UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D....

334
UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE ELECTRICIDAD APLICACIONES DE LAS ENERGÍAS RENOVABLES EN LA REGIÓN DE MAGALLANES Elio Javier Oyarzún Oyarzo Rodrigo Alejandro Silva Mancilla 2006

Transcript of UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D....

Page 1: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

UNIVERSIDAD DE MAGALLANES

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE ELECTRICIDAD

APLICACIONES DE LAS ENERGÍAS RENOVABLES

EN LA REGIÓN DE MAGALLANES

Elio Javier Oyarzún Oyarzo

Rodrigo Alejandro Silva Mancilla

2006

Page 2: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

UNIVERSIDAD DE MAGALLANES

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE ELECTRICIDAD

APLICACIONES DE LAS ENERGÍAS RENOVABLES

EN LA REGIÓN DE MAGALLANES

“Trabajo de titulación presentado en conformidad a los

requisitos para obtener el título de Ingeniero de Ejecución en

Electricidad con mención en Electrónica Industrial”

Profesor guía:

Sr. Sergio Núñez Lagos

Elio Javier Oyarzún Oyarzo

Rodrigo Alejandro Silva Mancilla

2006

Page 3: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

i

AGRADECIMIENTOS

Este trabajo esta dedicado especialmente a nuestras familias, quienes nos apoyaron y

creyeron en nosotros a lo largo de esta importante etapa de nuestras vidas.

A todas las personas que nos apoyaron, guiaron y que de una u otra manera siempre

estuvieron con nosotros, como lo son nuestros amigos, profesores y compañeros de la

Universidad de Magallanes.

Simplemente gracias a todos.

Rodrigo

Elio

Page 4: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

ii

RESUMEN

El presente trabajo muestra en primer lugar una evaluación cuantitativa y cualitativa de

los recursos eólico y solar enfocados a la generación de electricidad. El análisis cuantitativo se

basa principalmente en la caracterización de las variables viento y radiación solar en la Región de

Magallanes, mientras que el análisis cualitativo corresponde a una estimación del potencial eólico

utilizando el método estadístico de distribución de Weibull y a una obtención teórica y análisis de

la radiación solar para Punta Arenas mediante el método de Collares – Pereira – Rabl.

Los resultados de estos análisis se utilizan posteriormente para la evaluación de posibles

aplicaciones tanto en sectores urbanos como rurales. Esta evaluación se realizará mediante el

modelo de optimización HOMER, obteniéndose estimaciones de producción de energía y una

primera aproximación a los posibles costos de sistemas de generación de electricidad basados en

energías renovables no convencionales.

Finalmente se realiza un análisis de la situación actual del sector eléctrico chileno y de las

barreras de entrada que presenta para el ingreso competitivo de estas tecnologías.

Page 5: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

iii

ÍNDICE

Capítulo 1 Introducción

Capítulo 2 Aspectos teóricos de las energías eólica y solar fotovoltaica

2.1 Aspectos teóricos de energía eólica

2.1.1 Energía contenida en el viento y potencia desarrollada

por un aerogenerador

2.1.2 Variación de la velocidad de viento con la altura

2.1.3 Distribución de Weibull

2.1.4 Variación de la densidad del aire respecto a la altura

2.1.4.1 Variación de la presión respecto a la altura

2.1.4.2 Variación de la temperatura respecto a la

altura

2.1.4.3 Efecto de la presión y temperatura sobre la

densidad del aire en la Región de Magallanes

2.2 Aspectos teóricos de energía solar fotovoltaica

2.2.1 Radiación Solar

2.2.2 Materiales cristalinos y Efecto Fotovoltaico

2.2.3 Efecto Fotovoltaico

2.2.4 Fabricación de celdas solares

2.2.5 Herramientas matemáticas para la determinación

teórica de la radiación solar

2.2.5.1 Constante solar

2.2.5.2 Variación de la distancia tierra sol

2.2.5.3 Ángulo de Declinación solar

2.2.5.4 Ángulo horario a la salida del sol

1

3

3

3

7

8

14

16

16

17

18

18

19

23

27

28

29

30

31

32

Page 6: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

iv

2.2.5.5 Horas reales de sol

2.2.5.6 Horas teóricas de sol

2.2.5.7 Radiación Solar extraterrestre diaria

2.2.5.8 Interacciones con la atmósfera

2.2.6 Radiación solar global en un plano horizontal

2.2.7 Índice de claridad

2.2.8 Determinación de radiación directa sobre un plano

horizontal

2.2.9 Método directo para la determinación de la radiación

solar global

2.2.10 Método Indirecto

2.2.10.1 Modelo de Ångström modificado

2.2.10.2 Modelo de Glover y McCulloch

2.2.10.3 Modelo de Rietveld

2.2.11 Radiación difusa y directa

2.2.12 Radiación solar en un plano inclinado

2.2.13 Factor de modificación para radiación directa

2.2.14 Factor modificador de radiación difusa

Capitulo 3 Evaluación cuantitativa y cualitativa de la energía eólica en la Región

de Magallanes

3.1 Aspectos generales

3.2 Análisis cuantitativo de energía eólica

3.2.1 Fuentes de información utilizadas

3.2.2 Cuantificación del recurso eólico para la ciudad de

Punta Arenas

3.2.3 Análisis del año típico obtenido para Punta Arenas

32

33

34

34

35

36

36

38

39

40

41

41

41

42

43

45

51

51

51

52

54

56

Page 7: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

v

3.2.4 Análisis de dirección de velocidades para Punta Arenas

3.2.5 Cuantificación del recurso eólico en otros sectores de

la región

3.2.6 Validación de resultados

3.2.6.1 Validación de resultados del año típico eólico

3.2.6.2 Validación de datos de la NASA

3.3 Análisis cualitativo de energía eólica

3.3.1 Estudio de potencial eólico para la ciudad de Punta

Arenas

3.3.1.1 Variación con la altura

3.3.1.2 Horas de operación

3.3.2 Estudios de potencial eólico para los sectores Otway y

Carmen Sylva

3.3.2.1 Variación con la altura

3.3.2.2 Horas de operación

3.3.3 Potencial eólico en otros sectores de la región

Capítulo 4 Evaluación cuantitativa y cualitativa de la energía solar en la Región

de Magallanes

4.1 Análisis Cuantitativo de energía solar FV

4.1.1 Cuantificación del recurso solar para la ciudad de

Punta Arenas

4.1.2 Análisis del año típico solar para Punta Arenas

4.1.3 Cuantificación del recurso solar en otros sectores de la

región

4.1.4 Comparación de resultados del año típico con otras

fuentes de información

60

61

64

65

67

70

70

73

75

76

79

80

82

85

85

85

87

90

92

Page 8: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

vi

4.1.5 Comparación de datos de NASA con otras fuentes de

información

4.2 Análisis Cualitativo de la energía solar FV

4.2.1 Determinación teórica de radiación solar para la ciudad

de Punta Arenas

4.2.1.1 Horas teóricas de sol

4.2.1.2 Radiación solar extraterrestre diaria

4.2.1.3 Radiación solar global en un plano horizontal

4.2.1.4 Radiación solar directa y difusa

4.2.2 Optimización de la radiación solar directa para la

ciudad de Punta Arenas

4.2.3 Optimización de la radiación solar difusa para la

ciudad de Punta Arenas

4.2.4 Radiación Solar global mensual en un plano inclinado

para la ciudad de Punta Arenas

Capítulo 5 Aspectos económicos de las energías eólica y solar

5.1 Mercado eólico

5.2 Mercado fotovoltaico

5.3 Otros componentes de sistemas basados en ERNC

Capítulo 6 Introducción al software Homer

6.1 Descripción general

6.2 Funcionamiento interno del modelo

6.3 Variables de entrada principales

6.3.1 Componentes del sistema eléctrico

6.3.2 Información de recursos eólico y solar

6.4 Variables de salida principales

95

98

98

99

100

102

103

105

107

107

111

111

116

119

123

123

124

125

125

129

132

Page 9: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

vii

6.4.1 Inversión inicial

6.4.2 Costo neto presente

6.4.3 Costo de la energía

Capítulo 7 Aplicaciones de las energías eólica y solar en la Región de

Magallanes

7.1 Sistemas no conectados a la red

7.1.1 Electrificación de viviendas rurales en base a energías

renovables

7.1.1.1 Parámetros de entrada para la simulación

mediante software HOMER

7.1.1.2 Análisis de Resultados

7.1.1.3 Exceso de energía

7.1.2 Electrificación de sistemas de bombeo en localidades

rurales

7.1.2.1 Funcionamiento básico de las bombas de agua

basadas en energía solar y eólica

7.1.2.2 Ventajas y desventajas de los SBFV y SBEE

7.1.2.3 Determinación de los requerimientos de

bombeo

7.1.2.4 Condición inicial para bombeo de agua de

pozos profundos

7.1.2.5 Sistema de bombeo de agua

7.1.2.6 Ingreso de variables de entrada

7.1.2.7 Análisis económico de los sistemas de

bombeo

7.1.2.8 Análisis de sensibilidad de los sistemas de

132

132

133

134

135

135

136

140

149

153

154

155

156

157

158

161

163

163

Page 10: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

viii

bombeo

7.1.3 Electrificación rural mediante sistemas híbridos

Eólico - Diesel

7.1.3.1 Antecedentes de evaluación de proyectos de

electrificación rural en la región de Magallanes

7.1.3.2 Parámetros de entrada para la simulación

7.1.3.3 Análisis de resultados

7.1.3.4 Ventajas y desventajas entre alternativas de

suministro

7.1.3.5 Consumo de combustible versus exceso de

energía

7.1.3.6 Electrificación rural en otros sectores de la

región

7.2 Sistemas conectados a la red

7.2.1 Autogeneración eólica y FV con conexión a la red en

sectores residenciales. Medición neta de energía

7.2.1.1 Parámetros de entrada para la simulación

7.2.1.2 Estimación de producción de energía de un

aerogenerador y arreglo FV en la ciudad de

Punta Arenas

7.2.1.3 Análisis económico. Estimación de ahorro

mensual

7.2.1.4 Estimación de ahorro mensual en la cuenta de

electricidad por parte del usuario

7.2.2 Conexión a la red con aerogeneradores de gran potencia

en el subsistema eléctrico Punta Arenas

164

166

167

169

170

171

173

178

178

181

185

186

187

198

Page 11: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

ix

7.2.2.1 Situación actual del subsistema eléctrico Punta

Arenas

7.2.2.2 Parámetros de entrada para la simulación

7.2.2.3 Análisis energético

Capítulo 8 Aspectos complementarios de las energías eólica y solar

8.1 Sector Eléctrico chileno

8.1.1 Precio de la electricidad en Chile

8.1.2 Subsidios al Sistema Eléctrico

8.1.3 Vulnerabilidad del Sector Eléctrico

8.2 Mercado internacional de hidrocarburos y su influencia en el

sector eléctrico chileno

8.3 Barreras de entrada para las ERNC en Chile

8.4 Experiencia internacional en ERNC

8.4.1 Experiencia de otros países

8.5 Aspecto Ambiental

8.6 Principales beneficios de la obtención de energía eléctrica de

fuentes renovables

8.6.1 Reducción de emisiones gaseosas

8.6.1.1 Tipos de bonos de descontaminación en Chile

8.6.2 Mejoras en la calidad y el acceso al agua potable

8.6.3 Recuperación de tierras degradadas

8.6.4 Reducción de la contaminación atmosférica

ocasionada por el transporte

8.6.5 Distribución de electricidad

8.6.6 Beneficios socioeconómicos

8.7 Situación Actual y Futura de las ERNC

200

201

205

207

207

210

211

212

214

219

222

222

227

229

229

233

234

234

234

234

235

235

Page 12: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

x

8.8 Mecanismos actuales de fomento de las ERNC en Chile

Capítulo 9 Conclusiones

Bibliografía

Anexo A. Tendencias horarias de velocidad de viento e irradiación solar para la

ciudad de Punta Arenas

Anexo B. Método utilizado para la determinación de los años típicos eólico y solar

para Punta Arenas

Anexo C. Promedios mensuales de velocidad de viento e insolación solar para la

Región de Magallanes

Anexo D. Promedios mensuales de densidad de potencia eólica para la región de

Magallanes

Anexo E. Tablas de obtención de radiación solar extraterrestre para la ciudad de

Punta Arenas

Anexo F. Cotización de componentes

Anexo G. Especificaciones técnicas

Anexo H. Estimación de producción de electricidad de un aerogenerador de 1 KW y

arreglo FV de 1,2 KW en la ciudad de Punta Arenas

Anexo I. Glosario de energía fotovoltaica

237

240

244

247

255

281

284

285

297

300

309

311

Page 13: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

1

INTRODUCCIÓN

Históricamente la matriz energética de Chile ha contado con una participación importante

de energías renovables, en particular de la energía hidráulica convencional utilizada para

generación eléctrica. Esta participación ha disminuido en los últimos años producto del

crecimiento de sectores que tienen un consumo intensivo de derivados del petróleo, como el

transporte, y del aumento de la capacidad de generación eléctrica térmica a partir de gas natural.

Sin perjuicio de ello, la participación de las energías renovables sigue siendo significativa en el

abastecimiento energético nacional.

Las energías renovables suelen clasificarse en convencionales y no convencionales, según

sea el grado de desarrollo de las tecnologías para su aprovechamiento y la penetración en los

mercados energéticos que presenten. Dentro de las convencionales, la más difundida es la

hidráulica a gran escala.

Como energías renovables no convencionales (ERNC) se consideran la eólica, la solar, la

geotérmica y la de los océanos entre otras. Además, existe una amplia gama de procesos de

aprovechamiento de la energía de la biomasa que pueden ser catalogados como ERNC. De igual

manera, el aprovechamiento de la energía hidráulica en pequeñas escalas se suele clasificar en

esta categoría.

Al ser autóctonas y, dependiendo de su forma de aprovechamiento, generar impactos

ambientales significativamente inferiores que las fuentes convencionales de energía, las ERNC

pueden contribuir a los objetivos de seguridad de suministro y sustentabilidad ambiental de las

políticas energéticas. La magnitud de dicha contribución y la viabilidad económica de su

implantación, depende de las particularidades en cada país de elementos tales como el potencial

Page 14: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

2

explotable de los recursos renovables, su localización geográfica y las características de los

mercados energéticos en los cuales competirían.

El objetivo principal de este trabajo es evaluar en forma cuantitativa y cualitativa las

energías eólica y solar fotovoltaica en la región de Magallanes y analizar sus potenciales usos en

sus distintas aplicaciones.

Para lograr el objetivo planteado anteriormente, se comenzará realizando un análisis

cuantitativo consistente en la recopilación y análisis de información referente a los recursos

eólico y solar proveniente de distintas fuentes. Posteriormente se realizará un análisis cualitativo

utilizando herramientas matemáticas como lo son la distribución de Weibull para el recurso

eólico y el modelo matemático de Collares – Pereira – Rabl, que sumados a la posterior

utilización del software de optimización HOMER servirán para obtener diversos enfoques tanto

energético como económicos para la Región de Magallanes.

Page 15: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

3

ASPECTOS TEÓRICOS DE LAS ENERGÍAS EÓLICA Y SOLAR FOTOVOLTAICA

2.1 Aspectos teóricos de energía eólica

La energía eólica, como la mayoría de las energías renovables, tiene su origen en la

radiación que alcanza al planeta procedente del Sol. En concreto, entre el 1 y 2% de la energía

solar que llega a la Tierra se convierte en energía eólica, lo que supone entre 50 y 100 veces más

de la energía que transforman en biomasa todas las plantas del planeta. La energía eólica se

genera debido a que no todas las partes del planeta se calientan de igual modo, lo cual genera

diferencias de presión en la atmósfera. A ese fenómeno se une el efecto del movimiento de

rotación terrestre a escala global y los factores geográficos y climáticos locales. Una

característica fundamental de este tipo de energía es su gran aleatoriedad, por lo que resulta

complicado estimar la cantidad de energía eólica de la que se dispone en un intervalo

determinado de tiempo. Además, presenta una gran variación local, superior a la de la energía

solar, por lo que dos vecinos, que muy probablemente tendrán el mismo potencial solar, pueden

tener un recurso eólico muy diferente si uno de ellos está en una zona más propicia, más elevada

o mejor orientada respecto a la dirección principal del viento. A continuación se analizarán los

aspectos y herramientas matemáticas más importantes asociadas al recurso eólico.

2.1.1 Energía contenida en el viento y potencia desarrollada por un aerogenerador

En términos simples, la energía del viento, o energía eólica, no es otra cosa más que la

energía cinética que posee una masa de aire que se encuentra en movimiento [1]. La energía

cinética (Ec) de un cuerpo de masa m cualquiera, que se mueve con una velocidad v, responde a

la ecuación 2.1.

Page 16: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

4

2

21

mvEc = (2.1)

Esta es la forma más general que existe para expresar la energía cinética. En este caso en

particular, la masa m corresponde a una masa de aire, y la velocidad v corresponde a la velocidad

del viento (velocidad de esa masa de aire). Esta expresión sin embargo no ayuda mucho, se

necesitan expresiones que no dependan de la masa del aire y que al mismo tiempo relacionen la

energía y la potencia eléctrica sólo con la velocidad del viento y en lo posible con alguna

característica propia de los aerogeneradores. En efecto, se verá que la cantidad de energía

transferida al rotor de un aerogenerador por el viento depende de la densidad del aire ρ, del área

barrida por las aspas del rotor, A, y de la velocidad del viento v.

Si el volumen del aire que se mueve es V, y tiene una densidad ρ, su masa queda

determinada por la ecuación 2.2:

ρVm = (2.2)

Luego, insertando la ecuación 2.2 en la 2.1, se obtiene la expresión 2.3 para la energía

cinética:

2

21

vVEc ρ= (2.3)

Por otro lado, la cantidad de aire que llega al rotor de un aerogenerador en un tiempo t

dependerá de: el área de barrido del rotor A y de la velocidad del viento v, como en la figura 2.1.

Page 17: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

5

Figura 2.1. Factores que intervienen en la potencia

desarrollada por un aerogenerador

Así, el volumen de aire que llega al rotor será entonces el que entrega la ecuación 2.4:

AvtV = (2.4)

Insertando la ecuación 2.4 en la 2.3, se obtienen finalmente las expresiones 2.5 y 2.6 para

la energía cinética y potenc ia respectivamente que aporta el aire a las aspas del rotor en un tiempo

t:

3

21

AtvEc ρ= (2.5)

3

21

AvP ρ= (2.6)

Como se puede apreciar, la potencia desarrollada por un aerogenerador depende del cubo

de la velocidad del viento, lo que hace que pequeñas variaciones en la velocidad provoquen

grandes variaciones en la potencia capturada por las palas del rotor y por ende en la potencia

eléctrica generada, esta es una de las principales causas del fracaso de muchos proyectos basados

en energía eólica, la estimación incorrecta del verdadero potencial eólico de la zona o

Page 18: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

6

simplemente la no disponibilidad de registros de mediciones. Volviendo a la expresión 2.6, no

toda esta potencia se transfiere al generador eléctrico. Hasta ahora, se ha hablado de la energía

disponible en el viento, pero la capacidad de un aerogenerador cualquiera para extraer esta

potencia disponible en el viento depende de varios factores entre ellos su eficiencia mecánica. De

esta manera para extraer la potencia de un aerogenerador, se habla de un coeficiente adimensional

característico de cada aerogenerador, que se conoce como coeficiente de potencia, dado por la

ecuación 2.7:

vientodelPotenciamecánicaPotencia

PP

CV

Mp

== (2.7)

Luego:

pM CAvP 3

21

ρ= (2.8)

Se ha obtenido de forma teórica el máximo valor que puede alcanzar este coeficiente de

potencia, se le denomina límite de Betz y es el de 0,5926. Este concepto proviene de la ley de

Betz y dice que sólo puede convertirse menos del 16/27 (el 59 %) de la energía cinética en

energía mecánica usando un aerogenerador. Esta ley fue formulada por primera vez por el físico

alemán Albert Betz en 1919. Su libro "Wind-Energie", publicado en 1926, proporcionaba buena

parte del conocimiento que en ese momento se tenía sobre energía eólica y aerogeneradores. Es

sorprendente que se pueda hacer una afirmación general tan tajante que se pueda aplicar a

cualquier aerogenerador de eje horizontal.

Page 19: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

7

2.1.2 Variación de la velocidad de viento con la altura

La velocidad del viento también varía con la altura respecto al suelo y con ello la energía

disponible, es por eso que se requiere una ecuación que prediga la velocidad del viento a una

altura determinada en función de la velocidad conocida a una altura de referencia. Para una

turbina eólica se necesita saber la velocidad del viento a la altura del eje del rotor, dada por lo

general por el tamaño de la torre, la expresión más común es la ecuación 2.9.

α

=

00 h

hvv (2.9)

Donde h es la altura a la cual se desea conocer la velocidad v, y v0 es la velocidad

conocida a la altura de referencia h0 también conocida. El exponente α varía con la altura, hora

del día, estación del año, naturaleza del terreno, velocidad del viento y temperatura. Esta ley

también se conoce con el nombre de ley exponencial o ley de potencia, tomando como altura de

referencia 10 metros. La tabla 2.1 muestra la variación del coeficiente α con el tipo de terreno:

Lugares llanos con hielo o hierba a = 0,08 a 0,12

Lugares llanos (mar, costa) a = 0,14

Terrenos poco accidentados a = 0,13 a 0,16

Zonas rústicas a = 0,2

Terrenos accidentados o bosques a = 0,2 a 0,26

Terrenos muy accidentados y grandes ciudades a = 0,25 a 0,4

Tabla 2.1. Variación del coeficiente de rugosidad a respecto al tipo de terreno

Punta Arenas, presenta un coeficiente de rugosidad entre 0,14 y 0,16; en este trabajo se

utilizará para Punta Arenas un coeficiente de rugosidad a= 0,16; (Fuente: RetScreen International

[2] ).

Page 20: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

8

Otro modelo, alternativo al anterior, es el llamado modelo logarítmico [3]. Este modelo

asume que la velocidad del viento es proporcional al logaritmo de la altura respecto al suelo, el

modelo queda descrito por la ecuación 2.10:

)/ln()/ln(

)()(

0

0

hhhh

hvhv

anem

gen

anem

gen = (2.10)

Donde hgen es la altura del eje del aerogenerador, hanem es la altura a la cual se realizaron

las mediciones, o altura del anemómetro, y h0 es la longitud de rugosidad, mientras que v(hgen) y

v(hanem) son las velocidades de viento a la altura del eje de la turbina y a la altura del anemómetro

respectivamente. Tal como en el primer modelo planteado, existen valores típicos para h0

dependiendo del tipo de terreno tal como se muestra en la tabla 2.2. Estos modelos se utilizarán

en el momento que sea necesario.

Tipo de terreno Longitud de rugosidad (m)

Muy liso, hielo o barro 0.00001

Mar abierto tranquilo 0.0002

Superficie de nieve 0.003

Césped 0.008

Pasto rugoso 0.0010

Campo baldío 0.03

Cultivos 0.05

Pocos árboles 0.10

Muchos árboles y algunas construcciones 0.25

Bosques y selvas 0.5

Suburbios 1.5

Centro de la ciudad, construcciones altas 3.0

Tabla 2.2. Valores típicos de h0

2.1.3 Distribución de Weibull

Una de las formas más comunes de analizar los datos de velocidad de viento, y de

elaborar estudios sobre energías renovables basados en energía eólica es hacerlo mediante una

Page 21: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

9

función de densidad de probabilidad. Existen varias funciones de densidad de probabilidad que se

pueden utilizar, tres de las más comunes son la de Weibull, Rayleigh y Normal, pero lejos la

herramienta más utilizada para estos efectos es la llamada función de densidad de probabilidad de

Weibull, o simplemente distribución de Weibull [1][4] . La función de densidad de probabilidad

de Weibull para la velocidad del viento (v) está dada por la ecuación 2.11:

1 0, 0, exp)(1

>>>

=

cvkcv

cv

ck

vfkk

(2.11)

Esta es una distribución de dos parámetros donde c se denomina parámetro de escala y k

es el factor de forma.

Existen varios métodos para determinar el valor de los parámetros c y k, un método

simple por ejemplo es cuando la velocidad media ( v ) y la desviación estándar (σ) de la velocidad

del viento se conocen, entonces, una buena aproximación para encontrar el valor de k es la de la

ecuación 2.12.

101 086.1

≤≤

=

kv

k σ (2.12)

Donde σ corresponde a la desviación estándar y se obtiene de la varianza (σ2) de acuerdo

a la ecuación 2.13

( )∑=

−−

=n

ii vv

n 1

22

11

σ (2.13)

Una vez calculado k, se puede encontrar el valor de c según la ecuación 2.14.

Page 22: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

10

( ) 11 k

vc

+Γ= (2.14)

Donde v es la velocidad media, y Γ es la función gamma tal como se muestra en las

ecuaciones 2.15 y 2.16 :

∑=

=n

iiv

nv

1

1 (2.15)

( ) 0con 0

1 ≥=Γ ∫∞

−− ydxxey yx (2.16)

Este es un método práctico sobre todo cuando se tiene una serie de velocidades horarias

para un año completo. La ventaja de trabajar de esta manera es que se pueden utilizar las

características propias de la función de densidad de probabilidad aplicadas a la velocidad del

viento. Así es como se obtienen los siguientes resultados de importancia a la hora de hacer

cálculos.

La velocidad del viento media se puede escribir según la ecuación 2.17 como:

( )∫∞

=0

dvvvfv (2.17)

Si f es la función de densidad de probabilidad de Weibull, se puede insertar la ecuación

2.11 en la ecuación 2.17 para obtener la expresión 2.18.

Page 23: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

11

dvcv

cv

cvk

vkk

∫∞ −

=

0

1

exp (2.18)

Haciendo el cambio de variables k

cv

x

= , la velocidad media se puede escribir como se

muestra en la ecuación 2.19.

∫∞

−=0

/1 dxexcv xk (2.19)

Ahora, si k

y1

1+= , se puede usar la función gamma de la ecuación 2.16, de esta manera,

se obtiene finalmente la ecuación 2.20 para la velocidad media en función sólo de los parámetros

de Weibull.

+Γ=

kcv

11 (2.20)

Las tablas de función gamma publicadas sólo se dan para valores de y entre 1 y 2. Si y

está fuera de este rango se puede usar la fórmula recursiva 2.21, mientras que si y es un entero se

hace uso de la ecuación 2.22.

( ) ( ) 2y1 1 <<Γ=+Γ yyy (2.21)

( ) n ..., 3, 2, 1,y !1 ==+Γ yy (2.22)

Por otro lado, la función de distribuc ión de Weibull está dada por la ecuación 2.23:

Page 24: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

12

( )

−−=

k

cv

vF exp1 (2.23)

Entre los resultados que se pueden obtener de la función de distribución figuran por

ejemplo la varianza, que se puede calcular según las ecuaciones 2.24 y 2.25.

+Γ−

+Γ=

kkc

11

21 222σ (2.24)

( )1

11

21

2

2

2 −

=

k

kv

σ (2.25)

Otro de los resultados, y uno de los más importantes y útiles es el siguiente, según la

ecuación 2.26, la probabilidad de que la velocidad del viento sea igual o superior a una velocidad

de viento conocida va es

( ) ( )

−==≥ ∫

∞ ka

va c

vdvvfvvP

a

exp (2.26)

La importancia de este resultado radica en que de esta manera y dadas las características

de operación de un aerogenerador determinado se puede calcular las horas de operación del

mismo en cierto período de tiempo, como por ejemplo un año. La probabilidad de que la

velocidad del viento esté dentro de un intervalo de 1 m/seg, centrado en la velocidad de viento va,

está dada por las ecuaciones 2.27a, b y c.

( ) ∫+

=+≤≤−5.0

5.0

)(5.05.0a

a

v

vaa dvvfvvvP (2.27a)

Page 25: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

13

+

−−

−=k

ak

a

cv

cv 5.0

exp5.0

exp (2.27b)

)()( aa vfvvf =∆≈ (2.27c)

Y en lo que respecta a la potencia promedio en el viento, se tiene que:

∫∞

=0

3 )(21

dvvfvAPw ρ (2.28)

Nuevamente, si f es la función de densidad de probabilidad de Weibull, la potencia

promedio queda dada por la ecuación 2.29.a. Esta expresión también es de mucha importancia ya

que permite calcular la densidad de potencia al dividir wP por el área de barrido A obteniéndose

la ecuación 2.29.b.

( )( )[ ]33

112

31

k

kvAPw

+Γ=

ρ (2.29.a)

( )( )[ ]3

3

112

31 potencia de Densidad

k

kv

APw

+Γ==

ρ (2.29.b)

Todas las expresiones anteriores constituyen la base para el análisis cualitativo del

apartado 3.3, en el cual se aplican estas ecuaciones. A modo de ejemplo se plantea la siguiente

situación: considere que se tiene una serie anual con 8760 datos de velocidad de viento en m/seg

a 19 metros de altura la cual entrega un promedio anual de 5,12 m/seg con una desviación

estándar de 2,44. En base a esta información, el factor k de la distribución de Weibull se obtiene

aplicando la ecuación 2.12 obteniéndose k=2,24. De manera similar y aplicando la ecuación 2.14

Page 26: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

14

se obtiene el factor de escala de la distribución, c=5,78. Para obtener la densidad de potencia

mediante el uso de la ecuación 2.29.b se debe conocer el valor de la densidad del aire, en este

caso a nivel del mar. Este valor se obtendrá en el apartado 2.1.4.3 y corresponde a ?=1,248

Kg/m3. De esta manera y utilizando los valores de velocidad media anual y factor de forma se

obtiene una densidad de potencia promedio anual de 143,92 W/m2.

2.1.4 Variación de la densidad del aire respecto a la altura

La fuerza impulsora básica del aire en movimiento es su diferencia de presión entre dos

regiones. Esta presión del aire está descrita por varias leyes físicas. Una de estas es la ley de

Boyle, la cual establece que el producto de presión y volumen de un gas a una temperatura

constante debe ser una constante, respondiendo a la ecuación 2.30 [1].

CteVpVp == 2211 (2.30)

Otra es la ley de Charles, la cual establece que para una presión constante, el volumen de

un gas varía directamente con la temperatura absoluta según la ecuación 2.31.

2

2

1

1

TV

TV

= (2.31)

En un gráfico que relacione el volumen versus temperatura, se verificaría que para un

volumen 0 le corresponderían –273ºC, o 0ºK. Las leyes de Charles y Boyle se pueden combinar

en la ecuación de estado de los gases ideales, ecuación 2.32.

nRTpV = (2.32)

Page 27: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

15

En esta ecuación, R es la constante universal de gas, T es la temperatura en grados Kelvin,

V es el volumen del gas en m3, n es el número de kilomoles de gas, y p es la presión en pascales

(N/m2). En condiciones estándares, 0 ºC y 1 atmósfera (101,325 KPa), un kilomol de gas ocupa

22,414 m3 y la constante universal de gas es de 8.314,5 J/(Kmol-K), donde J representa un Joule

o un Newton metro de energía. La presión de un kilomol a 0 ºC es entonces la de la ecuación

2.33:

( )( )( )(KPa) 325,101

414,22º15,273·/5,8314

3=

mKKKmolJ

(2.33)

La densidad del aire ρ de un gas es la masa m de 1 kilomol dividida por el volumen V del

kilomol, ecuación 2.34.

