obter máxima recuperação dos analitos foi metanol-

acetonitrila 75:25, v/v.

Page 25: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

25

Fig. 3 Gráfico da melhor proporção de solventes a ser utilizado para conseguir máxima

extração dos NBOMes.

3.2 Catinonas sintéticas

3.2.1 Reagentes

Os padrões analíticos certificados de butilona 99,1%, pentilona 99,2%,

mefedrona 99,8% e benzedrona 100,0% foram adquiridos da Cayman Chemical (Ann

Arbor, MI, EUA) e do MDMA-d5 99,9%, usado como padrão interno, da Cerilliant®

(Round Rock, TX, EUA). Metanol, grau HPLC, foi adquirido da Scharlau (Barcelona,

Espanha). Éter butil t-metílico (MTBE) e ácido fórmico foram obtidos da Sigma-

Aldrich® (St Louis, MO, EUA). Tetraborato de sódio foi adquirido da LS Chemicals

(Ribeirão Preto, SP, Brasil). Água ultra-pura foi obtida de equipamento Milli-Q® RG da

Millipore (Billerica, MA, USA).

3.2.2 Instrumentação

As análises de catinonas sintéticas foram realizadas em sistema de

cromatografia líquida Nexera UHPLC, acoplado a espectrômetro de massas com

analisador de massas triplo quadrupolar LCMS8040 (Shimadzu, Kyoto, Japão).

Page 26: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

26

Para as análises em DBS foi usada coluna Kinetex™ XB-C18 (50 x 4,6 mm,

2,6 µm, Phenomenex®, EUA), termostatizada a 40 °C. A fase móvel foi composta por

água ultra-pura (A) e metanol (B), tendo ácido fórmico (0,1%, v/v) como aditivo e vazão

de 0,35 mL/min. O gradiente de eluição inicia com 10% de B, seguido de aumento

linear até 95% de B em 3,9 min, mantido nesta condição por 2 min e retornando as

condições iniciais em 0,2 min, obtendo-se tempo total de análise de 8,5 min. Para as

análises de catinonas sintéticas em sangue total, foi utilizada coluna Force™ Biphenyl

(50 x 2,1 mm, 1,8 µm, Restek®, EUA), termostatizada a 50 °C, com mesma fase móvel

descrita para análises em DBS, porém vazão de 0,5 mL/min e gradiente de eluição

iniciando com 5% de B, seguida de aumento linear até 95% de B em 2,7 min, mantido

nesta condição por 1,4 min e retornando as condições iniciais em 0,1 min, obtendo-se

tempo total de análise de 6 min.

O espectrômetro de massas foi equipado com fonte de ionização por

electrospray em modo positivo para essas análises. Os parâmetros da fonte de

ionização foram otimizados, e as melhores condições obtidas foram: temperatura do

bloco, 400 °C; voltagem do capilar, 4,5 kV; fluxo do gás nebulizador (N2), 3 L/min;

temperatura da linha de dessolvatação, 250 °C; fluxo do gás de secagem (N2) 15 L/min

e pressão do gás de colisão (Ar), 230 kPa. A aquisição de dados foi realizada no modo

MRM. Para cada analito, duas transições foram monitoradas, sendo a mais intensa

usada para a quantificação e a segunda como qualificadora (para confirmação). Para

a otimização dessas transições, assim como das energias ótimas a serem usadas nos

quadrupolos (Q1 e Q2) e da energia de colisão (CE), foi feita infusão direta no LC (FIA,

flow injection analysis) de soluções padrão contendo cada analito na concentração de

1000 ng/mL em metanol. Os dados foram adquiridos e processados em software

LabSolutions 5.75 SP2.

3.2.3 Extração das amostras de sangue total para análise de catinonas

sintéticas

Em tubo de polipropileno de 2 mL foram adicionados 200 µL de sangue

total adicionado, 50 µL de solução estoque de MDMA-d5 (250 ng/mL, IS), 200 µL de

solução saturada de tetraborato de sódio e 800 µL de MTBE. Os tubos foram agitados

com auxílio de vórtex por 5 min, centrifugados a 8.000 rpm por 5 min e 600 µL da fase

Page 27: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

27

orgânica transferida para outro tubo para completa evaporação do solvente, sob fluxo

constante de N2 e aquecimento (40 °C). As amostras foram ressuspendidas com 500

µL de metanol e 1 µL foi injetado no sistema analítico descrito no item 3.2.2.

3.2.4 Preparo e extração do DBS

Para preparo das amostras de sangue adicionado, às amostras de sangue

total branco foi adicionada solução de trabalho nas concentrações do calibrador ou

controle (Figura 1). Estas amostras foram então aplicadas, à volume fixo de 15 µL,

nos discos de DBS previamente cortados (6 mm) e mantidos em temperatura

ambiente (25 °C) para completa secagem (3 h).

Para a extração, cada disco foi transferido para tubo de polipropileno de 2

mL, onde foram adicionados 300 µL de solvente extrator (metanol) contendo o padrão

interno MDMA-d5 (10 ng/mL). As amostram foram agitadas com auxílio de vórtex por

10 min, centrifugadas a 10.000 rpm por 5 min, 150 µL da solução extratora

sobrenadante foi transferida para vials e 2 µL foi injetado no sistema analítico descrito

no item 3.2.2.

3.2.4.1 Otimização de misturas

Para determinar qual seria o melhor solvente extrator ou a mistura destes, foi

realizado um. Amostras de DBS foram preparadas na concentração de 1000 ng/mL e,

após secagem completa, foram extraídas, em duplicata, utilizando como solvente

extrator: metanol, acetonitrila, água, metanol-acetonitrila 1:1, metanol-água 1:1,

acetonitrila-água 1:1 e metanol-acetonitrila-água 1:1:1. Essas amostras foram

injetadas e as áreas absolutas de cada analito foram avaliadas por planejamento

experimental do tipo centroide simplex, em software Unscrambler® X 10.3 (CAMO

Software AS, Oslo, Norway). Dessa forma, foi determinado que o melhor solvente

testado para obter máxima recuperação dos analitos foi metanol.

Page 28: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

28

Fig. 4 Gráfico da melhor proporção de solventes a ser utilizado para

conseguir máxima extração das catinonas sintéticas.

3.3 Validação

Todos os métodos foram validados de acordo com os parâmetros

recomendados pela SWGTOX para análises quantitativas em matrizes biológicas [32].

Page 29: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

29

4. RESULTADOS

4.1 Artigo 1

Os resultados obtidos no estudo de estabilidade dos NBOMes na matriz

DBS foram publicados na revista Forensic Toxicology (Online ISSN 1860-8973, fator

de impacto 3,744), DOI 10.1007/s11419-017-0391-8. O texto do manuscrito aprovado

para publicação será apresentado a seguir.

Page 30: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

30

Development and validation of a sensitive LC–MS/MS method to analyze NBOMes in

dried blood spots: evaluation of long-term stability

Kelly Francisco da Cunha1, Marcos Nogueira Eberlin2, Jose Luiz Costa1,3

1Campinas Poison Control Center, Faculty of Medical Sciences, University of

Campinas, Campinas, São Paulo 13083-859, Brazil

2ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of

Campinas, Campinas, São Paulo 13083-970, Brazil

3Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo

13083-859, Brazil

Page 31: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

31

Abstract

Purpose We evaluated the use of dried blood spots (DBS) to determine seven

NBOMes by liquid chromatography–tandem mass spectrometry (LC–MS/MS), and

also evaluated the stability of these compounds in this dried matrix.

Methods An LC–MS/MS method was developed and fully validated to quantify seven

NBOMes (25C-, 25H-, 25I-, 25B-, 25G-, 25D- and 25E-NBOMe) in DBS samples. The

extraction procedure was optimized using mixture design experiment. Stability study

was performed in two different concentrations over 180 days at three different storage

temperatures.

Results Good linearity, and limits of detection and quantitation of 0.05 and 0.1 ng/mL,

respectively, were obtained. The interday imprecision (n = 15) and bias (n = 15) were

not higher than 11.4 and 10.3%, respectively, and no carryover was observed. All

analytes remained stable in DBS at − 20, 4 °C and even at room temperatures for 180

days, except 25B-NBOMe and 25I-NBOMe which experienced degradation (22 and

21%, respectively) of the initial concentration at room temperature after 180 days of

study. The method was applied to a DBS of an authentic postmortem blood from an

NBOMe user, and it was found to be reliable with good selectivity and specificity.

Conclusions DBS has been found to allow reliable, sensitive, accurate and robust

detection and quantification of seven NBOMes via LC–MS/MS. Also, DBS provided

great stability to most of the compounds at room temperature, and no degradation was

observed for DBS kept at 4 and − 20 °C. This is the first trial to analyze NBOMes in

DBS samples to our knowledge.

Keywords Dried blood spots (DBS), NBOMes, new psychoactive substances (NPS),

designer drugs, liquid chromatography–tandem mass spectrometry

Page 32: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

32

Introduction

NBOMes (Fig. 1) are N-methoxybenzyl derivatives of the 2C hallucinogenic

compounds, and were initially synthesized for research purposes as a potent 5-HT2A

receptor agonist [1]. The presence of the N-methoxybenzyl moiety increases the

affinity of the molecule to serotonergic receptors [2]. For instance, 25I-NBOMe was

found to have at least ten times the affinity of its analog 2C-I, producing great behavior

responses in animals [3].

NBOMes are classified as new psychoactive substances (NPS), a class of

substances of abuse which was not controlled by the 1961 United Nations Single

Convention on Narcotic Drugs or the 1971 Convention on Psychotropic Substances,

but they pose serious public health threats [4]. NBOMes have recently become popular

as drugs of abuse, particularly because they are sold over the Internet as an alternative

to classical (and illegal) hallucinogenic lysergic acid diethylamide (LSD). Since 2013,

several compounds of this group were considered illegal in many countries such as in

Brazil since 2014.

Fig. 1 Structures of seven common NBOMes.

These drugs are powerful and are consumed orally, and many cases of

intoxications were reported in the last few years. Most effects are related to serotonin

syndrome, and include hallucination, aggression, self-harm, agitation, mydriasis,

Page 33: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

33

tachycardia, hypertension, fever, seizures and rhabdomyolysis [1, 5–11]. Besides the

serotonergic effects, NBOMes are expected to interact with α-adrenergic receptors,

because they exhibit stimulant effects [8, 10]. Many cases of fatal intoxications have

been also reported [1, 4–6, 12].

Due to their high potency, few milligrams of NBOMes are sufficient to

produce prolonged effects. Poklis et al. [13] analyzed blotter paper containing different

NBOMes, and found concentrations between 510 and 1500 μg of the main constituent,

and also traces of other NBOMes in same samples (ranging from 7 to 15 μg/blotter).

As a consequence of such low effective dose, the concentration of NBOMes in

biological fluids are normally very low, typically in the order of pg/mL (Table 1). All

published methods to quantify NBOMes in biological samples have employed liquid

chromatography–tandem mass spectrometry (LC–MS/MS) [14, 15].

Dried blood spot (DBS) technique has been reevaluated recently and is

gaining growing popularity as a faster, less invasive and simpler sampling procedure

in the bioanalytical, clinical and pharmaceutical fields [16–19]. The DBS sample

process also requires no anticoagulants or plasma separations, and the samples can

be often stored for a long time at room temperature without any appreciable analyte

loss. The DBS technique also leads to a minimum risk of analyst infection by pathogens

such as HIV or hepatitis [17, 20, 21].

In preclinical pharmacokinetics studies, the DBS technique also improves

data quality, because it enables serial samples from a single animal, significantly

reduces the number of animals required and offers significant ethical and cost benefits.

These benefits are possible because of very low blood volume sampled at each time

point [22].

Although the DBS technique is nowadays widely used in clinical diagnostics

and therapeutic drug monitoring, not many methods have been reported dealing with

DBS use in forensic toxicology and analysis of abused drugs [20, 21, 23–29], and no

NBOMe analytical protocols using DBS have been reported, to the best of our

knowledge. We have therefore tested the use of DBS to determine seven common

NBOMes by LC–MS/MS. We also evaluated the stability of these compounds in this

matrix over 180 days at three different storage temperatures.

Page 34: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

34

Table 1 Literature review on the analysis of NBOMes in biological samples.

Analyte Matrix Sample

preparation

LOD

(ng/mL)

LOQ

(ng/mL)

Linearity

(ng/mL)

Detected

blood

concentration

(ng/mL)

Reference

25B-NBOMe Blood

(200 µL) LLE 0.0053 0.0159 0.02 – 2.0 38.4 - 661 [39]

25C-NBOMe

Blood, urine, tissue

homogenates

(2 mL)

SPE NA NA 0.05 – 10 0.5 – 2.1 [12]

25B-NBOMe Plasma, urine NA 0.1 0.1 (plasma)

1.0 (urine) 0.1 - 10 0.7 – 10.7 [11]

25I-NBOMe

25B-NBOMe

Blood

(250 µL) LLE 0.2 0.5 0.5 - 20 1.6 [31]

25I-NBOMe Blood PP 0.2 0.5 0.5 - 20 0.76 [32]

Page 35: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

35

25C-NBOMe

Blood, urine,

vitreous humor, liver

and gastric content

(500 µL)

LLE NA 0.1 0.1 - 10 0.6 [6]

25B-NBOMe Serum, urine

(500 µL) LLE 0.01 0.025 0.025 – 2.0 0.18 [42]

25I-NBOMe Blood

(1 mL) SPE NA 0.025 0.025 – 2.0 0.41 [33]

25H-NBOMe, 25D-

NBOMe, 25B-NBOMe,

25G-NBOMe, 25I-

NBOMe

Urine

(500 µL) SPE 0.1 1.0 1.0 - 100 [17]

25B-NBOMe, 25C-

NBOMe, 25D-NBOMe,

25H-NBOMe, 25I-

NBOMe, 25T2-NBOMe

Blood, plasma, urine

(500 µL) SPE

0.005 -

0.01 0.01 - 0.02 0.01 - 20 [41]

25I-NBOMe Serum

(1 mL) LLE 0.1 0.1 0.1 - 10 0.76 [7]

25C-NBOMe, 25I-

NBOMe

Serum

(1 mL) SPE 0.01 0.03 0.03 – 2.0 0.25 - 2.8 [14]

LOD limit of detection, LOQ limit of quantification, LLE liquid-liquid extraction, SPE solid-phase extraction, NA not available, PP protein

precipitation

Page 36: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

36

Materials and methods

Standards and chemicals

Reference materials of 25B-NBOMe, 25C-NBOMe, 25H-NBOMe, 25I-

NBOMe, 25G-NBOMe, 25D-NBOMe and 25E-NBOMe were purchased from Cayman

Chemical (Ann Arbor, MI, USA); LSD-d3 (used as internal standard, IS) was purchased

from Cerilliant (Round Rock, TX, USA). Acetonitrile, methanol and formic acid (98–

100%) were purchased from Scharlau (Barcelona, Spain). Ultrapure deionized water

was supplied by a Milli-Q RG unit from Millipore (Billerica, MA, USA). All solvents

employed in the extraction were HPLC grade, and LC–MS grade for the

chromatographic system. Whatman 903 Protein Saver Cards™ were obtained from

GE Healthcare Bio-Sciences (Pittsburgh, PA, USA).