Vm

(2.34)

El volumen de un kilomol varía con la presión y temperatura tal como en la ecuación

2.32, al insertar la ecuación 2.32 en la 2.34 se obtiene la expresión 2.35 para la densidad del aire.

)(Kg/m 484,3 3

Tp

RTmp

==ρ (2.35)

Donde p está en kilopascales, y T en grados Kelvin.

Como se aprecia en la ecuación 2.35, la densidad del aire es función tanto de la presión

atmosférica como de la temperatura, y estas dos variables son a su vez dependientes de la altura.

Por una parte, la presión disminuye a medida que la altura aumenta, haciendo que la densidad del

aire ρ disminuya (manteniendo temperatura constante). Por otro lado, la temperatura también

Page 28: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

16

disminuye con la altura haciendo que la densidad del aire aumente (manteniendo presión

constante). Sin embargo, en la práctica ambas variables, presión y temperatura, están variando al

mismo tiempo respecto a la altura, pero el efecto sobre la densidad del aire es mínimo y es más

notorio su cambio respecto a la variación de la presión que por temperatura obteniéndose una

leve disminución de la densidad del aire respecto a la altura. Para cuantificar el efecto de la

variación de la densidad del aire respecto a la altura en este estudio se analizará por separado las

variaciones tanto de presión como de temperatura respecto a la altura.

2.1.4.1 Variación de la presión respecto a la altura.

Las mediciones demuestran que a niveles cercanos a los del mar, la presión varía

aproximadamente 1 hPa cada 8 metros, con una presión atmosférica estandarizada de 100 KPa a

nivel del mar. La figura 2.2 muestra la variación de la presión atmosférica respecto a la altura [1].

Figura 2.2. Variación de la presión atmosférica respecto a la altura

2.1.4.2 Variación de la temperatura respecto a la altura

Es sabido que la temperatura disminuye a medida que se aumenta la altura, la magnitud de

este cambio es de aproximadamente 6,5 ºC por cada 1.000 metros. Estos valores son válidos

Page 29: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

17

desde el nivel del mar hasta una altitud de 11.000 metros. A alturas superiores se considera que la

temperatura tiene un valor constante de -56,5ºC.

2.1.4.3 Efecto de la presión y temperatura sobre la densidad del aire

en la Región de Magallanes

Teniendo en consideración la información anterior y basándose en la ecuación 2.35, se

puede efectuar una estimación de la variación de la densidad del aire bajo las condiciones de la

región de Magallanes respecto de la situación estándar (presión de 100 Kpa y temperatura 15 ºC).

La densidad del aire a nivel del mar y bajo las condiciones estándares antes mencionadas

es de 1,225 Kg/m3. El promedio anual de temperatura para Punta Arenas es de 6 ºC [2] y 5,9 ºC

según Instituto de la Patagonia, año 2003, por lo que la densidad del aire real a nivel del mar en

Punta Arenas se obtiene según la expresión 2.36.

)(Kg/m 248,115,2736100 · 484,3 3=

+=ρ (2.36)

El caso más crítico de este estudio corresponderá a lo que se plantea en el apartado 7.2.2,

en que la altura de la torre del aerogenerador alcanza los 80 metros de altura. Para calcular la

densidad del aire a 80 metros de altura se realizará en base a la ecuación 2.35, debiendo para ello

analizar qué sucede con la presión y la temperatura a dicha altura. Considerando una variación de

la presión de 100 hPa cada 8 metros y variación de temperatura de 6,5 ºC cada 1.000 metros se

obtiene la nueva densidad del aire según la expresión 2.37.

( )( )( )

3Kg/m 238,180 · 0065,0615,273

1-100 · 484,3=

−+=ρ (2.37)

Page 30: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

18

Esto significa que desde el nivel del mar hasta 80 metros de altura, existe una disminución

en la densidad del aire de solo 0,01 Kg/m3. En base a esto se puede concluir que las variaciones

en la densidad del aire no son mayormente relevantes en este estudio. La densidad del aire

considerada para todos los análisis será de 1,248 Kg/m3, que corresponde a la densidad del aire

en condiciones estándares ajustada a la temperatura promedio anual de Punta Arenas.

2.2 Aspectos teóricos de energía solar fotovoltaica

La Energía Solar Fotovoltaica es una captación directa de la energía solar para obtener

energía eléctrica. Este proceso se basa en la aplicación del efecto fotovoltaico.

Este se produce al incidir la luz sobre algunos materiales llamados semiconductores. De

esta manera se genera un flujo de electrones en el interior del material que puede ser aprovechado

para obtener energía eléctrica.

2.2.1 Radiación Solar

La luz procedente del sol está constituida por fotones de muchos colores, entre el

ultravioleta (UV), y el infrarrojo (IR). En términos más rigurosos, “color” es sinónimo de

“longitud de onda” (λ) o de “frecuencia” (f) de la radiación correspondiente. El producto λ·f es

igual a la velocidad de la luz, c = 3x108 m/s [5].

La energía de un fotón depende de su color, y viene dada por la relación de Max Planck,

ecuación 2.38

Ef = hf (2.38)

Page 31: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

19

Donde, h = 4,136x10-15 eV y se llama constante de Planck. También Ef = hc/λ , donde

hc = 1240 eV.nm.

La energía de cualquier fotón con λ< 1100 nm es mayor que la energía de enlace de las

cargas positivas y negativas en los átomos del silicio. En condiciones ideales, la intensidad de la

luz solar, o irradiancia, en la superficie de la tierra es de 1000 W/m2, que se reparten como sigue

en la tabla 2.3.

λ (nm) E (%)

< 400 8 400-770 46,4 770-2400 42

>2400 3,6

Tabla 2.3. Intensidad y porcentaje de absorción de la luz solar en la superficie

2.2.2 Materiales cristalinos y Efecto Fotovoltaico

Antes de hablar del fenómeno de energía solar fotovoltaica se debe conocer algunos

conceptos como son los materiales cristalinos y el efecto fotovoltaico. Los materiales cristalinos

también llamados cristales están compuestos de átomos enlazados entre sí, los cuales tienen

cargas positivas y negativas que también están enlazadas entre sí. Los cristales en reposo no

tienen cargas eléctricas libres (lo impiden los enlaces) lo que significa que no pueden conducir

corriente eléctrica. Para romper el enlace de la s cargas se debe aportar una energía por lo menos

igual a un valor característico de cada material.

Aunque las celdas solares pueden fabricarse de diferentes materiales, consideraremos el

Silicio, por ser el material más frecuentemente empleado, por su precio. Este semiconductor tiene

la siguiente estructura electrónica; Si(14) = (1s2 2s2 2p6 3s2 3p2). De los 14 electrones, los

primeros 10 se encuentran fuertemente ligados al núcleo, mientras que los 4 exteriores,

Page 32: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

20

denominados electrones de valencia, están menos fuertemente ligados al núcleo y en capacidad

de interactuar con los otros átomos y juegan un papel importante en el efecto fotovoltaico.

Para formar un cristal, gran número de átomos de Silicio se enlazan a través de sus

electrones de valencia (enlace covalente). En un sólido cristalino, cada átomo de Silicio comparte

uno de sus electrones de valencia en un enlace covalente con cada uno de los 4 átomos vecinos.

El sólido consiste de unidades de 5 átomos de Silicio: el átomo original mas 4 átomos vecinos

con los cuales comparte sus electrones de valencia. Los enlaces entonces se encuentran saturados,

figura 2.3.a. En este caso, no hay electrones libres y si a bajas temperaturas se aplica un campo

eléctrico al cristal de Silicio, la conductividad es cero (no hay corriente eléctrica). A temperatura

ambiente, la conductividad no es cero ya que por efecto térmico se rompen enlaces que dejan

electrones libres y huecos, que contribuyen a la conductividad del material. En este caso, el

número de huecos es igual al número de electrones libres y se habla de un semiconductor

intrínseco o “tipo i”.

En el caso anterior hemos considerado Silicio cristalino puro. Si se introduce una

impureza (un átomo diferente de los que conforman la red cristalina de Si), como por ejemplo

Arsénico o Fósforo, con 5 electrones de valencia, 4 de ellos se emplearán en los enlaces con los

átomos vecinos de Silicio y uno quedará débilmente ligado. Este electrón de valencia “libre” se

comporta como un electrón de la banda de conducción del cristal. Puesto que hay un electrón

donado por cada átomo de impureza, se habla entonces de semiconductores donadores o “tipo n”,

figura 2.3.b.

Page 33: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

21

Figura 2.3.a. Celda elemental de Silicio

Figura 2.3.b. Efecto de una impureza de Fósforo

Similarmente, si se introduce un átomo de Aluminio o Boro, que tienen 3 electrones de

valencia, faltará un electrón para saturar un enlace covalente con un Si vecino. Este “hueco” se

comporta como una carga positiva y es relativamente libre de moverse por el cristal. El

semiconductor se denomina “tipo p”, figura 2.4.

Figura 2.4. Efecto de una impureza de Boro

En los átomos libres, los electrones ocupan niveles discretos de energía. Al formarse el

sólido, la densidad de átomos es del orden de 1022 átomos/cm3

y los átomos se aproximan entre

sí. Debido a la proximidad, los niveles discretos de energía de los átomos individuales se

Page 34: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

22

superponen formando zonas en donde los niveles están tan próximos que forman una o banda. La

figura 2.5 muestra la estructura de bandas de energía de tres semiconductores.

Figura 2.5. Estructura de bandas de tres semiconductores

En este diagrama de niveles de energía se observan tres bandas: la banda de valencia cuyo

borde superior es EV, la banda prohibida entre EV y EC, y la banda de conducción entre EC y EVAC.

La banda prohibida se denomina así porque los electrones no pueden tener energías dentro

de los valores de la banda. Los electrones de la banda de valencia pueden hacer transiciones a la

banda de conducción y viceversa. El ancho de la banda prohibida Eg depende del semiconductor,

tabla 2.4.

En la figura 2.5 se observa también el nivel de Fermi, Ef, que es la energía a la cual la

probabilidad de ocupación de estados es de 0,5. En un semiconductor tipo i, Ef se encuentra en la

mitad de la banda prohibida mientras que en uno tipo n se ha desplazado hacia el borde inferior

de la banda de conducción, debido a que los electrones donados están débilmente ligados y por

consiguiente, la energía necesaria para llevarlos a la banda de conducción es más pequeña que Eg.

Por el contrario, en un semiconductor tipo p, Ef está desplazado hacia EV. En el caso en que dos

semiconductores tipo p y n estén en contacto y en equilibrio térmico, Ef es igual para ambos

semiconductores puesto que Ef corresponde a la energía libre por electrón y esta debe ser igual en

ambos semiconductores.

Page 35: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

23

La teoría de bandas explica la conductividad eléctrica de diferentes tipos de materiales. En

los semiconductores a temperaturas de 0 ºK (Kelvin), todos los electrones se encuentran en la

banda de valencia y por ésta razón no hay conductividad. Esta aumenta a medida que aumenta la

temperatura. La razón para ello es la presencia de electrones en la banda de conducción, todos

excitados por efecto térmico.

Material Eg (eV)

Si 1,14

Ge 0,67

GaA 1,4

GaP 2,25

Te 0,33

CdS 2,42

CdTe 1,45

CdSe 1,72

Cu2O 2,1

TiO2 3

Cu2S 1,2

Tabla 2.4. Ancho de banda prohibido según el semiconductor

2.2.3 Efecto Fotovoltaico

La luz solar está compuesta de paquetes de energía llamada fotones que son capaces de

romper los enlaces. Un material cristalino que está iluminado posee cargas positivas y negativas

libres las cuales circulan por el material. De no hacer nada para remediarlo, las cargas positivas y

negativas se mueven aleatoriamente por el interior del cristal, hasta que vuelven a encontrarse y a

restablecer su enlace. Entonces, la energía EG, que fue necesario absorber para romperlo, se libera

en forma de calor.

De existir un campo eléctrico en el interior del cristal, las cargas positivas y negativas se

mueven ordenadamente, se separan y tienden a acumularse en zonas diferentes del cristal, lo que

da origen a la aparición de un voltaje entre sus extremos. De esta manera, la iluminación hace que

el cristal se convierta en un “generador” eléctrico, como se aprecia en la figura 2.6.

Page 36: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

24

Esta capacidad natural de los fotones para originar de voltios en algunos materiales, es el

denominado “efecto fotovoltaico”, que observó, por vez primera, Henri Becquerel en 1876.

Figura 2.6. Esquema básico del efecto fotovoltaico

Cuando sobre una celda solar fotovoltaica incide la radiación solar, aparece en ella una

tensión análoga a la que se produce entre los bornes de una pila. Mediante la colocación de

contactos metálicos en cada una de las caras puede “extraerse” la energía eléctrica, que es

utilizable en distintas aplicaciones.

Figura 2.7. Esquema de la celda fotovoltaica

En la realidad el trabajo que realiza un equipo eléctrico representa una dificultad en el

paso de la corriente lo que se traduce en una tensión en los terminales de la celda.

El funcionamiento de una celda solar, iluminada y conectada a un equipo eléctrico, puede

describirse mediante tres procesos diferentes, la figura 2.8 muestra la conexión en carga de una

celda fotovoltaica:

Page 37: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

25

• La “generación” de pares positivos y negativos, mediante la absorción de fotones de la

luz.

• La “recombinación” de pares positivos y negativos por caminos internos del cristal, que

se traduce en radiación.

• La “recombinación” de pares positivos y negativos por el camino externo del equipo

eléctrico, que se traduce en trabajo.

Figura 2.8. Esquema de una celda fotovoltaica con carga

En equilibrio, la generación y la recombinación son iguales. El reparto entre

recombinación interna y externa depende del voltaje existente en la célula. A mayor voltaje

mayor recombinación interna. La energía liberada por la recombinación de cargas positivas y

negativas está limitada por EG. Por ello, los fotones con longitud de onda λ < 1100 nm conllevan

un “exceso” de energía, que no puede convertirse en trabajo. El rendimiento de una celda de

silicio está limitado como se aprecia en la figura 2.9.

Figura 2.9. Rendimiento de una celda de silicio

En la figura 2.10 se muestra un esquema de cómo es una celda fotovoltaica.

Page 38: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

26

Figura 2.10. Esquema de una celda fotovoltaica

La figura 2.11 muestra la curva característica de intensidad de corriente versus voltaje

(curva I-V) de una celda solar, en donde C es una constante, R es la irradiación solar (W/m²), Is es

la corriente de saturación del diodo, q la carga eléctrica elemental (q=1.60 * 10-19 Coulomb), k la

constante de Boltzmann (k= 1,38*10-23 J/K) y T la temperatura absoluta en grados Kelvin (ºK).

Figura 2.11. Curva característica I-V de una celda solar

La potencia máxima que se puede obtener de la celda es el área del máximo rectángulo

que se puede inscribir dentro de la curva I-V, figura 2.12, en donde Vm es el valor del voltaje para

el cual se tiene la potencia máxima (Pm) y la corriente máxima (Im) es la corriente

correspondiente.

Page 39: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

27

2.2.4 Fabricación de celdas solares

Tecnológicamente, la fabricación de celdas solares es muy compleja. La materia prima es

la arena común (SiO 2), la cual debe ser trasladada a una etapa donde se le extrae el oxígeno que

contiene y donde el silicio resultante sufre un complejo proceso de purificación. El producto

resultante pasa a otra etapa donde se transforma en plaquitas de silicio fotovoltaico. De ella pasa

a una tercera donde se efectúan las contaminaciones (operaciones físico-químicas) de formación

del campo eléctrico interno y para formar de electrodos metálicos. Por último, de esta etapa pasa

a otra donde esta celda se suelda, encapsula y se forman los módulos o paneles. Esto se aprecia

en forma simplificada en la figura 2.12.

Figura 2.12. Proceso de fabricación de las celdas solares

Existen varios materiales susceptibles de utilización como convertidor fotovoltaico. Sin

embargo, comercialmente, solo se encuentran los derivados del silicio, sobre todo, en las

tecnologías monocristalinas y policristalinas. El silicio amorfo es también utilizado pero ha

alcanzado su desarrollo comercial principal ligado a aplicaciones de bajo coste (relojes solares,

juguetes, calculadoras, etc.). En la tabla 2.6 se presentan algunas características de ellas.

Page 40: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

28

Celdas Rendimiento Laboratorio Rendimiento Directo Características Fabricación

Monocristalino 24% 15 – 18 % Es típico los azules homogéneos y la

conexión entre las celdas individuales entre sí

Se obtiene de silicio puro fundido y contaminado

con boro

Policristalino 19- 20% 12 – 14 % La superficie está

estructurada en cristales y contiene distintos tonos

azules

Igual que el monocristalino, pero se

disminuye los números de fases.

Amorfo 16% < 10 % Tiene un color

homogéneo (marrón) pero no existe conexión visible

entre celdas

Tiene la ventaja de depositarse en forma de

lámina delgada y sobre un sustrato como vidrio

plástico

Tabla 2.6. Características de las celdas solares según su material de construcción

Si varía la iluminación, la corriente de la celda varía proporcionalmente, en tanto que la

tensión se mantiene casi invariable. Es decir, una misma celda proporciona valores diferentes de

potencia al variar la intensidad de radiación que recibe. Por este motivo, normalmente la potencia

nominal de las celda se mide en Watts-pico (Wp), que es la potencia que puede proporcionar la

celda con una intensidad de radiación constante de 1000 W/m2 y una temperatura de la celda de

25° C.

2.2.5 Herramientas matemáticas para la determinación teórica de la radiación solar

Hay que tener en cuenta que la caracterización de la radiación solar incidente en la tierra

no es algo sencillo, debido a dos razones fundamentalmente:

• El movimiento relativo “Sol-Tierra” está regido por ecuaciones complejas, que

determinan en todo momento la posición relativa del sol con respecto a cualquier punto de

la superficie terrestre.

Page 41: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

29

• La variedad de modelos existentes para caracterizar la radiación, la cual obliga al usuario

a elegir en función de las necesidades en cada caso.

Es por las razones anteriores que los investigadores han tratado de llegar a valores de

radiación incidente sobre un plano horizontal a nivel de la estación registradora a partir de las

horas reales de sol. En el año 1964, se desarrolló la ecuación 2.38 [7 y 8], mediante correlación

estadística, que permite calcular la radiación solar global incidente sobre un plano horizontal en

base al número de horas teóricas de sol, tipo de clima y ubicación geográfica, respecto a esto se

considera que para lugares ubicados en el hemisferio sur y al oeste del meridiano de Greenwich,

los ángulos de la latitud y longitud deben ser considerados negativos.

)(Ss

baHH OHT += (2.38)

Donde:

HHT: Radiación solar global incidente en un plano horizontal

HH: Radiación solar extraterrestre promedio del tiempo considerado.

s: Horas reales de sol medidos.

S: Horas teóricas de sol calculadas

a y b: constante empíricas que dependen del tipo de clima y que deben determinarse.

2.2.5.1 Constante solar

La constante solar está definida como la cantidad de energía solar que incide

perpendicularmente por unidad de tiempo sobre una superficie de área unitaria, colocada fuera de

la atmósfera terrestre a una distancia del sol igual a la distancia promedio sol-tierra. La referencia

Page 42: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

30

radiométrica mundial World Radiometric Reference (WRR) del World Radiation Center (WRC)

entrega el siguiente valor para la constante solar (I).

I = 1367 W/m2 = 433,3 Btu/(ft2·h) = 1,96 cal/(cm2·min)

con una desviación standard de 1,6 W/m² y una desviación máxima de ± 7 W/m².

2.2.5.2 Variación de la distancia tierra sol

La pequeña excentricidad de la elíptica hace que la distancia entre el sol y la tierra varíe.

Las expresiones que rigen esta variación tienen en cuenta el hecho de que la velocidad angular

de la tierra en su camino sobre la elíptica es variable y se ajusta a la conocida ley de Kepler,

según la cual, los planetas barren áreas iguales en tiempos iguales. Sin embargo, para la mayoría

de las aplicaciones de la ingeniería, la aproximación de considerar que la tierra gira alrededor del

sol con velocidad angular constante es muy cómoda y conduce a una exactitud suficiente de la

variación de la distancia de la Tierra respecto al sol, esta es la ecuación 2.39.

+=

365360

cos033,01n

C (2.39)

Donde

C = Variación de la distancia tierra sol

n = Día juliano, es decir el nº del día del año (01-ene =1; 02-ene=2;...;30 dic=364;

31dic=365).

Page 43: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

31

2.2.5.3 Ángulo de declinación solar

Se le denomina ángulo de declinación solar, al ángulo del movimiento relativo que realiza

el sol con respecto a la línea de Ecuador terrestre. Este desplazamiento relativo del sol, de Norte a

Sur y viceversa, se debe a que el eje de rotación de la tierra tiene una inclinación de 23,45º con

respecto a la normal sobre el plano de la eclíptica solar, esto se muestra en la figura 2.13.

Figura 2.13. Eje de rotación de la Tierra

La variación del ángulo de declinación solar para todo el año se puede determinar de

manera aproximada para aplicaciones de ingeniería con la ecuación 2.40.

+= )284(

365360

45,23 nsenδ (2.40)

Donde

δ = Ángulo de declinación solar en grados

n = Día juliano (nº correlativo del día del año)

Page 44: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

32

2.2.5.4 Ángulo horario a la salida del sol

Es el ángulo con respecto al norte astronómico (medio día solar) con el cual sale el sol en

el horizonte cuando amanece, suponiendo el punto de observación un plano horizontal. Este

ángulo se puede determinar para todo el año para cualquier parte de la superficie terrestre

conociendo la latitud y la declinación solar, como se aprecia en la ecuación 2.41.

[ ])tan()tan(cos LArcWs δ−= (2.41)

Donde:

Ws = Ángulo horario a la salida del sol en grados

L = Latitud en grados

2.2.5.5 Horas reales de sol

Las horas reales de sol diario (s) se miden mediante un instrumento denominado

heliógrafo, este es del tipo Campbell-Stokes y se presenta en la figura 2.14.

La duración de la luz solar se puede definir como el intervalo de tiempo durante el cual se

ve el disco solar y determina los períodos del día durante los cuales la intensidad de la radiación

directa es superior a un cierto umbral, que está reconocido a nivel mundial y es de 120 W/m2.

El heliógrafo de Campbell-Stokes se muestra en la figura 2.14 y consiste en una esfera de

vidrio que, a modo de lente convergente, concentra los rayos solares sobre una cartulina arrollada

en forma de semicilindro por la parte exterior de dicha esfera. Esta disposición permite que en las

horas en que la intensidad de la radiación sobrepasa un cierto valor (120 W/m2) y dependiendo de

factores tales como calidad y grado de humedad del papel, la lente actúe de lupa, haciendo que

Page 45: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

33

sobre dicha cartulina se vaya registrando una zona quemada cuya longitud y posición indica las

horas de radiación correspondientes al período de medida. Esto es posible gracias a que dicha

cartulina lleva impresas líneas horarias, lo que permite leer directamente el número de horas en

que ha habido radiación.

Figura 2.14. Heliógrafo Campbell-Stokes

La respuesta es tal que este tipo de instrumento registra las horas reales de sol,

entendiéndose con esto el hecho de que el sol ilumina directamente la esfera sin intercepción

alguna de nubes, cuando se interpone una nube entre el sol y el instrumento no se quema el papel,

por lo tanto, no se registran horas de sol.

Debe quedar claro que el registro de horas de sol no entrega el nivel de radiación (W/m2)

que ha caído sobre la estación meteorológica. Este tipo de medición es la mas común, por el bajo

costo de los elementos y la fácil instalación, además no necesita personal especializado para su

manipulación y control diario, limitándose este solo a cambiar el gráfico de registro diariamente,

tarea sumamente fácil.

2.2.5.6 Horas teóricas de sol

La duración del día se puede calcular matemáticamente para cada día del año, y se deduce

a partir del ángulo horario de salida de sol. Si se supone que el sol recorre un ángulo de 15º por

cada hora, 360º en 24 horas, se tiene que la duración del día la entrega la ecuación 2.42.

Page 46: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

34

Horas teóricas de sol (horas) = (2/15) WSº (2.42)

2.2.5.7 Radiación Solar extraterrestre diaria

Es la cantidad de energía solar que recibe perpendicularmente una superficie horizontal en

el tope superior de la atmósfera y que se encuentra a la distancia media sol-tierra (150 millones

de km), esta se puede calcular matemáticamente y es función de la latitud (L), de la declinación

solar (δ), del Angulo horario de salida del sol (Ws) y de la variación de la distancia del sol a la

Tierra (C). La forma general de la radiación solar extraterrestre diaria (HO) se define en la

ecuación 2.43.

+= )(*)(**

3602

)(*)cos(*)cos(24

** δπ

δπ

senLsenWWsenLCIH ssO (2.43)

La radiación solar extraterrestre diaria varía durante el año debido a la variación de la

distancia entre el sol y la tierra durante el año.

2.2.5.8 Interacciones con la atmósfera

Antes de llegar a la superficie terrestre, la radiación solar extraterrestre interactúa con la

atmósfera. Como resultado de esto se tiene entre otras la radiación directa y difusa.

Radiación solar directa es la radiación solar sin dispersión atmosférica. Su símbolo es Hb,

y se mide en W/m².

Radiación solar difusa (radiación del cielo) es la radiación proveniente de todo el cielo,

exceptuando el ángulo sólido del disco solar. Su símbolo es Hd, y se mide en W/m².

Page 47: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

35

Entonces, las condiciones atmosféricas que imperan cambian el tipo de radiación y la

cantidad de la misma que llega a la superficie terrestre. Por lo tanto, una superficie expuesta al sol

recibe tanto radiación directa como difusa, figura 2.15. Si se tiene en cuenta el tiempo que se

expone la superficie al sol, entonces se habla de energía solar recibida por la superficie.

Figura 2.15. Representación esquemática de la interacción radiación-atmósfera

2.2.6 Radiación solar global en un plano horizontal

La radiación global que incide sobre una superficie es la suma de la radiación directa mas

la radiación difusa. Y se puede determinar en función de las horas teóricas de sol (S), horas reales

de sol (s), incluyendo unos parámetros a y b que son propios del suelo y el clima donde se va a

instalar el sistema, esto se muestra en la ecuación 2.38 [7], y en la tabla 2.6 se dan algunos

valores para las constantes geográficas a y b [9].

Ciudad Clima a b

El Paso, U.S.A Desértico, árido 0,54 0,20 Hamburgo, Alemania

Húmedo, lluvias frecuentes 0,22 0,57

Honolulu, U.S.A Tropical, lluvias frecuentes 0,14 0,73

Madison, U.S.A Húmedo, lluvias, nieves 0,30 0,34

Miami, U.S.A Bosques, tropical 0,420 0,22

Niza, Francia Bosques, seco en invierno 0,17 0,63

Tabla 2.6. Constantes geográficas para a y b

Page 48: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

36

2.2.7 Índice de claridad

Una forma particularmente conveniente de caracterizar un año solar es mediante el

llamado “índice de claridad” (KT), definido como la relación entre la radiación sobre una

superficie horizontal situada en la Tierra (HHT) y la radiación sobre una superficie horizontal

situada fuera de la atmósfera (HH), ecuación 2.44. Este parámetro, propuesto originariamente por

Liu y Jordan, mide la transparencia de la atmósfera, y en el se apoyan la mayoría de los métodos

para estimar la radiación sobre superficies inclinadas.

+==

Ss

baHH

KH

HTT (2.44)

2.2.8 Determinación de radiación directa sobre un plano horizontal

La determinación de las características de la radiación solar en una localidad se puede

hacer de manera directa, instalando aparatos de medición, debidamente calibrados y durante

largos períodos de tiempo. Los promedios horarios, diarios, mensuales etc, se calculan

estadísticamente [7].

El instrumento a utilizar para este caso es el piranómetro, el cual sirve para medir la

radiación global (radiación directa más radiación difusa), que se recibe en todas direcciones, por

lo que el instrumento tiene que descansar sobre una base horizontal. La banda de longitud de

ondas medida por el piranómetro está comprendida entre 0,3 mm y 3 mm; si está protegido de la

radiación directa por un anillo protector desvanecedor, entonces mide sólo la radiación difusa.

Los piranómetros más usuales se basan en la detección de la diferencia de temperaturas entre una

superficie negra y una superficie blanca mediante termopilas o células fotoeléctricas, que deben

estar protegidas del viento y compensadas para cambios de temperatura ambientales, mediante

Page 49: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

37

una doble semiesfera de vidrio, para suprimir los fenómenos de convección. Mediante un nivel se

consigue la horizontalidad del aparato.

El piranómetro de Kipp y Zonen, figura 2.16, está constituido por una termopila contenida

en una caja metálica cerrada en su parte superior por dos hemisferas de cristal de 3 a 5 cm de

diámetro y 2 mm de espesor. La caja está fijada sobre un zócalo metálico y la pila está protegida

de la radiación difundida por el suelo por una gran corona blanca horizontal circular que actúa

también como pantalla térmica. La termopila está formada por una serie de 14 termopares,

láminas planas de 10 mm de longitud, 1mm de ancho y 5 mm de espesor, dispuestas en un plano

horizontal, en el que las extremidades están soldadas a unas barras de cobre verticales solidarias a

una placa de latón maciza. El conjunto está protegido por un barniz negro material especial que

absorbe la radiación.

El calor emitido al nivel de la superficie negra es evacuado en parte por conducción y el

resto por radiación y convección.

Figura 2.16. Piranómetro de Kipp

Page 50: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

38

2.2.9 Método directo para la determinación de la radiación solar global

La radiación solar global disponible en una localidad se caracteriza por los siguientes

promedios:

Promedio diario mensual para el día i, mes j y el año k, ecuación 2.45,

∑=

=

j

iijkjk H

iH

1

1 (2.45)

Promedio diario mensual multianual para el mes j, ecuación 2.46,

∑=

=

n

kijkj H

nH

1

1 (2.46)

Promedio diario anual multianual, ecuación 2.47,

∑=

=

12

1121

jijkHH (2.47)

Donde Hijk es la radiación global del día i-ésimo del mes j-ésimo del año k-ésimo, i es el

número de días del mes j y n es el número de años considerados.

Cuando no se cuenta con los instrumentos o los datos necesarios, se procede a utilizar

métodos indirectos.

Page 51: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

39

2.2.10 Método Indirecto.

Los métodos indirectos son de dos tipos:

• Métodos computacionales que simulan con modelos físicos las diferentes interacciones

de la radiación solar con la atmósfera (dispersión, absorción y reflexión) y con los cuales

se puede obtener el valor de la radiación en la superficie terrestre a partir del valor de la

radiación solar en el tope de la misma. Estos no se emplearán en este trabajo.

• Métodos empíricos que estiman el valor de la radiación solar a partir de modelos

estadísticos elaborados con información de otras variables climatológicas. El brillo solar

es el estimador más significativo de la radiación solar. Debido al gran número de

estaciones que miden esta variable en el mundo, se han podido elaborar mapas de la

distribución espacial y temporal de la disponibilidad de la energía solar.