Standard solution preparation

Stock solutions of NBOMes were prepared by dilution of reference materials

in methanol. Calibrator working solutions at 1, 2, 5, 10, 50 and 100 ng/mL were

prepared by appropriate dilution of the stock solutions in methanol. Quality control (QC)

working solutions were prepared in methanol at low (3 ng/mL), medium (20 ng/mL) and

high (80 ng/mL) concentrations. IS solution (LSD-d3, 0.5 ng/mL) was prepared by

appropriate dilution in methanol/acetonitrile mixture (75:25, v/v). All solutions were

stored at − 20 °C.

DBS preparation

Fortified whole blood was prepared by dilution of calibrator and QC working

solutions in blank blood. For the DBS preparation, 15 μL of blank or fortified whole

blood was spotted onto a 6-mm-diameter pre-punched Whatman 903 DBS paper cards

disc. The blood spots were allowed to dry at room temperature for 3 h before extraction.

Page 37: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

37

Extraction procedure

The 6-mm-diameter disc was placed in a 2-mL polypropylene (Eppendorf)

tube. The extraction was performed with 300 μL of the IS solution. The tubes were

capped, vortexed for 10 min and centrifuged at 10,000 rpm for 5 min (room

temperature). The supernatant (150 μL) was transferred to LC–MS/MS vials.

Instrumentation

The DBS analyses were performed on a 1260 Infinity liquid chromatography

system (Agilent Technologies, Santa Clara, CA, USA) coupled to a 5500-QTRAP®

hybrid triple quadrupole mass spectrometer (ABSciex, Concord, ON, Canada).

The chromatographic separation was performed with a C18 column (Atlantis

T3, 150 × 3 mm, particle size 3 μm, Waters, Dublin, Ireland), maintained at 40 °C. The

mobile phase consisted of ultra-pure water (A) and acetonitrile (B), both containing

formic acid (0.1%, v/v). The gradient elution was programmed as follows: 10% B,

followed by a linear change to 95% B over 15 min, held at 95% B for 2 min and returned

to initial conditions over 0.5 min (total run time of 22 min). The mobile phase flow rate

was 0.5 mL/min.

The 5500-QTRAP® mass spectrometer was equipped with a

TurboIonSpray™ interface using electrospray ionization in the positive ionization

mode. Nitrogen was used as curtain, collision and nebulizer gas. The source

parameters were: ion source temperature, 700 °C; ion spray voltage, 3.5 kV; entrance

potential (EP), 10 V; nebulizer gas (GS1) pressure, 40 psi; auxiliary gas (GS2)

pressure, 50 psi; and curtain gas pressure, 25 psi. The analyses were performed in

multiple reaction monitoring (MRM) mode. For each compound, two MRM transitions

were chosen for quantification and confirmation, and optimized by constant infusion of

working solutions of each analyte (20 ng/mL in water/methanol, 1:1 v/v). Table 2 shows

the optimized conditions of declustering potential (DP), collision energy (CE), collision

cell exit potential (CXP) and the retention time for NBOMes and LSD-d3. Analyst 1.6.2

software was used for data collection and MultiQuant 3.0.1 for data processing (both

ABSciex).

Page 38: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

38

Table 2 Parameters for analysis of seven NBOMes and LSD-d3 by liquid

chromatography–tandem mass spectrometry (LC–MS/MS).

Analyte MRM transitions

(m/z) DP (V) CE (V) CXP (V)

Retention time

(min)

25B-NBOMe

380.2121.1

380.291.1

66

66

25

63

11

13

9.88

25C-NBOMe

336.2121.1

336.291.1

81

81

23

47

13

9

9.71

25H-NBOMe

302.2121.1

302.290.9

66

66

23

53

7

11

9.00

25I-NBOMe

428.2121.0

428.291.0

76

76

25

67

13

11

10.18

25G-NBOMe

330.0121.0

330.091.0

92

92

26

51

9

9

10.13

25D-NBOMe

316.0121.0

316.091.0

92

92

23

50

6

8

9.74

25E-NBOMe

330.2121.0

330.291.0

90

90

24

59

6

6

10.38

LSD-d3 (IS)

327.4226.2

327.4210.1

50

50

31

57

5

11

7.81

Quantifier transitions were underlined

MRM multiple reaction monitoring, DP declustering potential, CE collision energy, CXP

collision cell exit potential, IS internal standard

Page 39: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

39

Validation of the method

The method was validated generally according to the guidelines of Scientific

Working Group for Forensic Toxicology (SWGTOX) published for quantitative analysis

[30]. Parameters evaluated were sensitivity and linearity, specificity, accuracy and

imprecision, matrix effects, carryover and stability.

Sensitivity and linearity

Analyte identification criteria were a symmetric peak eluting within ± 2%

relative standard deviation (RSD) of average calibrator retention times, a signal-to-

noise ratio of at least 3 and a qualifier/quantifier MRM peak area ratio within ± 20%

RSD of the mean ratio of the calibrators. The limit of detection (LOD) was defined as

the lowest concentration that reached the identification criteria. The limit of quantitation

(LOQ) was the lowest concentration fulfilling the identification criteria, but with signal-

to-noise ratio of at least 10 and quantifying within 20% RSD of each target

concentration. Calibration curves were constructed following literature data of real

NBOMe concentrations in acute poisoning and postmortem cases [6, 11, 31–33].

Linearity was assessed over 5 days and calibration curves were fit by linear least

squares regression (1/x2 weighting) with concentrations of 0.1, 0.2, 0.5, 1.0, 5.0 and

10 ng/mL over the dynamic range for each analyte. Calibrators were required to

quantify within ± 20% RSD of each target concentration.

Specificity

Endogenous interferences were assessed by analyzing blank whole blood

samples, from ten different individuals. Potential exogenous interferences by 28

commonly encountered drugs of abuse and medications were evaluated by fortifying

them at 500 ng/mL into LOQ and negative (only IS) samples. No interference was

noted; all analytes in the LOQ were quantified within ± 20% RSD of target with

acceptable qualifier/quantifier MRM ratios, and no peaks in the negative sample

satisfied LOD criteria.

Page 40: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

40

Accuracy and imprecision

Intraday and interday accuracy and imprecision data for seven NBOMes

were evaluated with 3 replicates of each QC concentration over 5 days (ninter = 15).

Accuracy was defined as percent target concentration and was required to be within ±

20% RSD of the target concentration; imprecision was also assessed within ± 20%

RSD. One-way analysis of variance (ANOVA) was performed on each QC

concentration to assess potentially significant interday variability at p<0.05.

Matrix effects

Matrix effects were determined by fortifying two sets of samples at low and

high QC concentrations. In set A, 10 blank blood samples were spotted and carried

through the extraction procedure, and the extraction solvent was fortified with analytes

and IS at the QC concentrations. In set B, the same volume of solvent

(methanol/acetonitrile, 75:25, v/v) only was fortified with analytes and IS (neat sample).

The final samples of the sets A and B were transferred directly to autosampler vials.

Matrix effect was calculated as the peak area ratio of set A to set B, subtracted by 1,

and expressed as a percentage; a negative percentage represents peak suppression,

and a positive percentage represents peak enhancement.

Carryover

Blank blood was fortified with all analytes at the highest point of each

calibration curve; the extract was injected into the LC–MS/MS instrument, and then a

blank sample extract was injected. Carryover was absent if no analyte peak met LOD

criteria for any blank injection.

Stability

Stability of the samples was evaluated by fortifying blank blood with analytes

at low (0.3 ng/mL) and high (8.0 ng/mL) QC concentrations (n = 3) and analyzed after

being stored at ambient, refrigerated (4 °C) and freeze (− 20 °C) temperatures, for 7,

15, 30, 60, 90 and 180 days. Additionally, processed samples were stored on the 4 °C

Page 41: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

41

autosampler for 24 h before being reinjected. Stability was observed if concentration

changes were ± 20% of the initial target concentrations.

Results and discussion

As mentioned before, NBOMes are found in biological fluids in trace levels.

Despite many advantages of DBS, one of its limitations is the low sample quantity,

because only 15 μL (almost one drop volume) of whole blood was spotted on paper.

The combination of these factors makes NBOMes-DBS analysis a challenge, requiring

the development of a highly sensitive method.

Prior to method validation, the DBS extraction procedure was optimized

using a mixture design experiment (The Unscrambler X, version 10.3, CAMO Software

AS, Oslo, Norway), in which different ratios of methanol, acetonitrile and water were

evaluated. Major parameters such as the presence of formic acid (0.1%, v/v) in

extraction solvent and type of shaking (vortex mixer or ultrasonic bath) were also

evaluated. We found that a methanol/acetonitrile mixture (75:25, v/v) without formic

acid and vortex mixing for 10 min provided the best extraction efficiency.

To avoid hematocrit interference, which is a well-documented DBS problem

[34–38], we decide to use a fixed blood volume (15 μL) and whole spot analysis.

The procedure led to the LOD and LOQ of 0.05 and 0.1 ng/mL, respectively

(Fig. 2), using very small blood volume (15 μL). Lower detection limits have been

reported but using large volumes of whole blood samples [39]. The method was also

found to be linear from 0.1 to 10 ng/mL for all the seven NBOMes, with 1/x2 weighted

linear regression. Fortunately, this range is within that typically found in human

intoxications [12, 32, 33].

As summarized in Table 3, the imprecisions (intraday and interday %RSD)

and accuracy biases (%) in 5 days were satisfactory at all three QC concentrations,

with no more than 20.0% RSD.

No interference was observed when the LOQ was verified in the presence

of 500 ng/mL of other drugs of abuse and pharmaceuticals, and no carryover was

observed even at 10 ng/mL (highest analyte concentration).

Page 42: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

42

Fig. 2 Multiple reaction monitoring (MRM) chromatogram of a dried blood spot (DBS)

made of whole blood spiked with a mixture of the seven NBOMes. The concentration

of each NBOMe in the original blood was 0.1 ng/mL (limit of quantification). In 25G-

NBOMe (the former peak) and 25E-NBOMe (the latter peak) panels, two peaks

appeared because they are regioisomers. The higher and lower peaks appeared

overlapped; higher: quantifier ion; lower: qualifier ion. Sample preparation and

analytical conditions are described in the experimental section.

Page 43: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

43

Table 3 Method validation regarding imprecisions, accuracy biases and matrix effects

for the determination of seven NBOMes in dried blood spots by LC-MS/MS.

Analyte

Intraday imprecision

(%RSD) (n=3)

Low Med High

Interday imprecision

(%RSD) (n=15)

Low Med High

Bias (%) (n=15)

Low Med High

Matrix effect (%) (n = 10)

Low High

25B-NBOMe 20.0 4.5 4.8 10.7 6.2 3.2 2.0 -3.4 1.2 -11.4 14.0

25C-NBOMe 11.2 2.5 2.1 6.8 9.0 7.2 4.9 -10.3 -5.1 17.2 24.8

25H-NBOMe 5.1 3.7 2.3 6.5 7.6 4.0 6.0 -7.9 -3.5 50.5 64.6

25I-NBOMe 4.7 5.3 4.1 4.6 7.3 6.1 4.9 -5.5 -3.2 1.9 6.1

25G-NBOMe 4.4 6.7 5.8 10.7 7.4 6.4 0.4 -8.9 -5.3 -6.3 4.1

25D-NBOMe 7.1 3.5 3.8 8.1 8.0 5.1 0.9 -8.5 -3.9 16.0 20.8

25E-NBOMe 20.0 3.6 5.1 11.4 8.0 4.4 1.1 -6.2 -1.7 -1.3 5.6

The matrix effects showed great variation according to each analyte. The

highest enhancement effects were observed for 25H-NBOMe (50.5 and 64.6%).

Medium enhancement effects were observed for 25C-NBOMe and 25D-NBOMe. The

other analytes showed minimal matrix effects (Table 3).

The stability experiments showed that the analytes were generally stable in

DBS for 180 days at ambient, refrigerated and freeze temperatures, except for 25B-

NBOMe (low QC, 0.3 ng/mL) and 25I-NBOMe (high QC, 8 ng/mL), which had a

decrease more than 20% of each initial concentration at room temperature after 180

days (Figs. 3 and 4).

Data for the stability of NBOMes in biological samples are limited. Soh and

Elliot [40] investigated the stability of 13 NPS in blood and plasma (not for DBS) at

room temperature (20–23 °C) over 21 days, finding that 25C-NBOMe was stable under

the test conditions. However, Johnson and coworkers [41] studied the stability of these

substances in sample extracts, storing the vials at 4 °C for 7 days after sample

Page 44: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

44

extraction, and observed discrepant results among sample extracts (urine, plasma and

whole blood), with major deterioration of analytes in whole blood extracts specially for

25I-NBOMe, 25T2-NBOMe, 25B-NBOMe and 25C-NBOMe, with decay of 50.8, 37.8,

35.2 and 7.6%, respectively.

Poklis and coworkers [42] had studied the auto-sampler stability of 25B-

NBOMe and 25H-NBOMe over 72 h of extraction of serum and urine samples, and

observed good stability.

As a proof of reliability for the developed DBS method, we tested a DBS

made of whole blood obtained from a cadaver of a drug user. We could detect distinct

peaks using transitions at m/z 428.2 > 121.0 and 428.2 > 91.0, showing the presence

of 25I-NBOMe (Fig. 5) and quantified it to be 0.5 ng/mL.

Fig. 5 MRM chromatogram obtained from an authentic DBS sample: a LSD-d3 and b

25I-NBOMe. Both quantifier and qualifier ions are shown overlapped.

Page 45: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

45

Fig. 3 Stabilities of seven NBOMes on DBS at a low concentration (0.3 ng/mL of each in original whole blood) under three different

storage temperatures over 180 days. a 25B-NBOMe, b 25C-NBOMe, c 25H-NBOMe, d 25I-NBOMe, e 25G-NBOMe, f 25D-NBOMe

and g 25E-NBOMe.