El promedio diario de la radiación solar terrestre se puede interpretar como una fracción

de la radiación en el tope de la atmósfera o de la radiación terrestre en un día completamente

despejado. Por la dificultad en la definición de día despejado, que conlleva mediciones bajo esta

condición durante diferentes épocas del año, se prefiere la opción al tope de radiación al tope de

la atmósfera, ecuación 2.48.

ojTjj HkH = (2.48)

Donde:

Hoj es el promedio de la radiación solar extraterrestre y

Page 52: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

40

KTj es el promedio del índice de claridad atmosférica.

Para los modelos que parten del brillo solar (horas de sol), se asume que este índice KTj es

función de las horas de sol Sj, como se aprecia en la ecuación 2.49.

( )jTj sfK = (2.49)

El modelo más ampliamente aceptado es el modelo de Ångström modificado por Page [7

y 8].

2.2.10.1 Modelo de Ångström modificado

La modificación introducida por Page se aprecia en la ecuación 2.50:

+==

oj

j

oj

jTj s

sba

H

HK (2.50)

Donde:

a y b son constantes empíricas

Sj es el promedio de horas de sol

Soj es el promedio de la duración astronómica del día y j es el número del mes (1≤ j≤ 12).

Para emplear este modelo es necesario calcular Hoj y Soj, conocer a y b, y haber determinado Sj.

Page 53: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

41

2.2.10.2 Modelo de Glover y McCulloch

Se rige por la ecuación 2.51, en donde L es la latitud del lugar,

oj

j

oj

jTj s

sL

H

HK 52,0cos29,0 +== (2.51)

2.2.10.3 Modelo de Rietveld

Este modelo se rige por la ecuación 2.52.

oj

j

oj

jTj s

sHH

K 62,018,0 +== (2.52)

Los valores de KT obtenidos con estos modelos en diferentes lugares del mundo son muy

parecidos, lo que hace pensar que las diferencias en los valores de los coeficientes a y b se deben

a problemas de calibración y al tipo de instrumentos así como al procedimiento utilizado para

calcular en la regresión Ho y So.

2.2.11 Radiación difusa y directa

La radiación difusa Hdj y la directa Hbj. se pueden también estimar a partir de la radiación

global. Nuevamente en estos casos es mejor medir cada componente, pero en ausencia de datos se

pueden emplear los modelos de Liu-Jordan y de Collares-Pereira-Rabl.

En el primer modelo, Liu-Jordan se tiene la ecuación 2.53.

Page 54: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

42

( )Tjj

dj KfH

H= (2.53)

Y en el segundo modelo, f es además función de Ws. La radiación directa Hb está dada por

la ecuación 2.54.

djjbj HHH −= (2.55)

El modelo de Liu-Jordan establece la ecuación 2.56 para la radiación difusa.

32 108,3331,5027,2390,1 TjTjTjHTj

dj KKKHH

−+−= ( 0,17 < KTj < 0,75) (2.56)

En el modelo de Collares-Pereira-Rabl se tiene la ecuación 2.57, para la relación entre

radiación difusa y radiación solar global.

( ) ( )[ ] ( )103115cos9000455,0505,09000653,0775,0 −−+−−+= TjssHTj

dj KWWHH

(2.57)

2.2.12 Radiación solar en un plano inclinado

Se pretende determinar las características de la radiación solar que reciben las superficies

inclinadas, los factores que la afectan y el método empleado para su estimación. La radiación

solar recibida por una superficie inclinada está compuesta por la radiación directa recibida del

sol, la radiación difusa proveniente del cielo y la radiación reflejada por el piso y las superficies

vecinas.

Page 55: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

43

2.2.13 Factor de modificación para radiación directa

La definición de altitud del sol con respecto a un plano horizontal que contiene el punto

de observación o medición solarimétrica esta dado por la ecuación 2.58 [8][9].

( ) ( ) ( ) ( ) ( )sWLsenLsenZsen coscoscoscos δδα +== (2.58)

Las variables involucradas en la ecuación 2.58 ya han sido presentadas y sus relaciones

geométricas se pueden apreciar a través de la figura 2.17.

Rad

iaci

ón s

olar

dire

cta Radiación

solar global

Plano horizontal

z

Figura 2.17. Relación geométrica para la radiación directa en superficie

horizontal y ángulo de elevación del sol con respecto al plano

En la figura 2.1 se observa que la proyección de la radiación directa depende del ángulo

de elevación del sol con respecto al horizonte. Debido a que el ángulo de incidencia del rayo

solar es invariante para un instante dado, pues depende de la latitud, declinación solar y ángulo de

la hora, en ese instante la única manera de aumentar la magnitud de la radiación incidente es

levantar el plano en un ángulo, que se le denominará ß, con respecto a la horizontal y en

dirección al Ecuador. Al realizar esto lo que estamos haciendo es equivalente a desplazar la

superficie hacia una latitud de menor ángulo, como se ve en la figura 2.18.

Page 56: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

44

Rad

iaci

ón so

lard

irect

a

Radiación solar global

Plano horizontal

i

β

Figura 2.18. Relación geométrica para

radiación directa en superficie inclinada

Como se puede apreciar en la figura 2.19, la latitud aparente del plano inclinado es (L-ß),

se puede decir a modo de ejemplo, que si la latitud L es 53º Sur y el plano se inclina 53º en

dirección al Ecuador, es equivalente a que este plano se desplace al ecuador en posición

horizontal, ya que (L-ß) sería cero.

Figura 2.19. Desplazamiento del plano inclinado respecto al Ecuador

Como se vió en las figuras 2.17 y 2.18, la radiación directa que cae en un plano aumenta

cuando este se inclina hacia el ecuador, por lo tanto la razón de modificación de radiación directa

en un plano horizontal a un plano inclinado es la que se presenta en la ecuación 2.59, en la cual

existen dos parámetros que son variables durante todo el año, como los son la declinación y el

ángulo horario, y otro que es susceptible de variación como lo es el ángulo del plano, en el caso

de este trabajo el ángulo del módulo fotovoltaico. Cabe mencionar que para el caso del

Page 57: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

45

hemisferio sur se deben considerar como negativos los ángulos de latitud (L) e inclinación (ß),

mientras que para el hemisferio norte se deben considerar como positivos.

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )s

s

WLsenLsenWLsenLsen

zi

cos*cos*cos*'coscos*cos*)(

)cos()cos(

δδδβδβ

+−+−

= (2.59)

Debido a que el mayor porcentaje de aporte de radiación directa normal a la superficie de

radiación se presenta alrededor del medio día solar, el factor de corrección se calcula para el

ángulo de la hora nulo (Ws º = 0).

Cabe decir que el medio día solar es el momento en que el sol alcanza su máxima altitud

con respecto al horizonte en su desplazamiento diario por Tierra, también se entiende como su

paso por el meridiano del punto de medición.

2.2.14 Factor modificador de radiación difusa

En el caso de la radiación difusa el factor de modificación en superficie inclinada esta

dado por la ecuación 2.60. Al analizar la ecuación 2.60, el factor de modificación disminuye al

aumentar el ángulo de inclinación ß.

2)cos(1

difusaradiación der modificadoFactor β+

= (2.60)

Resumiendo todo lo anterior en el siguiente ejemplo, se determinarán los valores más

importantes mencionados. Primero se considerará un día arbitrario en la latitud 53º como el día 8

de Febrero, el cual tiene como día juliano n=39, al reemplazar este en la ecuación 2.39 se obtiene

la distancia que existe ese día entre la Tierra y el Sol, C=1,02583, expresión 2.61.

Page 58: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

46

02583,1365

39*360cos033,01

365360

cos033,01 =

+=

+=

nC (2.61)

A continuación se debe obtener el ángulo de declinación solar que existe el día 8 de

febrero, para esto se utiliza la ecuación 2.40, con lo cual se obtiene d=-15,51º, expresión 2.62.

º51,15)39284(365360

45,23)284(365360

45,23 −=

+=

+= sennsenδ (2.62)

Una vez obtenidos los valores de declinación solar y distancia entre Tierra y Sol se

procede a determinar el ángulo horario de salida del sol (WS), esto se logra reemplazando en la

ecuación 2.41 los valores de d y C, lo cual entrega Wsº=111,62º, expresión 2.63.

[ ] [ ] º62,111)53tan()51,15tan(cos)tan()tan(cos =−−−=−= ArcLArcWs δ (2.63)

Ahora, si el valor de WS se reemplaza en la ecuación 2.42 se obtiene las horas teóricas de

sol, las cuales serían 14,88 horas, expresión 2.64.

)(88,1462,111*152

*152

hrsWS S =

=

= (2.64)

Una vez obtenidos los valores anteriores se reemplaza en la ecuación 2.43 los valores de

la latitud (por estar ubicado en el hemisfero sur se considera L=-53º), declinación solar (d=-

15,51), ángulo horario de salida del sol (Wsº=111,62º), constante solar (I=1367 W/m2) y la

distancia entre la Tierra y el Sol (C=1,02583) para obtener la radiación solar extraterrestre diaria

para el día 8 de Febrero, Ho=10233,78(W/m2), expresiones 2.65.a, 2.65.b y 2.65.c

Page 59: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

47

+= )(*)(**

3602

)(*)cos(*)cos(24

** δπ

δπ

senLsenWWsenLCIH ssO (2.65.a)

−−+−−= )51,15(*)53(*62,111*

3602)62,111(*)51,15cos(*)53cos(24*02583,1*1367 sensensenHO

ππ

(2.65.b)

)/(78,10233 2mWHo = (2.65.c)

Luego de obtener la radiación solar extraterrestre diaria se procede a determinar la

radiación solar global mensual en un plano horizontal, para efectos prácticos consideremos que

ya se ha determinado la radiación extraterrestre diaria para todos los días de Febrero, al

determinar el promedio mensual se obtiene que para Febrero se presenta una radiación

extraterrestre mensual de 9664,03(W/m2), también se sabe que presenta 167,53 horas reales de

sol (s), promedio mensual obtenido de la estación meteorológica Jorge Schytte y 404,72 horas

teóricas de sol (S), promedio mensual de las horas teóricas diaria para el mes de Febrero.

Al reemplazar en la ecuación 2.38 los valores de las constantes geográficas, que para la

zona tienen un valor de a = 0,26 y b = 0,52 [8], y los valores de s y S, se obtiene para el mes de

Febrero una radiación solar global mensual en un plano horizontal de 4592,85 (Wh/m2 /día),

expresión 2.64.

)//(85,459272,40453,167

*52,026,0*03,9664)( 2 díamWhSs

baHH OHT =

+=+= (2.64)

Para la determinación de la radiación directa y difusa en un plano horizontal, en primer

lugar se determina el índice de claridad (KT) para el mes de Febrero, el cual está dado por la

ecuación 2.50, y tiene un valor de 0,48, expresión 2.65.

48,003,966485,4592

===O

HTT H

HK (2.65)

Page 60: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

48

Luego se determina la razón entre la radiación difusa (Hd) y la radiación solar global

(HHT), esto está dado por la ecuación de Collares-Rabl-Pereira, ecuación 2.57, cabe recordar que

se esta trabajando con valores mensuales por lo que WS corresponde al promedio mensual del

ángulo horario de salida del sol para el mes de Febrero (WS = 108,41º), el valor de la relación

entre radiación difusa y solar global en un plano horizontal es de 0,50, expresiones 2.66.a y

2.66.b. A continuación, se despeja la radiación difusa y se obtiene que Hd = 2314,31(Wh/m2 /día),

expresión 2.67.

( ) ( )[ ] ( )103*115cos9000455,0505,09000653,0775,0 −−+−−+= TSSHT

d KWWHH

(2.66.a)

( ) ( )[ ] ( ) 5039,010348,0*115cos9041,10800455,0505,09041,10800653,0775,0 =−−+−−+=HT

d

HH (2.66.b)

⇒ )//(31,231485,4592*5039,0*5039,0 2 díamWhHH HTd === (2.67)

Como se sabe que la radiación solar global es la suma entre la radiación difusa y la

radiación directa, esto de la ecuación 2.55, se tiene que radiación directa en un plano horizontal

tiene un valor de 2278,74(Wh/m2/día), expresión 2.67.

dbHT HHH += ⇒ )//(74,227831,231485,4592 2 díamWhHHH dHTb =−=−= (2.67)

Si ahora se quiere optimizar los valores de radiación solar tanto directa como difusa, el sistema

captador de radiación solar se debe inclinar en un ángulo ß. Para la radiación solar directa se

utiliza la ecuación 2.59 en donde se tiene que encontrar el ángulo ß óptimo, para lograr esto se

procede a variar ß en la ecuación 2.59, esta variación se realiza cada 1º entre 0º y 90º, como se ve

en la expresiones 2.68.a, 2.68.b y 2.68.c. Luego se busca cual es la razón de modificación mayor,

al encontrar ese valor, se tiene entonces cual es el ángulo óptimo de inclinación, para este

Page 61: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

49

ejemplo se tiene que el ángulo de inclinación óptimo es ß=40º lo que arroja un factor de

modificación de 1,299, como se muestra en la tabla 2.7.

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )s

s

WLsenLsenWLsenLsen

zi

cos*cos*cos*'coscos*cos*)(

)cos()cos(

H der modificadoFactor b δδδβδβ

+−+−

== (2.68.a)

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )0cos*3252,13cos*52cos3252,13*53

0cos3252,13cos*)40(53cos3252,13*))40(53(H der modificadoFactor b −−+−−−−−−+−−−−=

sensensensen (2.68.b)

2992,1)cos()cos(

H der modificadoFactor b ==zi

(2.68.c)

Latitud (°) d° ß (°) cos (i) cos(z) Factor (cos(i)/cos(z))

-53 -13,3252569 -2 0,79149303 0,76968106 1,02833897

-53 -13,3252569 -22 0,95279541 0,76968106 1,23790939

-53 -13,3252569 -40 0,99998389 0,76968106 1,29921852

-53 -13,3252569 -62 0,92504236 0,76968106 1,20185153

-53 -13,3252569 -90 0,63842859 0,76968106 0,82947162

Tabla 2.7. Resumen de la variación del el ángulo de inclinación ß

Por lo tanto la radiación solar directa en un plano inclinado (HbI) tiene el valor de 2960,08

(Wh/m2/día), como se muestra en la expresión 2.69.

)//(08,29602992,1*74,2278)cos()cos(

* 2 díamWhzi

HH bbI === (2.69)

Ahora para encontrar el factor modificador para la radiación difusa en un plano inclinado se tiene

que utilizar la ecuación 2.60 en donde se utiliza el ángulo óptimo encontrado anteriormente

(ß=40º), esto arroja un valor de 0,8830, expresión 2.70.a y 2.70.b.

2)cos(1

Hr modificadoFactor dβ+

= (2.70.a)

Page 62: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

50

8830,02

)40cos(1 Hr modificadoFactor d =

+= (2.70.b)

Luego la radiación difusa en un plano inclinado con ß =40º tiene un valor de 2043,59

(Wh/m2/día), expresión 2.71.

)//(59,204388,0*31,23142

)40cos(1 * 2 díamWhHH ddI ==

+= (2.71)

Finalmente de la ecuación 2.55 se tiene que la radiación solar global en un plano inclinado es de

5003,67 (Wh/m2/día), expresión 2.72.

)//(67,500359,204308,2960 2 díamWhHHH dIbIIT =+=+= (2.72)

Page 63: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

51

EVALUACIÓN CUANTITATIVA Y CUALITATIVA DE LA

ENERGÍA EÓLICA EN LA REGIÓN DE MAGALLANES

3.1 Aspectos generales

Antes de intentar realizar cualquier proyecto basado en energías renovables eólica y solar

(ERES), se debe realizar un estudio de potencial (eólico y/o solar en este caso) en la zona de

interés, y para que este estudio de potencial en un área de interés sea un estudio válido y serio, los

encargados de tal estudio deben preocuparse no solo de obtener la mayor cantidad de información

referente a registros de los distintos recursos renovables si no que también deben asegurarse de la

calidad de la información recogida, sobre todo en lo que respecta a la información del recurso

eólico, debido a la relación cúbica que existe entre la velocidad del viento y la potencia

desarrollada por un aerogenerador. En este estudio, todo lo que respecta a los estudios de

potencial en sí, ya sea eólico o solar formarán parte de un estudio cualitativo, mientras que la

etapa previa de recopilación y análisis de datos “en bruto” de los recursos corresponderá a un

análisis cuantitativo.

3.2 Análisis cuantitativo de energía eólica

Uno de los objetivos específicos de este estudio, y la idea de fondo del análisis

cuantitativo, es la obtención de un año típico o característico tanto para la velocidad del viento

como para la radiación solar en la ciudad de Punta Arenas. El año típico no es más que un año

representativo de las características de una variable meteorológica específica de una determinada

localidad. Existe más de un camino para llegar a tal representación, desde métodos muy simples

como un simple promedio aritmético, hasta métodos muy elaborados basados en la utilización de

modelos estadísticos. El grado de confiabilidad de los resultados que se obtengan de la utilización

de un método más sencillo dependerá un poco más de la cantidad de años que se consideren para

Page 64: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

52

el análisis. Adicionalmente a la obtención del año característico, surge la inquietud y necesidad

de cuantificar los recursos en otros sectores de la región, algunos de los cuales son de difícil

acceso y para los cuales no existe información al alcance de la comunidad. Así mismo surge

también la necesidad de validar esta cuantificación de recursos, esto es, comparar los resultados

obtenidos con otros provenientes de otras fuentes. Para llevar a cabo todo lo anterior se dispone

de diversas fuentes de información, las cuales se entregan a continuación.

3.2.1 Fuentes de Información utilizadas

Las fuentes de información utilizadas para los diversos estudios son las siguientes.

• Anales Instituto de la Patagonia [10]: El Instituto de la Patagonia realiza mediciones

tanto de velocidad de viento como de radiación solar desde el año 1978, información que

publica anualmente en un informe meteorológico en sus anales de recursos naturales. El

formato de esta información se basa en promedios horarios mensuales, que consiste en un

promedio de velocidad de viento para cada hora y para cada mes, es decir, 24 promedios

por mes, lo que da un total de 288 promedios de velocidad para cada año, en el caso de

datos de velocidades de viento. En el caso de radiación solar, se utilizan promedios

bihorarios obteniendo así 12 promedios diarios para luego llegar a 144 promedios anuales.

Será esta información la que se utilice para la obtención de los años característicos tanto

eólico como solar respectivamente para la ciudad de Punta Arenas y sus alrededores,

específicamente todas aquellas áreas o lugares que estén a la sombra del cerro mirador. Se

trabajará con una base de datos de 21 años, correspondientes al período 1978-2002, sin

incluir los datos correspondientes a los años 1980, 1981, 1984 y 1986, esto debido a la no

disponibilidad de estos al momento de recopilar la información.

Page 65: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

53

• Series de viento horarias : Estas consisten en un conjunto de 8760 datos (8784 en caso de

ser año bisiesto), cada uno de los cuales representa un promedio de la velocidad de viento

en m/seg para cada hora y día del año. Este formato de datos por lo general no es

accesible para el común de las personas, y sólo es manejado por las personas encargadas

de realizar las mediciones en terreno, o está en manos de las personas encargadas de las

estaciones meteorológicas, haciéndose un poco más difícil su obtención, sin embargo, este

formato es el más detallado y el que entrega mayor información. Se dispone de tres series

de viento horarias, una correspondiente al sector de Punta Arenas para el año 2002,

obtenida por CERE, compuesta de 8760 datos de velocidad en m/seg a 19 metros de

altura, otra correspondiente al sector Otway, también con 8760 datos de velocidad en

m/seg para el año 2003 a 12 metros de altura y finalmente una correspondiente al sector

de Carmen Sylva en Tierra del Fuego, para el año 1996 con 8784 datos de velocidad en

m/seg a 15 metros de altura.

• Base de datos de la National Aeronautics and Space Administration (NASA) [11]:

Para establecer la factibilidad de los proyectos basados en energías renovables,

históricamente se han usado los perfiles climatológicos provenientes de estaciones

meteorológicas comunes y corrientes. Aunque estos datos se utilicen de manera exitosa

hasta el día de hoy, existen problemas inherentes en la utilización de estos para la

evaluación de recursos. Estas estaciones meteorológicas se encuentran en todo el mundo,

pero ubicadas principalmente en regiones pobladas. En lugares remotos o de difícil

acceso, (donde principalmente se ejecutan los proyectos basados en energías renovables)

estas estaciones meteorológicas se hacen escasas, y su costo de instalación y mantención

es mayor. Además, muchas veces estas presentan problemas en su funcionamiento

entregando perfiles climatológicos incompletos, o bien existen diferencias considerables

entre una estación y otra estando ubicadas en el mismo sector, debido por ejemplo a

problemas de calibración de instrumentos, mala ubicación, o problemas típicos como

Page 66: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

54

alturas de medición de viento inadecuadas o zonas protegidas por vegetación. La NASA

pone a disposición del mundo entero una base de datos de diversas variables

climatológicas tales como velocidad de viento, radiación, temperatura, etc. creada

especialmente para su utilización en estudios de factibilidad de proyectos basados en

energías renovables y fomentar la utilización de estas energías limpias. Esta base de datos

está formada por valores promedio de 10 años para cada mes del año. En el caso de

velocidad de viento, estos valores corresponden a promedios de velocidad en m/seg a 50

metros de altura, mientras que para el caso de radiación la información consiste en valores

de insolación en KWh/m2/día en superficie horizontal. Los datos se encuentran

organizados en un sistema con áreas comprendidas de 1º de latitud por 1º de longitud para

todo el mundo. Esta información será de mucha utilidad para cuantificar tanto el recurso

eólico como solar en sectores más alejados de los principales sectores poblados.

• Datos de la Dirección Meteorológica de Chile (DMC): Esta corresponde a una serie de

promedios mensuales de velocidad de viento en m/seg para el período entre Enero de

1993 y Diciembre del 2003 y radiación solar global diaria desde Enero de 1993 a Julio del

2003 en Wh/m2. La utilización de esta información se limitará básicamente a la validación

de resultados.

3.2.2 Cuantificación del recurso eólico para la ciudad de Punta Arenas

Antes de pasar a analizar los resultados del año típico obtenido, es conveniente hacer un

análisis preliminar de la información recopilada, para de esta manera poder prever ciertos

resultados o tener una idea general de cómo deberían ser estos. La información recopilada del

Instituto de la Patagonia fue reordenada de tal forma de analizar las distintas tendencias

mensuales a lo largo de los años, a continuación se muestran dos gráficos, figura 3.1 y figura 3.2,

para épocas distintas del año, uno para el mes de Junio y uno para el mes de Diciembre.

Page 67: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

55

Figura 3.1. Información recopilada para el mes de Junio a 10 metros de altura

Figura 3.2. Información recopilada para el mes de

Diciembre a 10 metros de altura

De los gráficos anteriores queda de manifiesto la aleatoriedad del recurso, pero se puede

sacar conclusiones mucho más importantes que esta. La elección de estos dos meses en particular

no fue hecha al azar sino para establecer una diferencia clara en cuanto a tendencias horarias para

los meses de Primavera y Verano respecto de los meses de Otoño e Invierno, considerando como

meses de Primavera y Verano el intervalo comprendido entre Septiembre y Febrero, mientras que

como meses de Otoño e Invierno el período entre Marzo y Agosto. Para los meses de Primavera y

Verano hay una clara tendencia a una distribución horaria en forma de campana, sobre todo los

meses de Noviembre, Diciembre y Enero, haciéndose más notorio esto durante el mes de

Page 68: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

56

Diciembre. Respecto a los valores de velocidad durante estos meses, estas corresponden a las

mayores a lo largo del año, siendo Noviembre el mes más ventoso con un máximo de 11,47

m/seg en el año 1983. Por otro lado y en relación a los meses de Otoño e Invierno, es más difícil

hacer predicciones y establecer tendencias claras, a diferencia de los meses de Primavera y

Verano donde se puede apreciar una clara tendencia en forma de campana. En los meses de

Otoño e Invierno esta tendencia tiende a desaparecer a medida que nos acercamos a los meses de

pleno invierno como Junio y Julio, presentando una tendencia horaria muchísimo más plana; esto

significa que las magnitudes de velocidad son más constantes a lo largo del día y existe un rango

de variación menor. Los meses que mejor se ajustan a esta tendencia son los meses de Junio y

Julio, respecto a las magnitudes de velocidad, siendo a simple vista el mes de Junio el mes menos

ventoso. Se puede confirmar todo lo anterior consultando el Anexo A del presente trabajo.

3.2.3 Análisis del año típico obtenido para Punta Arenas

El análisis de los resultados se presenta a continuación en la tabla 3.1, donde el orden no

correlativo de los años se deriva del método utilizado para la obtención del año típico. Para

mayores detalles en cuanto al método utilizado para la obtención del año típico vea el anexo B de

este trabajo.

Page 69: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

57

Mes Hora

Ene (1992)

Feb (1994)

Mar (1991)

Abr (1989)

May (1979)

Jun (1985)

Jul (2002)

Ago (1993)

Sept (1988)

Oct (1988)

Nov (1995)

Dic (1989) Promedio

1 3,81 3,50 3,78 3,60 3,53 3,57 4,50 4,36 4,28 4,66 4,81 3,89 4,02

2 4,11 3,61 3,72 3,99 3,44 3,67 4,10 4,28 4,28 4,60 4,81 4,21 4,07

3 3,81 3,31 3,89 4,50 3,68 3,57 3,90 4,03 4,41 4,63 5,00 3,80 4,04

4 4,00 3,81 3,64 4,50 3,71 3,76 3,80 4,47 4,50 4,57 4,81 4,05 4,13

5 4,00 4,11 3,89 4,47 3,85 3,73 3,70 4,53 4,50 4,41 4,81 3,99 4,17

6 3,61 3,69 3,89 4,25 3,91 3,47 4,10 4,42 4,44 4,28 4,61 4,21 4,07

7 3,89 3,50 4,03 4,12 3,82 3,44 3,70 4,39 4,31 4,50 4,81 4,79 4,11

8 4,39 4,00 3,97 3,92 3,91 3,57 3,90 4,58 4,41 5,02 5,31 5,31 4,36

9 5,50 5,19 4,81 4,08 4,00 3,38 3,80 4,58 4,57 5,69 6,31 5,95 4,82

10 5,61 5,69 5,14 4,50 3,97 3,02 3,70 4,61 5,40 5,92 7,00 6,95 5,13

11 6,31 6,11 5,81 5,53 4,29 3,18 4,10 4,67 5,76 6,30 7,39 7,11 5,55

12 6,81 5,89 5,78 6,08 4,32 3,80 4,60 5,17 6,05 6,50 7,89 7,49 5,86

13 6,89 6,50 5,97 6,05 4,68 4,08 4,60 5,61 6,27 6,59 8,00 7,69 6,08

14 7,00 6,89 5,81 6,18 4,50 4,02 5,00 5,33 6,56 6,79 8,11 7,72 6,16

15 7,11 6,81 6,25 6,11 4,18 3,73 4,50 4,94 6,75 7,01 8,00 7,62 6,08

16 7,50 6,69 5,58 5,89 3,97 3,60 4,20 4,72 6,40 6,92 7,50 7,17 5,85

17 7,00 6,39 5,72 5,24 3,79 3,38 4,10 4,72 6,01 6,37 7,19 7,04 5,58

18 7,11 5,81 5,22 4,44 3,62 3,70 4,00 4,81 5,44 5,79 6,61 6,27 5,23

19 6,61 5,11 4,67 4,08 3,73 3,57 3,70 4,03 4,63 5,27 6,19 6,01 4,80

20 5,61 4,61 4,08 4,34 3,53 3,31 3,80 3,97 4,28 5,08 5,39 5,53 4,46

21 4,50 4,31 4,08 4,34 3,50 3,38 4,10 4,03 3,96 4,89 5,50 4,99 4,30

22 4,31 3,89 3,92 4,25 3,71 3,38 4,10 4,22 4,47 4,57 5,00 4,34 4,18

23 4,11 4,19 4,19 3,96 3,68 3,57 4,30 4,28 3,99 5,05 4,50 4,02 4,15

24 3,69 3,81 4,11 3,89 3,53 3,60 4,00 4,28 3,89 5,02 4,11 4,08 4,00

Promedio 5,30 4,89 4,66 4,68 3,87 3,56 4,10 4,54 4,98 5,43 5,98 5,59 4,80

Máximo 7,50 6,89 6,25 6,18 4,68 4,08 5,00 5,61 6,75 7,01 8,11 7,72 6,16

Mínimo 3,61 3,31 3,64 3,60 3,44 3,02 3,70 3,97 3,89 4,28 4,11 3,80 4,00

Tabla 3.1. Año típico de velocidad de viento en m/seg para la ciudad de Punta Arenas a 10 m de altura sobre el nivel del mar (s.n.m)

Obtenido el año típico se puede comenzar a corroborar o desmentir las suposiciones y a

establecer conclusiones importantes. Dentro de los datos de mayor interés se encuentran por

ejemplo las horas de mayor velocidad de viento para cada mes, los meses de mayor y menor

velocidad media, etc. Las figuras 3.3 y 3.4 resumen de muy buena manera las tendencias

mensuales del año obtenido con las características de viento principales.

Page 70: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

58

0

1

2

3

4

5

6

7

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Vel

oci

dad

(m

/seg

)

Figura 3.3. Promedios mensuales de velocidad para el año típico

de la ciudad de Punta Arenas a 10 m de altura s.n.m

Figura 3.4. Tendencias mensuales horarias de velocidad

para el año típico de la ciudad de Punta Arenas a 10 m de altura s.n.m

De las figuras 3.3 y 3.4 se puede observar que tal como se sospechaba, los meses que

presentan un mayor potencial eólico son los meses de Primavera y Verano; Enero, Febrero,

Septiembre, Octubre, Noviembre, y Diciembre. La mayoría de estos meses superan los 5 m/seg

de promedio mensual como se pudo apreciar en la figura 3.3. El mes de Noviembre presenta

además el promedio de velocidad mensual más alto del año que corresponde a 5,98 m/seg,

además de alcanzar la velocidad más alta en todo el año, que corresponde a un peak promedio de

aproximadamente 8,11 m/seg, entre las 13:00 y las 14:00 horas.

Page 71: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

59

Por otra parte, la época del año que presenta los promedios más bajos de velocidad

corresponde a los meses de Otoño e Invierno, entre Marzo y Agosto, obteniéndose promedios

mensuales incluso por debajo de los 4 m/seg para los meses de Mayo y Junio. El valor mínimo de

velocidad de todo el año típico corresponde a un promedio de 3,02 m/seg en el mes de Junio entre

las 09:00 y las 10:00 horas.

Respecto a las tendencias, se confirma la tendencia en forma de campana, sobre todo para

los meses de primavera y verano, en los meses de invierno también se puede apreciar esto pero

con mucho menor diferencia entre las velocidades mínimas y máximas. Las horas a las que

ocurren las velocidades máximas y mínimas también presentan alguna tendencia, los valores

máximos de velocidad se presentan por lo general al medio día entre las 12:00 y las 15:00 horas.

El caso de la hora para la velocidad mínima es un poco distinto, donde no existe una tendencia

clara. Podemos confirmar esto viendo la figura 3.5.