Page 46: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

46

Fig. 4 Stabilities of seven NBOMes on DBS at a high concentration (8 ng/mL of each in original whole blood) under three different

storage temperatures over 180 days. Identification of analytes is the same as specified in Fig. 3.

Page 47: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

47

Conclusions

DBS have been found to allow for reliable, sensitive, accurate and robust

detection and quantitation of seven NBOMes via LC–MS/MS. The developed DBS–

LC–MS/MS method was successfully validated with proper figures of merits. Another

major benefit of DBS sampling was that almost all analytes were found to be stable in

the DBS for up to 180 days at room temperature, except for 25B-NBOMe and 25I-

NBOMe which showed slight degradation (22 and 21%, respectively). No degradation

was observed for DBS kept at 4 and − 20 °C.

Acknowledgements

The authors thank Fundação de Amparo à Pesquisa do Estado de São

Paulo – FAPESP (Process Number 2015/10650-8), Conselho Nacional de

Desenvolvimento Científico e Tecnológico – CNPq (Process Number 830525/1999-8),

Fundo de Apoio ao Ensino, à Pesquisa e à Extensão – FAEPEX (Agreement 519.292

MF 86739) and Superintendência da Polícia Técnico-Científica.

Compliance with ethical standards

Conflict of interest There are no financial or other relationships that could

lead to a conflict of interest.

Ethical approval All procedures performed in studies involving human

participants were in accordance with the ethical standards of the institutional research

committee (Comitê de Ética em Pesquisa da UNICAMP – CEP, CAAE

58452716.2.0000.5404 and Superintendência da Polícia Técnico-Científica, ofício No.

766/2015/ATS/SPTC-SSP) and with the 1964 Helsinki Declaration.

Page 48: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

48

References

[1] Suzuki J, Dekker MA, Valenti ES, Cruz FAA, Correa AM, Poklis JL, Poklis A (2015)

Toxicities associated with NBOMe ingestion—a novel class of potent hallucinogens: a

review of the literature. Psychosomatics 56:129–139. doi:10.1016/j.psym.2014.11.002

[2] Nichols DE, Sassano MF, Halberstadt AL, Klein LM, Brandt SD, Elliott SP, Fiedler

WJ (2015) N-Benzyl-5-methoxytryptamines as potent serotonin 5-HT2 receptor family

agonists and comparison with a series of phenethylamine analogues. ACS Chem

Neurosci 6:1165–1175. doi:10.1021/cn500292d

[3] Lawn W, Barratt M, Williams M, Horne A, Winstock A (2014) The NBOMe

hallucinogenic drug series: patterns of use, characteristics of users and self-reported

effects in a large international sample. J Psychopharmacol 28:780–788.

doi:10.1177/0269881114523866

[4] Kueppers VB, Cooke CT (2015) 25I-NBOMe related death in Australia: a case

report. Forensic Sci Int 249:e15–e18. doi:10.1016/j.forsciint.2015.02.010

[5] Walterscheid JP, Phillips GT, Lopez AE, Gonsoulin ML, Chen HH, Sanchez LA

(2014) Pathological findings in 2 cases of fatal 25I-NBOMe toxicity. Am J Forensic Med

Pathol 35:20–25. doi:10.1097/PAF.0000000000000082

[6] Andreasen MF, Telving R, Rosendal I, Eg MB, Hasselstrøm JB, Andersen LV

(2015) A fatal poisoning involving 25C-NBOMe. Forensic Sci Int 251:e1–e8.

doi:10.1016/j.forsciint.2015.03.012

[7] Rose SR, Poklis JL, Poklis A (2013) A case of 25I-NBOMe (25-I) intoxication: a new

potent 5-HT2A agonist designer drug. Clin Toxicol 51:174–177.

doi:10.3109/15563650.2013.772191

[8] Tang MHY, Ching CK, Tsui MSH, Chu FKC, Mak TWL (2014) Two cases of severe

intoxication associated with analytically confirmed use of the novel psychoactive

substances 25B-NBOMe and 25C-NBOMe. Clin Toxicol 52:561–565.

doi:10.3109/15563650.2014.909932

[9] Hill SL, Doris T, Gurung S, Katebe S, Lomas A, Dunn M, Blain P, Thomas SHL

(2013) Severe clinical toxicity associated with analytically confirmed recreational use

Page 49: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

49

of 25I-NBOMe: case series. Clin Toxicol 51:487–492.

doi:10.3109/15563650.2013.802795

[10] Kelly A, Eisenga B, Riley B, Judge B (2012) Case series of 25I-NBOMe exposures

with laboratory confirmation. Clin Toxicol 50:702. doi:10.3109/15563650.2012.700015

[11] Gee P, Schep LJ, Jensen BP, Moore G, Barrington S (2016) Case series: toxicity

from 25B-NBOMe – a cluster of N-bomb cases. Clin Toxicol 54:141–146.

doi:10.3109/15563650.2015.1115056

[12] Kristofic JJ, Chmiel JD, Jackson GF, Vorce SP, Holler JM, Robinson SL, Bosy TZ

(2016) Detection of 25C-NBOMe in three related cases. J Anal Toxicol 40:466–472.

doi:10.1093/jat/bkw035

[13] Poklis JL, Raso SA, Alford KN, Poklis A, Peace MR (2015) Analysis of 25I-

NBOMe, 25B-NBOMe, 25C-NBOMe and other dimethoxyphenyl-N-[(2-

methoxyphenyl) methyl]ethanamine derivatives on blotter paper. J Anal Toxicol

39:617–623. doi:10.1093/jat/bkv073

[14] Poklis JL, Charles J, Wolf CE, Poklis A (2013) High-performance liquid

chromatography tandem mass spectrometry method for the determination of 2CC-

NBOMe and 25I-NBOMe in human serum. Biomed Chromatogr 27:1794–1800.

doi:10.1002/bmc.2999

[15] Poklis JL, Clay DJ, Poklis A (2014) High-performance liquid chromatography with

tandem mass spectrometry for the determination of nine hallucinogenic 25-NBOMe

designer drugs in urine specimens. J Anal Toxicol 38:113–121. doi:10.1093/jat/bku005

[16] Li WK, Tse FLS (2010) Dried blood spot sampling in combination with LC-MS/MS

for quantitative analysis of small molecules. Biomed Chromatogr 24:49–65.

doi:10.1002/bmc.1367

[17] Edelbroek PM, van der Heijden J, Stolk LM (2009) Dried blood spot methods in

therapeutic drug monitoring: methods, assays, and pitfalls. Ther Drug Monit 31:327–

336. doi:10.1097/FTD.0b013e31819e91ce

[18] Koster RA, Touw DJ, Alffenaar J-WC (2015) Dried blood spot analysis; facing new

challenges. J Appl Bioanal 1:38–41. doi:10.17145/jab.15.007

Page 50: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

50

[19] Raynie DE (2016) Supporting bioanalysis with dried blood spots. LC GC N Am

34:834–836. http://www.chromatographyonline.com/supporting-bioanalysis-dried-

blood-spots. Accessed Sept 2017

[20] Mercolini L, Mandrioli R, Sorella V, Somaini L, Giocondi D, Serpelloni G, Raggi

MA (2013) Dried blood spots:liquid chromatography–mass spectrometry analysis of

Δ9-tetrahydrocannabinol and its main metabolites. J Chromatogr A 1271:33–40.

doi:10.1016/j.chroma.2012.11.030

[21] Thomas A, Geyer H, Schanzer W, Crone C, Kellmann M, Moehring T, Thevis M

(2012) Sensitive determination of prohibited drugs in dried blood spots (DBS) for

doping controls by means of a benchtop quadrupole/Orbitrap mass spectrometer. Anal

Bioanal Chem 403:1279–1289. doi:10.1007/S00216-011-5655-2

[22] Kole PL, Majithia R, Singh TRR, Garland MJ, Migalska K, Donnelly RF, McElnay

J (2011) Dried blood spot assay for estimation of metronidazole concentrations in rats

and its application in single animal drug pharmacokinetic study. J Chromatogr B

879:1713–1716. doi:10.1016/j.jchromb.2011.03.060

[23] Mommers J, Mengerink Y, Ritzen E, Weusten J, van der Heijden J, van der Wal S

(2013) Quantitative analysis of morphine in dried blood spots by using morphine-d3

pre-impregnated dried blood spot cards. Anal Chim Acta 774:26–32.

doi:10.1016/j.aca.2013.03.001

[24] Saussereau E, Lacroix C, Gaulier JM, Goulle JP (2012) Online liquid

chromatography/tandem mass spectrometry simultaneous determination of opiates,

cocainics and amphetamines in dried blood spots. J Chromatogr B 885:1–7.

doi:10.1016/j.jchromb.2011.11.035

[25] Jantos R, Veldstra JL, Mattern R, Brookhuis KA, Skopp G (2011) Analysis of 3,4-

methylenedioxymetamphetamine: whole blood versus dried blood spots. J Anal

Toxicol 35:269–273. doi:10.1093/anatox/35.5.269

[26]. Thomas A, Deglon J, Steimer T, Mangin P, Daali Y, Staub C (2010) On-line

desorption of dried blood spots coupled to hydrophilic interaction/reversed-phase

LC/MS/MS system for the simultaneous analysis of drugs and their polar metabolites.

J Sep Sci 33:873–879. doi:10.1002/jssc.200900593

Page 51: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

51

[27] Mercolini L, Mandrioli R, Gerra G, Raggi MA (2010) Analysis of cocaine and two

metabolites in dried blood spots by liquid chromatography with fluorescence detection:

a novel test for cocaine and alcohol intake. J Chromatogr A 1217:7242–7248.

doi:10.1016/j.chroma.2010.09.037

[28] Ingels AS, Lambert WE, Stove CP (2010) Determination of gamma-hydroxybutyric

acid in dried blood spots using a simple GC-MS method with direct “on spot”

derivatization. Anal Bioanal Chem 398:2173–2182. doi:10.1007/s00216-010-4183-9

[29] Alfazil AA, Anderson RA (2008) Stability of benzodiazepines and cocaine in blood

spots stored on filter paper. J Anal Toxicol 32:511–515. doi:10.1093/jat/32.7.511

[30] Scientific Working Group for Forensic Toxicology (SWGTOX) (2013) Standard

practices for method validation in forensic toxicology. J Anal Toxicol 37:452–474.

doi:10.1093/jat/bkt054

[31] Shanks KG, Sozio T, Behonick GS (2015) Fatal Intoxications with 25B-NBOMe

and 25I-NBOMe in Indiana during 2014. J Anal Toxicol 39:602–606.

doi:10.1093/jat/bkv058

[32] Lowe LM, Peterson BL, Couper FJ (2015) A case review of the first analytically

confirmed 25I-NBOMe-related death in Washington State. J Anal Toxicol 39:668–671.

doi:10.1093/jat/bkv092

[33] Poklis JL, Devers KG, Arbefeville EF, Pearson JM, Houston E, Poklis A (2014)

Postmortem detection of 25I-NBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-

methoxyphenyl)methyl]ethanamine] in fluids and tissues determined by high

performance liquid chromatography with tandem mass spectrometry from a traumatic

death. Forensic Sci Int 234:e14–e20. doi:10.1016/j.forsciint.2013.10.015

[34] Youhnovski N, Bergeron A, Furtado M, Garofolo F (2011) Precut dried blood spot

(PCDBS): an alternative to dried blood spot (DBS) technique to overcome hematocrit

impact. Rapid Commun Mass Spectrom 25:2951–2958. doi:10.1002/rcm.5182

[35] De Kesel PMM, Capiau S, Lambert WE, Stove CP (2016) Current strategies for

coping with the hematocrit problem in dried blood spot analysis. Bioanalysis 6:1871–

1874. doi:10.4155/bio.14.151

Page 52: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

52

[36] Holub M, Tuschl K, Ratschmann R, Strnadová KA, Mühl A, Heinze G, Sperl W,

Bodamer OA (2006) Influence of hematocrit and localisation of punch in dried blood

spots on levels of amino acids and acylcarnitines measured by tandem mass

spectrometry. Clin Chim Acta 373:27–31. doi:10.1016/j.cca.2006.04.013

[37] O’Mara M, Hudson-Curtis B, Olson K, Yueh Y, Dunn J, Spooner N (2011) The

effect of hematocrit and punch location on assay bias during quantitative bioanalysis

of dried blood spot samples. Bioanalysis 3:2335–2347. doi:10.4155/bio.11.220

[38] Antunes MV, Charão MF, Linden R (2016) Dried blood spots analysis with mass

spectrometry: potentials and pitfalls in therapeutic drug monitoring. Clin Biochem

49:1035–1046. doi:10.1016/j.clinbiochem.2016.05.004

[39] Wiergowski M, Aszyk J, Kaliszan M, Wilczewska K, Anand JS, Kot-Wasik A,

Jankowski Z (2017) Identification of novel psychoactive substances 25B-NBOMe and

4-CMC in biological material using HPLC-Q-TOF-MS and their quantification in blood

using UPLC-MS/MS in case of severe intoxications. J Chromatogr B 1041:1–10.

doi:10.1016/j.jchromb.2016.12.018

[40] Soh YNA, Elliott S (2014) An investigation of the stability of emerging new

psychoactive substances. Drug Test Anal 6:696–704. doi:10.1002/dta.1576

[41] Johnson RD, Botch-Jones SR, Flowers T, Lewis CA (2014) An evaluation of 25B-

, 25C-, 25D-, 25H-, 25I-and 25T2-NBOMe via LC-MS-MS: method validation and

analyte stability. J Anal Toxicol 38:479–484. doi:10.1093/jat/bku085

[42] Poklis JL, Nanco CR, Troendle MM, Wolf CE, Poklis A (2014) Determination of 4-

bromo-2,5-dimethoxy-N-[(2-methoxyphenyl) methyl]-benzeneethanamine (25B-

NBOMe) in serum and urine by high performance liquid chromatography with tandem

mass spectrometry in a case of severe intoxication. Drug Test Anal 6:764–769.

doi:10.1002/dta.1522

Page 53: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

53

4.2 Artigo 2

Os resultados obtidos no estudo de estabilidade das NBOMes na matriz

sangue total será submetido para publicação na revista Journal of Analytical

Toxicology (Online ISSN 1945-2403, fator de impacto 2.409). O texto do manuscrito

em preparação para submissão será apresentado a seguir.

Page 54: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

54

Long-term stability of NBOMes in whole blood

Kelly Francisco da Cunha1, Marcos Nogueira Eberlin2, Marilyn A. Huestis3, José Luiz

Costa1,4*

1Campinas Poison Control Center, Faculty of Medical Sciences, University of

Campinas, Campinas, São Paulo 13083‑859, Brazil

2ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of

Campinas, Campinas, São Paulo 13083‑970, Brazil

3Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia,

PA, USA

4*Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo

13083‑859, Brazil, [email protected], +55 019 3521 7232

Page 55: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

55

Abstract

NBOMes - a potent group of designer drugs that requires small doses to reach

recreational and also toxic effects. A new method was developed and fully validated to

quantify 7 NBOMes (25B, 25C, 25D, 25E, 25G, 25H and 25I) in whole blood, using

LSD-d3 as internal standard. Then, a stability study of 6 months, at two concentration

levels and at three storage temperatures (room, 4 °C and -20 °C) was developed. The

calibration curve was found to be linear between 0.1 to 10 ng/mL, with administrative

LOQ of 0.1 ng/mL. Intraday and interday imprecisions (%RSD) and bias (%) was up to

around 8% and 7%, respectively. At room temperature and low concentration, some

analytes were unstable over 15 days and undetectable over 30 days. All NBOMes were

undetectable at 60 days. At 4 °C, some of them were undetectable at 180 days. At high

concentration, same pattern of concentration decreased was observed. All analytes

were stable at -20 °C. NBOMes are stable at -20 °C over 6 months, but at 4 °C and

room temperature, depending on the initial concentration, the analytes were unstable

at 180 days, except 25H-NBOMe; and 25B, 25C, 25I and 25E-NBOMes at 15 days,

respectively.

Keywords NBOMes, new psychoactive substances (NPS), stability, liquid

chromatography- tandem mass spectrometry (LC-MS/MS), whole blood, designer

drugs.

Page 56: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

56

Introduction

NBOMes are a class of new psychoactive substances (NPS) that acting on

central nervous system (CNS), more specifically at serotonin receptors.

Phenethylamines derivate from 2C compounds, there N-methoxybenzyl moiety confer

a higher affinity to 5-HT2A receptors, being capable to produce stronger hallucinogenic

effects in small doses – usually between 0.5 and 1,5 mg. NBOMes are available at

illicit market since 2011 with 25I-NBOMe, followed by others derivatives (1).

Sold, in many cases, in blotter papers such as lysergic acid diethylamide

(LSD), NBOMes have been related to several intoxications and deaths around the

world since 2013 (2-9). Most common effects includes tachycardia, hypertension,

agitation, visual and auditory hallucinations and rhabdomyolysis (10). Blood

concentrations founded in intoxications cases are very low, in order of pg/mL, requiring

sensitive techniques to quantify these analytes.

In forensics, blood samples are frequently preferred by their capability to

better correspond concentrations values and effects, but analytes stability is a

recurrent concern. Same sample analyzed in different times or sampling many hours

after the exposition, it can provide different quantitation or false negative results (11).

The aim of this work is to evaluate the long-term stability of NBOMes in

whole blood. The stability study was performed over 6 months, at two concentration

levels and at three storage temperatures (room, 4 °C and -20 °C) was developed.

Experimental

Standards and chemicals

Reference materials of 25B-NBOMe, 25C-NBOMe, 25D-NBOMe, 25E-

NBOMe, 25H-NBOMe, 25I-NBOMe and 25G-NBOMe were purchased from Cayman

Chemical (Ann Arbor, MI, USA); LSD-d3 (used as internal standard, IS) was purchased

from Cerilliant (Round Rock, TX, USA). Acetonitrile and formic acid (98-100%) were

purchased from Merck (Darmstadt, Germany) and Scharlau (Barcelona, Spain),

respectively. MTBE (t-butyl methyl ether) was obtained from Sigma Aldrich (St Louis,

MO, EUA). Sodium tetraborate was purchased from LS Chemicals (Ribeirao Preto,

Page 57: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

57

SP, Brazil). Ultra-pure deionized water was supplied by a Milli-Q RG unit from Millipore

(MA, USA). All solvents employed in the extraction were HPLC grade.

Ethical approval

All procedures performed in studies involving human samples were in

accordance with the ethical standards of the University of Campinas committee

(Comitê de Ética em Pesquisa da UNICAMP – CEP, CAAE 58452716.2.0000.5404)

Standard solutions preparation

Stock solutions of NBOMes were prepared by dilution of reference materials

in methanol. Calibrator working solutions at 1, 2, 5, 10, 50 and 100 ng/mL were

prepared by appropriate dilution of stock solutions in methanol. QC working solutions

were prepared in methanol at low (3 ng/mL), medium (20 ng/mL) and high (80 ng/mL)

concentrations. Internal standard solution (LSD-d3, 10 ng/mL) was prepared by

appropriate dilution in methanol. All solutions were stored at -20 oC.

Extraction procedure

Liquid-liquid extraction was performed in a 2 mL polypropylene tube with

300 µL of fortified whole blood, 50 µL of internal standard solution (LSD-d3 10 ng/mL),

300 µL of sodium tetraborate (saturated solution) and 1.2 mL of MTBE. The tubes were

capped, homogenized by inversion 10x, vortexed for 5 min and centrifuged at 8.000

rpm x 5 min (room temperature). The organic phase (900 µL) was transferred to

another polypropylene tube, evaporated to dryness under nitrogen (40 °C) and

resuspended in 500 µL of methanol to LC-MS/MS vials and 5 µL of injection.

Instrumentation

Samples analysis were performed in a 1260 Infinity liquid chromatograph

system (Agilent Technologies, CA, USA) coupled to a 5500-QTRAP® triple quadrupole

mass spectrometer (ABSciex, ON, Canada).

Page 58: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

58

The chromatographic separation was performed with a C18 column (Atlantis

T3, 150 x 3 mm, 3 µm, Waters, Ireland), maintained at 40°C. The mobile phase

consisted of ultra-pure water (A) and acetonitrile (B), both of containing formic acid

(0.1%, v/v). The gradient elution was programmed as follows: a linear change of B,

initialing in 10% until 95% over 15 min, held at 95% B for 2 min and returned to 10% B

over 0.5 min, keeping it to reach the initial condition of pressure (22 min run time). The

mobile phase flow rate of 0.5 mL/min.

The 5500-QTRAP mass spectrometer was equipped with a

TurboIonSprayTM interface, operated in positive ionization mode (electrospray).

Nitrogen was used as curtain, collision and nebulizer gas. The source parameters were

optimized as set: temperature of 700 °C; ion spray voltage of 3.5 kV, entrance potential

(EP) of 10 V, nebulizer gas (GS1) pressure of 40 psi, auxiliary gas (GS2) pressure of

50 psi and curtain gas pressure of 25 psi. The analyses were performed in multiple

reaction monitoring mode (MRM). For each compound, two MRM transitions were

chosen, one for quantitation and one for confirmation. Analyst 1.6.2 software was used

for data collection and MultiQuant 3.0.1 for processing.

Validation of the method

The method was validated according to the guideline for quantitative

method validation published by the Scientific Working Group for Forensic Toxicology

(SWGTOX) (12).

Bias

Bias study was applied at three different concentrations, which one with

three replicates over five days. The highest average acceptable from the nominal

concentration were ± 20%. Results were presented in percentage.

Imprecision

Intraday and interday imprecisions were evaluated as the coefficient of

variation (%RSD) of results from replicates (low, medium and high QC) in a day (n= 3)

Page 59: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

59

and over 5 days (n=15), respectively. Twenty percent was accepted as the limit of

variation. One-way analysis of variance (ANOVA) was performed on each QC

concentration to assess potentially significant interday variability at p < 0.05.

Table 1 Mass spectrometer parameters for analysis of seven NBOMes and LSD-d3 in

whole blood by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Analyte MRM

transitions (m/z)

DP (V) CE (V) CXP (V)

25B-NBOMe 380.2121.1

380.291.1

66

66

25

63

11

13

25C-NBOMe 336.2121.1

336.291.1

81

81

23

47

13

9

25H-NBOMe 302.2121.1

302.290.9

66

66

23

53

7

11

25I-NBOMe 428.2121.0

428.291.0

76

76

25

67

13

11

25G-NBOMe 330.0121.0

330.091.0

92

92

26

51

9

9

25D-NBOMe 316.0121.0

316.091.0

92

92

23

50

6

8

25E-NBOMe 330.2121.0

330.291.0

90

90

24

59

6

6

LSD-d3 (IS) 327.4226.2

327.4210.1

50

50

31

57

5

11

Quantifier transitions were underlined, MRM multiple reaction monitoring DP

declustering potential CE collision energy CXP collision cell exit potential IS internal

standard

Page 60: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

60

Sensitivity and linearity

The limit of detection (LOD) was defined as the lowest concentration that

reached the identification criteria - symmetric peak eluting within ± 2% relative standard

deviation (RSD) of average calibrator retention times, a signal-to-noise ratio of at least

3 and a qualifier/quantifier MRM peak area ratio within ± 20% RSD of the mean ratio

of the calibrators. The limit of quantitation (LOQ) was the lowest concentration fulfilling

the identification criteria, but with signal-to-noise ratio of at least 10 and quantifying

within 20% RSD of each target concentration. Calibration curves were constructed

following literature data of real blood concentration at NBOMes intoxications. Linearity

was assessed over 5 days and calibration curves with six points of calibration (0.1, 0.2,

0.5, 1.0, 5.0 and 10 ng/mL). Calibrators were required to quantify within ± 20% RSD of

each target concentration.

Specificity

Twenty-eight possible exogenous interferences (drugs of abuse and

pharmaceuticals) were used to fortified negative and LOQ whole blood samples at

1000 ng/mL and extracted concomitantly. To characterize no interference was

stablished that all analytes in the LOQ should quantified within ± 20% RSD of target

with acceptable qualifier/quantifier MRM ratios, and no peaks in the negative sample

satisfied LOD criteria.

Matrix effects

Matrix effects were evaluated by the average of peak areas of a set of 10

blank blood samples fortified with all analytes after the extraction against the average

of peak areas of a set of a methanolic solvent fortified with the analytes. The result was

expressed as percentage and a negative result represents peak suppression, and a

positive result represents peak enhancement.

Page 61: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

61

Carryover

After the injection of extract from fortified blood with all analytes at the

highest point of each calibration curve – 10 ng/mL, a blank sample extract was injected

over 5 days. No carryover was determined if none analyte peak met LOD criteria for

blank injections.

Stability

Stability study was applied at low and high QC samples (n=3). Whole blood

was fortified with stock solutions at day zero, aliquoted at 2 mL propylene tubes and

storage at room temperature (25 °C), 4 °C and -20 °C. At 15, 30, 60, 90 and 180 days,

replicates of each concentration and temperatures were extracted and analyzed

against a freshly curve. The analyte was assigned as stable if it concentration varied

up to ±20% of initial concentration. Auto-sampler stability was also evaluated.

Results and discussion

One of the concerns about NPS refer to constant release of very similar new

analytes, within isobaric compounds that can be wrongly identified by mass

spectrometry. Due their similar structure, the fragmentation patterns for NBOMes by

ESI+ are the same, resulting as the two most intense fragment ions for m/z=121 and

m/z=91 (Fig 1). Different parent ions generate these fragments. Thus, at MRM mode,

the analytes are accurately identified. Adding 25G (m/z=330) and 25E-NBOMe

(m/z=330) as possible results, the chromatography optimization become fundamental

to guarantee a selective method. Baseline resolution of analytes was only achieved

using acetonitrile as mobile phase and adjusting the gradient increment.

Fig. 1 Fragmentation pattern for NBOMes in mass spectrometer (ESI+).

Page 62: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

62

Linearity was obtained from 0.1 to 10 ng/mL for all the seven NBOMes, with

1/x2 weighted linear regression (r>0.98 for a set of five calibration curves). Method

limits of detection (LOD) and quantitation (LOQ) administrated were 0.05 and 0.1

ng/mL (Fig 2), respectively. Angular coefficients %RSD were up to 6.8%.

Fig. 2 Extracted chromatogram from 7 NBOMes in whole blood at 0.1 ng/mL (LOQ)

by LC-MS/MS

Low matrix effect was obtained against ten replicates from different sources,

varying up to 9.2% for 25C-NBOMe. No carryover was observed at a negative sample

was injected after the highest sample concentration (10 ng/mL). There was no

interference when a mix of other drugs and pharmaceuticals at 1000 ng/mL were

extracted concomitantly with negative and LOQ samples.

Intraday and interday imprecisions (%RSD) were up to 7.8% for 25I-NBOMe

and 8.1% for 25C-NBOMe, respectively. Bias were up to 6.8% for 25C-NBOMe (Table

2).

Lewis et al (2014) (13) found out low stability for 25I (39.0% RSD), 25T2

(34.5% RSD) and 25B-NBOME (31.2% RSD) whole blood extracts, kept at 4 °C for 7

days. Poklis et al (2013) (5) studied the stability of 25C and 25I-NBOMes in serum

Page 63: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

63

samples after freeze-thaw cycles, bench-top at room temperature (48 h), one month at

-20 °C and extract stability in auto-sampler for 72 h at room temperature. In all these

conditions, the analytes were stable. Poklis et al (2014) (3) still reported 25B and 25H-

NBOMe serum extracts stability up to 72h at room temperature (auto sampler stability).

There are no more stability studies involving longer time of storage or with this number

of N-methoxybenzyl derivatives.

Table 2 Validation results regarding imprecisions, bias and matrix effects for the

determination of seven NBOMes in whole blood by LC-MS/MS.

Analyte

Intraday

imprecision

(%RSD) (n=3)

Low Med High

Interday

imprecision

(%RSD) (n=15)

Low Med High

Bias (%) (n=15)

Low Med High

Matrix effect

(%) (n = 10)

Low High

25B-NBOMe 6.9 2.6 2.8 6.1 3.5 5.3 -5.3 2.7 -2.0 2.4 -2.1

25C-NBOMe 7.6 2.9 3.1 8.1 5.9 5.3 -1.3 6.8 -6.2 9.2 1.8

25H-NBOMe 4.6 3.4 6.1 5.7 6.2 6.4 -2.2 3.4 -3.2 4.7 0.1

25I-NBOMe 7.8 3.3 4.0 7.5 4.0 4.7 -2.4 3.5 -3.0 -2.5 -6.6

25G-NBOMe 6.7 4.1 3.9 6.8 4.9 5.3 -4.2 5.3 -1.8 -1.0 3.3

25D-NBOMe 5.6 3.6 3.6 5.7 5.4 4.4 -4.4 2.9 -3.0 -0.9 -1.8

25E-NBOMe 5.7 4.3 2.3 6.1 4.7 3.9 -2.9 3.4 -4.6 -0.6 -0.5

As stability results, at room temperature and in low concentration, 25B, 25C,

25I and 25E-NBOMe presented a decreased in concentration higher than 20% in the

first 15 days, up to 43%. All NBOMes were undetectable at 60 days.