0

4

8

12

16

20

24

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Ho

ra

Hora de velocidad máxima Hora de velocidad mínima

Figura 3.5. Horas en las que ocurren las velocidades máximas y mínimas para cada mes del año típico

Profundizando un poco más en este tema, se aprecia que lo más común es encontrar el

peak de velocidad entre las 13:00 y las 14:00 horas, específicamente los meses que presentan esta

tendencia son Febrero, Abril, Julio, Noviembre y Diciembre, mientras que Mayo, Junio y Agosto

presentaron el peak de velocidad entre las 12:00 y 13:00 horas, Marzo, Septiembre y Octubre

Page 72: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

60

entre las 14:00 y 15:00 y finalmente sólo el mes de Enero entre las 15:00 y 16:00. La figura 3.6

muestra el rango de variación de velocidades para cada mes.

0

2

4

6

8

10

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Vel

ocid

ad (m

/seg

)

Promedios mensualesVelocidades máximas mensualesVelocidades mínimas mensuales

Figura 3.6. Rangos de variación mensual de velocidad para el año típico

En la figura 3.6 se puede ver que los meses de mayor potencial eólico (mayor promedio

de velocidad) son además los meses que presentan el mayor grado de variabilidad, es decir,

presentan un rango más amplio de velocidades, por ejemplo en Noviembre las velocidades varían

entre los 4,11 m/seg y los 8,11 m/seg, es decir un rango de 4 m/seg, mientras que Junio presenta

velocidades entre los 3,02 m/seg y 4,08 m/seg, un rango apenas cercano a 1 m/seg.

3.2.4 Análisis de dirección de velocidades para Punta Arenas

Para realizar este análisis se ocupará la serie de viento horaria obtenida por el CERE. No

es un misterio que la región posee una fuerte componente Oeste en cuanto a la dirección de

viento. Esto se confirma al observar las figuras 3.7a y 3.7b, en las cuales se aprecia que la

componente Oeste está presente la mayor parte del año, sólo los meses de Agosto y Septiembre

presentan un cambio en esta tendencia pero no lo suficiente como para influir notoriamente en el

resultado anual.

Page 73: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

61

Figura 3.7a. Rosa de vientos anual para Punta Arenas

Figura 3.7b. Rosa de vientos mensual para Punta Arenas

3.2.5 Cuantificación del recurso eólico en otros sectores de la región

Para cuantificar el recurso eólico en el resto de la región se utilizará la base datos de la

NASA. Dicha información consiste de promedios mensuales de velocidad de viento en m/seg a

50 metros de altura para el período comprendido entre Julio de 1983 y Junio de 1993. Para

Page 74: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

62

facilitar la comprensión de los datos recopilados ver anexo C, en el cual se abarca toda la región

ordenados en 32 sectores según latitud y longitud.

Para tener una visión más clara de cómo varía el recurso eólico en los distintos lugares de

la región, se presentan las figuras 3.8 y 3.9. La primera indica cómo varía el recurso en toda la

zona mientras que la figura 3.9 entrega los límites mínimos y máximos y las coordenadas del

lugar de la región en el que ocurre, de esta manera se logra establecer una banda de velocidades

entre las cuales varía el recurso en toda la región.

5

6

7

8

9

10

11

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Vel

oci

dad

(m/s

eg)

(-49,-73) (-49-74) (-49,-75) (-50,-72) (-50,-73) (-50,-74) (-50,-75) (-51,-72)(-51,-73) (-51,-74) (-52,-68) (-52,-69) (-52,-70) (-52,-71) (-52,-72) (-52,-73)

(-52,-74) (-53,-68) (-53,-69) (-53,-70) (-53,-71) (-53,-72) (-53,-73) (-54,-67)

(-54,-68) (-54,-69) (-54,-70) (-54,-71) (-54,-72) (-55,-67) (-55,-68) (-55,-69)

Figura 3.8. Tendencias mensuales de los 32 sectores a 50 metros de altura para la XII región según NASA

0

2

4

6

8

10

12

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Vel

oci

dad

(m/s

eg)

53º S, 68º O 50º S, 75ºO

Figura 3.9. Rango de variación de velocidades en la XII Región a 50 metros de altura

Page 75: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

63

Las figuras 3.8 y 3.9, junto con el anexo C son relevantes, ya que en conjunto entregan

tendencias claras para gran parte de la región la región y se pueden obtener las siguientes

conclusiones. En primer lugar se puede extender a varios sectores de la región las tendencias

obtenidas en el año típico para Punta Arenas, y también se puede afirmar ya con certeza que el

mes con mayor potencial es el mes de Noviembre, ya que de los 34 sectores en estudio, 26

presentan su promedio de velocidad más alto en Noviembre, mientras que los restantes

presentaron este peak anual en el mes de Agosto y corresponden a sectores ubicados al Sureste de

la región, abarcando específicamente la zona de Tierra del Fuego junto con Isla Navarino.

Respecto al mes menos ventoso, para la mayor parte de la región este corresponde al mes de

Junio, seguido de Mayo, sin embargo, la excepción a esta regla la compone el mismo sector antes

mencionado, donde el mes menos ventoso corresponde a Diciembre.

En segundo lugar, en general, si se recorre el mapa de la región de Norte a Sur, se aprecia

cómo la velocidad promedio anual de cada sector aumenta desde aproximadamente 7,2 m/seg a

casi más de 9 m/seg. Una situación similar se presenta si se recorre el mapa de Oeste a Este. Esta

tendencia sumada a la ya mencionada acerca del mes más ventoso, permite establecer que ese

mismo sector Sureste de la región, específicamente el sector de Tierra del Fuego, es el sector con

mejores condiciones de viento de toda la región superando los 9 m/seg de promedio anual (a 50

m de altura). Como todo este estudio apunta principalmente a la utilización de estos resultados en

la evaluación de posibles aplicaciones basadas en ERES, conviene resumir la información y

entregar resultados concretos para sectores de interés específicos dentro de la región. Es así como

se obtienen la tabla 3.2 y figura 3.10 con un resumen de promedios mensuales de velocidad de

viento en m/seg a 50 metros de altura.

Page 76: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

64

Lat (ºS) Long (ºO) Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Prom

Puerto Edén 49 74 8,37 7,85 7,19 6,57 5,78 5,78 6,07 6,93 7,16 7,87 8,69 8,66 7,24 Cerro Castillo,

Pto. Natales 51 72 8,26 7,78 7,63 7,58 6,82 6,69 7,08 7,49 7,63 7,82 8,49 8,31 7,63

Villa Tehuelches, Río Verde 52 71 8,37 8,02 7,88 7,82 7,05 6,94 7,25 7,79 7,97 8,07 8,76 8,36 7,86

San Gregorio 52 70 8,49 8,2 8,15 8,32 7,63 7,49 7,79 8,2 8,37 8,23 8,88 8,44 8,18

Cerro Sombrero 52 69 8,92 8,7 8,79 9,07 8,49 8,34 8,7 9 9,06 8,81 9,37 8,92 8,85 Punta Arenas, Porvenir,

Fuerte Bulnes 53 70 8,46 8,44 8,42 8,51 7,78 7,73 8 8,58 8,69 8,53 9,07 8,37 8,38

Tabla 3.2. Resumen de velocidades en m/seg a 50 metros de altura para sectores de interés en la XII Región

5

6

7

8

9

10

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Vel

ocid

ad (

m/s

eg)

Puerto Edén Cerro Castillo,

Villa Tehuelches, San Gregorio

Cerro Sombrero Punta Arenas, Porvenir, Fuerte Bulnes

Figura 3.10. Gráfico resumen de velocidades a 50 metros de altura para sectores de interés en la XII Región obtenidos de NASA

3.2.6 Validación de resultados

Como es sabido, en general la información de la que se dispone en cuanto a recursos

energéticos renovables ya sea eólico o solar proviene en su mayoría, de estaciones

meteorológicas discretas ubicadas físicamente en distintos sectores de la región, entregando por

lo general buenos resultados. Sin embargo, en el presente trabajo se ha utilizado una base de

datos proveniente de la NASA para cuantificar el recurso eólico y en capítulos siguientes se

utilizará esta misma base de datos para la cuantificación del recurso solar. El objetivo de este

apartado es comparar las distintas fuentes de información de las cuales se dispone y ver si existe

o no alguna similitud. Por ejemplo, interesa saber qué tan representativo es el año típico obtenido

Page 77: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

65

para Punta Arenas de un año en particular, para lo cual podemos comparar el año típico obtenido

con la serie de viento horaria para el año 2002 obtenida por CERE para Punta Arenas, como

también interesa saber qué tan representativa de la región es la base de datos de la NASA.

3.2.6.1 Validación de resultados del año típico eólico

Como se vió en el apartado 3.2.3, el promedio anual de velocidad de viento obtenido del

año típico para Punta Arenas fue de 4,8 m/seg a 10 metros de altura. La tabla 3.3 y figura 3.11

indican la comparación entre el año típico y la serie horaria de viento para Punta Arenas del

CERE correspondiente al año 2002. Cabe señalar que el año típico se calculó a una altura

estándar de 10 metros sobre el nivel del suelo, por su parte la serie horaria es a 19 metros, para la

comparación se tomó como referencia en este caso los 19 metros por lo que el año típico debió

ser corregido a dicha altura utilizando la ecuación 2.9 con un factor a = 0,16.

Mes CERE Año Típico Dif % Dif

Ene 3,80 5,88 2,08 54,65

Feb 6,08 5,42 0,66 12,17

Mar 5,74 5,17 0,57 11,11

Abr 5,56 5,19 0,38 7,26

May 4,76 4,29 0,48 11,11

Jun 4,44 3,95 0,49 12,48

Jul 4,66 4,54 0,12 2,64

Ago 3,86 5,03 1,18 30,47

Sep 4,87 5,52 0,65 13,31

Oct 4,78 6,02 1,24 25,98

Nov 5,34 6,63 1,30 24,26

Dic 5,52 6,20 0,68 12,28

Prom 4,95 5,32 0,82 18,14

Tabla 3.3. Comparación entre resultados del año típico eólico y una serie de viento horaria para la ciudad de Punta Arenas valores en m/seg

Page 78: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

66

0

1

2

3

4

5

6

7

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Prom

Mes

Vel

oci

dad

(m

/seg

)

CERE Año Típico

Figura 3.11. Gráfico comparativo entre el año típico y una serie de viento horaria para Punta Arenas a 19m

Como se aprecia en la figura 3.11, existe similitud entre ambas curvas, y a pesar del bajo

promedio anual de velocidad obtenido como resultado del año típico, este es una buena

representación para la ciudad, obteniéndose una diferencia promedio de un 18% con un mínimo

de menos de 3% en el mes de Julio.

Si se comparan los resultados del año típico con la base de datos de la NASA se aprecia

que la diferencia es mucho más notoria llegando a un promedio de 37%, siendo los meses de

Noviembre y Diciembre los que presentan menos diferencia, 17% y 15% respectivamente tal

como se muestra en la tabla 3.4 y figura 3.12, donde el año típico fue extrapolado ahora desde 10

a 50 metros de altura con a = 0.16.

Mes Año típico NASA Dif % Dif Ene 6,86 8,46 1,60 23,31 Feb 6,33 8,44 2,11 33,35 Mar 6,03 8,42 2,39 39,54 Abr 6,05 8,51 2,46 40,56 May 5,00 7,78 2,78 55,45 Jun 4,61 7,73 3,12 67,74 Jul 5,30 8,00 2,70 50,98

Ago 5,88 8,58 2,70 45,99 Sep 6,44 8,69 2,25 34,85 Oct 7,03 8,53 1,50 21,33 Nov 7,74 9,07 1,33 17,14 Dic 7,24 8,37 1,13 15,66

Prom 6,21 8,38 2,17 37,16

Tabla 3.4. Comparación entre año típico para Punta Arenas y NASA para latitud 53ºS, longitud 70ºO, valores en m/seg

Page 79: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

67

0

2

4

6

8

10

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Vel

oci

dad

(m

/seg

)

Año típico NASA

Figura 3.12. Gráfico comparativo entre año típico para Punta Arenas y NASA para lat. 53ºS, long. 70ºO

3.2.6.2 Validación de datos de la NASA

Basándose en el punto anterior, corresponde verificar si es conveniente o no la utilización

de la base de datos de la NASA. Si bien en el punto anterior se obtuvieron diferencias

considerables, si se compara la misma base de datos esta vez con la información proveniente de

la Dirección Meteorológica de Chile (DMC), se ve que la diferencia disminuye

considerablemente, obteniéndose diferencias que bordean el 5% casi la mitad del año, con un

promedio de 10% anual. La tabla 3.5 y figura 3.13 entregan un resumen donde se puede apreciar

la similitud o correlación en cuanto a tendencias según las distintas fuentes de información

analizadas, todos los valores de velocidad se encuentran a 50 metros de altura.

Mes Año típico CERE DMC NASA Ene 6,86 4,44 10,07 8,46 Feb 6,33 7,10 9,61 8,44

Mar 6,03 6,70 8,74 8,42 Abr 6,05 6,49 8,39 8,51 May 5 5,56 7,15 7,78 Jun 4,61 5,18 6,69 7,73 Jul 5,3 5,44 7,8 8

Ago 5,88 4,51 8,15 8,58 Sep 6,44 5,69 8,78 8,69 Oct 7,03 5,58 9,87 8,53

Nov 7,74 6,23 10,33 9,07 Dic 7,24 6,44 10,42 8,37

Promedio 6,21 5,78 8,83 8,38

Tabla 3.5. Comparación de la velocidad media entre distintas fuentes de información a 50 m. de altura para el sector de Punta Arenas, valores en m/seg

Page 80: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

68

Figura 3.13. Resumen comparativo de la velocidad media entre distintas

fuentes de información para Punta Arenas a 50 metros de altura

Finalmente respecto a la diferencia entre NASA y año típico, se debe tener en cuenta en

primer lugar que el año típico se elaboró en base a información de una estación meteorológica

existente en un lugar físico específico, mientras que la información proveniente de la NASA

corresponde a un valor representativo para una extensa zona de territorio obtenido de un

promedio de 10 años de mediciones. En este caso al decir Punta Arenas, en realidad esto se

refiere a una extensa zona de territorio que abarca desde los alrededores del Aeropuerto hasta

Fuerte Bulnes incluyendo incluso parte del estrecho de Magallanes y Porvenir, es decir, una

superficie de más de 5500 Km2. Además de este factor, pueden existir otros que pueden ir desde

una ubicación inadecuada de la estación meteorológica, hasta una mala estimación del coeficiente

de rugosidad a. Uno de los factores más críticos es la existencia de un microclima para la ciudad

debido a la cercanía de cerros con alturas que pueden superar los 600 metros, tal como se ve en la

figura 3.14. Este factor es muy importante ya que como se pudo apreciar en las figuras 3.7 a y b,

la dirección predominante de viento para Punta Arenas es la Oeste, por lo que la presencia de los

cerros antes mencionados contribuye con un efecto de sombra sobre la ciudad, haciendo que las

velocidades medidas en esta sean menores.

Page 81: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

69

Figura 3.14. Vista panorámica de Punta Arenas y sus alrededores [12]

Lo anterior explica las diferencias entre las mediciones de viento de estaciones ubicadas

dentro de la ciudad como lo son las del Instituto de la Patagonia y CERE-UMAG, y las

mediciones provenientes de la DMC. En la figura 3.15 se aprecia claramente una disminución en

la altura de los cerros cercanos al Aeropuerto Carlos Ibáñez del Campo.

Figura 3.15. Vista panorámica del Aeropuerto Carlos Ibáñez y sus alrededores [12]

Page 82: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

70

3.3 Análisis cualitativo de energía eólica

El presente apartado consiste en realizar el análisis cualitativo, formado por estudios de

potencial eólico en distintas localidades de la región basados en el concepto de densidad de

potencia y la teoría de Weibull [4]. Se dividirán los estudios según la fuente de información

considerada. De esta forma, en primer lugar se realizará un estudio detallado para la ciudad de

Punta Arenas en base a los resultados del año típico obtenido. Posteriormente se seguirá con un

análisis para los sectores de Otway y Carmen Sylva en Tierra del Fuego, lugares para los cuales

se cuenta con series de viento horarias, continuando luego con análisis en sectores de interés

general planteados en la apartado 3.2, como ser: sectores de Río Verde, Cerro Castillo, etc. Para

finalizar, se extenderá el análisis a toda la región en base a promedios mensuales de densidad de

potencia basados en la información recopilada por la NASA. La información referente al recurso

está disponible a diferentes alturas sobre el nivel del suelo: 10 metros para el año típico, 12 y 15

metros para las series horarias y 50 metros de altura para la NASA. En el presente trabajo se ha

optado por estandarizar los estudios a 50 metros de altura considerando eso sí las tendencias más

generales en cuanto a la variación de los resultados respecto a esta variable.

3.3.1 Estudio de potencial eólico para la ciudad de Punta Arenas

Para realizar el análisis en esta localidad se utilizarán los resultados del año típico

obtenido en el apartado 3.2.3, sin embargo, para basar el estudio en la utilización de la

distribución de Weibull se deben conocer además los parámetros k y c de la distribución

explicados en el apartado 2.1.3. Esta importante información fue obtenida gracias a la

colaboración del personal del Instituto de la Patagonia logrando establecer un promedio de 10

años para este parámetro, información que se muestra en la tabla 3.6. Los valores de la tabla 3.6

se obtuvieron mediante la aplicación de la ecuación 2.12 del apartado ya mencionado con una

serie horaria de cada año.

Page 83: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

71

Año 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 Prom

Valor de k 1,79 1,7 1,72 1,73 1,61 1,69 1,46 1,69 1,76 1,55 1,67

Tabla 3.6. Valores del factor de forma k para Punta Arenas

Por su parte, el factor de forma c depende de la velocidad media, por lo que para realizar

los estudios a 50 metros de altura se debe considerar la velocidad media a dicha altura. Esta ya

fue calculada en el apartado 3.2.6.2 y corresponde a 6,21 m/seg. Utilizando el valor promedio de

k = 1,67, la velocidad media del año típico a 50 metros v = 6,21 m/seg, y la ecuación 2.14 se

obtiene el valor del parámetro de escala c como se muestra en la expresión 3.1.

)/( 95,6

67,111

21,6segmc =

= (3.1)

La distribución de Weibull anual para Punta Arenas se muestra en la figura 3.16.

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20 22 24

Velocidad de viento (m/seg)

Frec

uenc

ia (

%)

Figura 3.16. Distribución de Weibull anual para Punta Arenas a 50 metros de altura

En el análisis cuantitativo, también se observa la diferencia que existe en cuanto a las

tendencias y magnitudes de velocidad para meses de invierno y verano de cada año. La tabla 3.7

y figura 3.17 dan cuenta del comportamiento mensual de los parámetros de Weibull para el año

típico de Punta Arenas a 50 metros de altura.

Page 84: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

72

Mes del año típico Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Anual

k 1,79 1,73 1,72 1,77 1,65 1,79 1,75 1,74 1,76 1,79 1,72 1,73 1,67

c (m/seg) 7,71 7,1 6,77 6,8 5,6 5,18 5,95 6,6 7,24 7,9 8,68 8,12 6,95

Tabla 3.7. Variación mensual de los parámetros de Weibull para el año típico eólico de Punta Arenas a 50 metros de altura

Figura 3.17. Distribuciones de Weibull mensuales

para el año típico eólico de Punta Arenas a 50 metros de altura

De la figura 3.17 se aprecia que para los meses más ventosos como Noviembre,

Diciembre y Enero, las funciones de densidad de probabilidad son más anchas, lo cual significa

que las velocidades varían sobre un rango más amplio. Esto marca una diferencia con lo que

ocurre en los meses menos ventosos como Mayo, Junio y Julio, que presentan funciones de

densidad de probabilidad bastante más estrechas en su forma, indicando que el rango de variación

de velocidades es menor con una alta probabilidad de ocurrencia de velocidades bajas. Una vez

que ya se han obtenido los parámetros de Weibull tanto anuales como mensuales, se puede

estimar la densidad de potencia de acuerdo a la ecuación 2.29 del capítulo 2. Los resultados a 50

metros de altura se resumen en la tabla 3.8 y figura 3.18.

Page 85: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

73

Mes Velocidad (m/seg)

Densidad de potencia (W/m2)

Ene 6,86 433,44 Feb 6,33 355,76 Mar 6,03 308,75 Abr 6,05 302,36 May 5,01 186,55 Jun 4,61 131,10

Jul 5,30 205,30 Ago 5,88 282,03 Sep 6,44 367,16 Oct 7,03 467,76 Nov 7,74 654,13 Dic 7,24 529,11

Promedio 6,21 351,95 Total 4223,43

Tabla 3.8. Velocidad media y densidad de potencia mensual para el año típico eólico de Punta Arenas a 50 metros de altura

0

2

4

6

8

10

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Vel

oci

dad

(m

/seg

)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Den

sida

d de

pot

enci

a (K

W/m

2)

Velocidad de viento Densidad de potencia

Figura 3.18. Velocidad media y densidad de potencia mensual para Punta Arenas a 50 metros de altura

El análisis realizado indica que gran parte del año presenta niveles de densidad de

potencia superiores a los 300 W/m2, un nivel bastante bajo, aunque quizás aceptable por tratarse

de un sector urbano, siendo la mejor época del año los meses de Enero, Octubre, Noviembre y

Diciembre con un máximo en Noviembre que supera los 650 W/m2.

3.3.1.1 Variación con la altura

La importancia de este estudio de variación tanto de velocidad como de densidad de

potencia con la altura radica en que las dos variables de mayor relevancia en relación a la

Page 86: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

74

potencia desarrollada por un aerogenerador son la velocidad de viento reinante y la altura de la

torre del aerogenerador, o altura del eje del rotor. Dependiendo de las necesidades de la carga a la

cual se desee suministrar electricidad, se harán necesarios aerogeneradores de mayor o menor

potencia nominal o bien situar este a una altura específica. Hoy en día podemos tener torres de

entre 20 y 80 metros de altura e incluso más, para aerogeneradores pequeños, lo normal es

encontrar torres de poco más de 20 metros hasta 40 me tros, mientras que para aerogeneradores de

gran potencia las alturas son por sobre los 50 metros. La tabla 3.9 y la figura 3.19 muestran cómo

varían tanto la velocidad media anual como la densidad de potencia media en función de la altura

para la ciudad de Punta Arenas considerando los resultados del año típico.

Altura (m) Velocidad media (m/seg) k c

(m/seg) D.P. media

(W/m2) D.P. total anual

(W/m2)

10 4,80 1,67 5,37 162,55 1950,56

20 5,36 1,67 6,00 226,71 2720,54

30 5,72 1,67 6,40 275,42 3305,05

40 5,99 1,67 6,71 316,20 3794,45

50 6,21 1,67 6,95 351,95 4223,43

60 6,39 1,67 7,16 384,14 4609,70

70 6,55 1,67 7,33 413,64 4963,72

80 6,70 1,67 7,49 441,02 5292,29

Tabla 3.9. Variación con la altura de la velocidad y densidad de potencia para Punta Arenas

Como se aprecia en la tabla 3.9, un aumento de 10 a 80 metros traería como consecuencia

un aumento en la densidad de potencia media de poco más de un 170% teniendo como referencia

los 162,55 W/m2 disponibles a 10 metros. Sin embargo, por tratarse de un sector urbano,

difícilmente podríamos contar con una torre de dicho tamaño para la instalación de un

aerogenerador. Para aerogeneradores por debajo de 10 KW de potencia, se podrían considerar

torres de entre 20 y 40 metros, en cuyo caso la densidad de potencia media disponible aumenta

entre un 40% a casi un 95% respectivamente, de hecho se aprecia que la densidad de potencia

media se duplica ya entre los 40 y 50 metros.

Page 87: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

75

4,8

5,3

5,8

6,3

6,8

10 20 30 40 50 60 70 80

Altura (m)

Vel

oci

dad

(m

/seg

))

0

0,1

0,2

0,3

0,4

0,5

Den

sid

ad d

e p

ote

nci

a (K

W/m

2)

Velocidad media D.P. media

Figura 3.19. Variación con la altura de la velocidad y densidad de potencia para Punta Arenas

3.3.1.2 Horas de operación

Otro análisis de interés en los estudios de potencial eólico es el que corresponde a las

horas (teóricas) de operación de una turbina, por lo general, las turbinas presentan características

similares en cuanto a sus velocidades de partida y de corte. Las velocidades de partida suelen

estar en el rango entre 3 y 4 m/seg mientras que las de corte varían entre los 20 y 25 m/seg.

Considerando una turbina que funcione entre los 3 y los 25 m/seg, se podría calcular las horas

teóricas de operación de la turbina a las diferentes alturas de acuerdo a la ecuación 2.26 del

capítulo 2. En la tabla 3.10 se puede apreciar que a mayor altura, el aerogenerador se mantiene en

funcionamiento más horas al año.

Altura (m) Porcentaje anual de operación (%)

Horas de operación anual

10 68,48 5999,09

20 73,00 6394,80

30 75,39 6604,08

40 76,97 6742,72

50 78,14 6844,66

60 79,04 6924,30

70 79,78 6989,04

80 80,40 7043,18

Tabla 3.10. Variación de las horas de operación anual de un aerogenerador con la altura para Punta Arenas

Page 88: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

76

El porcentaje de operación anual a 10 metros de altura es bastante bajo, cercano recién a

un 70%. Esto significa que casi un tercio del año el aerogenerador no estaría en condiciones de

generar electricidad, esta situación cambia a medida que aumentamos la altura de la torre

obteniéndose resultados aceptables recién por sobre los 40 metros, tal como se muestra en la

figura 3.20.

68

70

72

74

76

78

10 20 30 40 50 60 70 80

Altura (m)

Po

rcen

taje

de

op

erac

ión

an

ual

(%

)

5999

6199

6399

6599

6799

6999

Ho

ras

de

op

erac

ión

al a

ño

Figura 3.20. Horas de operación anual según la altura

3.3.2 Estudios de potencial eólico para los sectores Otway y Carmen Sylva

La metodología empleada en este apartado será muy similar a la del caso anterior, solo

que en vez de trabajar con un año típico del sector, se hará en base a las series de viento horarias

descritas en la apartado 3.2.2. La información fue estandarizada a 50 metros de altura en base a la

ecuación 2.9 con a = 0,16.

En cuanto a las distribuciones de Weibull anual para ambos sectores, tenemos que para el

sector Otway el factor de forma anual es k = 2,17 con un factor de escala c = 11,86 m/seg

a 50 metros de altura, mientras que para Carmen Sylva en Tierra del Fuego tenemos k = 2,27 y

c = 15 m/seg. Ambas distribuciones se muestran en la figura 3.21, en ella se aprecia claramente

que para el sector de Carmen Sylva tenemos una distribución bastante más ancha, lo que significa

que estamos en presencia de un sector con excelentes condiciones. El sector Otway es también un

Page 89: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

77

sector con muy buenas condiciones a pesar de su cercanía con Punta Arenas, donde los resultados

en esta fueron muy por debajo de lo esperado.

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Velocidad (m/seg)

Fre

cuen

cia

(%)

Otway Carmen Sylva

Figura 3.21. Distribuciones de Weibull para Otway y Carmen Sylva a 50 metros de altura

En relación a las densidades de potencia mensuales podemos mencionar que los

resultados obtenidos para el sector Carmen Sylva son considerablemente mayores por tratarse de

un sector al Este de Tierra del Fuego. Recordemos que este sector es el que presenta los niveles

de velocidad más altos de toda la región, por lo que es natural que esto se refleje en la densidad

de potencia. El resumen en cuanto a densidades de potencia se presenta en la tabla 3.11.

Sector Otway Sector Carmen Sylva (Tierra del Fuego)

Mes Velocidad (m/seg)

Densidad de potencia (KW/m2)

Velocidad (m/seg)

Densidad de potencia (KW/m2)

Ene 12,25 1,72 14,07 2,99 Feb 11,11 1,31 14,01 2,72 Mar 9,99 1,77 13,77 2,55 Abr 10,16 1,49 11,08 1,60 May 10,06 1,08 14,12 3,23 Jun 11,79 1,40 13,18 2,93 Jul 10,33 1,06 12,21 2,31

Ago 9,95 0,99 13,34 2,44 Sep 8,77 0,71 12,12 1,95 Oct 9,88 1,07 15,34 3,80 Nov 11,95 1,83 15,45 4,01 Dic 9,83 0,99 11,40 1,65

Promedio 10,51 1,28318 13,34 2,68114

Tabla 3.11. Resumen de velocidad y densidad de potencia mensual para sectores Otway y Carmen Sylva a 50 metros de altura

Page 90: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

78

En general, la densidad de potencia en Carmen Sylva es en promedio cerca de un 110%

mayor que la que presenta el sector Otway, siendo este último ya un buen sector en términos de

densidad de potencia con valores sobre 1 KW/m2 durante gran parte del año. El mínimo anual en

Carmen Sylva supera incluso los 1,5 KW/m2 en Abril y presenta un máximo en Noviembre que

supera los 4 KW/m2, algo impensado teniendo presentes los resultados del año típico de Punta

Arenas donde recién a 80 metros de altura encontramos una densidad de potencia promedio de

441 W/m2. Lo anterior se puede apreciar de mejor manera observando las figuras 3.22 y 3.23.

0

2

4

6

8

10

12

14

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Vel

ocid

ad (

m/s

eg)

00,20,40,60,811,21,41,61,82

Den

sid

ad d

e p

ote

nci

a (K

W/m

2)

Velocidad de viento Densidad de potencia

Figura 3.22. Velocidad y densidad de potencia para sector Otway a 50 metros de altura

0

3

6

9

12

15

18

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Vel

oci

dad

(m

/seg

)

00,511,522,533,544,5

Den

sid

ad d

e p

ote

nci

a (K

W/m

2)

Velocidad de viento Densidad de potencia

Figura 3.23. Velocidad y densidad de potencia para sector Carmen Sylva a 50 metros de altura

Page 91: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

79

3.3.2.1 Variación con la altura

En el caso del sector Otway los resultados se muestran en la tabla 3.12 y figura 3.24.

Podemos ver que esta localidad presenta condiciones mucho más favorables que la ciudad de

Punta Arenas a pesar de su cercanía. Ya a 30 metros de altura se logra que la densidad de

potencia se aporoxime a 1 KW/m2, y si pensamos en un posible parque de aerogeneradores de

mediana o gran potencia con torres superiores a 50 metros se puede disponer incluso de valores

promedio cercanos a los 1,3 KW/m2.

Altura (m) Velocidad media (m/seg)

D. P. media (KW/m2)

D. P. total (KW/m2)

10 8,12 0,59 7,11

20 9,07 0,83 9,92

30 9,68 1,00 12,05

40 10,14 1,15 13,83

50 10,51 1,28 15,40

60 10,82 1,40 16,81

70 11,09 1,51 18,10

80 11,33 1,61 19,30

Tabla 3.12. Variaciones con la altura para sector Otway

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80

Altura (m)

Vel

ocid

ad (

m/s

eg)

0,0

0,4

0,8

1,2

1,6

2,0

Den

sid

ad d

e p

ote

nci

a (K

W/m

2)

Velocidad de viento media Densidad de potencia media

Figura 3.24. Variación con la altura de la velocidad y densidad de potencia para sector Otway

En el caso del sector de Carmen Sylva en Tierra del Fuego, la situación es aún muchísimo

más alentadora en comparación con todos los anteriores. Los resultados se muestran en la tabla

Page 92: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

80

3.13 y en la figura 3.25 e indican que un aumento desde los 10 metros a los 80 metros significa

un aumento en la densidad de potencia media disponible de más de 2 KW/m2. Sin embargo, tal

exceso de buenas condiciones puede convertirse en un factor adverso a tener en cuenta tal como

veremos en el análisis de horas de operación.

Altura (m) Velocidad media (m/seg)

D. P. media (KW/m2)

D. P. total (KW/m2)

10 10,31 1,24 14,86

20 11,52 1,73 20,72

30 12,29 2,10 25,18

40 12,87 2,41 28,91

50 13,34 2,68 32,17

60 13,74 2,93 35,12

70 14,08 3,15 37,81

80 14,38 3,36 40,32

Tabla 3.13. Variaciones con la altura para sector Carmen Sylva

0

3

6

9

12

15

18

10 20 30 40 50 60 70 80

Altura (m)

Vel

oci

dad

(m

/seg

)

0,0

1,0

2,0

3,0

4,0

Den

sid

ad d

e p

ote

nci

a (K

W/m

2)

Velocidad de viento media Densidad de potencia media

Figura 3.25. Variación con la altura de la velocidad y densidad de potencia para sector Carmen Sylva

3.3.2.2 Horas de operación

Hasta el momento tanto el sentido común como los resultados nos han demostrado que a

mayor altura mayor velocidad y por consiguiente mayor densidad de potencia disponible y más

horas de funcionamiento al año lo que se traduce en una mayor producción de energía anual. Sin

embargo, existe una altura límite sobre la cual un aumento de esta produce una disminución en

Page 93: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

81

las horas de operación anual de un aerogenerador. La ocurrencia de esto dependerá tanto de las

condiciones de viento en el lugar del emplazamiento como de las características propias del

aerogenerador. Se sabe que, por lo general las velocidades de corte de un aerogenerador moderno

suelen estar entre los 20 m/seg y 25 m/seg. En general la probabilidad de que ocurran velocidades

por sobre los 20 o 25 m/seg no es tan baja, aun así, es de mayor preocupación la probabilidad de

tener velocidades menores a la velocidad de partida del aerogenerador (3 a 4 m/seg) como en el

caso de Punta Arenas. Los resultados del análisis para el sector Otway se muestran en la tabla

3.14 y figura 3.26. En esta figura podemos apreciar que a los 50 metros de altura comienza a

producirse una saturación en la curva y el aumento en las horas de operación se transforma en

disminución superados los 60 metros, de todas formas los porcentajes de operación anual no

bajan del 90%.

Altura (m) Porcentaje anual de

operación (%) Horas de operación

anual

10 91,51 8016,46

20 93,18 8162,54

30 93,89 8224,84

40 94,25 8255,92

50 94,42 8270,92

60 94,48 8276,30

70 94,47 8275,44

80 94,41 8270,30

Tabla 3.14. Variación de las horas de operación anual de un aerogenerador con la altura para sector Otway

91,5

92,0

92,5

93,0

93,5

94,0

94,5

10 20 30 40 50 60 70 80

Altura (m)

Po

rcen

taje

de

op

erac

ión

an

ual

(%

)

8016

8066

8116

8166

8216

8266

Ho

ras

de

op

erac

ión

al a

ño

Figura 3.26. Horas de operación anual de un aerogenerador

según la altura para sector Otway

Page 94: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

82

En el caso del sector Carmen Sylva ocurre una situación de especial cuidado. Los

resultados presentados en la tabla 3.15 y en la figura 3.27 nos muestran que el porcentaje de

operación anual aumenta sólo hasta los 20 metros de altura donde se obtiene más de un 95%, de

ahí en adelante la disminución en las horas de operación es prácticamente lineal a medida que

aumentamos la altura, sin embargo y tal como para el caso del sector Otway el porcentaje anual

de operación no baja de 90% a menos que aumentemos altura por sobre los 80 metros.

Altura (m) Porcentaje anual de

operación (%) Horas de operación

anual

10 95,15 8358,35

20 95,26 8367,99

30 94,73 8320,89

40 94,00 8257,25

50 93,22 8188,46

60 92,43 8118,87

70 91,65 8050,33

80 90,89 7983,65

Tabla 3.15. Variación de las horas de operación anual de un aerogenerador con la altura para sector Carmen Sylva

91

92

93

94

95

10 20 30 40 50 60 70 80

Altura (m)

Por

cent

aje

de o

pera

ción

an

ual

(%)

7984

8034

8084

8134

8184

8234

8284

8334

Hor

as d

e op

erac

ión

al a

ño

Figura 3.27. Horas de operación anual de un aerogenerador

según la altura para sector Carmen Sylva

3.3.3 Potencial eólico en otros sectores de la región

En este apartado se utilizará la misma base de datos de la NASA que en el análisis

cuantitativo. La no disponibilidad de información suficiente para calcular de manera exacta los

Page 95: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

83

parámetros de la distribución de Weibull es común, sin embargo, a nivel mundial se ha

determinado que los valores de k suelen ser cercanos a 2, tal como se muestra en el ejemplo de la

figura 3.28. Con base en lo anterior y ante la no disponibilidad de mayor información al respecto,

se ha optado por estandarizar el análisis a un valor de k = 2. El anexo D resume los resultados de

densidad de potencia en W/m2 para toda la región derivados del análisis a 50 metros de altura.

Figura 3.28. Distribución de valores del parámetro k de Weibull

en Estados Unidos [3]

En cuanto a la densidad de potencia, la región en general sigue la misma tendencia que la

observada durante la cuantificación del recurso, esto significa en primer lugar que a medida que

recorremos la región de Norte a Sur, la densidad de potencia aumente desde los 465 W/m2 hasta

más de 1 KW/m2, así como también se advierte un aumento de Oeste a Este. De esta manera nos

encontramos con que el sector con más potencial eólico es la zona de Tierra del Fuego, con un

promedio anual de más de 1 KW/m2. Los meses de mayor y menor potencial también mantienen

su tendencia, siendo Noviembre la mejor época del año y los meses de Mayo y Junio los meses

de menor potencial, la excepción la compone el sector Sureste de la región que junto con ser el

sector de mayor potencial de la región presenta sus meses de mayor y menor potencial en Agosto

y Diciembre respectivamente, con un máximo de 1,24 KW/m2 y un mínimo de 955,51 W/m2. En

la tabla 3.16 y figura 3.29 se presenta el resumen correspondiente a densidades de potencia

Page 96: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

84

mensual a 50 metros de altura para los sectores de interés de la región planteados en la apartado

3.2.5.

Lat (ºS)

Long (ºO) Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Puerto Edén 49 74 698,82 576,49 442,97 337,97 230,13 230,13 266,53 396,63 437,45 580,91 782,07 774,00 Cerro Castillo,

Pto. Natales 51 72 671,62 561,21 529,37 519,03 378,04 356,83 422,95 500,76 529,37 569,91 729,30 683,89

Villa Tehuelches, Río Verde 52 71 698,82 614,76 583,13 569,91 417,59 398,35 454,15 563,38 603,34 626,33 801,12 696,31

San Gregorio 52 70 729,30 657,09 645,15 686,37 529,37 500,76 563,38 657,09 698,82 664,33 834,50 716,50

Cerro Sombrero 52 69 845,83 784,77 809,38 889,22 729,30 691,33 784,77 868,79 886,28 814,92 980,40 845,83 Punta Arenas,

Porvenir 53 70 721,60 716,50 711,41 734,47 561,21 550,46 610,18 752,74 782,07 739,66 889,22 698,82

Tabla 3.16. Densidades de potencia en W/m2 a 50 metros de altura para sectores de interés en la XII Región

0,00

0,15

0,30

0,45

0,60

0,75

0,90

1,05

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Den

sida

d de

pot

enci

a (K

W/m

2)

Puerto Edén Cerro Castillo

Villa Tehuelches San Gregorio

Cerro Sombrero Punta Arenas, Porvenir

Figura 3.29. Densidades de potencia a 50 metros de altura para sectores de interés en la XII Región

Page 97: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

85

EVALUACIÓN CUANTITATIVA Y CUALITATIVA DE LA

ENERGÍA SOLAR EN LA REGIÓN DE MAGALLANES

4.1 Análisis Cuantitativo de la energía solar FV

Como se planteó en el capítulo tres, el año típico no es más que un año representativo de

las características de una va riable meteorológica específica de una determinada localidad y existe

más de un medio para llegar a tal representación en donde el grado de confiabilidad de los

resultados que se obtengan, dependerá principalmente de la cantidad de años que se consideren

para el análisis. La base de datos que se empleará para este análisis se estableció con anterioridad

en el apartado 3.2.1.

4.1.1 Cuantificación del recurso solar para la ciudad de Punta Arenas

La información recopilada del Instituto de la Patagonia [10], ubicado en Punta Arenas

latitud 53º S latitud 72º O, esta expresada en promedio bihorarios. Esta información representa la

irradiancia solar global en un plano horizontal en Langley por hora (Ly/hr), la cual resulta ser una

unidad poco cómoda para realizar estudios de aplicaciones fotovoltaicas, por lo que se debe

transformar a una unidad más estándar como resulta ser W/m2 o KW/m2. Para esto se utiliza la

equivalencia que se muestra en la relación 4.1.

1 (Ly/hr)=11,63 (W/m2) (4.1)

A continuación se muestran dos gráficos para meses extremos del año, la figura 4.1 para

el mes de Diciembre y la figura 4.2 para el mes de Junio. Las gráficas se muestran para establecer

una diferencia clara en cuanto a tendencias horarias para los meses de Primavera-Verano y los

meses de Otoño-Invierno, considerando como meses de Primavera-Verano, al igual que en el

Page 98: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

86

caso eólico, al periodo comprendido entre los meses de Septiembre a Febrero, mientras que como

meses de Otoño-Invierno al período de Marzo a Agosto. Como se aprecia en las figuras 4.1 y 4.2,

un aspecto interesante es la “forma de campana” que presentan los datos ordenados en forma

bihoraria. Esto nos indica claramente que el máximo valor para el recurso solar, para cualquier

época del año se encuentra al mediodía entre las 12:00 y 14:00, un dato interesante a considerar

para cualquier proyecto basado en esta tecnología. De las figuras 4.1 y 4.2 se puede apreciar que

el mes con mayor promedio de irradiancia solar pareciera ser el de Enero con un valor de 218,10

(W/m2) y el de menor promedio irradiancia solar es el mes de Junio con un valor de 15,20

(W/m2). Es importante destacar que la tendencia se mantiene para los años analizados, para

confirmar lo mencionado anteriormente ver anexo A.

0

100

200

300

400

500

600

700

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24

Meses

Rad

iaci

ón

So

lar

(W/m

2)

1978

1979

1983

1985

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

Figura 4.1. Valores promedio mensuales de irradiancia solar de Diciembre para Punta Arenas

0

30

60

90

120

150

180

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24

Mes

Rad

iaci

on

So

lar

(W/m

2)

1978

1979

1982

1983

1985

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002 Figura 4.2. Valores mensuales promedio de irradiancia solar de Junio para Punta Arenas

Page 99: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

87

4.1.2 Análisis del año típico solar para Punta Arenas

El resultado final de este análisis se presenta en la tabla 4.1 Para mayores detalles en

cuanto al método utilizado para la obtención del año típico solar vea el anexo B.

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Hora

1987 1985 1985 1987 1987 1990 1998 1988 1987 1987 1985 1992 Promedio

0-2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

2-4 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 2,33 0,19

4-6 18,61 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 2,33 17,45 52,34 7,56

6-8 213,99 63,97 18,61 3,49 0,00 0,00 5,82 2,33 44,19 105,83 147,70 191,90 66,48

8-10 376,81 269,82 174,45 117,46 18,61 16,28 12,79 75,60 196,55 300,05 304,71 361,69 185,40

10-12 496,60 382,63 312,85 243,07 97,69 101,18 81,41 195,38 364,02 445,43 437,29 489,62 303,93

12-14 571,03 480,32 416,35 280,28 157,01 161,66 137,23 239,58 423,33 466,36 487,30 521,02 361,79

14-16 523,35 489,62 391,93 205,85 120,95 83,74 107,00 168,64 326,80 411,70 466,36 446,59 311,88

16-18 372,16 344,25 229,11 62,80 29,08 16,28 33,73 62,80 108,16 233,76 345,41 319,83 179,78

18-20 174,45 110,49 45,36 12,79 6,98 2,33 3,49 12,79 15,12 46,52 136,07 136,07 58,54

20-22 30,24 11,63 8,14 2,33 1,16 0,00 0,00 1,16 3,49 9,30 23,26 20,93 9,30

22-24 1,16 1,16 1,16 0,00 0,00 0,00 0,00 0,00 0,00 0,00 2,33 1,16 0,58

Promedio 231,53 179,49 133,16 77,34 35,96 31,79 31,79 63,19 123,47 168,44 197,32 211,96 123,79

Valor máximo 571,03 489,62 416,35 280,28 157,01 161,66 137,23 239,58 423,33 466,36 487,30 521,02 362,57

Tabla 4.1. Año típico para valores promedios de irradiancia solar global bihoraria en W/m2 para la ciudad de Punta Arenas entre los años 1978-2002

Del año típico solar se obtienen las figuras 4.3 y 4.4, las cuales representan la irradiacia

promedio mensual y la irradiancia promedio diaria de los años considerados.

Figura 4.3. Tendencias mensuales bihorarias de

irradiancia solar global para el año típico solar de Punta Arenas

Page 100: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

88

0

50

100

150

200

250

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Rad

iaci

ón

so

lar

(W/m

2)

Figura 4.4. Tendencia de valores promedio mensuales de irradiancia

solar global en un plano horizontal del año típico

De las figuras anteriores podemos observar que los meses que presentan un mayor

potencial solar son sin duda los de Primavera-Verano, en donde el 50% de los meses supera la

media del período, siendo este un valor mensual de 185,37 (W/m2), tal como se aprecia en la

figura 4.3 y la tabla 4.2. El mes de Enero presenta el promedio mensual de irradiancia solar

horaria más alto del año que corresponde a 231,53 (W/m2). Además alcanza la irradiancia solar

más alta en todo el año, que corresponde a un peak de aproximadamente 571,03 (W/m2), como se

aprecia en la figura 4.5. Por otra parte, la época del año que presenta los promedios mensuales

más bajos de irradiancia solar que correspondiente a los meses de Otoño-Invierno, obteniéndose

para los meses de Junio y Julio promedios mensuales muy cercano a 30 (W/m2). El valor

promedio de irradiancia solar para este período es de 62,20 (W/m2).

Irradiación Global Primavera-Verano (W/m 2)

Irradiación Global Otoño-Invierno (W/m2)

Ene 231,53 Mar 133,16

Feb 179,49 Abr 77,34

Sep 123,47 May 35,96

Oct 168,44 Jun 31,79

Nov 197,32 Jul 31,79

Dic 211,96 Ago 63,19

promedio 185,37 Promedio 62,20

Tabla 4.2. Valores promedios de irradiancia solar de los períodos de Otoño-Invierno y Primavera-Verano para Punta Arenas

Page 101: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

89

Respecto a las tendencias, se confirma la tendencia en forma de campana para todos los

meses del año. Las horas en que ocurren los valores máximos de irradiancia solar se presentan

por lo general al medio día entre las 12:00 y las 14:00 horas. El caso de la hora para la irradiancia

solar mínima es un poco distinto, gran parte del año esta se presenta en horas de la noche o

madrugada, entre las 23:00 y las 04:00 horas, podemos confirmar esto viendo la figura 4.3.

Profundizando un poco más en este tema, vemos que lo más común es encontrar el peak de

irradiancia solar entre las 12:00 y las 14:00 horas, teniendo solamente el mes de febrero el valor

máximo entre las 14:00 y 16:00.

También se puede apreciar que los valores máximos anuales de irradiancia solar se

encuentran en un 338,59% mayor respecto al promedio anual. Si analizamos más en detalle se

aprecia que para los meses de Verano el valor máximo se encuentra en un 271,99% sobre el

promedio de la temporada de Verano y para los meses de Invierno la diferencia es un 405,18%

sobre el promedio. Esto se aprecia gráficamente en la figura 4.5.

0

100

200

300

400

500

600

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Rad

iaci

ón

so

lar

(W/m

2)

Promedio mensual valor máximo

Figura 4.5. Valores promedio y máximos mensuales de irradiancia

solar global en plano horizontal para Punta Arenas

Page 102: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

90

4.1.3 Cuantificación del recurso solar en otros sectores de la región

Al igual que en el recurso eólico se utilizará la base de datos de la NASA [11] para

cuantificar el recurso solar en otros sectores de la región, estos datos se muestran en el anexo C.

Para tener una visión más clara de cómo varía el recurso solar en los distintos lugares de

la región, se muestra la figura 4.6, apreciándose claramente la forma de campana invertida del

recurso solar, mientras que la figura 4.7 indica el lugar de la región donde ocurre la mayor y

menor insolación solar diaria, de esta manera se puede establecer una banda de insolación entre

las cuales varía el recurso en toda la región.

0

1

2

3

4

5

6

7

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Rad

iaci

ón

so

lar

(KW

h/m

2/d

ía)

(-49,-73) (-49-74) (-49,-75) (-50,-72) (-50,-73) (-50,-74) (-50,-75) (-51,-72)

(-51,-73) (-51,-74) (-52,-68) (-52,-69) (-52,-70) (-52,-71) (-52,-72) (-52,-73)

(-52,-74) (-53,-68) (-53,-69) (-53,-70) (-53,-71) (-53,-72) (-53,-73) (-54,-67)

(-54,-68) (-54,-69) (-54,-70) (-54,-71) (-54,-72) (-55,-67) (-55,-68) (-55,-69)

Figura 4.6. Tendencias mensuales de la insolación diaria promedio para la XII región según base de datos NASA

Page 103: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

91

0

1

2

3

4

5

6

7

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Meses

Inso

laci

ón

(K

wh

/m2/

día

)

Lat 50º S, Long 75º O Lat 52º S, Long 68º O

Figura 4.7. Tendencias extremas mensuales de la insolación sola r para la región de Magallanes según base de datos NASA

Es relevante considerar que los sectores con mayor recurso solar, son los ubicados al

Sureste de la región, abarcando específicamente la zona de la Isla Tierra del Fuego.

Del anexo C, se tiene que el promedio de insolación global solar de la zona de estudio en

un plano horizontal es de 2,60 (KWh/m2/día). Si se analiza el valor medio de la región con el

cuadrante donde se ubica Punta Arenas, tiene un valor de insolación solar media mensual de 2,68

(KWh/m2 /día), que se encuentra cerca del promedio, dicho valor es un 3,17 % mayor que el

promedio, un 17,97 % inferior al valor máximo y un 16,19 % menor al valor mínima que se

encuentra en la zona continental de la región de Magallanes y de la Antártica Chilena.

Finalmente se concluye que en general, si se recorre el mapa de la región de Norte a Sur y

de Oeste a Este, se ve cómo los valores de mayor insolación se concentran en el sector Sureste,

específicamente cerca de Tierra del Fuego. En la tabla 4.3 y figura 4.8 se muestran los valores de

insolación para los puntos de interés de la zona continental de la Región de Magallanes y de la

Antártica Chilena.

Page 104: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

92

Sector Lat (ºS) Long (ºO) Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Promedio

Puerto Edén 49 74 3,64 3,57 2,42 1,56 0,96 0,63 0,8 1,41 2,13 2,8 3,57 3,91 2,28 Cerro Castillo,

Pto. Natales 51 72 4,58 3,99 2,8 1,75 0,94 0,6 0,71 1,47 2,47 3,56 4,72 4,89 2,71

Villa Tehuelches, Río Verde

52 71 4,76 4,03 2,85 1,76 0,89 0,57 0,65 1,44 2,51 3,69 4,98 5,08 2,77

San Gregorio 52 70 5,09 4,29 3,02 1,84 0,92 0,6 0,69 1,5 2,65 3,91 5,28 5,39 2,93

Cerro Sombrero 52 69 5,45 4,58 3,18 1,91 0,95 0,64 0,75 1,57 2,8 4,13 5,49 5,75 3,10

Punta Arenas, Porvenir, Fuerte Bulnes 53 70 4,69 3,9 2,71 1,64 0,83 0,55 0,62 1,35 2,41 3,58 4,85 5,04 2,68

Tabla 4.3. Insolación solar global en un plano horizontal en KWh/m2/día para sectores de interés

Figura 4.8.Gráfico resumen de insolación global en un plano

horizontal para sectores de interés en la XII Región

4.1.4 Comparación de resultados del año típico con otras fuentes de información

El objetivo de este apartado, al igual que en el recurso eólico, es comparar las distintas

fuentes de información de las que se dispone y ver si existe o no alguna correlación. Al igual que

en el apartado 3.2.6 se realizará una comparación de los resultados del año típico solar de Punta

Arenas. Para esto se utilizarán los datos obtenidos de NASA, DMC, y de la base de datos de

International H-World. También es interesante saber qué tan representativa de la región es la base

de datos de la NASA.

Page 105: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

93

La tabla 4.4 y figura 4.9 muestran la comparación entre el año típico y la serie para Punta

Arenas de la DMC correspondiente a un promedio de diez años durante el periodo de 1993 hasta

2003. Los resultados presentan una similitud aceptable, teniendo en promedio anual una

diferencia de 3,12% llegando su máxima diferencia a un valor de 26,12% en el mes de Junio.

Mes Año típico KWh/m 2/día

DMC KWh/m 2/día % Dif

Ene 5,56 5,62 -1,07

Feb 4,31 4,38 -1,57

Mar 3,20 2,93 8,28

Abr 1,86 1,62 12,85

May 0,86 0,84 2,93

Jun 0,76 0,56 26,12

Jul 0,76 0,73 4,32

Ago 1,52 1,39 8,40

Sep 2,96 2,66 10,19

Oct 4,04 4,21 -4,15

Nov 4,74 5,36 -13,29

Dic 5,09 5,88 -15,60

Tabla 4.4. Promedio mensual de insolación del año típico solar y DMC para Punta Arenas

0

1

2

3

4

5

6

7

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Rad

iaci

ón

so

lar

(KW

h/m

2/d

ía)

Año típico DMC

Figura 4.9. Valores mensuales de insolación del año típico solar y DMC para Punta Arenas

Al comparar los datos del año típico solar de Punta Arenas con la base de datos de la

NASA, se aprecia que la diferencia es mayor en un 15,68% anual, teniendo su máxima diferencia

en el mes de Junio con un 30,53%. Esto se muestra en la tabla 4.5 y figura 4.10.

Page 106: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

94

Mes Año típico KWh/m 2/dia

NASA KWh/m 2/día % Dif

Ene 5,56 4,46 19,74

Feb 4,31 3,70 14,11

Mar 3,20 2,57 19,59

Abr 1,86 1,58 14,88

May 0,86 0,80 7,29

Jun 0,76 0,53 30,53

Jul 0,76 0,59 22,67

Ago 1,52 1,30 14,28

Sep 2,96 2,31 22,05

Oct 4,04 3,42 15,40

Nov 4,74 4,62 2,44

Dic 5,09 4,82 5,25

Tabla 4.5. Promedio mensual de insolación solar del año típico y de NASA para Punta Arenas

0

1

2

3

4

5

6

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Rad

iaci

ón

so

lar

(KW

h/m

2/d

ía)

Año típico NASA

Figura 4.10. Gráfica de insolación solar del año típico y NASA de Punta Arenas

Finalmente si se compara el año típico solar para Punta Arenas con la base de datos de

International H-World, se aprecia que existe una diferencia promedio anual de 15,34%, siendo el

mes de Junio donde se presenta la mayor diferencia llegando al 42,11%, lo anterior se aprecia en

la tabla 4.6 y figura 4.11.

Page 107: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

95

Mes Año típico KWh/m 2/dia

International H-World KWh/m 2/día % Dif

Ene 5,56 5,22 6,12

Feb 4,31 4,08 5,34

Mar 3,20 2,91 9,06

Abr 1,86 1,55 16,67

May 0,86 0,75 12,79

Jun 0,76 0,44 42,11

Jul 0,76 0,55 27,63

Ago 1,52 0,88 42,11

Sep 2,96 2,30 22,30

Oct 4,04 3,38 16,34

Nov 4,74 5,22 -10,13

Dic 5,09 5,41 -6,29

Tabla 4.6. Promedio mensual de insolación solar global del año típico solar y de International H-World para Punta Arenas

0

1

2

3

4

5

6

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Rad

iaci

ón

so

lar

(KW

h/m

2/d

ía)

Año típico International H-World

Figura 4.11. Gráfica de insolación solar solar del año típico e International H-World para Punta Arenas

4.1.5 Comparación de datos de NASA con otras fuentes de información

Al igual que en el apartado 3.2.6, es necesario realizar una comparación de los datos de

NASA para confirmar lo obtenido en el apartado 4.1.4 en el cual se obtuvo una diferencia

promedio anual con el año típico solar de un 15,68%. Para esto utilizaremos los datos facilitados

por la Dirección Meteorológica de Chile, y la International H-World. Al realizar la comparación

entre NASA y DMC se obtiene una diferencia promedio anual de 12,54%, con una máxima de

20,64% en el mes de Enero. Esto se aprecia en la tabla 4.7 y figura 4.12.

Page 108: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

96

Mes NASA KWh/m 2/día

DMC KWh/m 2/día % Dif

Ene 4,46 5,62 20,64

Feb 3,70 4,38 15,53

Mar 2,57 2,93 12,29

Abr 1,58 1,62 2,47

May 0,80 0,84 4,76

Jun 0,53 0,56 5,36

Jul 0,59 0,73 19,18

Ago 1,30 1,39 6,47

Sep 2,31 2,66 13,16

Oct 3,42 4,21 18,76

Nov 4,62 5,36 13,81

Dic 4,82 5,88 18,03

Tabla 4.7. Comparación entre valores mensual de insolación solar de NASA y DMC para Punta Arenas

0

1

2

3

4

5

6

7

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Rad

iaci

ón s

olar

(K

Wh

/m2/

día

)

NASA DMC

Figura 4.12. Gráfica de comparación de insolación solar de datos NASA y DMC para Punta Arenas

Respecto a la diferencia entre NASA y año típico, hay que considerar que el segundo se

elaboró en base a información de una estación meteorológica existente en un lugar físico

específico (Instituto de la Patagonia), mientras que la información proveniente de la NASA

corresponde a un promedio de 10 años para una extensa zona de territorio, al igual que en el caso

del recurso eólico del apartado 3.2.6.

Con respecto a la comparación entre NASA y la International H-World se tiene que la

diferencia promedio anual es de –2,31%, con una máxima de 47,73% en el mes de Agosto. Esto

se aprecia en la tabla 4.8 y figura 4.13.

Page 109: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

97

Mes NASA KWh/m 2/dia

International H-World KWh/m2/día % Dif

Ene 4,46 5,22 14,56

Feb 3,70 4,08 9,31

Mar 2,57 2,91 11,68

Abr 1,58 1,55 -1,94

May 0,80 0,75 -6,67

Jun 0,53 0,44 -20,45

Jul 0,59 0,55 -7,27

Ago 1,30 0,88 -47,73

Sep 2,31 2,30 -0,43

Oct 3,42 3,38 -1,18

Nov 4,62 5,22 11,49

Dic 4,82 5,41 10,91

Tabla 4.8. Comparación entre valores mensual de insolación de NASA y International H-World, para Punta Arenas

0

1

2

3

4

5

6

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Rad

iaci

ón

so

lar

(KW

h/m

2/d

ía)

NASA International H-World

Figura 4.13. Gráfica de comparación de insolación solar de datos NASA e International H-World para Punta Arenas

Por último se presenta en la gráfica 4.14 todos los datos analizados anteriormente, viendo

claramente la similitud de los datos.

Page 110: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

98

0

1

2

3

4

5

6

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Rad

iaci

ón

so

lar

(KW

h/m

2/d

ía)

Año típico International H-World NASA DMC

Figura 4.14. Gráfica de insolación solar de distintas bases de datos para la ciudad de Punta Arenas

4.2 Análisis Cualitativo de la energía solar FV

Para la ciudad de Punta Arenas que se encuentra ubicada en la latitud 53º y longitud 71º

se puede determinar la radiación solar sólo con saber las horas reales de sol. En este apartado se

realizará la determinación de la insolación solar para la ciudad de Punta Arenas en forma teórica.

4.2.1 Determinación teórica de radiación solar para la ciudad de Punta Arenas

Para poder realizar la determinación teórica de insolación solar para la ciudad de Punta

Arenas, se debe contar con una base de datos de las horas reales de sol de la ciudad. En este

trabajo se utilizará la base de datos de la estación meteorológica Jorge Schytte, ubicada en la

ciudad de Punta Arenas, información que se presenta en la tabla 4.9, y que fue recopilada de los

anales del Instituto de la Patagonia.

Page 111: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

99

Meses horas (hrs:min:seg)

Enero 207:43:09

Febrero 167:32:38

Marzo 150:04:13

Abril 115:21:03

Mayo 83:17:54

Junio 67:26:03

Julio 79:08:09

Agosto 111:24:44

Septiembre 143:36:03

Octubre 194:39:13

Noviembre 204:49:13

Diciembre 195:08:03

Total Anual 1720:10:25

Tabla 4.9. Horas reales de sol para la ciudad de Punta Arenas obtenida por la estación Jorge Schytte

Una vez obtenida la información de la tabla 4.9 se procede a realizar una serie de cálculos

los cuales están descritos en el apartado 2.2, esto se realiza para poder obtener el índice de

claridad (KT) para posteriormente poder obtener los valores de la radiación solar directa y difusa

en un plano horizontal. Los cálculos utilizados se irán explicando a continuación.

4.2.1.1 Horas teóricas de sol

En primer lugar se debe obtener las horas teóricas de sol mensual, para lo cual se debe

determinar las horas teóricas de sol diaria para cada día del mes. Se utiliza para esto la ecuación

2.42, previa determinación del día juliano (n), valor de la distancia “tierra-sol” (C, ecuación

2.39), declinación solar (d, ecuación 2.40) y ángulo horario de salida del sol (WS, ecuación 2.41).

En la tabla 4.10 se aprecia los valores mencionados anteriormente para el mes de Enero en la

ciudad de Punta Arenas, para el resto de los meses ver anexo E. Cabe señalar que al momento de

realizar los cálculos, por tratarse de una zona ubicada al sur de la línea del Ecuador, y al Oeste del

meridiano de Greenwich, los valores de latitud y longitud deben ser considerados como

negativos.