Only 25B, 25C and 25I-NBOMe were not more detectable at 4 °C, at 180

days. The other NBOMes showed a decreased of concentration higher than 20%,

expect for 25H-NBOMe (-12%). All NBOMes were stable at -20 °C during the 6 months

studied – % difference of initial concentration up to ±20% (Fig 3).

Page 64: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

64

At high concentration, all NBOMes had a decreased of concentration higher

than 20% at room temperature at 15 days, except 25H-NBOMe. Despite this, all of

them were detectable during the 180 days of analysis.

25B, 25C and 25I-NBOMe had their initial concentration values decreased

higher than 20% at 4 °C in 6 months. All Analytes were stable at -20 °C, same results

as obtained for low concentration (Fig 4).

Page 65: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

65

Fig. 3 Average concentration and %RSD obtained at three storage temperatures for 7 NBOMes at 0.3 ng/mL (Low QC)

for 6 months. All concentrations were calculated as percentage of initial concentration at day 0. a 25B, b 25C, c 25H, d 25I, e 25G, f

25D and g 25E-NBOMe.

Page 66: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

66

Fig. 4 Average concentration and %RSD obtained at three storage temperatures for 7 NBOMes at 8 ng/mL (High QC) for 6 months.

All concentrations were calculated as percentage of initial concentration at day 0. a 25B, b 25C, c 25H, d 25I, e 25G, f 25D and g

25E-NBOMe.

Page 67: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

67

To evaluate the auto-sampler stability, QC samples (low, medium and high)

were extracted, analyzed, kept in auto-sampler (15 °C) and re-injected after 32 h

against a freshly curve. The analytes were considered stable as the concentrations of

re-injections were up to 15.6% from initial concentration.

As proof of concept, two real postmortem samples were extracted and injected

following this descripted method. 25B-NBOMe (0.2 ng/mL) was identified in one

sample and 25I-NBOMe (0.5 ng/mL) in the other (Figure 5), the same identification

obtained at Toxicology Laboratory from Sao Paulo Legal Medical Institute.

Fig. 5 Extracted chromatogram from two real postmortem samples, positive to 25B-

NBOMe (A) and 25I-NBOMe (B), respectively.

Conclusions

At room temperature, most of the analytes showed low stability over 15 days.

Moreover, most of them had their initial concentration decreased higher than 20% at 4

°C, at 180 days. At -20 °C, the analytes are stable up to 180 days. 25I-NBOMe had the

worst stability. In 15 days, it initial concentration decreased more than 40% in both

concentration values studied.

Once most of the intoxication cases associated with NBOMes quantify low

concentrations of these analytes in blood, more careful must be given involving storage

of samples with clinical finds suggesting for these group of analytes, mainly in forensic

cases.

Page 68: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

68

Acknowledgements

The authors thank Fundação de Amparo à Pesquisa do Estado de São

Paulo – FAPESP (Process Number 2015/10650-8) and Conselho Nacional de

Desenvolvimento Científico e Tecnológico – CNPq (Process Number 131780/2017-4),

and Superintendência da Polícia Técnico-Científica.

References

1. Poklis, J. L., Raso, S. A., Alford, K. N., Poklis, A., Peace, M. R. (2015) Analysis of

25I-NBOMe, 25B-NBOMe, 25C-NBOMe and other dimethoxyphenyl-N-[(2-

methoxyphenyl) methyl]ethanamine derivatives on blotter paper. Journal of Analytical

Toxicology, 39, 617-623.

2. Suzuki, J., Dekker, M. A., Valenti, E. S., Cruz, F. A. A., Correa, A. M., Poklis, J. L.,

Poklis, A. (2015) Toxicities associated with NBOMe ingestion - a novel class of potent

hallucinogens: a review of the literature. Psychosomatics, 56, 129-139.

3. Poklis, J. L., Nanco, C. R., Troendle, M. M., Wolf, C. E., Poklis, A. (2014)

Determination of 4-bromo-2,5-dimethoxy-N-[(2-methoxyphenyl)methyl]-

benzeneethanamine (25B-NBOMe) in serum and urine by high performance liquid

chromatography with tandem mass spectrometry in a case of severe intoxication. Drug

Testing and Analysis, 6, 764-769.

4. Rose, S. R., Poklis, J. L., Poklis, A. (2013) A case of 25I-NBOMe (25-I) intoxication:

a new potent 5-HT2A agonist designer drug. Clinical Toxicology, 51, 174-177.

5. Poklis, J. L., Charles, J., Wolf, C. E., Poklis, A. (2013) High-performance liquid

chromatography tandem mass spectrometry method for the determination of 2CC-

NBOMe and 25I-NBOMe in human serum. Biomedical Chromatography, 27, 1794-

1800.

6. Suzuki, J., Poklis, J. L., Poklis, A. (2014) “My Friend Said it was Good LSD”: A

Suicide Attempt Following Analytically Confirmed 25I-NBOMe Ingestion. Journal of

psychoactive drugs, 46, 379-382.

7. Hermanns-Clausen, M., Angerer, V., Kithinji, J., Grumann, C., Auwärter, V. (2017)

Bad trip due to 25I-NBOMe: a case report from the EU project SPICE II plus. Clinical

Toxicology, 55, 922-924.

Page 69: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

69

8. Morini, L., Bernini, M., Vezzoli, S., Restori, M., Moretti, M., Crenna, S., Papa, P.,

Locatelli, C., Osculati, A. M. M., Vignali, C., Groppi, A. (2017) Death after 25C-NBOMe

and 25H-NBOMe consumption. Forensic Science International, 279, e1-e6.

9. Ameline, A., Kintz, P., Blettner, C., Bayle, E., Raul, J. S. (2017) Identification of 25I-

NBOMe in two intoxications cases with severe hallucinations. Journal of Analytical

Toxicology, 29, 117-122.

10. Locatelli, C. A., Buscaglia, E., Valli, A., Rocchi, L., Rolandi, L., Di Tuccio, M.,

Scaravaggi, G., Crevani, M., Papa, P. (2017) Clinical features of severe intoxications

associated with analytically confirmed use of NBOMe. Clinical Toxicology, 55, 444-

445.

11. Soh, Y. N. A., Elliott, S. (2014) An investigation of the stability of emerging new

psychoactive substances. Drug Testing and Analysis, 6, 696-704.

12. SWGTOX (2013) Standard Practices for Method Validation in Forensic Toxicology.

Journal of Analytical Toxicology, 37, 452-474.

13. Johnson, R. D., Botch-Jones, S. R., Flowers, T., Lewis, C. A. (2014) An evaluation

of 25B-, 25C-, 25D-, 25H-, 25I-and 25T2-NBOMe via LC-MS-MS: method validation

and analyte stability. Journal of Analytical Toxicology, 38, 479-484.

Page 70: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

70

4.3 Artigo 3

Os resultados obtidos no estudo de estabilidade das catinonas sintéticas

nas matrizes DBS e sangue total foram publicados na revista Forensic Toxicology

(Online ISSN 1860-8973, fator de impacto 3,744), DOI 10.1007/s11419-018-0418-9.

O texto do manuscrito aprovado para publicação será apresentado a seguir.

Page 71: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

71

Long-term stability of synthetic cathinones in dried blood spots and whole blood

samples: a comparative study

Kelly Francisco da Cunha1, Marcos Nogueira Eberlin2, Jose Luiz Costa1,3*

1Campinas Poison Control Center, Faculty of Medical Sciences, University of

Campinas, Campinas, São Paulo 13083-859, Brazil

2ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of

Campinas, Campinas, São Paulo 13083-970, Brazil

3Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo

13083-859, Brazil

*Corresponding author: Prof. Dr. Jose Luiz Costa [email protected] Phone: +55 19 3521 7232

Fax: +55 19 3521 7592

Page 72: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

72

Abstract

Purpose The long-term stabilities of four synthetic cathinones in dried blood spots

(DBS) were tested and compared with those of whole blood samples.

Method A method to determine four cathinones (pentylone, butylone, mephedrone and

benzedrone) in DBS was developed and validated. For comparison, the traditional

liquid-liquid extraction for the same analytes in whole blood was also performed.

Results The calibration curve was found to be linear over 25 – 1000 ng/mL for DBS

samples, with a limit of quantification at 25 ng/mL. The interday imprecisions and bias

results [up to 7.1 % relative standard deviation (RSD) and 5.8 %, respectively] were

much lower than the maximum data recommended by SWGTOX forensic guidelines.

The validation results were similar to those of whole blood samples, which showed

interday imprecisions and bias results of up to 8.1%RSD and 12.3 %, respectively, with

a linear calibration curve between 10 and 1000 ng/mL and LOQ of 10 ng/mL. A stability

study to compare the degradation rate between both matrixes at three storage

temperatures [room (25 °C), 4 °C and -20 °C]] and during 90 days proved the poor

stability of cathinones in whole blood, where the methylenedioxy cathinones displayed

better stability than those with ring substituents. DBS allowed detection of synthetic

cathinones after much longer periods than in whole blood samples.

Conclusions DBS proved, therefore, to be an useful alternative technique to store

blood samples. Extraction of DBS is easy and analytes remain stable for much longer

periods.

Keywords Synthetic cathinones, Dried blood spots (DBS), New psychoactive

substances (NPS), Liquid chromatography–tandem mass spectrometry (LC–MS/MS)

Page 73: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

73

Introduction

Cathinone is a natural alkaloid, structurally related to amphetamine. In many

African countries, the chewing the leaves of Khat (Catha edulis) to obtain stimulating

and euphoric effects is a traditional habit [1].

Synthetic cathinones - chemical derivatives of cathinone - are categorized as

new psychoactive substances (NPS), a group of synthetic drugs of abuse, that could

lead to health problems, but was not controlled by the 1961 Single Convention on

Narcotic Drugs and the 1971 Convention on Psychotropic Substances. Synthetized

mostly in East Asia and distributed throughout the world, the first appearance of

synthetic cathinones on the market was in early 2000s, but new analogues have been

constantly released. In 2011, the United States Drug Enforcement Administration

(DEA) reported the necessity to control three of these synthetic cathinones:

mephedrone, 3,4-methylenedioxypyrovalerone (MDPV) and methylone [2]. According

to 2017 World Drug Report, stimulant drugs including synthetic cathinones, correspond

to 36% of NPS identified until December 2016; the second largest was the synthetic

cannabinoids group (33%) [3]. The administrating routes of synthetic cathinones are

usually by snorting the powder, oral for pills or capsules, by smoking or by intravenous

injection after dissolving the solid forms in water [4].

Synthetic cathinones are phenylalkylamine derivatives and are divided into four

main groups. Most of them are included in group 1 encompassing the N-alkyl

derivatives or those with an alkyl or halogen at the aromatic ring (e.g. benzedrone and

mephedrone). Group 2 encompasses those with a methylenedioxy substituent at the

aromatic ring (e.g. butylone and pentylone). Group 3 are for the cathinones with a N-

pyrrolidinyl substituent. Cathinones with substituents from both groups 2 and 3 are

Page 74: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

74

included in group 4 [5]. Their mechanisms of action have been related to their

interaction with monoamine transporters such as dopamine, noradrenaline and

serotonin. Generally, users report similar effects for different cathinones: excitation,

euphoria, increased alertness, empathy and libido. The side effects include vomiting,

sweating, confusion, self-destructive behavior, headaches, dizziness, increased heart

rate and muscle tremors. In overdoses, panic, violent behavior, hallucinations,

tachycardia, rhabdomyolysis and even fatal cases have been reported [6-10].

Mephedrone (Fig. 1) was one of the first generation of synthetic cathinones

apprehended on a recreational market in Europe 2007. Since then, due to its spread

all over the world, severe intoxication and fatal cases have been associated - and

analytically confirmed - with mephedrone use [11,12]. Butylone was also associated

with fatal intoxications [7,13]. A couple of studies have confirmed the presence of

pentylone in biological matrices of intoxication patients, but when associated with

others substances [14,15]. Until now, benzedrone was not associated with intoxication

cases, but is frequently reported in the mixtures of other synthetic cathinones sold on

illegal market [16,17].

Fig. 1 Structures of four synthetic cathinones dealt with this study

Page 75: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

75

In blood samples, the concern about degradation of synthetic cathinones exists,

since enzymatic reactions keep occurring in this medium after sampling. Tertiary

cathinones usually show better stabilities as compared to secondary amines [18,19].

In forensics, quantitative results sometimes give a clue to consider this problem,

because even at adequate storage temperatures, the reanalysis of cases at different

times can lead to different concentration results, even false negatives. Ambach et al.

[20] reported stabilities of 64 NPS in DBS at room temperature and 4 °C, but for up to

only 14 days.

The aims of this work was therefore to develop a new method to determine four

synthetic cathinones (benzedrone, butylone, mephedrone and pentylone) in both dried

blood spots (DBS) and whole blood, and also to study the long-term stability of these

compounds in both matrices up to 90 days.

Materials and method

Standards and chemicals

Reference standards of butylone, mephedrone, pentylone and MDMA-d5 (used

as internal standard: IS) were purchased from Cerilliant (Round Rock, TX, USA);

benzedrone from Cayman Chemical (Ann Arbor, MI, USA); acetonitrile, methanol,

formic acid (98–100%) and t-butyl methyl ether from Merck (Darmstadt, Germany),

Scharlau (Barcelona, Spain) and Sigma-Aldrich (St Louis, MO, USA), respectively;

sodium tetraborate from LS Chemicals (Ribeirao Preto, SP, Brazil). Ultrapure water

was supplied by a Milli-Q RG unit from Millipore (Billerica, MA, USA). All solvents

employed in the extraction were HPLC grade. Whatman 903 Protein Saver Cards™

were obtained from GE Healthcare Bio-Sciences (Pittsburgh, PA, USA).

Page 76: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

76

Standard solution preparation

Stock solutions of synthetic cathinones were prepared by dilution of reference

standards in methanol. Working methanol solutions for constructing calibrators at 100,

250, 500, 1000, 2500, 5000 and 10,000 ng/mL were prepared by appropriate dilution

of the stock solutions.