Page 112: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

100

Dia del año n Co d° Ws° S (horas)

01-ene 1 1,03 -23,01 124,31 16,57

02-ene 2 1,03 -22,93 124,15 16,55

03-ene 3 1,03 -22,84 123,99 16,53

04-ene 4 1,03 -22,75 123,81 16,51

05-ene 5 1,03 -22,65 123,62 16,48

06-ene 6 1,03 -22,54 123,42 16,46

07-ene 7 1,03 -22,42 123,2 16,43

08-ene 8 1,03 -22,3 122,98 16,4

09-ene 9 1,03 -22,17 122,74 16,37

10-ene 10 1,03 -22,04 122,5 16,33

11-ene 11 1,03 -21,9 122,24 16,3

12-ene 12 1,03 -21,75 121,97 16,26

13-ene 13 1,03 -21,6 121,69 16,23

14-ene 14 1,03 -21,44 121,4 16,19

15-ene 15 1,03 -21,27 121,1 16,15

16-ene 16 1,03 -21,1 120,79 16,11

17-ene 17 1,03 -20,92 120,48 16,06

18-ene 18 1,03 -20,73 120,15 16,02

19-ene 19 1,03 -20,54 119,82 15,98

20-ene 20 1,03 -20,34 119,47 15,93

21-ene 21 1,03 -20,14 119,12 15,88

22-ene 22 1,03 -19,93 118,76 15,83

23-ene 23 1,03 -19,71 118,39 15,79

24-ene 24 1,03 -19,49 118,01 15,74

25-ene 25 1,03 -19,26 117,63 15,68

26-ene 26 1,03 -19,03 117,24 15,63

27-ene 27 1,03 -18,79 116,84 15,58

28-ene 28 1,03 -18,55 116,44 15,53

29-ene 29 1,03 -18,3 116,03 15,47

30-ene 30 1,03 -18,04 115,61 15,41

31-ene 31 1,03 -17,78 115,19 15,36

Tabla 4.10. Valores para declinación solar, ángulo de salida del sol, horas teóricas de sol, y variación distancia “tierra-sol” para el mes de Enero en la ciudad de Punta Arenas

4.2.1.2 Radiación solar extraterrestre diaria

Para determinar la radiación solar extraterrestre diaria para la ciudad de Punta Arenas se

debe reemplazar los valores del apartado 4.2.1.1 en la ecuación 2.43. En la tabla 4.11se muestran

los valores para la radiación solar extraterrestre diarias (Ho) en distintas unidades en Enero para la

ciudad de Punta Arenas. Para el resto de los meses ver anexo E.

Page 113: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

101

Día del año n HO (cal/cm2min)

HO (Kcal/m2dia)

HO Kcal/m2min

HO Kcal/m2dia

HO W/m2

01-Ene 1 7,186 103479,262 7673,251 11049481,530 12242,941

02-Ene 2 7,202 103710,623 7643,870 11007172,919 12221,390

03-Ene 3 7,219 103959,111 7612,035 10961330,545 12197,946

04-Ene 4 7,238 104224,316 7577,773 10911992,929 12172,618

05-Ene 5 7,257 104505,805 7541,112 10859201,219 12145,419

06-Ene 6 7,278 104803,121 7502,083 10802999,083 12116,361

07-Ene 7 7,300 105115,782 7460,717 10743432,604 12085,456

08-Ene 8 7,322 105443,283 7417,049 10680550,176 12052,719

09-Ene 9 7,346 105785,102 7371,113 10614402,387 12018,163

10-Ene 10 7,371 106140,694 7322,946 10545041,914 11981,805

11-Ene 11 7,396 106509,497 7272,586 10472523,410 11943,660

12-Ene 12 7,423 106890,935 7220,072 10396903,390 11903,744

13-Ene 13 7,450 107284,412 7165,445 10318240,119 11862,075

14-Ene 14 7,478 107689,323 7108,745 10236593,508 11818,672

15-Ene 15 7,507 108105,048 7050,017 10152025,000 11773,552

16-Ene 16 16,642 239647,460 6989,304 10064597,462 11726,735

17-Ene 17 16,573 238656,434 6926,649 9974375,089 11678,241

18-Ene 18 16,502 237631,551 6862,100 9881423,294 11628,090

19-Ene 19 16,429 236573,238 6795,700 9785808,613 11576,304

20-Ene 20 16,353 235481,937 6727,499 9687598,610 11522,903

21-Ene 21 16,275 234358,098 6657,543 9586861,785 11467,909

22-Ene 22 16,195 233202,183 6585,880 9483667,483 11411,347

23-Ene 23 16,112 232014,665 6512,560 9378085,811 11353,238

24-Ene 24 16,028 230796,026 6437,630 9270187,556 11293,606

25-Ene 25 15,941 229546,758 6361,142 9160044,107 11232,475

26-Ene 26 15,852 228267,362 6283,144 9047727,383 11169,870

27-Ene 27 15,761 226958,349 6203,687 8933309,759 11105,816

28-Ene 28 15,668 225620,238 6122,822 8816864,000 11040,337

29-Ene 29 15,573 224253,558 6040,599 8698463,200 10973,461

30-Ene 30 15,476 222858,845 5957,070 8578180,717 10905,213

31-Ene 31 15,378 221436,643 5872,285 8456090,122 10835,620

Tabla 4.11. Radiación solar extraterrestre en Enero para la ciudad de Punta Arenas

En la tabla 4.12 se muestra el promedio mensual de la radiación solar extraterrestre diaria

para cada mes del año.

Page 114: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

102

Mes Ho mensual (W/m2) Ene 11659,93 Feb 9664,01

Mar 6909,09 Abr 4172,82 May 2300,85 Jun 1548,65 Jul 1877,76

Ago 3341,94 Sep 5795,81

Oct 8680,05 Nov 11107,22 Dic 12247,92

Tabla 4.12. Promedio mensual de la radiación solar extraterrestre diaria para la ciudad de Punta Arenas

4.2.1.3 Radiación solar global en un plano horizontal

En este apartado se determinará la radiación solar global mensual en un plano horizontal

(HHT) para Punta Arenas, para lo cual se debe utilizar la ecuación 2.38. Para esta ecuación se

considerarán los siguientes valores para las constantes geográficas: a=0,26 y b=0,52 [8]; y los

valores mensuales de radiación solar extraterrestre diaria, y las horas de sol tanto teóricas como

reales para cada mes del año. Una vez obtenida la radiación solar global mensual se determina el

índice de claridad (KT) para cada mes del año, esto se realiza utilizando la ecuación 2.50.

En la tabla 4.13 se presenta los valores teóricos de radiación solar global mensual y el

índice de claridad mensual para la ciudad de Punta Arenas.

Page 115: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

103

Mes HO (W/m2) s (hrs) S (hrs) a b HHT

(Wh/m 2/día) KT

Ene 11659,93 207,72 497,75 0,26 0,52 5561,83 0,48

Feb 9664,01 167,53 404,72 0,26 0,52 4592,85 0,48

Mar 6909,09 150,07 385,22 0,26 0,52 3195,97 0,46

Abr 4172,82 115,35 308,40 0,26 0,52 1896,53 0,45

May 2300,85 83,28 260,55 0,26 0,52 980,65 0,43

Jun 1548,65 67,43 222,25 0,26 0,52 646,98 0,42

Jul 1877,76 79,13 244,42 0,26 0,52 804,35 0,43

Ago 3341,94 111,40 296,02 0,26 0,52 1522,89 0,46

Sep 5795,81 143,60 349,34 0,26 0,52 2745,79 0,47

Oct 8680,05 194,65 427,42 0,26 0,52 4312,36 0,50

Nov 11107,22 204,82 469,45 0,26 0,52 5407,78 0,49

Dic 12247,92 195,13 514,48 0,26 0,52 5600,08 0,46

Tabla 4.13. Valores mensuales para radiación solar global e índice de claridad para Punta Arenas

4.2.1.4 Radiación solar directa y difusa

Una vez obtenido los valores de la tabla 4.13 se calcula la radiación solar directa y difusa,

para esto se utiliza la expresión de Collares-Pereira-Rabl, ecuación 2.57, en la cual se debe

determinar la relación entre la radiación solar difusa y la radiación solar global para Punta Arenas

y luego utilizando la ecuación 2.55 se obtiene la radiación solar directa. Esto se aprecia en la

tabla 4.14

Mes HD/HT Hb

(KWh/m2/día) HD

(KWh/m2/día) HHT

(KWh/m2/día) Ene 0,54 3,03 2,53 5,56

Feb 0,50 2,31 2,28 4,59

Mar 0,46 1,47 1,72 3,20

Abr 0,41 0,77 1,12 1,90

May 0,37 0,37 0,61 0,98

Jun 0,35 0,23 0,42 0,65

Jul 0,36 0,29 0,52 0,80

Ago 0,39 0,59 0,93 1,52

Sep 0,43 1,18 1,56 2,75

Oct 0,47 2,02 2,29 4,31

Nov 0,52 2,84 2,57 5,41

Dic 0,58 3,24 2,36 5,60

Tabla 4.14. Valores mensuales para la radiación solar difusa y directa para la ciudad de Punta Arenas

Page 116: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

104

De la tabla 4.14 se obtiene la figura 4.15 donde se aprecia claramente como en el mes de

Junio la radiación solar tanto global, directa, y difusa disminuyen considerablemente en la ciudad

de Punta Arenas, en cambio se aprecia claramente que en los meses de Diciembre y Enero

alcanza sus máximos valores.

0

1

2

3

4

5

6

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Rad

iaci

ón

so

lar (

KW

h/m

2/d

ía)

Rad. global Rad. directa Rad. difusa

Figura 4.15. Valores mensuales de radiación solar global, directa y difusa en un plano horizontal para la ciudad de Punta Arenas

Al comparar los datos obtenidos de radiación global en un plano inclinado para Punta

Arenas junto con los valores del apartado 4.2.1.3, se tiene una similitud esto se aprecia

claramente en la tabla 4.15 junto a la figura 4.16.

Mes Teórico

(KW/m2/dia) Año típico

(KW/m2/dia) NASA

(KW/m2/dia) DMC

(KW/m2/dia)

International H-World

KWh/m 2/día Ene 5,56 5,56 4,46 5,62 5,22

Feb 4,59 4,31 3,7 4,38 4,08

Mar 3,20 3,2 2,57 2,93 2,91

Abr 1,90 1,86 1,58 1,62 1,55

May 0,98 0,86 0,8 0,84 0,75

Jun 0,65 0,76 0,53 0,56 0,44

Jul 0,80 0,76 0,59 0,73 0,55

Ago 1,52 1,52 1,3 1,39 0,88

Sep 2,75 2,96 2,31 2,66 2,30

Oct 4,31 4,04 3,42 4,21 3,38

Nov 5,41 4,74 4,62 5,36 5,22

Dic 5,60 5,09 4,82 5,88 5,41

Tabla 4.15. Comparación entre valores teóricos y otras fuentes de información de radiación solar global en un plano inclinado para la ciudad de Punta Arenas

Page 117: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

105

0

1

2

3

4

5

6

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Rad

iaci

ón s

olar

(K

Wh/

m2/

día)

Teórico Año típico NASA DMC International H-World

Tabla 4.16. Comparación de resultados teóricos y mediciones de la radiación global horizontal para la ciudad de Punta Arenas

Al observar los datos, se aprecia que tanto los valores teóricos como prácticos se

encuentran en un buen rango para poder realizar un estudio fotovoltaico aceptable.

4.2.2 Optimización de la radiación solar directa para la ciudad de Punta Arenas

Para optimizar el valor de radiación solar directa, es necesario inclinar el objeto receptor

de radiación en un ángulo ß. El ángulo de inclinación óptimo está dado por la ecuación 2.59 en

donde cos(W)=cos(W’s)=1 (mediodía solar) y la latitud es constante (Lat = -53º S).

Del desarrollo de la ecuación 2.59, se tiene el factor de modificación para la radiación

solar directa en un plano inclinado y el ángulo óptimo para el aprovechamiento de la radiación

solar directa para la ciudad de Punta Arenas, lo cual puede ser observado en la tabla 4.16. Para

poder obtener el ángulo óptimo de inclinación se procedió a realizar la variación del ángulo ß (de

un grado a la vez) de la ecuación 4.23. Enseguida, se ubica el valor más elevado del factor de

modificación y el valor de ß correspondiente, representa el ángulo de inclinación óptimo del

objeto receptor.

Page 118: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

106

Mes Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

β 33 40 51 62 71 75 73 66 55 44 34 32

Factor 1,25 1,33 1,58 2,19 3,37 4,47 3,88 2,55 1,74 1,39 1,27 1,24

Tabla 4.16. Valores del ángulo óptimo de inclinación y factor de modificación para radiación directa para Punta Arenas

Si se observa la figura 4.17, el valor del factor modificador más alto corresponde al mes

de Junio, alcanzando un 447% de mejoramiento en la recepción de la radiación directa. Otro

aspecto importante es que en Diciembre el mejoramiento de la recepción de radiación alcanza

solamente un 24%. Debido a esto, en época de invierno se hace indispensable realizar una

variación de los ángulos de los paneles solares para poder lograr un mejor rendimiento de estos.

De la tabla 4.16, se puede concluir, como era de esperarse que para lograr un mejor

aprovechamiento del recurso, el valor recomendado para la inclinación fija anual es de 53º

orientado hacia el Ecuador o hacia el Norte, este valor corresponde al promedio anual de los

ángulos de inclinación óptimo mensuales obtenidos en la tabla 4.16 y a su vez corresponde a la

latitud de Punta Arenas. En la temporada de Verano el ángulo óptimo seria 40º hacia el Norte,

mientras para la temporada de Invierno sería de 66º hacia el Norte, los valores anteriores

corresponde a los promedios de los meses de las estaciones de Primavera-Verano (Septiembre a

Febrero) y Otoño-Invierno (Marzo a Agosto) respectivamente.

0

15

30

45

60

75

90

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

An

gu

lo (

º)

0

1

2

3

4

5

Fac

tor

mo

dif

icad

or

Ángulo de inclinación Factor modificador

Figura 4.17. Ángulo de inclinación óptimo junto al factor modificador respectivo para la ciudad de Punta Arenas

Page 119: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

107

4.2.3 Optimización de la radiación solar difusa para la ciudad de Punta Arenas

Para obtener el valor de la radiación solar difusa optimizada con el ángulo ß encontrado

en el apartado anterior, se debe utilizar el factor de modificación de radiación difusa el cual está

dado por la ecuación 2.60. En la tabla 4.17 se aprecia el factor modificador para la radiación

difusa para todos los meses del año.

Meses Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

β 33 40 51 62 71 75 73 66 55 44 34 32

Factor 0,92 0,88 0,81 0,73 0,66 0,63 0,65 0,71 0,79 0,92 0,88 0,81

Tabla 4.17. Factor modificador de la radiación difusa para Punta Arenas

4.2.4 Radiación Solar global mensual en un plano inclinado

para la ciudad de Punta Arenas

En este apartado se pretende entregar el valor final para la radiación solar global en un

plano inclinado para la ciudad de Punta Arenas. Para esto se utilizarán las tablas 4.15 y 4.16 las

cuales contienen los factores de modificación de radiación solar directa y difusa respectivamente,

esto se aprecia en la tabla 4.18. Las figura 4.18 y 4.19 muestran como aumenta la radiación solar

directa y como disminuye la radiación solar difusa en la ciudad de Punta Arenas. La disminución

de la radiación solar difusa se debe a que como esta es la medición de la radiación solar que llega

a la superficie terrestre de todas las direcciones y aquella que proviene de la dirección de la

superficie que se deja ver al inclinar el módulo fotovoltaico ya no incide en ella.

La disminución de la radiación solar difusa no es muy significativa, ya que si bien es

cierto disminuye en un 29% en el año, tenemos que la radiación solar directa aumenta

anualmente en un 219%, por lo que la disminución de radiación es menor.

Page 120: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

108

Mes ß (º) Factor Hb Hb (directa)

(KWh/m2/día) Hb optimizado (KWh/m2/día) Factor Hd

Hd difusa (KWh/m2/dia)

Hd optimizado (KWh/m2/día)

HT optimizado (KWh/m2/día)

Ene 33,00 1,25 2,53 3,18 0,92 3,03 2,79 5,97 Feb 40,00 1,33 2,28 3,03 0,88 2,31 2,04 5,07 Mar 51,00 1,58 1,72 2,72 0,81 1,47 1,20 3,92 Abr 62,00 2,19 1,12 2,46 0,73 0,77 0,57 3,03 May 71,00 3,37 0,61 2,07 0,66 0,37 0,24 2,31 Jun 75,00 4,47 0,42 1,88 0,63 0,23 0,14 2,02

Jul 73,00 3,88 0,52 2,00 0,65 0,29 0,19 2,19 Ago 66,00 2,55 0,93 2,38 0,71 0,59 0,42 2,80 Sep 55,00 1,74 1,56 2,72 0,79 1,18 0,93 3,66 Oct 44,00 1,39 2,29 3,19 0,86 2,02 1,74 4,93 Nov 34,00 1,27 2,57 3,26 0,92 2,84 2,60 5,86 Dic 32,00 1,24 2,36 2,93 0,93 3,24 3,00 5,93

Tabla 4.18. Valores de radiación directa y difusa en plano horizontal

0

0,5

1

1,5

2

2,5

3

3,5

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Rad

iaci

ón

so

lar

(KW

h/m

2/d

ía)

Radiación directa Radiación directa optimizada

Figura 4.18. Radiación solar directa en plano inclinado para la ciudad de Punta Arenas

0

0,5

1

1,5

2

2,5

3

3,5

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Rad

iaci

ón

so

lar

(KW

h/m

2/d

ía)

Radiación difusa Radiación difusa optimizada

Figura 4.19. Radiación solar difusa en plano inclinado para la ciudad de Punta Arenas

Page 121: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

109

Finalmente, se obtiene el valor de la radiación solar global en un plano inclinado. Para

llegar a este valor se debe realizar solamente la suma de la radiación directa en plano inclinado

junto a la radiación difusa en un plano inclinado lo cual es presentado en la tabla 4.19 y figura

4.20.

Meses β (º) Hb inclinado (W/m2/día)

Hd inclinado (W/m2/día)

HT inclinado (W/m2/día)

Ene 33 3178,07 2790,42 5968,49 Feb 40 3030,46 2043,59 5074,05 Mar 51 2718,80 1199,13 3917,92 Abr 62 2462,16 568,91 3031,08 May 71 2065,92 243,17 2309,09 Jun 75 1877,33 143,53 2020,86 Jul 73 2003,66 185,98 2189,64

Ago 66 2381,43 417,40 2798,83 Sep 55 2724,15 931,38 3655,53 Oct 44 3188,66 1736,54 4925,21 Nov 34 3260,95 2600,50 5861,45 Dic 32 2925,35 3000,37 5925,73

Tabla 4.19. Radiación Solar global en un plano inclinado para la ciudad de Punta Arenas

Figura 4.20. Radiación solar global en un plano inclinado

para la ciudad de Punta Arenas

Al comparar la radiación solar global de Punta Arenas en un plano inclinado con la

radiación solar de un plano horizontal, se aprecia como aumenta en un 21,67% anual, esto se

aprecia en la tabla 4.20 y figura 4.21.

Page 122: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

110

Mes Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Promedio

HT inclinado (KWh/m2/día) 5,97 5,07 3,92 3,03 2,31 2,02 2,19 2,80 3,66 4,93 5,86 5,93 3,97

HT horizontal (KWh/m2/día) 5,56 4,59 3,20 1,90 0,98 0,65 0,80 1,52 2,75 4,31 5,41 5,60 3,11

Tabla 4.20. Valores mensuales de radiación solar global en un plano inclinado y radiación solar global en un plano horizontal para la ciudad de Punta Arenas

0

1

2

3

4

5

6

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Rad

iaci

ón

so

lar

glo

bal

(K

Wh

/m2/

día

)

Plano horizontal Plano inclinado

Figura 4.21. Valores mensuales de radiación solar global en un plano horizontal y radiación solar global en un plano inclinado para la ciudad de Punta Arenas

Page 123: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

111

ASPECTOS ECONÓMICOS DE LA ENERGÍA EÓLICA Y SOLAR

Una de las barreras de entrada para las ERNC en Chile y específicamente en la XII región

es la escasa o casi nula existencia de antecedentes respecto de la implementación de este tipo de

sistemas. Lo anterior, sumado a la inexistencia de un mercado nacional del rubro consolidado,

genera incertidumbre en la estimación de los costos de los componentes asociados a estas

tecnologías, tanto para los costos de inversión como para los costos de operación y

mantenimiento a lo largo de la vida útil de los equipos. En el presente capítulo se presenta una

referencia acerca de las tendencias mundiales sobre los precios de los componentes principales de

los sistemas de generación de energía eléctrica basado en ERNC, así como una estimación de los

costos que tendrían estos sistemas en Chile con la intención de poder estandarizarlos para su

utilización en el capítulo 7.

Los valores de las tendencias son valores FOB (Free On Board), cláusula de compraventa

que considera el valor de la mercancía puesta a bordo del transporte en el país de procedencia,

excluyendo seguro y flete.

5.1 Mercado eólico

A diferencia del mercado de los paneles fotovoltaicos (sección 5.2), el mercado de

aerogeneradores es un poco más difícil de predecir en cuanto a sus costos debido en gran medida

a la enorme variedad existente en cuanto a la potencia nominal de las máquinas eólicas;

pudiéndose encontrar pequeños modelos con potencias nominales por debajo de 1 KW para

pequeñas aplicaciones hasta aerogeneradores con potencias nominales de 3 MW para parques

eólicos en tierra firme (on shore) o bien aerogeneradores marinos (off shore) de 4,5 MW. En

términos generales, los expertos aseguran en base a la experiencia de los países líderes en el

desarrollo de estas tecnologías, que los sistemas eólicos de gran potencia son más económicos, o

Page 124: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

112

más costo-efectivos, que los de baja potencia, esto significa que a medida que se aumenta la

potencia nominal del aerogenerador o del parque eólico, el costo de inversión por KW instalado

tiende a disminuir, lo que se conoce como economía de escala, comenzándose a hacer más

notoria esta para sistemas desde los 500 KW. Sin embargo, independientemente de la potencia

nominal, los factores principales que influyen en la economía de los sistemas eólicos son:

• Costos de inversión, incluyendo aerogenerador, fundaciones y conexión a la red.

• Costos de operación y mantenimiento.

• Producción de electricidad / velocidad media de viento.

• Vida útil de la turbina.

De estos, los parámetros más importantes son la producción de electricidad de la turbina y

sus costos de inversión. Como la producción de energía es altamente dependiente de la velocidad

del viento, seleccionar el lugar correcto es un factor crítico para la factibilidad económica.

Tres tendencias importantes han dominado la economía de los grandes sistemas eólicos en

los últimos años:

• Mayor capacidad y torres más altas. La capacidad promedio de las turbinas (en términos

de su potencia nominal) instaladas en Alemania y Dinamarca se incrementó desde

aproximadamente 200 KW en 1990 a casi 1,5 MW durante el 2002. Las turbinas en el

rango entre 1,5 y 2,5 MW han más que doblado su participación en el mercado global, de

un 16,9% en el 2001 a 35,35% en el 2003 [13].

• Incremento en la eficiencia de las turbinas. Una mezcla de torres más altas, mejores

componentes, y mejores emplazamientos, han resultado en un incremento en la eficiencia

total de entre 2% y 3% anualmente desde los últimos 15 años.

Page 125: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

113

• Disminución en costos de inversión. El costo promedio por KW instalado varía

actualmente entre los 1000 US$/KW y los 1500 US$/KW para aerogeneradores por sobre

los 500 KW, encontrándose incluso algunos casos de proyectos eólicos con costos por

debajo de los 800 US$/KW. La turbina en sí constituye cerca del 80% de este costo total.

El resto está constituido por tres ítems específicos: fundaciones, instalación eléctrica y

conexión a la red, sumándose otros costos derivados de compra de terreno, construcción

de caminos, consultoría, y costos de financiamiento.

Los costos de inversión de proyectos eólicos están dominados por el costo de la turbina en

sí, no incluye costos de instalación ni trabajo en el sitio de emplazamiento, sí incluye costo de la

turbina, aspas, torre y transporte al lugar del emplazamiento. La tabla 5.1 muestra la estructura de

costos típica para un aerogenerador de gran tamaño (850 a 1500 KW) basada en información

proveniente de los principales productores europeos tales como Alemania, España, Dinamarca y

Reino Unido. La participación de la turbina respecto del total de los costos es típicamente un

poco menos del 80 %, pero, tal como se muestra en la tabla 5.1 y figura 5.1, existen variaciones

considerables de entre 74% y 82 %

Item Participación del costo total (%)

Turbina (ex works) 74 - 82

Fundaciones 1 - 6

Instalación eléctrica 1 - 9

Conexión a la red 2 - 9

Consultoría 1 - 3

Terrenos 1 - 3

Costos de financiamiento 1 - 5

Construcción de caminos 1 - 5

Tabla 5.1. Estimación de estructura de costos para sistemas eólicos de gran potencia

Page 126: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

114

77%

3%

5% 2% 2% 3% 3%

5%

Turbina Fundaciones

Instalación eléctrica Conexión a la red

Consultoría Terrenos

Costos de financiamiento Construcción de caminos

Figura 5.1. Estructura de costos promedio para sistemas eólicos de gran potencia

Otro elemento principal de costos en la generación de energía eléctrica a partir del viento

son los de operación y mantenimiento (O&M). Obviamente no existen costos de combustible

asociados. Los costos de operación y mantenimiento incluyen mantenimiento regular,

reparaciones, seguros, repuestos y administración. Debido a que en la actualidad no muchas

máquinas tienen más de 20 años de operación, la información no siempre está disponible para

efectos de comparación. Según diversos estudios realizados en Europa [13], para una máquina

nueva, los costos de O&M pueden tener una participación promedio a lo largo de la vida útil de la

turbina cercano al 20 o 25 % del costo total por KWh producido, que a su vez equivale a entre 1 y

1,5 c€/KWh (1,29 y 1,94 cUS$/KWh). Estos costos están relacionados a un número limitado de

componentes:

• Seguros

• Mantenimiento regular

• Reparaciones

• Partes de repuesto

• Administración

Page 127: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

115

Algunos de los componentes de costos se pueden estimar con relativa facilidad. Por

ejemplo, en Europa para seguros y mantenimiento regular, es posible obtener contratos estándar

cubriendo una porción considerable de la vida útil de las turbinas. Por otro lado, los costos de

reparación y de repuestos son mucho más difíciles de predecir. Otro aspecto importante de estos

costos de O&M es que existe una marcada dependencia de estos respecto de los años de la

turbina, es así como para los nuevos aerogeneradores, los costos de O&M son relativamente

bajos para los primeros años de funcionamiento, debido a la garantía de los equipos y a los

seguros comprometidos que cubren parte de estos gastos, pero a medida que pasa el tiempo los

gastos por mantenimiento y reparación tienden a aumentar, debido a esto, no es recomendable

hacer estimaciones de costos basados en experiencias que llevan pocos años de operación.

Los fabricantes apuntan a reducir significativamente estos costos a través del desarrollo de

nuevos diseños de turbinas que requieran menos visitas de servicio regulares y por consiguiente

menores tiempos fuera de servicio. La tendencia apunta a incrementar la potencia de las turbinas

junto con reducir los costos de O&M por KWh producido.

Los costos de producción de energía (costos por KWh producido) a partir de energía

eólica han decaído constantemente a medida que la tecnología se ha ido desarrollando. Como

regla general, los fabricantes esperan que los costos de producción bajen entre un 3 y 5% por

cada nueva generación de aerogeneradores que se agregue a su cartera de productos.

Futuras reducciones de costos son una función de cómo el mercado crece. Viendo hacia

más adelante, y usando un análisis basado en la “curva de experiencia” de los principales

participantes de este mercado, se puede anticipar que los costos de producción continúen

decreciendo.

Page 128: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

116

Respecto al mercado de sistemas eólicos a pequeña escala, este ha tenido un crecimiento

notable desde los últimos 15 años. El análisis preliminar de un estudio de mercado de sistemas

eólicos de baja potencia realizado en Estados Unidos en el año 2004 [14] demuestra que el costo

promedio para aerogeneradores pequeños ha disminuido cerca de un 7% desde los últimos 5

años, desde los 2250 US$/KW a 2100 US$/KW, y los fabricantes apuntan a reducir estos costos

otro 20% hasta los 1700 US$/KW de aquí al año 2010. La capacidad promedio de estos pequeños

aerogeneradores se ha duplicado desde los 500 W de potencia nominal en 1990 a 1 KW en el

2004; más aún, se espera que el crecimiento del mercado de los pequeños sistemas conectados a

la red incremente el tamaño promedio de los aerogeneradores a 1,5 KW para el año 2010.

En el caso nacional, los costos de las turbinas eólicas son mayores debido a como ya se

mencionó no existe un mercado amplio y competitivo en el rubro de las ERNC. En este sentido el

costo de adquisición de un aerogenerador Bergey de 1 KW de potencia nominal puede elevarse

por sobre los MM$ 2 (US$3500), mientras que el valor de un aerogenerador Bergey de 10 KW

puede superar los MM$ 17,4 (US$ 30000) sin incluir I.V.A., torre del aerogenerador ni costos de

instalación, que pueden equivaler entre 15% y 20% sobre los valores de adquisición, ver anexo F

con cotización de precios.

5.2 Mercado fotovoltaico

Para el estudio del mercado internacional de sistemas fotovoltaicos se considerarán como

referencia los estudios realizados por la Compañía Consultora y de Investigación Internacional de

Energía Solar Solarbuzz [15]. En la figura 5.2 se obtiene una gráfica en donde se puede observar

la tendencia de precios de los módulos fotovoltaicos desde octubre del 2000 hasta agosto del

2005. Como se puede apreciar esta tendencia tanto en Europa como en Estados Unidos ha ido

disminuyendo. Si se compara los valores del año 2000 con los actuales se tiene una diferencia de

Page 129: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

117

un 11,37 % por KWp. En cambio que actualmente se tiene un costo de 5,22 US$/KWp. Hay que

tener en cuenta que en el último año el precio aumento en un 5,36% por KWp.

Figura 5.2. Tendencia mundial de precios de paneles fotovoltaicos

En la tabla 5.2 se muestran los principales fabricantes y distribuidores de módulos

fotovoltaicos considerados para el estudio.

Air Therm Heliodinamica RWE Schott Solar Solarex (part of BP solar)

Atersa Helios Technology Sanyo Solar Solmec

Atlantis IBC Sharp Corporation SunPower, Spain

BP Solar ICP Global Technologies Shell Solar SunPower Corporation

Canrom Isofoton Solara SunSet

Duravolt Kaneka Corporation Solar-Fabrik Sunware

Energie Bau, Koln (EBK) Kurzsolar Solarwatt Total Energie

Eurosolare Kyocera Solar SolarPort Uni-Solar

Evergreen Solar Mitsubishi Electric Solarwerk Webasto

GPV Mitsubishi Heavy SolarWorld GPV

GE Energy MSK Corporation Solon AG Matrix Photowatt

Sunline (GWU)

Tabla 5.2. Principales fabricantes y distribuidores mundiales de módulos fotovoltaicos considerados en el análisis

El costo de los módulos representa típicamente entre 60 - 70% de costos totales del

sistema fotovoltaico. El costo de instalar un sistema fotovoltaico varía entre 4500 a 6500 €/KWp

Page 130: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

118

(5800 a 8400 US$), aproximadamente más de la mitad de esta inversión es para los módulos del

sistema fotovoltaico y lo restante sería el inversor, las estructuras de soporte del sistema FV, el

cableado eléctrico, equipo e instalación [16].

Los sistemas PV tienen una vida útil de entre 20 a 30 años. Los costos de operación y de

mantenimiento, son de entre 0,02 a 0,1 cUS$/KWh. Los costos entregados incluyen los costos de

mantenimiento de los generadores en sistemas alejados, así como los costos de reemplazo debido

a los factores ambientales tales como temperaturas y vandalismo extremos. Los costos de

reemplazo y de O&M más significativos serán probablemente los de las baterías, ya que el

mantenimiento de un panel fotovoltaico se reduce a mantenerlo limpio para lo cual por lo general

solo es necesario un paño húmedo. La tabla 5.3 muestra los componentes principales de costos de

sistemas fotovoltaicos.

Sistema Potencia Costo de Instalación

100 - 500 Wp 14 - 30 €/Wp Aislado

1 - 4 kWp 10 - 15 €/Wp en paises desarrollados, 30 - 40 €/Wp en general

1 - 4 kWp 7 - 15 €/Wp

10 - 50 kWp 7,50 - 20 €/Wp Conectado

a la red

> 50 kWp sobre los 14 €/Wp

Tabla 5.3. Costos típicos de instalaciones fotovoltaicas

Debido a las mismas razones que para las turbinas eólicas, los sistemas FV instalados en

Chile tienen un costo mayor que los del mercado internacional, el costo de adquisición de un

arreglo de 10 paneles FV de 120 Wp puede superar los MM$ 4,35 (US$ 7500) sin incluir I.V.A.

ni costos de instalación, ver cotización anexo F.

Page 131: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

119

5.3 Otros componentes de sistemas basados en ERNC

La compañía Solarbuzz [15] presenta estudios de mercado no solo de paneles

fotovoltaicos si no que también de los demás componentes que forman parte de un sistema

basado en ERNC, tales como inversores de baja potencia para conexión a la red, baterías y

controladores de carga. Los resultados más relevantes de estos estudios se presentan a

continuación.

Inversores: Los precios de los inversores se han mantenido constantes en los últimos

años. Con un promedio de 0,833 US$/W continuo, desde noviembre 2003 a agosto 2005,

actualmente el precio de un inversor es de 0,835 US$/W continuo. La disminución del índice

europeo se debe simplemente a la moderada baja del precio del dólar respecto al euro, para este

índice, el 90% de los precios fue cotizado en US$. El índice se basa en precio por Watt continuo,

que es una medida de la potencia de salida del inversor y considera la adquisición de un solo

inversor. Esto se aprecia en la figura 5.3.

Figura 5.3. Tendencia mundial de precios de inversores para

aplicaciones pequeñas basadas en ERNC

En la tabla 5.4 se muestran los principales fabricantes y distribuidores de inversores en el

mercado actual considerados para el análisis.

Page 132: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

120

Advanced Energy Systems

Fire, Wind and Rain Technologies LLC Outback Solarix Trace Engineering

Advanced Electronic Supply (AES)

Fronius PowerPro (Tumbler Technologies)

Solsum Trace Technolo gies

Beacon Power Go Power! Electric Inc. PowerSine Soltek Xantrex Technology Inc

Cherokee Electronics Heart Interface PV Powered Statpower

Exeltech Omnion SMA Regelsysteme Studer

Tabla 5.4. Principales fabricantes de inversores

Baterías: En la figura 5.4 se aprecia la tendencia del precio de las baterías desde Enero

2002 a Agosto 2005. En esta situación se aprecia que el valor de las baterías se mantiene

relativamente constante con un promedio de 1,61 US$/Wh de salida. Hoy en día el precio de una

batería es del orden de 1,62 US$/Wh de salida. En este punto debemos hacer mención de la

durabilidad de las baterías, estas normalmente tienen duración aproximada de cuatro a cinco

años, siendo importante el considerar para cualquier estudio el recambio de dicho componente.

Respecto a la metodología de cálculo de este índice se debe aclarar que consiste en una

estimación del “precio por Wh”. Esta no es una medición perfecta debido a la enorme variedad en

cuanto al tipo de tecnología de las baterías y otros factores técnicos que son relevantes. Sin

embargo, el índice provee una guía precisa de la dirección y magnitud de los cambios. El cálculo

del índice consiste en el precio de la batería dividido por los Watts de salida a un régimen de

descarga de 20Ah. Como resultado, se obtiene un índice de precio por Wh a 20Ah de descarga.

Figura 5.4. Tendencia de precio de las baterías

Page 133: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

121

En la tabla 5.5 se encuentran los principales fabricantes y distribuidores de baterías en el

mercado actual considerados en el análisis.

Akku Solar Crown Battery Manufacturing Dyno Hoppecke

Batterien Northern Battery

SEC Industrial Battery Co US Battery

Banner Batterien Deka East Penn-Deka Manufact uring HUP Solar One Optima Solar Electric

Specialties Varta AG

Bären Batterie GmbH Delco Exide Industrial Battery

Engineering (IBE) Prevailer Sonnenschien Yuasa

C&D Batteries Deta Batteries UK Ltd

General Battery Corporation (GBC) MK Batteries Rolls Battery

Engineering Surrette Battery Co

Concorde Douglas GNB Moll Batterien Resource Commander

Trojan Battery

Tabla 5.5. Principales fabricantes de baterías

Controladores de carga para baterías: El valor de este componente al igual que los

inversores y baterías se ha mantenido relativamente constante para el periodo de abril 2003 a

agosto 2005. Este índice se basa en el precio de los controladores de carga dividido por el

amperaje de salida de cada producto. El resultado: un índice de precio en US$/Amp o €/Amp.

Para los controladores de carga se tiene un promedio de 5,81 US$/Amp. Hoy en día este

componente tiene un costo aproximado de 5,8 US$/Amp. La tendencia de los precios se aprecia

en la figura 5.5.

Figura 5.5. Tendencia mundial de precios para controladores de carga

En la tabla 5.6 se aprecian los principales fabricantes y distribuidores de controladores de

carga en el mercado actual considerados para el análisis.

Page 134: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

122

APC Flexcharge Morningstar Corporation SunAmp Power

Bobier Electronics GeoSolar Pulse Energy Systems Inc SunSelector

BZ Products Heliotrope RV Power Products SunWize Technologies Inc

DIREC ICP Global Technologies SES Flexcharge USA Trace Engineering

Enermaxer Lyncom Specialty Concepts Inc Uhlmann Solarelectronic GmbH

ETA Engineering Pico Electronics Inc Sunwize Steca Fire, Wind and Rain Technologies LLC

Plasmatronics Sun Selector

Tabla 5.6. Principales fabricantes de controladores de carga

Page 135: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

123

INTRODUCCIÓN AL SOFTWARE HOMER

6.1 Descripción general

El modelo HOMER (Hyrbid Optimization Model for Electric Renewables) [3] [17] es un

modelo horario que necesita en lo posible series horarias de velocidad de viento o de radiación

solar de un año completo formadas por 8760 datos (un valor promedio por cada hora del año),

dando también la posibilidad de ingresar solo promedios mensuales. Para utilizar el programa, se

le debe proveer datos de entrada, los cuales describen las distintas opciones tecnológicas, costos

de componentes, y disponibilidad de recursos. HOMER utiliza esta información para simular

diferentes configuraciones de sistemas, o combinaciones de componentes, y genera resultados

que se pueden visualizar como una lista de configuraciones factibles ordenadas por costo neto

presente (Net Present Cost, o NPC). El programa también entrega los resultados de las

simulaciones en una amplia variedad de tablas y gráficos que ayudan a comparar las distintas

configuraciones y evaluarlas en base a sus méritos técnicos y económicos. Todos estos resultados

se pueden exportar a archivos de texto para su posterior tratamiento en planillas tipo Excel. La

figura 6.1 es un ejemplo típico de una configuración de sistema y los resultados de la simulación

ordenados según NPC.

Figura 6.1. Entorno de trabajo del programa HOMER

Page 136: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

124

En el extremo superior izquierdo de la figura 6.1 se aprecia el diagrama esquemático con

los distintos componentes que forman parte del sistema. Bajo este se encuentra la información de

entrada referente a los recursos energéticos e información complementaria tanto técnica como

económica. En la parte inferior izquierda se presenta la descripción general del sistema la cual se

puede editar y finalmente a la derecha se presentan los resultados de la simulación.

Si se desea investigar el efecto de una variación de los valores de entrada, por ejemplo,

variación de disponibilidad de recursos o las condiciones económicas que deberían existir para

hacer una configuración factible, el programa entrega la opción de realizar un análisis de

sensibilidad. Para realizar un análisis de sensibilidad, se debe proveer al programa con valores

que describan un rango de variación de los recursos y/o costos de componentes. Estos resultados

se pueden utilizar para identificar los factores que tienen un mayor impacto en el diseño y

operación del sistema.

6.2 Funcionamiento interno del modelo

Respecto al funcionamiento interno del modelo, el programa simula el desempeño del

sistema, realizando cálculos de balance energético para cada una de las 8760 horas del año. Para

cada hora, HOMER compara la demanda eléctrica o térmica de la carga en esa hora, con la

energía que el sistema puede entregar en esa hora y calcula los flujos de energía hacia y desde

cada componente del sistema. Para sistemas que incluyen baterías o generadores diesel, el

programa decide también para cada hora cómo operar el generador y cuando cargar o descargar

las baterías. Este análisis se hace para cada una de las configuraciones posibles y posteriormente

se estima el costo de inversión total y operar los sistemas durante la vida útil del proyecto.

Después de haber simulado todas las opciones, se puede acceder a mucha información

específica respecto al desempeño de cada una de las configuraciones de sistema durante el año, es

Page 137: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

125

así como por ejemplo se puede ver el detalle acerca de la producción y consumo de energía por

parte de cada componente y carga del sistema, tal como se muestra en la figura 6.2.

Figura 6.2. Ejemplo de análisis mensual de producción de energía de los distintos

componentes de un sistema híbrido

6.3 Variables de entradas principales

La información requerida para el diseño del sistema es muy variada en lo que se refiere

tanto a especificación técnica de equipos como en costos, así como también es necesaria la

cuantificación de los recursos energéticos disponibles y estimaciones de carga. A continuación se

describen los parámetros de entrada para los bloques principales que pueden formar parte de las

distintas configuraciones.

6.3.1 Componentes del sistema eléctrico

Carga primaria: En primer lugar se debe especificar si la carga es DC o AC. El

programa nos exige ingresar la distribución horaria de la carga, pudiendo establecer diferencias

Page 138: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

126

de un mes a otro o bien diferenciar ent re días hábiles y fines de semana tal como se muestra en la

figura 6.3

Figura 6.3. Ejemplo de datos necesarios para la

especificación de una carga eléctrica

Paneles fotovoltaicos. Respecto a los costos asociados a paneles solares, se considerará

una estimación para el costo de adquisición de un arreglo fotovoltaico en base a los resultados del

capítulo 5 de 5000 US$/KWp de potencia, y costo de reemplazo igual al costo de adquisición. Se

debe ingresar además características propias del arreglo fotovoltaico que se detallan a

continuación.

- Vida útil: Estimación de la vida útil del arreglo fotovoltaico en años.

- Factor de pérdidas: Factor que da cuenta de las pérdidas del arreglo fotovoltaico por

temperatura, suciedad, etc.

- Sistema de seguimiento: Corresponde al sistema de ajuste del ángulo de inclinación

del arreglo en caso de ser utilizado, se dispone para selección de seguidores de eje

horizontal con ajuste del ángulo de inclinación mensual, diario, continuo, eje vertical

con ajuste continuo, y de dos ejes.

Page 139: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

127

- Inclinación: Corresponde al ángulo fijo de inclinación del arreglo fotovoltáico (un

ángulo para todo el año) en caso de no contar con un sistema de seguimiento.

- Azimut: es la dirección hacia donde apunta la cara del panel fotovoltaico, para el caso

de Punta Arenas, los paneles deben estar apuntando hacia el norte (180º)

- Reflectancia del suelo: Fracción de la radiación solar incidente en el suelo que es

reflejada.

La figura 6.4 muestra la información necesaria descrita anteriormente.

Figura 6.4. Información necesaria para paneles fotovoltaicos

Aerogeneradores: En la figura 6.5 el tipo de turbina (turbine type) corresponde a la

marca y modelo del aerogenerador a considerar, pudiéndose seleccionar uno de la base de datos

del programa o bien ingresar uno nuevo editando su curva de potencia. Respecto a la estimación

de costos, en este trabajo se darán dos situaciones. De acuerdo a los resultados del análisis del

capítulo 5, en el caso de aerogeneradores pequeños, hasta los 50 KW de potencia nominal, se

considerará un costo de adquisición de 2000 US$/KW (aerogenerador y torre) con un costo de

operación y mantenimiento anual del 2% de la inversión inicial, mientras que en el caso de

aerogeneradores de gran potencia donde las economías de escala se hacen notar en mayor medida

se considerará un costo de 1000 US$/KW con un costo de operación y mantenimiento del 5 % de

la inversión inicial.

Page 140: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

128

Figura 6.5. Información necesaria para aerogeneradores

Baterías: La información necesaria referente a las baterías es muy similar al caso de

aerogeneradores, se debe especificar el modelo de batería desde la base de datos del programa o

bien especificar una nueva ingresando la información correspondiente. En este trabajo se

considerarán baterías Trojan modelo L16P con un costo de adquisición estimado de acuerdo al

capítulo 5 de 200 US$ cada una y un costo de operación y mantenimiento anual del 5% de la

inversión inicial. La figura 6.6 muestra la información requerida. Respecto a la configuración del

banco de baterías, el programa no especifica nada acerca de la disposición en serie o en paralelo

de las baterías ya que no es necesario.

Figura 6.6. Información necesaria para las baterías

Page 141: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

129

Conversores: La información requerida para los conversores se muestra en la figura 6.7,

el costo de adquisición del conversor fue estimado en base al capítulo 5 en 800 US$/KW sin

costo de operación y mantenimiento asociado. El programa permite establecer diferencias en

cuanto a la forma de operación del conversor trabajando como inversor y como rectificador, por

ello es necesario ingresar el rendimiento funcionando como inversor y como rectificador en los

campos “eficiencia” correspondientes. Si se desea que el conversor funcione solamente como

inversor, en las entradas del rectificador se debe dejar en 0 el campo “capacidad relativa al

inversor”.

Figura 6.7. Información necesaria para los conversores

6.3.2 Información de recursos eólico y solar

Recurso eólico: Esta información corresponde a una serie de viento horaria anual en

m/seg o bien, un promedio de velocidad para cada mes del año. y se muestra en la figura 6.8.

Page 142: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

130

Figura 6.8. Información necesaria referente al recurso eólico

El formato de serie horaria de viento anual entrega toda la información necesaria para los

campos de parámetros avanzados y lo único que se debe ingresar es la altura a la que fueron

hechas las mediciones y la variación con la altura, para esta última el programa cuenta con dos

modelos de ajuste los cuales se muestran en las figuras 6.9a y 6.9b. Ambos modelos fueron

analizados en la sección 2.1.2

Figura 6.9a. Variación con la altura. Modelo logarítmico

Page 143: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

131

Figura 6.9b. Variación con la altura, ley de potencia

En caso de disponer solo de 12 promedios mensuales de velocidad en m/seg para un año,

se debe ingresar manualmente los parámetros avanzados de factor k de Weibull, factor de

autocorrelación y hora peak de velocidad.

Recurso solar: Tal como para el caso del recurso eólico lo recomendable es ingresar una

serie horaria de radiación de 8760 datos en KW/m2 junto con las coordenadas del lugar (latitud y

longitud), si no se dispone de una serie horaria se deben ingresar los promedios mensuales de

radiación en KWh/m2/día tal como se ve en el ejemplo de la figura 6.10, o bien descargar la

información desde la base de datos en línea. Los valores del índice de claridad son calculados

automáticamente por el programa.

Figura 6.10. Información necesaria referente al recurso solar

Page 144: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

132

6.4 Variables de salida principales

Las variables económicas de salida principales que entrega el programa son tres, la

inversión inicial necesaria, el costo neto presente (Net Present Cost o NPC), y el costo de

generación de energía (Cost of Energy o COE), estos son los conceptos económicos principales

que intervienen en la evaluación de un proyecto eléctrico híbrido a pequeña escala basado en

energías renovables. A continuación se presenta una breve descripción del significado de cada

uno de estos conceptos.

6.4.1 Inversión inicial (US$)

Corresponde al capital total necesario para la adquisición de todos los equipos del

sistema, si bien este puede ser un costo elevado en comparación con otras tecnologías, se realiza

sólo una vez, al comienzo del proyecto, y no es un buen indicador del costo real del proyecto.

6.4.2 Costo neto presente (NPC)

El NPC es la variable económica de salida principal que entrega el programa para las

distintas configuraciones, todas ellas son ordenadas según esta variable de menor a mayor y todos

los demás resultados económicos calculados por el programa son con el propósito de encontrar

este NPC. El NPC es el valor descontado de todos los flujos de caja necesarios para la

adquisición y operación del sistema durante el ciclo de vida del proyecto. La ecuación 6.1

describe la forma en que el programa calcula este índice.

( ) ( )$ ,

, USRiCRF

CNPC

proj

totann= (6.1)

Page 145: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

133

Donde:

Cann,tot (US$/año): Costo total anualizado. Corresponde a la suma de los costos

anualizados de todos los componentes del sistema, estos costos incluyen el costo de capital, de

operación y mantenimiento, costos de reemplazo al término de la vida útil de un componente

(relevante solo en caso de que la vida útil de un componente del sistema sea menor que el

horizonte de evaluación del proyecto), y costos de combustible en caso que fuese aplicable.

CRF (i,Rproj): Factor de recuperación de capital (Capital Recovery Factor). Es un factor

utilizado para calcular el valor presente de una anualidad (una serie de flujos de caja anuales

iguales). La fórmula general se presenta en la ecuación 6.2, donde i es la tasa de interés real y N

corresponde a la duración del proyecto en años.

( )( ) 11

1),(

−++

=N

N

iii

NiCRF (6.2)

6.4.3 Costo de la energía (COE)

Es el costo medio de producir electricidad, es también el nivel de tarifa mínimo necesario

para recuperar el NPC en los N años de duración del proyecto. Se calcula según la ecuación 6.3.

)/$( ,

, KwhUSEE

CCOE

salesgridprim

totann

+= (6.3)

Donde el numerador es el mismo de la ecuación 6.1 y el denominador corresponde a la

suma entre la energía suministrada a la carga y la vendida a la red (cuando corresponda).

Page 146: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

134

APLICACIONES DE LAS ENERGÍAS EÓLICA Y SOLAR

EN LA REGIÓN DE MAGALLANES

En este capítulo se analizarán las aplicaciones eléctricas más comunes basadas en ERES

que pueden ser implementadas en la Región de Magallanes. Las aplicaciones se pueden clasificar

de acuerdo a varios criterios, tales como carga, potencia instalada, tipo de tecnología, penetración

a la red, y lugar de implementación entre otras. En el caso de la Región de Magallanes, se

propone utilizar la clasificación de la figura 7.1.

Figura7.1. Clasificación de las aplicaciones en la Región de Magallanes

De acuerdo al esquema anterior, se proponen dos áreas principales de aplicación, la

primera, son los sistemas conectadas a la red, y entre estas se tienen la electrificación de

viviendas en sectores residenciales, aerogeneradores discretos con conexión a la red, y los

parques eólicos. En segundo lugar, se tienen los sistemas aislados de la red, lo cual tiene directa

relación con la electrificación rural, tales como la electrificación de pequeñas villas o pueblos, de

viviendas aisladas o dispersas, o bien la utilización de sistemas de bombeo de agua de pozos

profundos y/o superficiales.

Page 147: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

135

7.1 Sistemas no conectados a la red

7.1.1 Electrificación de viviendas rurales en base a energías renovables

En el tema de la electrificación rural, el uso de fuentes de energía específicas varía

normalmente de acuerdo a las localidades, generando tendencias locales y diferencias en los

niveles de vida, en las localidades con mayor nivel de ingresos es más común el uso de equipos

diesel o a gas, en otras la parafina, etc. Las velas son una constante en todas las localidades

siendo en muchos casos la principal fuente de iluminación mientras que el uso de pilas está

asociado a la tenencia de radios y las baterías son utilizadas generalmente para televisores y en

menor número para iluminación.

El concepto de viviendas rurales aisladas de la red, se refiere a todas aquellas viviendas

que se encuentran alejadas de los principales centros urbanos o ciudades y de los principales

pueblos o villas que pueden formar parte de una red de electrificación aislada. En la mayoría de

los casos existe también un factor de dispersión de estas viviendas, que hace inviable una posible

extensión de la red local hacia estas viviendas, quedando fuera de los principales proyectos de

electrificación rural. Sin ir más lejos, en la XII región, existe una cantidad de estancias ganaderas

que bordea las 1000 [18] y que funcionan con sistemas de autogeneración de electricidad

mediante equipos diesel con todas las limitaciones e inconvenientes que esto significa. En estos

casos, una de las alternativas para la electrificación de estas viviendas dispersas son las ERES,

dadas sus condiciones de modularidad que las hace adaptables a las necesidades más básicas de

estas viviendas.

En este apartado se pretende hacer un análisis desde una perspectiva general a nivel

regional, yendo por sectores de interés planteados en capítulos anteriores.

Page 148: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

136

Para esto se procederá a un análisis de las alternativas más económicas de sistemas de

generación eléctrica eólico, fotovoltaico e híbrido. La variable más crítica de este estudio

corresponde a la estimación de las cargas, ya que la estimación de los recursos eólico y solar fue

realizada con anterioridad en los capítulos 3 y 4. Respecto a esto se propondrán 3 niveles de

consumo de energía, considerando como base para la estimación, un estudio realizado por la

Comisión Nacional de Energía que forma parte del proyecto de electrificación rural [19].

7.1.1.1 Parámetros de entrada para la simulación mediante software HOMER

Para esta situación se considerarán aerogeneradores pequeños de 1 KW de potencia

nominal (Anexo G) y arreglos fotovoltaicos con sistema de almacenamiento en base a bancos de

baterías. Respecto al capital inicial necesario para cada uno de los componentes mencionados

anteriormente, estos fueron estimados con anterioridad en el capítulo 5.

• Estimación de demandas y consumo eléctrico

Como se mencionó anteriormente, la estimación de los consumos se hará teniendo en

consideración los resultados de los estudios del Proyecto de Electrificación Rural [19]. Las

alternativas de abastecimiento de energía eléctrica deben considerar un suministro eléctrico

continuo para las 24 horas del día. Los 3 niveles de consumo considerados son los siguientes:

Nivel 1: En este caso se consideran viviendas con consumos mínimos, tales como

iluminación para una cocina - comedor, una radio y un refrigerador, con un consumo mensual

y diario tal como se indica en la tabla 7.1 y una distribución horaria de la carga como la de la

figura 7.2.

Page 149: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

137

Artefacto Potencia Nominal (W) Unidades Uso diario (h/día) Consumo diario

(Wh/día) Consumo mensual

(KWh/mes) Potencia

Instalada (W) Ampolleta de bajo consumo

20 1 6 120 3,60 20

Radio 15 1 7 105 3,15 15

Refrigerador 200 1 7,92 1584 47,52 200

Total 1809 54.27 235

Tabla 7.1. Requerimientos energéticos para iluminación, radio y refrigeración

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

hora

Po

ten

cia

(W)

Figura 7.2. Curva de demanda diaria para una

vivienda de nivel 1

Nivel 2: En este caso se consideran viviendas con iluminación (cocina – comedor y

dormitorio con luces de alta eficiencia), una radio, un televisor de mediano tamaño y un

refrigerador, con un consumo mensual y diario como se muestran en la tabla 7.2 y figura 7.3.

Artefacto Potencia Nominal (W)

Unidades Uso diario (h/día) Consumo diario (Wh/día)

Consumo mensual (KWh/mes)

Potencia Instalada (W)

Luz cocina 20 1 5 100 3,00 20

luz dormitorio 20 1 8 160 4,80 20

Radio 15 1 7 105 3,15 15

Televisor 80 1 9 720 21,60 80

Refrigerador 200 1 7,92 1584 47,52 200

Total 2669 80.07 335

Tabla 7.2. Requerimientos energéticos para iluminación, radio, televisión y refrigeración

Page 150: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

138

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

hora

Pot

enci

a (W

)

Figura 7.3. Curva de demanda diaria

para una vivienda de nivel 2

Nivel 3: En este caso se consideran viviendas con iluminación (cocina - comedor,

baño y dos dormitorios con luces de alta eficiencia), un equipo musical, un televisor de

mediano tamaño, un computador y un refrigerador, con un consumo mensual y diario como

se muestra en la tabla 7.3 y figura 7.4.

Artefacto Potencia Nominal (W) Unidades Uso diario

(h/día) Consumo diario

(Wh/día) Consumo mensual

(KWh/mes) Potencia

Instalada (W) Luz cocina - comedor 20 1 5 100 3 20

Luz dormitorio 20 2 8 320 9,6 40

Luz baño 20 1 2,2 44 1,32 20

Equipo de música (radio) 15 1 8 120 3,6 15

Televisor 80 2 5,5 880 26,4 160

Computador 200 1 4 800 24 200

Refrigerador 200 1 7,92 1584 47,52 200

Total 3848 115,44 655

Tabla 7.3. Requerimientos energéticos para iluminación, equipo de música, televisión, computador y refrigeración

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

hora

Pot

enci

a (W

)

Figura 7.4. Curva de demanda diaria para una

vivienda de nivel 3

Page 151: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

139

• Aerogeneradores: Por tratarse de viviendas aisladas en sectores rurales con consumos

pequeños se considerarán aerogeneradores pequeños marca Bergey modelo BWC XL.1

con torre de 20 metros. La especificación de los aerogeneradores se encuentra en el anexo

G de este trabajo.

• Paneles solares: Se evaluarán opciones de configuración que consideren arreglos

fotovoltaicos con ajuste mensual del ángulo de inclinación y una vida útil de 20 años.

• Baterías: Se evaluarán las configuraciones de sistemas que consideren distintos tamaños

de banco de baterías, estas serán marca Trojan modelo L16P, con una capacidad nominal

de 360 (Ah) y tensión nominal de 6 (V). Las características de la batería se encuentran

insertas en la base de datos del programa y se aprecian en la figura 7.5.

Figura 7.5. Características de la batería Trojan L16P

Page 152: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

140

• Conversores: Se evaluarán configuraciones de sistemas que consideren conversores con

una vida útil de 20 años y eficiencia de 90% dimensionados a la potencia instalada total

de cada uno de los consumos.

• Recursos eólico y solar: Esta información corresponde a los valores de la NASA de los

capítulos 3 y 4 para los distintos sectores de interés y adecuados a las características de la

instalación. Para el caso de velocidad de viento, las correcciones por altura se realizarán

mediante uso de la ecuación 2.9 del apartado 2.1.2 con a = 0,16.

El diagrama esquemático de las configuraciones es el que se muestra en la figura 7.6. Este

diagrama es el mismo para los distintos niveles de carga.

Figura 7.6. Diagrama esquemático para sistema de vivienda aislada

7.1.1.2 Análisis de Resultados

Se descarta la alternativa de conexión al sistema eléctrico de Edelmag S.A. u otro sistema

eléctrico municipal existente por ser inviable económicamente, debido a la dispersión y

alejamiento de las viviendas que son tratadas en el presente trabajo.

Se consideran tres posibilidades para abastecer de energía eléctrica con generación in situ

e individualmente:

Page 153: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

141

- Autogeneración en base a sistemas FV

- Autogeneración con sistema eólico.

- Autogeneración con sistema híbrido a base de ambos.

La producción del aerogenerador BWC XL.1 y de un arreglo fotovoltaico de 1 KWp

sujeto a las condiciones de los distintos sectores analizados se resume en la tabla 7.4 y figuras 7.7

y 7.8. Se asume que al aumentar la cantidad de aerogeneradores o potencia nominal del arreglo

fotovoltaico la producción anual de energía aumente en igual proporción.

Cerro Castillo Puerto Edén San Gregorio Punta Arenas Cerro Sombrero Villa Tehuelches

Mes Prod. F.V.

(KWh)

Prod. eólica

(KWh)

Prod. F.V.

(KWh)

Prod. eólica

(KWh)

Prod. F.V.

(KWh)

Prod. eólica

(KWh)

Prod. F.V.

(KWh)

Prod. eólica

(KWh)

Prod. F.V.

(KWh)

Prod. eólica

(KWh)

Prod. F.V.

(KWh)

Prod. eólica

(KWh) Ene 182,15 335,40 131,08 307,29 191,33 372,45 179,26 385,10 191,40 413,03 174,17 351,26

Feb 152,97 273,59 105,38 248,62 161,64 307,13 150,24 318,72 161,70 344,67 145,42 287,87

Mar 132,41 292,56 84,59 265,06 141,36 329,79 129,60 342,68 141,42 371,67 124,66 308,41

Abr 100,22 281,70 56,31 255,11 108,60 317,73 97,60 330,25 108,66 358,42 92,99 296,99

May 59,07 234,20 28,68 209,01 65,40 269,51 57,11 282,14 65,45 311,09 53,68 249,06

Jun 63,27 220,24 29,38 196,14 69,89 253,98 61,19 266,13 69,94 294,10 57,54 234,42

Jul 56,39 253,92 26,39 227,69 62,68 290,11 54,45 302,87 62,72 332,12 51,06 269,22

Ago 77,05 284,29 40,01 256,90 84,47 321,50 74,74 334,46 84,52 363,63 70,69 300,05

Sep 105,63 283,60 64,30 257,06 113,32 319,50 103,22 332,03 113,38 360,00 98,96 298,86

Oct 158,86 306,28 106,76 278,57 167,71 343,46 155,95 356,36 167,77 385,06 150,81 322,14

Nov 180,56 337,11 128,82 309,91 189,89 372,63 177,64 384,69 189,95 411,07 172,49 352,38

Dic 192,27 338,35 138,34 310,34 202,01 375,35 189,22 387,92 202,07 415,72 183,82 354,23

Total 1460,85 3441,23 940,04 3121,70 1558,30 3873,14 1430,21 4023,36 1558,97 4360,57 1376,29 3624,87

Tabla 7.4. Producción de energía del aerogenerador BWC XL.1 y un arreglo fotovoltaico de 1 KWp para los distintos sectores

Page 154: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

142

0

40

80

120

160

200

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Pro

du

cció

n d

e en

erg

ía (

KW

h)

Cerro Castillo, Pto. Natales Puerto Edén

San Gregorio Punta Arenas, Porvenir, Fuerte Bulnes

Cerro Sombrero Villa Tehuelches, Río Verde

Figura 7.7. Producción de energía de un arreglo FV de 1 KWp para los distintos sectores

0

100

200

300

400

500

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Pro

du

cció

n d

e en

erg

ía (

KW

h)

Cerro Castillo, Pto. Natales Puerto Edén

San Gregorio Punta Arenas, Porvenir, Fuerte Bulnes

Cerro Sombrero Villa Tehuelches, Río Verde

Figura 7.8. Producción de energía de un aerogenerador de 1 KW para los distintos sectores

• Viviendas con consumo de nivel 1

En este caso se considera una vivienda con iluminación, una radio y un refrigerador, con

un consumo promedio mensual de 54,27 (KWh) y por lo tanto, promedio diario de 1,81 KWh.