Quality control (QC) samples were prepared with methanol stock solutions at

low (final concentration of 75 ng/mL and 30 ng/mL for DBS and whole blood,

respectively), medium (400 ng/mL) and high (750 ng/mL) concentrations. IS solutions

were prepared by appropriate dilution of MDMA-d5 in methanol at 10 and 250 ng/mL

for DBS and whole blood, respectively. All solutions were stored at -20 °C.

DBS samples preparation

For the DBS preparation, 15 μL of blank or fortified whole blood was spotted

onto a 6-mm diameter pre punched Whatman 903 DBS paper cards disc. The blood

spots were allowed to dry at room temperature (25 °C) for 3 h before extraction.

Whole blood samples preparation

Fortified whole blood samples were prepared by spiking each reference

standard to blank blood, to give 200 µL each of samples at the above final

concentrations.

Page 77: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

77

Extraction procedure for DBS

The 6-mm diameter disc was placed in a 2-mL polypropylene tube. The

extraction was performed with 300 μL of the IS solution (MDMA-d5 10 ng/mL). The

tubes were capped, vortexed for 10 min and centrifuged at 10,000 rpm for 10 min (room

temperature). The supernatant (150 μL) was transferred to liquid chromatography–

tandem mass spectrometry (LC–MS/MS) vials (2 µL of injection).

Liquid-liquid extraction of whole blood samples

For whole blood analysis, 200 µL of sample were pipette to a 2-mL

polypropylene tube, followed by 50 µL of IS solution (MDMA-d5 250 ng/mL), 200 µL of

sodium tetraborate saturated solution and 800 µL of tert-butyl methyl ether. The

samples were vortex for 5 min and centrifuged at 8000 rpm for 5 min. The supernatant

(600 µL) was evaporated at 40 °C under nitrogen stream and resuspended in 500 µL

of methanol, and 1 µL was analyzed by LC–MS/MS.

Instrumentation

The DBS analyzes were performed in a Nexera UHPLC chromatographic

system coupled to a LCMS8040 triple quadrupole mass spectrometer (Shimadzu,

Kyoto, Japan).

The chromatographic separation for DBS analysis was performed with a Kinetex

XB-C18 column (50 x 4.6 mm i.d., particle size 2.6 µm; Phenomenex, Torrance, CA,

USA), maintained at 40 °C. The mobile phase consisted of ultra-pure water (A) and

methanol (B), both containing formic acid (0.1%, v/v). The gradient elution was

Page 78: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

78

programmed as follows: 10% B, followed by a linear increase to 95% B over 4 min,

held at 95% B for 2 min and returned to initial conditions over 0.2 min (total run time of

8.5 min). The mobile phase flow rate was 0.35 mL/min. To confirm the selectivity of

chromatographic system for DBS analysis, the whole blood method development and

validation, a Force Biphenyl (50 x 2.1 mm i.d., particle size 1.8 µm; Restek, Bellefonte,

PA, USA) was used to for analyte separation. The column was maintained at 50 °C.

Because of a column that support a higher pressure, the same mobile phase was used,

but with a flow rate at 0.5 mL/min and a gradient elution initiating at 5% B, followed by

a linear increase to 95% B over 2.8 min with hold for more 1.4 min, and it returned to

initial conditions over 0.1 min (total run time: 6 min).

The mass spectrometer was equipped with an electrospray ionization source

and was performed in the positive ionization mode. The source parameters optimized

were: heat block temperature 400 °C; capillary voltage, 4.5 kV; nebulizer gas (N2) flow,

3 L/min; desolvation line temperature, 250 °C; drying gas (N2) flow, 15 L/min; and

collision induced dissociation gas pressure (Ar), 230 kPa. The analyses were

performed in multiple reaction monitoring (MRM) mode. For each compound, two MRM

transitions were chosen for quantification and qualification. Table 1 shows the MRM

conditions optimized to the method. Data were acquired and processed by

LabSolutions 5.75 SP2 software (Shimadzu).

Page 79: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

79

Table 1 Optimized multiple reaction monitoring (MRM) conditions to analyze four

cathinones and MDMA-d5 (internal standard: IS) using liquid chromatography–tandem

mass spectrometry (LC–MS/MS) in positive electrospray ionization mode

Analyte MRM transitions

(m/z)

Q1Pre

bias (V) CE (V)

Q3Pre

bias (V)

Mephedrone 178.20→160.15

178.20→145.10

19

-9

14

21

19

27

Pentylone 236.20→188.10

236.20→218.15

16

16

18

13

21

17

Butylone 221.90→174.35

221.90→204.30

15

15

18

13

21

24

Benzedrone 254.25→91.15

254.25→65.15

12

12

22

55

18

27

MDMA-d5 (IS) 198.95→165.10

198.95→107.15

20

20

14

25

19

21

Underlined transition used for quantification CE: collision energy

Validation of the method

Both methods were validated according to the guidelines of Scientific Working

Group for Forensic Toxicology (SWGTOX) recommendations for quantitative analysis

[21].

Linearity

Six or seven point calibration were used to acquire a linear curve that ranged

the common blood concentrations [22] and evaluated over 5 days. Calibrators should

appear as symmetric peaks, eluting within ±2% relative standard deviation (RSD) of

Page 80: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

80

average retention times, and as peak areas within ±20% RSD of each nominal

concentration.

Limits of detection and quantitation

Limit of detection (LOD) were defined as the lowest concentration to reach

positive criteria of identification and response of three times the signal-noise of the

blank sample. To be included as positive criteria for identification, the analyte peak

retention time should be as that the same established with the working solution (±2 %),

and the second chosen transition peak (qualifier ion) should have the same ion ratio

(between 20 and 30% of allowance, according to relative ion intensity). For limit of

quantification (LOQ), the response should be ten times the signal-noise in comparison

to blank samples and be include in the above mentioned positive criteria of

identification.

Imprecision

Intraday and interday imprecisions were evaluated with three QC

concentrations (triplicate of each concentration) and with each group over 5 days of

analysis (ninter= 15). The target concentration was required to be within ±20%RSD.

Bias

The variation between real and nominal concentration is defined as bias. With

5 days of analysis, at three QC levels in triplicate, the bias was required to be lower

than ±20%.

Page 81: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

81

Matrix effect

The matrix effects were evaluated using ten blank blood samples from different

sources. For low and high QC concentrations, blank samples were extracted following

the original procedure, and the extraction solvent was fortified with analytes and IS.

Additionally, other neat solutions were prepared with same solvent volume and final

concentration, and analyzed at the same batch. The peak area ratio of the mean of

fortified blank samples to that of neat solutions was used to calculate the percentage

of the matrix effect.

Carryover and interferences

The extract of a negative sample was injected into instrument after the highest

point of each calibration curve. If no analyte peak met LOD criteria, carryover was

absent.

To evaluated interferences, a mixture of 35 pharmaceuticals and other drugs of

abuse (Supplementary material Table 1), at stock concentration of 10,000 ng/mL each,

was added to the final DBS extract or to the fortified whole blood to be extracted, at

negative and LOQ levels, which were injected into the LC–MS/MS system.

Stability

Stability study was performed after complete method validation. It was delimited

a period of 90 days of study, with two concentrations (low and high QC) and three

different storage temperatures [25 °C (room), 4 °C and -20 °C]. At the first day (day 0),

Page 82: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

82

all samples that would be used in whole period were prepared in triplicate and stocked

with desiccant until the day of their analysis. The samples analyses were performed

against the calibration curve prepared on that day. The analyte was considered stable

if the concentration differences were within ±20% of initial concentration.

Supplementary material Table 1 Third-five pharmaceuticals and other drugs of abuse

used to evaluate selectivity of a method for synthetic cathinones using dried blood

spots (DBS) and whole blood matrices.

Group Analytes

Pharmaceuticals

Flunitrazepam, Midazolam, Clonazepam, Diazepam,

Nitrazepam, Alprazolam, Bromazepam, Acetaminophen,

Sildenafil, Piperazine, Fluoxetine, Fentanyl, Phenobarbital,

Phenytoin, Carbamazepine, Secobarbital, Butalbital,

Pentobarbital, Valproic acid

Drugs of abuse

Ketamine, Thiofentanyl, Acrilfentanyl, Valerylfentanyl,

Pentedrone, PMA, 2C-E, 2C-B, Cocaine, MDMA, α-PVP,

Methilone, 4-fluoro-metcathinone, MDPV, Naphirone, N-

ethylpentylone

Results and discussion

DBS analysis

To avoid the hematocrit effect [23,24], fixed volume of fortified whole blood was

used in pre-cut DBS cards. A linear curve with six calibration points from 25 to 1000

ng/mL was performed, using a 1/x² weight linear regression (r> 0.990, for the four

cathinones). Angular coefficients of imprecisions for 5 days of analysis ranged from

4.2% for butylone up to 5.3% for benzedrone. LOD and LOQ were 10 and 25 ng/mL

(Fig. 2), respectively.

Page 83: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

83

Fig. 2 Individual multiple reaction monitoring chromatograms obtained from DBS made

of whole blood spiked with a mixture of four synthetic cathinones at 25 ng/mL each

(limit of quantification)

Intraday and interday imprecisions were calculated by one-way analysis of

variance (ANOVA, p< 0.05) and showed low values of %RSD for all analytes at three

concentrations of QC (75, 400 and 750 ng/mL) as well as low bias values (Table 2).

Page 84: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

84

Table 2 Method validation for the quantification of four cathinones in dried blood

spots (DBS) by LC–MS/MS

Analyte

Intraday

imprecision

(%RSD) (n=3)

Interday

imprecision

(%RSD) (n=15)

Bias (%)

(n=15)

Matrix effect

(%) (n=10)

Benzedrone

Low QC

(75 ng/mL) 2.7 3.6 1.2 3.2

Medium QC

(400 ng/mL) 2.7 5.3 -3.8 NA

High QC

(750 ng/mL) 2.2 3.3 -3.8 -5.7

Butylone

Low QC

(75 ng/mL) 2.6 5.7 5.1 8.9

Medium QC

(400 ng/mL) 3.3 5.1 0.5 NA

High QC

(750 ng/mL) 3.1 3.9 2.8 -8.7

Mephedrone

Low QC

(75 ng/mL) 2.0 7.1 3.5 -1.1

Medium QC

(400 ng/mL) 2.7 4.0 -3.0 NA

High QC

(750 ng/mL) 2.1 2.5 -1.0 -16.6

Pentylone

Low QC

(75 ng/mL) 4.4 4.5 1.8 2.1

Medium QC

(400 ng/mL) 2.3 3.1 5.8 NA

High QC

(750 ng/mL) 2.8 2.7 -1.5 -9.0

%RSD percent relative standard deviation, NA not evaluated, QC quality control

Page 85: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

85

Matrix effects, evaluated at low and high QC, was lower than 9.0%, except for

mephedrone with ionization suppression at 16.6% (Table 2).

No carryover was observed in blank samples after analysis of a 1000 ng/mL

sample (higher calibrator) and no interferences were observed at negative and/or LOQ

samples in the presence of 35 others drugs and pharmaceuticals at 1000 ng/mL.

Whole blood analysis

Seven calibrators were used to obtain a linear curve ranging from 10 to 1000

ng/mL (1/x² weighted and r> 0.994). Both LOD and LOQ were 10 ng/mL.

Imprecisions (%RSD) and bias (%) were low, similar to those obtained with DBS

samples (Table 3).

Differently with DBS samples, matrix effects for whole blood were not greater

than 3.9%. Quantitative results for all analytes were not significantly influenced by

these matrix effects.

No carryover and interferences were observed using the same criteria

mentioned above.

Page 86: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

86

Table 3 Method validation for the quantification of four cathinones in whole blood by

LC–MS/MS

Analyte

Intraday

imprecision

(%RSD) (n=5)

Interday

imprecision

(%RSD) (n=25)

Bias (%)

(n=25)

Matrix effect

(%) (n=10)

Benzedrone

Low QC

(30 ng/mL) 4.1 7.0 6.0 -2.2

Medium QC

(400 ng/mL) 3.4 6.2 0.2 NA

High QC

(750 ng/mL) 2.6 3.6 3.4 -0.3

Butylone

Low QC

(30 ng/mL) 4.0 5.5 8.3 1.7

Medium QC

(400 ng/mL) 3.2 4.7 0.4 NA

High QC

(750 ng/mL) 4.7 4.4 4.2 1.1

Mephedrone

Low QC

(30 ng/mL) 5.1 6.0 6.6 -2.6

Medium QC

(400 ng/mL) 3.0 4.4 1.4 NA

High QC

(750 ng/mL) 2.3 2.4 7.1 -2.8

Pentylone

Low QC

(30 ng/mL) 3.7 8.1 12.3 -3.9

Medium QC

(400 ng/mL) 4.2 5.8 10.2 NA

High QC

(750 ng/mL) 3.5 3.6 5.1 0.1

For abbreviations, see the footnote of Table 2

Page 87: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

87

Effects of separation columns

A test was performed to evaluate C18 and biphenyl stationary phase columns

from the same DBS samples. Equally satisfactory results were obtained for both

columns; all of them were in accordance to the maximum of ±20% of variation criteria

(Table 4); both C18 and biphenyl stationary phase columns are applicable to analyze

synthetic cathinones.

Stability study

Because low stability of cathinones in whole blood has been reported [25,26],

90 days was stablished as a sufficient period after which differences between the

samples should be noted. As recently shown by Glicksberg and Kerrigan [27],

cathinones stability are temperature- and structure-dependent. Regardless the matrix,

butylone and pentylone showed the best stability, probably influenced by the

methylenedioxy group. For pentylone in whole blood, it was possible to detect this

molecule in the sample kept at room temperature up to 7 or 45 days, representing low

or high QC, respectively. In DBS samples detection was possible after 90 days (Fig.

3). Butylone showed a similar pattern; detection in whole blood were possible up to 25

or 60 days, and in DBS samples was possible up to 90 days. At either 4 or -20°C, no

significant degradation was noted for both DBS and whole blood samples (Fig. 4).

Page 88: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

88

Table 4 Measured concentration and bias obtained from five replicates of DBS samples at 25 ng/mL (limit of quantification) when

analyzed using Force Biphenyl (Biphenyl) and Kinetex XB-C18 (C18) by LC–MS/MS

Butylone Pentylone Mephedrone Benzedrone

Column DBS

sample

Concentration

(ng/mL)

Bias

(%)

Concentration

(ng/mL)

Bias

(%)

Concentration

(ng/mL)

Bias

(%)

Concentration

(ng/mL)

Bias

(%)

Biphenyl A 23.7 -5.0 25.5 1.9 26.6 6.5 25.3 1.3

B 22.9 -8.6 28.1 12.3 24.5 -2.0 26.4 5.3

C 22.9 -8.4 26.8 7.1 25.6 2.3 24.1 -3.6

D 22.4 -10.2 26.1 4.3 24.2 -3.2 24.9 -0.3

E 23.7 -5.0 25.6 2.3 26.3 5.2 24.9 -0.3

C18 A 24.4 -2.2 25.1 0.4 25.4 1.5 29.6 18.5

B 25.7 2.8 24.5 -1.8 24.4 -2.2 26.8 7.1

C 24.7 -1.3 25.6 2.6 24.0 -4.0 26.0 3.9

D 27.0 8.0 26.8 7.2 25.4 1.8 29.0 16.0

E 26.6 6.2 27.6 10.3 24.3 -2.9 25.9 3.5

Page 89: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

89

Fig. 3 Pentylone stability for 90 days, at three temperatures: a low quality control (QC)

of DBS (75 ng/mL), b high QC of DBS (750 ng/mL), c low QC of whole blood (30

ng/mL), d high QC of whole blood (750 ng/mL)

Page 90: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

90

Fig. 4 Butylone stability for 90 days, at three temperatures: a low QC of DBS, b high

QC of DBS, c low QC of whole blood, d high QC of whole blood

Mephedrone and benzedrone, both with ring-substituted, presented the worst

stabilities. Quantitative analyses of mephedrone in whole blood samples kept at room

temperature were possible up to 7 days, both at low and high initial concentrations. At

4 °C, the initial mephedrone concentration decreased to about 60% after 90 days. For

DBS samples, stability at room temperature was also low (1 and 25 days), but at 4 °C,

decreased rate was much less (about 40%) when compared to whole blood (Fig. 5).

Benzedrone detection was possible in whole blood samples up to 1 and 7 days at room

temperature for low and high QC, respectively, and up to 60 days for low QC at 4 °C.

At -20 °C, a 23% decrease from the initial concentration was noted for high QC. For

DBS, detection at room temperature was possible for low and high QC samples up to

Page 91: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

91

60 and 90 days, respectively. At 4 °C, quantification could be done up to 90 days, as

well as at -20 °C (Fig. 6).

Fig. 5 Mephedrone stability for 90 days, at three temperatures: a low QC of DBS, b

high QC of DBS, c low QC of whole blood, d high QC of whole blood

Page 92: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

92

Fig. 6 Benzedrone stability for 90 days, at three temperatures: a low QC of DBS, b

high QC of DBS, c low QC of whole blood, d high QC of whole blood

Although the instability of cathinones is already known, few papers discuss

the possible products formed in this degradation. Tsujikawa et al [28] shows that once

more alkaline the solution, the degradation of 4-methylmethcathinone is higher. In

addition, the presence of antioxidant agents with same pH values tends to retard this

degradation. The degradation products formed come from the breakdown of the bond

with the secondary nitrogen, forming its corresponding alcohol.

The metabolism studies of Pedersen et al and Zaitsu et al [29,30] show that

different structures of the cathinones will undergo different reactions, possibly due to

their structural affinity with enzymes. Structures beta-keto amphetamines like tend to

reduce the carbonyl, forming the corresponding amino alcohol. Even in non-biological

Page 93: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

93

matrices the stabilization of the molecule is observed, from the formation of an

intramolecular bond of enol hydrogen formed [31].

All these studies corroborate with the knowledge that the stability of the

synthetic cathinones are pH- and structure-dependent (e.g. tertiary amines present

greater stability, possibly due to the steric hindrance of this nitrogen). Possibly, in DBS

samples, enzymatic reactions were reduced, which conferred a higher stability.

Conclusions

A reliable and accurate DBS method to analyze cathinones using very small

volume of blood (15 µL) was developed. DBS showed great advantages as compared

to whole blood with liquid-liquid extraction, because of easy and rapid extraction

procedures, less space dedicated to sample storage and increase in stability for

cathinones (up to 83 days more stable in DBS as compared to whole blood).

Cathinones were unstable at room temperature both in DBS as well as in whole blood

samples, but its stability was much higher in DBS than in whole blood. We propose

that DBS should be used in forensic routine analysis of cathinones.

Acknowledgements

We thank the support by the Fundação de Amparo à Pesquisa do Estado de

São Paulo - FAPESP [grant numbers 2015/10650-8]; the Conselho Nacional de

Desenvolvimento Científico e Tecnológico - CNPq [grant number 131780/2017-4] and

the Superintendência da Polícia Técnico-Científica.

Page 94: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

94

Compliance with ethical standards

Conflict of interest There are no financial or other relationships thatcould lead to

a conflict of interest.

Ethical approval All procedures performed in studies involving human

participants were in accordance with the ethical standards of the institutional research

committee (Comitê de Ética em Pesquisa da UNICAMP – CEP, CAAE

8452716.2.0000.5404 and Superintendência da Polícia Técnico-Científica, ofício No.

766/2015/ATS/SPTC-SSP).

References

1. Al-Hebshi NN, Skaug N (2005) Khat (Catha edulis) - an updated review. Addiction

biology 10:299-307. https://doi.org/10.1080/13556210500353020

2. DEA (2012) Drug fact sheet. Bath salts or designer cathinones (synthetic

stimulants). https://www.dea.gov/druginfo/drug_data_sheets/Bath_Salts.pdf.

Accessed Feb 2018

3. UNODC (2017) Market analysis of synthetic drugs: amphetamine-type stimulants,

new psychoactive substances. World drug report - booklet 4.

https://www.unodc.org/wdr2017/field/Booklet_4_ATSNPS.pdf. Accessed Feb

2018

4. DEA (2017) Drugs of abuse - a DEA resource guide, 2017 edn.

https://www.dea.gov/pr/multimedia-library/publications/drug_of_abuse.pdf.

Accessed Feb 2018

5. Majchrzak M, Celiński R, Kuś P, Kowalska T, Sajewicz M (2018) The newest

cathinone derivatives as designer drugs: an analytical and toxicological review.

Forensic Toxicol 36:33-50. https://doi.org/10.1007/s11419-017-0385-6

Page 95: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

95

6. Gil D, Adamowicz P, Skulska A, Tokarczyk B, Stanaszek R (2013) Analysis of 4-

MEC in biological and non-biological material--three case reports. Forensic Sci

Int 228:e11-e15. https://doi.org/10.1016/j.forsciint.2013.03.011

7. Warrick BJ, Wilson J, Hedge M, Freeman S, Leonard K, Aaron C (2012) Lethal

serotonin syndrome after methylone and butylone ingestion. J Med Toxicol

8:65-68. https://doi.org/10.1007/s13181-011-0199-6

8. Maskell PD, De Paoli G, Seneviratne C, Pounder DJ (2011) Mephedrone (4-

methylmethcathinone)-related deaths. J Anal Toxicol 35:188-191.

https://doi.org/10.1093/anatox/35.3.188

9. Pearson JM, Hargraves TL, Hair LS, Massucci CJ, Frazee CC, 3rd, Garg U, Pietak

BR (2012) Three fatal intoxications due to methylone. J Anal Toxicol 36:444-

451. https://doi.org/10.1093/jat/bks043

10. Adamowicz P, Tokarczyk B, Stanaszek R, Slopianka M (2013) Fatal mephedrone

intoxication—a case report. J Anal Toxicol 37:37-42.

https://doi.org/10.1093/jat/bks085

11. Busardò FP, Kyriakou C, Napoletano S, Marinelli E, Zaami S (2015) Mephedrone

related fatalities: a review. European review for medical and pharmacological

sciences 19:3777-3790.

12. Papaseit E, Olesti E, de la Torre R, Torrens M, Farre M (2017) Mephedrone

concentrations in cases of clinical intoxication. Curr Pharm Des 23:5511-5522.

https://doi.org/10.2174/1381612823666170704130213

13. Rojek S, Klys M, Strona M, Maciow M, Kula K (2012) "Legal highs"--toxicity in the

clinical and medico-legal aspect as exemplified by suicide with bk-MBDB

administration. Forensic Sci Int 222:e1-6.

https://doi.org/10.1016/j.forsciint.2012.04.034

Page 96: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

96

14. Sadeg N, Darie A, Vilamot B, Passamar M, Frances B, Belhadj-Tahar H (2014)

Case report of cathinone-like designer drug intoxication psychosis and addiction

with serum identification. Addict Disord Treat 13:38-43.

https://doi.org/10.1097/ADT.0b013e318285308d

15. Marinetti LJ, Antonides HM (2013) Analysis of synthetic cathinones commonly

found in bath salts in human performance and postmortem toxicology: method

development, drug distribution and interpretation of results. J Anal Toxicol

37:135-146. https://doi.org/10.1093/jat/bks136

16. Guirguis A, Corkery JM, Stair JL, Kirton SB, Zloh M, Schifano F (2017) Intended

and unintended use of cathinone mixtures. Hum Psychopharmacol Clin Exp

32:e2598. https://doi.org/10.1002/hup.2598

17. Zuba D, Byrska B (2013) Prevalence and co-existence of active components of

'legal highs'. Drug Test Anal 5:420-429. https://doi.org/10.1002/dta.1365

18. Busardò FP et al. (2015) Assessment of the stability of mephedrone in ante-mortem

and post-mortem blood specimens. Forensic Sci Int 256:28-37.

https://doi.org/10.1016/j.forsciint.2015.07.021

19. Glicksberg L, Bryand K, Kerrigan S (2016) Identification and quantification of

synthetic cathinones in blood and urine using liquid chromatography-

quadrupole/time of flight (LC-Q/TOF) mass spectrometry. J Chromatogr B

1035:91-103. https://doi.org/10.1016/j.jchromb.2016.09.027

20. Ambach L, Hernandez Redondo A, Konig S, Weinmann W (2014) Rapid and simple

LC-MS/MS screening of 64 novel psychoactive substances using dried blood

spots. Drug Test Anal 6:367-375. https://doi.org/10.1002/dta.1505

21. SWGTOX (2013) Standard practices for method validation in forensic toxicology. J

Anal Toxicol 37:452-474. 10.1093/jat/bkt054

Page 97: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

97

22. Zaami S, Giorgetti R, Pichini S, Pantano F, Marinelli E, Busardò FP (2018)

Synthetic cathinones related fatalities: an update. European review for medical

and pharmacological sciences 22:268-274.

https://doi.org/10.26355/eurrev_201801_14129

23. Lenk G, Hansson J, Beck O, Roxhed N (2015) The effect of drying on the

homogeneity of DBS. Bioanalysis 7:1977-1985.

https://doi.org/10.4155/bio.15.135

24. De Kesel PMM, Capiau S, Lambert WE, Stove CP (2014) Current strategies for

coping with the hematocrit problem in dried blood spot analysis. Bioanalysis

6:1871-1874. https://doi.org/10.4155/bio.14.151

25. Sorensen LK (2011) Determination of cathinones and related ephedrines in

forensic whole-blood samples by liquid-chromatography-electrospray tandem

mass spectrometry. J Chromatogr B 879:727-736.

https://doi.org/10.1016/j.jchromb.2011.02.010

26. Johnson RD, Botch-Jones SR (2013) The stability of four designer drugs: MDPV,

mephedrone, BZP and TFMPP in three biological matrices under various

storage conditions. J Anal Toxicol 37:51-55. https://doi.org/10.1093/jat/bks138

27. Glicksberg L, Kerrigan S (2017) Stability of synthetic cathinones in blood. J Anal

Toxicol 41:711-719. https://doi.org/10.1093/jat/bkx071

28. Tsujikawa K, Mikuma T, Kuwayama K, Miyaguchi H, Kanamori T, Iwata YT, Inoue

H (2012) Degradation pathways of 4-methylmethcathinone in alkaline solution

and stability of methcathinone analogs in various pH solutions. Forensic Sci Int

220:103-110. https://doi.org/10.1016/j.forsciint.2012.02.005

Page 98: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

98

29. Pedersen AJ, Reitzel LA, Johansen SS, Linnet K (2013) In vitro metabolism studies

on mephedrone and analysis of forensic cases. Drug Test Anal 5:430-438.

https://doi.org/10.1002/dta.1369

30. Zaitsu K, Katagi M, Tatsuno M, Sato T, Tsuchihashi H, Suzuki K (2011) Recently

abused b-keto derivatives of 3,4-methylenedioxyphenylalkylamines: a review of

their metabolisms and toxicological analysis. Forensic Toxicol 29:73-84.

https://doi.org/10.1007/s11419-011-0111-8

31. Kerrigan S, Savage M, Cavazos C, Bella P (2016) Thermal degradation of synthetic

cathinones: implications for forensic toxicology. J Anal Toxicol 40:1-11.

https://doi.org/10.1093/jat/bkv099

Page 99: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

99

5. DISCUSSÃO GERAL

Durante o desenvolvimento do projeto, a fim de evitar diferenças na

dispersão das manchas obtidas no cartão de DBS devido a variações extremas nos

valores de hematócrito, foi estabelecido o corte inicial dos discos de tamanho

padronizado (6 mm) para posterior aplicação de volume fixo da amostra de sangue.

Foi padronizado também o volume máximo que o disco de papel poderia

absorver a amostra de sangue, sem que houvesse seu extravasamento e

consequente perda de amostra. A partir da aplicação de volumes crescentes de

sangue em diferentes discos, foi estabelecido o volume de 15 µL de amostra.

Para cada grupo de analito foi aplicado designer experimental do tipo

centroide simplex para otimização da mistura de solventes que levasse ao maior

rendimento de extração.

A separação cromatográfica mostrou sua importância principalmente na

análise de NBOMes, onde a presença de dois isômeros (25G-NBOMe e 25E-NBOMe,

m/z= 330) exigiu da cromatografia a separação completa dos picos. Na fase B foi

testado metanol e acetonitrila, mas só a acetonitrila forneceu a força cromatográfica

necessária para atingir resolução da linha de base entre eles.

Para conseguir alcançar a concentração em sangue total usualmente

reportada na literatura para intoxicações por NBOMes (entre pg/mL e pouco ng/mL) e

com um volume inicial de amostra tão baixo (15 µL), foi preciso um LC-MS/MS mais

sensível que o LCMS8040 (Shimadzu, Kyoto, Japão), tendo sido atingido com o 5500-

QTRAP (ABSciex, Ontário, Canadá).

Apesar de valores de imprecisão e inexatidão obtidos para as amostras de

NBOMes em DBS terem sido maiores que aqueles obtidos para sangue total,

possivelmente pelos baixos valores de concentração utilizados (0,1 a 10 ng/mL) e

volume de amostra (15 µL), ainda assim todos os analitos se mantiveram dentro da

faixa máxima de variação aceitável pelo guia de validação, mostrando que o método

é viável e preciso para ser aplicado na rotina laboratorial.

Page 100: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

100

Enquanto que as amostras de DBS apresentaram uma estabilidade de 6

meses para os NBOMes nas três temperaturas estudadas e em concentração baixa e

alta, excetuando o 25I-NBOMe (21% de perda da concentração inicial) e 25B-NBOMe

(22%), no sangue total, em temperatura ambiente, temos uma redução da

concentração para abaixo do limite de quantificação do método em 15 ou 30 dias,

dependendo do analito, para a concentração baixa e, pelo menos, 50% de redução

da concentração inicial das amostras em 6 meses de estudo. Em temperatura de 4

°C, na menor concentração, houve uma queda da concentração de, no mínimo, 20%

nos 6 meses, podendo ter sido quantificado por último no tempo de 90 dias (25B, 25C

e 25I-NBOMe). Esses resultados corroboram com a afirmação na literatura já

existente da capacidade do DBS em estabilizar alguns analitos [35-37].

Para as catinonas sintéticas, os resultados não foram tão expressivos em

um primeiro momento, já que, em temperatura ambiente, elas se mantiveram instáveis

assim como nas amostras de sangue total. Porém, foi possível observar que a taxa

de decaimento da concentração inicial das amostras foi muito mais expressiva no

sangue total do que no DBS. Desse modo, em altas concentrações, para analitos mais

instáveis, como a benzedrona, foi possível quantificar as amostras de sangue total em

no máximo 7 dias, enquanto que no DBS essa quantificação foi possível durante os

90 dias de estudo, 83 dias a mais. Nas amostras armazenadas em temperatura de 4

°C essa diferença na taxa de degradação também foi observada. Porém, para

temperaturas de -20 °C não foi possível estabelecer uma correlação dentro do período

de estudo.

Foi possível observar também que, assim como relatado na literatura, a

estabilidade das catinonas é dependente de sua estrutura, de modo que mesmo todas

sendo classificadas como aminas secundárias, a presença de um grupo metilenodioxi

na molécula tende a aumentar sua estabilidade quando comparadas as estruturas que

possuem um radical adicionado ao anel benzeno.

Na rotina forense, onde a possibilidade de reanálise da amostra decorrido

longo tempo da primeira não é incomum, a instabilidade dos analitos após a coleta da

amostra, mesmo que sob condições apropriadas de armazenamento, é uma das

grandes preocupações dos profissionais dessa área. Não só isso, a logística de

encaminhamento das amostras ao laboratório de toxicologia, o tempo decorrente

Page 101: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

101

desse trajeto, assim como o extenso número de casos por ano que os laboratórios

devem analisar, faz com que o período entre a coleta da amostra e sua análise não

seja imediato, aumentando a probabilidade de que analitos que possuam baixa

estabilidade no fluído biológico se degradem até a sua análise, chegando até a um

resultado falso negativo. Assim, resultados como os apresentados nessa dissertação

mostram uma possível alternativa para resolução deste problema.

Somado ao ganho na estabilidade, a coleta de amostras e armazenamento

nos discos de DBS, apresentam a vantagem de, em um mesmo espaço, ser possível

o armazenamento de um número maior de amostras, o que reduz o custo à longo

prazo, e, em curto prazo, mantem-se a estimativa de custo equivalente. Uma caixa de

cem unidades de tubos de coleta heparinizados, sai, em média, R$ 65,00 (site da

Labor import shop), um custo de R$ 0,65 por amostra; uma caixa com 100 cartões de

DBS, R$ 858,00 (site da Sigma-Aldrich®). Apesar do valor discrepante, cada cartão

equivale a R$ 8,60 e, em cada cartão, é possível gerar, no mínimo, 13 amostras em

triplicatas, levando a R$ 0,66 por amostra.

Page 102: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

102

6. CONCLUSÃO

Métodos analíticos sensíveis, precisos e exatos foram desenvolvidos para

determinação de substâncias pertencentes a duas importantes classes de NPS, em

amostras de DBS e sangue total.

A técnica de amostragem por DBS se mostrou vantajosa em comparação

ao armazenamento da amostra de sangue total convencional, por proporcionar melhor

estabilidade para NPS da classe dos NBOMes e das cationonas sintéticas. Além de

ocupar menos espaço de armazenamento, sua extração se torna mais rápida e

facilitada, já que necessita de menos etapas até obtenção do extrato a ser

efetivamente analisado, seu transporte não requer logística especial, além de tornar

possível a identificação de alguns analitos de interesse por um maior período de

tempo, mesmo, em alguns casos, quando armazenado em temperatura ambiente.

Page 103: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

103

7. REFERÊNCIAS

1. Fisichella M, Morini L, Sempio C, Groppi A (2014) Validation of a multi-analyte LC-

MS/MS method for screening and quantification of 87 psychoactive drugs and

their metabolites in hair. Analytical and bioanalytical chemistry 406:3497-3506.

2. Favretto D, Pascali JP, Tagliaro F (2013) New challenges and innovation in forensic

toxicology: focus on the "New Psychoactive Substances". J Chromatogr A

1287:84-95. 10.1016/j.chroma.2012.12.049

3. Lopez-Arnau R, Martinez-Clemente J, Pubill D, Escubedo E, Camarasa J (2012)

Comparative neuropharmacology of three psychostimulant cathinone

derivatives: butylone, mephedrone and methylone. Brit J Pharmacol 167:407-

420. Doi 10.1111/J.1476-5381.2012.01998.X

4. Paul M, Ippisch J, Herrmann C, Guber S, Schultis W (2014) Analysis of new designer

drugs and common drugs of abuse in urine by a combined targeted and

untargeted LC-HR-QTOFMS approach. Analytical and bioanalytical chemistry

406:4425-4441.

5. Kasick DP, McKnight CA, Klisovic E (2012) "Bath Salt" Ingestion Leading to Severe

Intoxication Delirium: Two Cases and a Brief Review of the Emergence of

Mephedrone Use. Am J Drug Alcohol Ab 38:176-180. Doi

10.3109/00952990.2011.643999

6. Andreasen MF, Telving R, Rosendal I, Eg MB, Hasselstrøm JB, Andersen LV (2015)

A fatal poisoning involving 25C-NBOMe. Forensic Sci Int 251:e1-e8.

10.1016/j.forsciint.2015.03.012

7. Boucher A, Hernu R, Citterio-Quentin A, Moulsma M, Humbert L, Coulon T, Vial T

(2015) Severe poisoning after nasally administered mixture of NBOMe

compounds: A case report. Clinical Toxicology 53:365-365.

8. McIntyre IM, Trochta A, Gary RD, Wright J, Mena O (2016) An Acute Butyr-Fentanyl

Fatality: A Case Report with Postmortem Concentrations. J Anal Toxicol

40:162-166. 10.1093/jat/bkv138

9. Shanks KG, Behonick GS (2017) Detection of Carfentanil by LC-MS-MS and

Reports of Associated Fatalities in the USA. J Anal Toxicol 41:466-472.

Page 104: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

104

10. Forrester MB, Leung L, Kleinschmidt K (2012) Comparison of synthetic cathinone

and methylenedioxymethamphetamine (MDMA) exposures. Clinical Toxicology

50:706-706.

11. EMCDDA (2007) Early-warning system on new psychoactive substances –

Operating guidelines. European Monitoring Centre for Drugs and Drug

Addiction.

http://www.emcdda.europa.eu/attachements.cfm/att_52451_EN_EWSguidelin

es2.pdf. Accessed Jan 2018

12. UNODC (2017) Market analysis of synthetic drugs: amphetamine-type stimulants,

new psychoactive substances. World drug report - booklet 4.

https://www.unodc.org/wdr2017/field/Booklet_4_ATSNPS.pdf. Accessed Feb

2018

13. Benjamin EJ et al. (2017) Heart Disease and Stroke Statistics-2017 Update: A

Report From the American Heart Association. Circulation 135:e146-e603.

10.1161/CIR.0000000000000485

14. Zawilska JB, Andrzejczak D (2015) Next generation of novel psychoactive

substances on the horizon - A complex problem to face. Drug Alcohol Depend

157:1-17. 10.1016/j.drugalcdep.2015.09.030

15. Suzuki J, Dekker MA, Valenti ES, Cruz FAA, Correa AM, Poklis JL, Poklis A (2015)

Toxicities associated with NBOMe ingestion - a novel class of potent

hallucinogens: a review of the literature. Psychosomatics 56:129-139.

10.1016/j.psym.2014.11.002

16. Swortwood MJ, Boland DM, DeCaprio AP (2013) Determination of 32 cathinone

derivatives and other designer drugs in serum by comprehensive LC-QQQ-

MS/MS analysis. Analytical and bioanalytical chemistry 405:1383-1397. Doi

10.1007/S00216-012-6548-8

17. Sorensen LK (2011) Determination of cathinones and related ephedrines in

forensic whole-blood samples by liquid-chromatography-electrospray tandem

mass spectrometry. J Chromatogr B 879:727-736.

18. Wright TH, Cline-Parhamovich K, Lajoie D, Parsons L, Dunn M, Ferslew KE (2013)

Deaths Involving Methylenedioxypyrovalerone (MDPV) in Upper East

Tennessee. Journal of Forensic Sciences:n/a-n/a. 10.1111/1556-4029.12260

Page 105: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

105

19. Wood DM, Greene SL, Dargan PI (2011) Clinical pattern of toxicity associated with

the novel synthetic cathinone mephedrone. Emerg Med J 28:280-282. Doi

10.1136/Emj.2010.092288

20. Ewald AH, Fritschi G, Bork WR, Maurer HH (2006) Designer drugs 2,5-dimethoxy-

4-bromo-amphetamine (DOB) and 2,5-dimethoxy-4-bromo-methamphetamine

(MDOB): studies on their metabolism and toxicological detection in rat urine

using gas chromatographic/mass spectrometric techniques. Journal of Mass

Spectrometry 41:487-498. Doi 10.1002/Jms.1007

21. Ammann D, McLaren JM, Gerostamoulos D, Beyer J (2012) Detection and

Quantification of New Designer Drugs in Human Blood: Part 2 – Designer

Cathinones. Journal of analytical toxicology 36:381-389. 10.1093/jat/bks049

22. Power JD, McDermott SD, Talbot B, O'Brien JE, Kavanagh P (2012) The analysis

of amphetamine-like cathinone derivatives using positive electrospray ionization

with in-source collision-induced dissociation. Rapid Commun Mass Sp 26:2601-

2611. Doi 10.1002/Rcm.6383

23. Rose SR, Poklis JL, Poklis A (2013) A case of 25I-NBOMe (25-I) intoxication: a

new potent 5-HT2A agonist designer drug. Clin Toxicol (Phila) 51:174-177.

10.3109/15563650.2013.772191

24. Ibanez B, Heusch G, Ovize M, Van de Werf F (2015) Evolving therapies for

myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65:1454-1471.

10.1016/j.jacc.2015.02.032

25. Drummer OH (2004) Postmortem toxicology of drugs of abuse. Forensic Sci Int

142:101-113. 10.1016/j.forsciint.2004.02.013

26. Peters FT (2007) Stability of analytes in biosamples - an important issue in clinical

and forensic toxicology? Anal Bioanal Chem 388:1505-1519. 10.1007/s00216-

007-1267-2

27. Soh YNA, Elliott S (2014) An investigation of the stability of emerging new

psychoactive substances. Drug Test Anal 6:696-704. doi:10.1002/dta.1576

28. Skopp G (2004) Preanalytic aspects in postmortem toxicology. Forensic Sci Int

142:75-100. 10.1016/j.forsciint.2004.02.012

29. Edelbroek PM, van der Heijden J, Stolk LML (2009) Dried Blood Spot Methods in

Therapeutic Drug Monitoring: Methods, Assays, and Pitfalls. Ther Drug Monit

31:327-336.

Page 106: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

106

30. Demirev PA (2013) Dried Blood Spots: Analysis and Applications. Analytical

Chemistry 85:779-789. Doi 10.1021/Ac303205m

31. da Silva ACC et al. (2018) Simultaneous determination of fluoxetine and

norfluoxetine in dried blood spots using high-performance liquid

chromatography-tandem mass spectrometry. Clin Biochem 52:85-93.

10.1016/j.clinbiochem.2017.10.002

32. SWGTOX (2013) Standard practices for method validation in forensic toxicology. J

Anal Toxicol 37:452-474. 10.1093/jat/bkt054

33. Linder C, Hansson A, Sadek S, Gustafsson LL, Pohanka A (2018) Carbamazepine,

lamotrigine, levetiracetam and valproic acid in dried blood spots with liquid

chromatography tandem mass spectrometry; method development and

validation. J Chromatogr B Analyt Technol Biomed Life Sci 1072:116-122.

10.1016/j.jchromb.2017.11.005

34. Bjorkesten J et al. (2017) Stability of Proteins in Dried Blood Spot Biobanks.

Molecular & cellular proteomics : MCP 16:1286-1296.

10.1074/mcp.RA117.000015

35. Spooner N, Lad R, Barfield M (2009) Dried Blood Spots as a Sample Collection

Technique for the Determination of Pharmacokinetics in Clinical Studies:

Considerations for the Validation of a Quantitative Bioanalytical Method. Anal

Chem 81:1557-1563. Doi 10.1021/Ac8022839

36. Mueller DM, Rentsch KM (2012) Generation of metabolites by an automated online

metabolism method using human liver microsomes with subsequent

identification by LC-MS(n), and metabolism of 11 cathinones. Analytical and

bioanalytical chemistry 402:2141-2151.

37. Alfazil AA, Anderson RA (2008) Stability of benzodiazepines and cocaine in blood

spots stored on filter paper. J Anal Toxicol 32:511-515. 10.1093/jat/32.7.511

Page 107: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

107

8. ANEXOS

ANEXO 1: Parecer do Comitê de Ética em Pesquisa da Unicamp

Page 108: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

108

Page 109: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

109

Page 110: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

110

Page 111: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

111

Page 112: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

112

Page 113: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

113

Page 114: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

114

Page 115: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

115

Page 116: UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE …repositorio.unicamp.br/jspui/bitstream/REPOSIP/331685/1/... · 2018-09-03 · universidade estadual de campinas faculdade de ciÊncias

116