Tomando en cuenta las estimaciones realizadas anteriormente, las soluciones más

económicas consideran en primer lugar configuraciones basadas en una sola turbina de 1 KW

Page 155: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

143

acompañada de solo 2 baterías. Esta configuración parece ser la más conveniente para una

vivienda de nivel 1 independiente del lugar de la región en la que se encuentre. Respecto a las

opciones FV más convenientes o económicas, se aprecia que pueden variar entre arreglos FV de

1,2 KWp hasta 3,6 KWp. La cantidad de baterías que acompaña al arreglo FV dependerá de la

potencia nominal del arreglo y en menor medida de la disponibilidad del recurso solar, es así

como un arreglo FV de 1,2 KWp necesita más baterías que uno de 3,6 KWp para satisfacer el

consumo. Por otra parte, respecto a las configuraciones híbridas, estas no parecen ser una buena

alternativa para los niveles de consumo eléctrico planteados. Si bien la opción híbrida presenta

una inversión inicial levemente superior a la opción eólica, ésta inversión corresponde

mayoritariamente al aerogenerador, ya que considera un arreglo FV con un solo panel. La

contribución energética de este panel FV a la producción total del sistema (turbina + panel) es

bajísima, por lo que en definitiva es más recomendable la utilización de una opción solamente

eólica, o solamente FV. En la tabla 7.5 se aprecian las configuraciones para las alternativas

fotovoltaica, eólica e híbrida.

Page 156: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

144

Sector San Gregorio

Tamaño del arreglo F.V. (KWp)

Cantidad de turbinas BWC XL.1

Cantidad de baterías

Potencia del conversor (kW)

Capital Inicial (US$) NPC (US$) COE

(US$/KWh) 1 2 0,5 8944 13232 2,374

0,12 1 2 0,5 9944 14232 2,553

1,2 14 0,5 16964 24930 4,472

Sector Punta Arenas Tamaño del arreglo

F.V. (KWp) Cantidad de turbinas

BWC XL.1 Cantidad de

baterías Potencia del

conversor (kW) Capital Inicial

(US$) NPC (US$) COE

(US$/KWh) 1 2 0,5 8944 13232 2,374

0,12 1 2 0,5 9944 14232 2,553

2,4 6 0,5 23284 26698 4,789

Sector Puerto Edén

Tamaño del arreglo F.V. (KWp)

Cantidad de turbinas BWC XL.1

Cantidad de baterías

Potencia del conversor (kW)

Capital Inicial (US$) NPC (US$) COE

(US$/KWh) 1 2 0,5 8944 13232 2,374

0,12 1 2 0,5 9944 14232 2,553

3,6 9 0,5 34664 39785 7,137

Sector Cerro Castillo

Tamaño del arreglo F.V. (KWp)

Cantidad de turbinas BWC XL.1

Cantidad de baterías

Potencia del conversor (kW)

Capital Inicial (US$) NPC (US$) COE

(US$/KWh) 1 2 0,5 8944 13232 2,374

0,12 1 2 0,5 9944 14232 2,553

2,4 6 0,5 23284 26698 4,789

Sector Cerro Sombrero Tamaño del arreglo

F.V. (KWp) Cantidad de turbinas

BWC XL.1 Cantidad de

baterías Potencia del

conversor (kW) Capital Inicial

(US$) NPC (US$) COE (US$/KWh)

1 2 0,5 8944 13232 2,374

0,12 1 1 0,5 9484 13252 2,38

1,2 14 0,5 16964 24930 4,472

Sector Villa Tehuelches

Tamaño del arreglo F.V. (KWp)

Cantidad de turbinas BWC XL.1

Cantidad de baterías

Potencia del conversor (kW)

Capital Inicial (US$) NPC (US$) COE

(US$/KWh) 1 2 0,5 8944 13232 2,374

0,12 1 2 0,5 9944 14232 2,553

2,4 6 0,5 23284 26698 4,789

Tabla 7.5. Configuración de las alternativas de generación eléctrica para viviendas con consumos de nivel 1

Para la alternativa eólica se tiene que el NPC es el más bajo, siendo este en promedio

US$ 13232 para los distintos lugares de estudio. Si se compara este valor con los promedios de

las alternativas híbrida y solar, los cuales son de US$ 14068 y US$ 28289 respectivamente, se

tiene que estas últimas son 1,06 y 2,14 veces mayores respecto a su similar eólico.

Para el costo de energía (cost of energy, o COE) esta tendencia se mantiene, el menor

valor se sigue obteniendo con la opción eólica con un promedio de 2,374 US$/KWh. Para las

Page 157: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

145

otras alternativas, híbrida y fotovoltaica, el promedio es de 5,07 US$/KWh y 2,52 US$/KWh

respectivamente, lo que significa que son 1,06 y 2,14 veces mayores respecto a su similar eólico.

• Vivienda con consumos de nivel 2

Para este caso se considera una vivienda con iluminación (cocina - comedor y dormitorio

con luces eficientes), una radio, un televisor de mediano tamaño y un refrigerador, con un

consumo promedio mensual de 80,07 KWh y por lo tanto, un promedio diario de 2,67 KWh.

Tomando en cuenta las estimaciones realizadas anteriormente, se mantienen en cierta

medida los resultados obtenidos para las viviendas del nivel 1. Es así como las soluciones más

económicas consideran en primer lugar configuraciones basadas en una sola turbina de 1 KW

acompañada de solo 3 o 2 baterías. Por su parte las opciones FV más económicas en general

aumentan en cuanto a potencia nominal del arreglo respecto a lo necesario para las viviendas de

nivel 1, más aún, la cantidad de baterías necesarias en una configuración FV aumenta

considerablemente encareciendo el sistema. En la tabla 7.6 se aprecian los resultados para las

alternativas fotovoltaica, eólica e híbrida, junto con el NPC y COE.

Page 158: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

146

Sector San Gregorio

Tamaño del arreglo F.V. (KWp)

Cantidad de turbinas BWC XL.1

Cantidad de baterías

Potencia del conversor (kW)

Capital Inicial (US$) NPC (US$) COE

(US$/KWh) 1 3 0,5 9404 14261 1,738

0,12 1 3 0,5 10404 15261 1,86

2,4 10 0,5 25124 30814 3,756

Sector Punta Arenas Tamaño del arreglo

F.V. (KWp) Cantidad de turbinas

BWC XL.1 Cantidad de

baterías Potencia del

conversor (kW) Capital Inicial

(US$) NPC (US$) COE

(US$/KWh) 1 3 0,50 9404 14261 1,738

0,24 1 2 0,50 10944 15251 1,861

2,4 14 0,50 26964 34930 4,258

Sector Puerto Edén

Tamaño del arreglo F.V. (KWp)

Cantidad de turbinas BWC XL.1

Cantidad de baterías

Potencia del conversor (kW)

Capital Inicial (US$) NPC (US$) COE

(US$/KWh) 1 3 0,5 9404 14290 1,743

0,12 1 3 0,5 10404 15261 1,861

4,8 16 0,5 47884 56988 6,949

Sector Cerro Castillo

Tamaño del arreglo F.V. (KWp)

Cantidad de turbinas BWC XL.1

Cantidad de baterías

Potencia del conversor (kW)

Capital Inicial (US$) NPC (US$) COE

(US$/KWh) 1 3 0,50 9404 14261 1,738

0,12 1 3 0,50 10404 15261 1,86

2,4 12 0,50 26044 32872 4,01

Sector Cerro Sombrero Tamaño del arreglo

F.V. (KWp) Cantidad de turbinas

BWC XL.1 Cantidad de

baterías Potencia del

conversor (kW) Capital Inicial

(US$) NPC (US$) COE (US$/KWh)

1 2 0,50 8944 13299 1,622

0,12 1 2 0,50 9944 14232 1,736

2,4 10 0,50 25124 30814 3,756

Sector Villa Tehuelches

Tamaño del arreglo F.V. (KWp)

Cantidad de turbinas BWC XL.1

Cantidad de baterías

Potencia del conversor (kW)

Capital Inicial (US$) NPC (US$) COE

(US$/KWh) 1 3 0,50 9404 14261 1,738

0,12 1 3 0,50 10404 15261 1,86

2,4 16 0,50 27884 36988 4,509

Tabla 7.6. Configuración de las alternativas de generación eléctrica para viviendas de consumos básicos

Respecto al NPC se tiene que el menor valor sigue siendo el de la configuración eólica,

con un promedio de US$ 14105 para los distintos lugares de estudio. Al comparar este valor con

las alternativas híbrida y FV, cuyos promedios son de US$ 15087 y US$ 37234 respectivamente,

se observa que estas últimas son 1,07 y 2,64 veces mayor respectivamente.

Page 159: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

147

Para el COE esta tendencia se mantiene, el valor más bajo es el de la configuración eólica

con un promedio de 1,72 US$/KWh. Para las otras alternativas, híbrida y fotovoltaica, el

promedio es de 1,84 US$/KWh y 4,54 US$/KWh respectivamente.

• Vivienda con consumos de nivel 3

Para este caso se considera una vivienda con iluminación (cocina - comedor, baño y dos

dormitorios con luces de alta eficiencia), un equipo musical, un televisor de mediano tamaño, un

computador y un refrigerador, con un consumo promedio mensual de 115,44 KWh y por lo tanto,

promedio diario de 3848 Wh.

Tomando en cuenta las estimaciones realizadas anteriormente, se obtienen resultados

similares a los del caso anterior. Las soluciones más económicas siguen contemplando la

utilización de un solo aerogenerador de 1 KW, con un banco de baterías de entre 5 y 8 baterías.

Por su parte respecto a las opciones FV, estas nuevamente se hacen poco competitivas con la

opción eólica debido a la cantidad de baterías necesarias que pueden llegar incluso hasta 20. En la

tabla 7.7 se aprecian las configuraciones para la alternativa fotovoltaica, eólica e híbrida.

Page 160: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

148

Sector San Gregorio

Tamaño del arreglo F.V. (KWp)

Cantidad de turbinas BWC XL.1

Cantidad de baterías

Potencia del conversor (KW)

Capital Inicial (US$) NPC (US$) COE

(US$/KWh) 1 5 1 10848 16884 1,255

0,12 1 5 1 11848 17843 1,326

3,6 20 1 40248 51628 3,837

Sector Punta Arenas Tamaño del arreglo

F.V. (KWp) Cantidad de turbinas

BWC XL.1 Cantidad de

baterías Potencia del

conversor (KW) Capital Inicial

(US$) NPC (US$) COE

(US$/KWh) 1 5 1 10848 16843 1,252

0,12 1 5 1 11848 17843 1,326

4,8 16 1 48408 57512 4,274

Sector Puerto Edén

Tamaño del arreglo F.V. (KWp)

Cantidad de turbinas BWC XL.1

Cantidad de baterías

Potencia del conversor (KW)

Capital Inicial (US$) NPC (US$) COE

(US$/KWh) 1 8 1 12228 19930 1,483

0,12 1 8 1 13228 20930 1,557

9,6 16 1 88408 97512 7,254

Sector Cerro Castillo

Tamaño del arreglo F.V. (KWp)

Cantidad de turbinas BWC XL.1

Cantidad de baterías

Potencia del conversor (KW)

Capital Inicial (US$) NPC (US$) COE

(US$/KWh) 1 6 1 11308 17872 1,329

0,12 1 6 1 12308 18872 1,403

4,8 14 1 47488 55454 4,122

Sector Cerro Sombrero Tamaño del arreglo

F.V. (KWp) Cantidad de turbinas

BWC XL.1 Cantidad de

baterías Potencia del

conversor (KW) Capital Inicial

(US$) NPC (US$) COE (US$/KWh)

1 5 1 10848 16843 1,252

0,24 1 4 1 12388 17814 1,325

3,6 18 1 39328 49570 3,688

Sector Villa Tehuelches

Tamaño del arreglo F.V. (KWp)

Cantidad de turbin as BWC XL.1

Cantidad de baterías

Potencia del conversor (KW)

Capital Inicial (US$) NPC (US$) COE

(US$/KWh) 1 6 1 11308 17872 1,328

0,24 1 5 1 12848 18843 1,401

4,8 18 1 49328 59570 4,427

Tabla 7.7. Configuración de las alternativas de generación eléctrica para viviendas con consumos de nivel 3

Finalmente en este caso, respecto al NPC, se siguen manteniendo las mismas tendencias,

en donde el menor valor sigue siendo el de la configuración eólica, con un promedio de US$

17707 para los distintos lugares de estudio, al comparar este valor con las alternativas híbrida y

solar, cuyos promedios son de US$ 18690 y US$ 61874 respectivamente, se observa que estas

últimas son 1,06 y 3,49 veces mayor respectivamente.

Page 161: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

149

Para el COE, igualmente esta tendencia se mantiene, el valor más bajo es el eólico con un

promedio de 1,32 US$/KWh. Para las otras alternativas híbrida y fotovoltaica el promedio es de

1,39 US$/KWh y 4,6 US$/KWh respectivamente.

7.1.1.3 Exceso de energía

Un tema de especial cuidado es el del exceso de energía asociado a los sistemas descritos

en el punto anterior. Una de las condiciones que deben cumplir dichos sistemas es la de

suministro continuo de energía las 24 horas del día, lo que implica un aumento de la cantidad de

baterías necesarias, y sobredimensionando en cierta medida los sistemas. Es así como por

ejemplo en el caso de las configuraciones eólicas, los excesos de energía pueden superar incluso

el 80%, como se muestra en la figura 7.9, disminuyendo a medida que se aumenta el nivel de

consumo.

Figura 7.9. Potencia de salida del aerogenerador y potencia de la carga

para una carga del nivel 1 en sector de Cerro Castillo

Page 162: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

150

Sin embargo, un exceso del 80 % significa que se está aprovechando solo el 20% de la

energía generada en el año por la turbina. Las figuras 7.10, 7.11 y 7.12 muestran lo que sucede en

general con el exceso de energía según el sector de la región para los 3 niveles de carga

analizados así como por tipo de sistema, ya sea eólico o FV.

0

20

40

60

80

100

CerroCastillo

PuertoEdén

SanGregorio

PuntaArenas

CerroSombrero

VillaTehuelches

Sector de la XII Región

Por

cent

aje

de e

xces

o (%

)

Exceso de energía eólica Exceso de energía FV

Figura 7.10. Exceso de energía para consumos de nivel 1

0

20

40

60

80

CerroCastillo

PuertoEdén

SanGregorio

PuntaArenas

CerroSombrero

VillaTehuelches

Sector de la XII Región

Por

cent

aje

de e

xces

o (%

)

Exceso de energía eólica Exceso de energía FV

Figura 7.11. Exceso de energía para consumos de nivel 2

0

20

40

60

80

CerroCastillo

PuertoEdén

SanGregorio

PuntaArenas

CerroSombrero

VillaTehuelches

Sector de la XII Región

Por

cent

aje

de e

xces

o (%

)

Exceso de energía eólica Exceso de energía FV

Figura 7.12. Exceso de energía para consumos de nivel 3

Page 163: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

151

Estos excesos de energía se deben a factores específicos. El principal de ellos es el bajo

nivel de consumos respecto de la potencia nominal de la turbina, lo cual en el caso de las

opciones eólicas se podría solucionar con la elección de una turbina con una menor potencia

nominal, sin embargo, las economías de escala podrían hacer que el costo total de adquisición e

instalación de esta turbina de menor potencia no sea atractiva desde el punto de vista económico

debido a una posible mayor relación “costo/potencia” (costo por KW instalado). Otra de las

razones por las cuales se producen los excesos de energía se deriva de las tendencias tanto de

viento como de radiación en la XII Región. Esta situación afecta más a los sistemas basados en

arreglos FV, la mayor parte del exceso se produce en los meses de Primavera y Verano, las horas

peak de producción de energía son las del mediodía, por lo tanto el exceso de energía es mayor en

esas horas. Parte de este exceso se almacena en las baterías para su utilización en horas de la

noche. Se podría aprovechar esos excesos aumentando la capacidad del banco de baterías pero

tampoco es una buena alternativa el sobredimensionado de éste debido al encarecimiento del

sistema. Un caso particular se presenta en las figuras 7.13 y 7.14, estas contemplan un consumo

del nivel 2 alimentado por un arreglo FV de 2,4 KWp en el sector de Cerro Castillo para el mes

de Diciembre, época en la cual el exceso es notorio.

Figura 7.13. Comparación entre carga y potencia de salida del arreglo FV

para el mes de Diciembre, consumo de nivel 2 y arreglo de 2,4 KWp

Page 164: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

152

Figura 7.14. Comparación entre carga y potencia de salida del arreglo FV para

el 29 de Diciembre, consumo de nivel 2 y arreglo de 2,4 KWp

Una situación distinta se produce en los meses de Otoño e Invierno, en estos meses el

recurso solar disminuye considerablemente, haciéndose más importante el tema de las baterías.

Teniendo en cuenta los resultados para el mes de Diciembre se podría pensar en disminuir los

excesos redimensionando el arreglo FV a una menor potencia nominal, 1,2 KWp por ejemplo, sin

embargo, un arreglo de menor potencia probablemente sería incapaz de satisfacer la totalidad del

consumo en época de Invierno por muy bajo que este sea. Como ejemplo se plantea el mismo

sistema anterior pero ahora analizando los resultados para el mes de Junio obteniéndose las

figuras 7.15 y 7.16.

Figura 7.15. Comparación entre carga y potencia de salida del arreglo FV

para el mes de Junio, consumo de nivel 2 y arreglo de 2,4 KWp

Page 165: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

153

Figura 7.16. Comparación entre carga y potencia de salida del arreglo FV

para el 9 de Junio, consumo de nivel 2 y arreglo de 2,4 KWp

Conocidas ya las principales razones que provocan los excesos de energía y sus posibles

soluciones, se puede concluir que la solución más provechosa es la utilización de estos excesos

para otras aplicaciones complementarias al suministro de energía eléctrica para las viviendas,

como por ejemplo un sistema de calefacción.

La inexistencia de suministro eléctrico en el área rural de algunas comunas de la XII

Región hace interesante este tipo de aplicación y considerando la alta dispersión geográfica de los

beneficiarios directos, hacen que la alternativa técnicamente más viable para la electrificación

rural sea la autogeneración individual in situ. Adicionalmente, el recurso energético existente en

la zona permitiría la instalación de sistemas eólicos siendo actualmente, desde el punto de vista

técnico-económico, la mejor alternativa de autogeneración para viviendas y establecimientos

rurales aislados y dispersos.

7.1.2 Electrificación de sistemas de bombeo en localidades rurales

El bombeo de agua en pequeña escala es una aplicación común; tiene especial impacto en

comunidades rurales donde no hay suministro de energía eléctrica convencional. Los sistemas de

bombeo basados en ERES se caracterizan por ser de larga duración y mínimo mantenimiento, lo

Page 166: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

154

cual se traduce en un menor costo a largo plazo si se compara con otras alternativas. Además no

requiere del empleo de un operador permanente y tienen un bajo impacto ambiental. Otra ventaja

es que los sistemas, sobre todo los fotovoltaicos, son modulares, de manera que pueden adecuarse

para satisfacer las necesidades específicas del usuario en cualquier momento.

Para tomar una decisión correcta acerca de las fuentes de energía renovable, es útil

comprender algunos conceptos básicos acerca de las energías renovables, incluyendo:

• Cómo funcionan los sistemas de bombeo fotovoltaico (SBFV) y eolo-eléctrico (SBEE).

• Las ventajas y desventajas de los SBFV y SBEE.

• Cómo calcular sus requerimientos de bombeo

7.1.2.1 Funcionamiento básico de las bombas de agua basadas en energía solar y eólica

Las energías solar y eólica se utilizan principalmente para bombear agua para el ganado o

bien para uso residencial. Y con menor frecuencia se utiliza para el riego debido a la gran

cantidad de agua necesaria para los cultivos. Sin embargo los SBFV son económicamente

factibles para el riego agrícola, cuando se requiere poca cantidad de agua y la elevación de

bombeo es pequeña, tales como el riego por goteo, el cual utiliza menos agua que otros tipos de

riego.

Los sistemas fotovoltaicos, eólicos o híbridos son conectados a un controlador y por

medio de un cable de energía eléctrica al subsistema motor/bomba ubicado en el pozo, como se

ve en la figura 7.17.

Page 167: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

155

Figura 7.17. Sistema de bombeo fotovoltaico y eolo-eléctrico

7.1.2.2 Ventajas y desventajas de los SBFV y SBEE

Algunas ventajas y desventajas de utilizar energía solar, eólica, o sistemas tradicionales se

presentan en la tabla 7.8. Comúnmente y por muchos años, los sistemas de bombeo han sido a

base de grupos motor-bomba donde el motor, es un motor de combustión interna. De esta

manera, el funcionamiento de estos sistemas se basa en la utilización de este grupo motor-bomba

por períodos cortos de tiempo en los que se satisface la totalidad de la demanda, lo que significa

tener una bomba con gran capacidad de bombeo o bien un grupo de varias bombas trabajando al

mismo tiempo, de lo contrario se incurre en gastos excesivos de combustible. Muy por el

contrario, como la energía proveniente del sol y del viento son “gratis”, los sistemas de bombeo

basados en ERES no presentan limitaciones en cuanto a sus horas de uso diario, lo cual significa

que para una determinada demanda diaria de agua, un SBEE o SBFV puede ser dimensionado de

manera que satisfaga dicha demanda a lo largo del día completo, lo que en la práctica significa

una bomba con una capacidad de bombeo menor. En general los sistemas de bombeo basados

tanto en energía solar FV y/o eólica se caracterizan por tener una mayor inversión inicial que las

Page 168: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

156

basadas en energía convencionales, las cuales requieren un flujo de caja permanente para costear

el combustible y el mantenimiento de los equipos [20].

Factor SBEE SBFV Sistemas tradicionales

VENTAJAS

Clima favorable Los vientos estables son mas productivos

Bombean agua consistentemente todo el año Independiente

Duración Puede exceder los 15 años,

excepto la bomba que requiere mantenimiento cada 1 o 2 años

Mas de 20 años, la bomba dura menos tiempo

Proporcional al numero de horas de trabajo

DESVENTAJAS

Clima tempestuoso Se desgasta más rápidamente. Las ráfagas pueden arruinar el sistema

Los paneles pueden dañarse por el granizo. El tiempo nublado y los días cortos reducen

la producción de energía Independiente

Requisitos de energía durante cada época del año

La producción de energía se detiene cuando la velocidad del

viento es baja Producción de energía baja en Invierno Independiente

Costo inicial alto alto (mayor que SBEE) bajo

Costo de mantenimiento bajo minino alto

Tabla 7.8. Ventajas y desventajas de los sistemas de bombeo

7.1.2.3 Determinación de los requerimientos de bombeo

El volumen de agua requerido diariamente no es suficiente indicador del tamaño y costo

del sistema de bombeo. También se debe conocer la carga estática, carga dinámica y carga

dinámica total. La carga estática (CE) corresponde a la suma del nivel estático más la altura de

descarga y el abatimiento o freática (la superficie hasta donde llega el agua se denomina

superficie freática; cuando esta superficie es cortada por un pozo, se habla de nivel freático en ese

punto). La carga dinámica (CD) es aproximadamente igual al 2% de la distancia de recorrido del

agua, lo que corresponde a la longitud total de la tubería. Finalmente la carga dinámica total

(CDT) es igual a la sumatoria de la CE y la CD, todo lo anterior se aprecia en la figura 7.18 [21].

Page 169: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

157

Figura 7.18. Características físicas de los pozos

7.1.2.4 Condición inicial para bombeo de agua de pozos profundos

Tanto los SBFV y SBEE utilizan, en la mayoría de los casos, bombas centrífugas para

elevar el agua subterránea hasta un tanque de almacenamiento. Para estimar el tamaño de la

bomba centrífuga y satisfacer las necesidades, se debe considerar varios factores:

• La cantidad diaria de agua que se necesita.

• La capacidad de bombeo, o el número de litros por hora que la bomba debe ser capaz de

elevar.

• La carga dinámica total.

• Potencia requerida para elevar esa cantidad de agua.

Para determinar las necesidades de bombeo, se calcula primero cuánta agua se utilizará

diariamente y desde qué distancia se debe elevar el agua subterránea (la profundidad del pozo).

La tabla 7.9 provee valores aproximados para calcular las necesidades de agua para

personas y ganado. Para estimar los requerimientos totales de agua por día, multiplique el número

Page 170: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

158

de personas o animales por la cantidad de agua que se espera que ellos consuman por día. En el

caso de riego, el volumen de agua bombeada dependerá del tipo de cultivo y la superficie de éste.

Especie litros por día

Humanos 378,5 por persona

Ganado de res 26,5 - 45,5 por cabeza

Ganado vacuno 38 - 60,5 por cabeza

Caballos 30,5 - 45,5 por cabeza

Puercos 11-19 por cabeza

Ovejas y cabras 4 - 15 por cabeza

Pollos 30 - 38 por cada 100 aves

Pavos 38 - 57 por cada 100 aves

Tabla 7.9. Requisitos de agua en litros por día para diferentes especies

Después, se determina el número de litros por hora que la bomba debe ser capaz de elevar,

que es la capacidad de bombeo. Para estimar la capacidad de bombeo, se divide el número de

litros necesarios al día por el número de horas disponibles para recolectar el agua. En este trabajo

por tratarse de sistemas de bombeo basados en ERES, se considerará que el número de horas

diarias disponibles para satisfacer la demanda es 24.

Para determinar la CDT se deben conocer la profundidad del pozo, la altura de descarga y

la carga por fricción de la tubería.

7.1.2.5 Sistema de bombeo de agua

Para el análisis de los sistemas de bombeo de agua sobre la base de ERES de un lugar

especifico, se analizará la situación utilizando los datos climatológicos de Cerro Castillo

obtenidos de los capítulos 3 y 4.

Page 171: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

159

El consumo de agua fue estimado para riego, para este caso se partirá de la base de un

proyecto para riego de 10 hectáreas de alfalfa en la estancia Luz Aurora con un consumo diario

de 90 m3 que se almacena en un estanque de 100 m3, en un tiempo de 5 horas de trabajo diario

que fue realizada por el INIA, y que además fue analizado en una memoria anterior [21],

partiendo de eso se considera en la tabla 7.10 los valores físicos del pozo.

Profundidad (m)

Nivel Estático 30

Nivel freático 3 Altura de descarga

5

distancia al tanque 100

C.E 38

C.D 2,76

C.D.T 40,76

altura de selección bomba 40

Tabla 7.10. Valores físicos del pozo a utilizar

Considerando las características físicas del pozo y la estacionalidad del riego en la zona,

es decir el periodo de la temporada es de Noviembre a Febrero, se considerará una demanda

diaria de agua 20 m3 y según eso se determinará el caudal de la bomba a utilizar. Para realizar

esto se divide la demanda diaria por el tiempo de operación diario de la bomba, en nuestro caso

24 horas, esto se resumen en la tabla 7.11.

Demanda (m3) 20

Tiempo (hr) 24

Caudal (m3/hr) 0.83

Tabla 7.11. Demanda diaria de 20 m3 y caudal necesario

Una vez obtenido la CDT y el caudal necesario se procede a realizar la selección de la

bomba sumergible para el sistema de bombeo de agua de pozos profundos. Para esto se utilizan

Page 172: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

160

las tablas de características hidráulicas de las bombas. Y la selección apropiada de la bomba para

una demanda de 20 m3 diarios se explica a continuación.

Se consideran dos puntos de la tabla de características hidráulicas de la bomba. El primero

(eje de las abscisas) el caudal al cual se necesita bombear el agua, en este caso 0,83 m3/hr, y el

segundo (eje de las ordenadas) la altura de selección de la bomba, 40 m, con estos dos puntos se

busca cual es la bomba más adecuada para nuestro requerimiento. Para este caso sería la bomba

Saer FS-A7, ver anexo G, esto se aprecia claramente en la figura 7.19 y la tabla 7.12.

Figura 7.19. Curvas características de las bombas centrifugas Saer serie FS-A

Demanda (m3) 20

Marca (Modelo)

Saer (FS 98-A7)

Potencia (HP) 0,5

Tabla 7.12. Especificación de bombas sumergibles para un pozo de 30 m

A continuación se procede a realizar la determinación de la energía diaria que se necesita

para que el sistema esté en funcionamiento. Esto se realiza como se indica en la ecuación 7.1.

Page 173: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

161

( )

=

díahr

tiempoKWPotenciadía

KWhEnergía bombabomba operacion * (7.1)

La energía requerida para la demanda se resume en la tabla 7.13

Demanda (m3) 20

Potencia nominal de la bomba (KW) 0,37

Tiempo de operación (hr/día) 24

Energía necesaria (KWh/día) 8,95

Tabla 7.13. Energía necesaria para cada demanda y un pozo de 30 m

7.1.2.6 Ingreso de variables de entrada

Una vez obtenidos los parámetros anteriores, se procede a ingresar la información al

software Homer, para obtener la mejor alternativa económica que satisface las necesidades

planteadas. Para esto se debe realizar la configuración para la simulación, utilizando un bloque

especial de carga utilizado para sistemas de bombeo. Este bloque se denomina “carga

postergable” (deferrable load), el cual se utiliza para simulaciones en el que el tiempo exacto de

operación no es tan importante y tiene relacionado algún tipo de almacenamiento a ellos. Este

bloque se utilizará junto a un banco de baterías, un conversor DC/AC, arreglos de paneles

fotovoltaicos y aerogenerador. Las baterías son necesarias debido a que se considera que el

sistema debe funcionar las 24 horas del día durante 4 meses del año, esto por razones establecidas

en cuanto al crecimiento de los vegetales, ya que en esta época del año se presentan condiciones

favorables, tanto de luz como de temperatura para los cultivos, por lo que el sistema deberá

funcionar ante la inexistencia de luz solar por la noche y ante posibles bajos niveles de viento. El

diagrama esquemático se muestra en la figura 7.20.

Page 174: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

162

Como se mencionó anteriormente, el software Homer utiliza un bloque especial para

simular la carga de bombeo, este bloque tiene entre otras particularidades, la de considerar sólo el

consumo eléctrico necesario, y no el costo de la bomba, es por esta razón por la cual para esta

simulación no se considera el costo de dicho componente

Figura 7.20. Configuración del sistema de bombeo en Homer

Para las simulaciones se utilizaron aerogeneradores Bergey BWC-XL.1 de 1 KW DC,

baterías Trojan L16P, conversores, y paneles fotovoltaicos.

El bloque de carga utilizado necesita los siguientes parámetros.

• Información base (Baseline data): 12 valores representativos de la carga promedio de cada

mes del año, expresado en KWh/día, es decir, la energía necesaria diariamente para

satisfacer los requerimientos de agua, por ejemplo para la demanda de 20 m3 diarios se

necesitan 8,95 KWh/día.

• Capacidad de almacenamiento (Storage capacity): es la capacidad del estanque,

expresado en KWh necesarios para su llenado.

• Carga máxima (Peak load): En una aplicación de bombeo, esta corresponde al consumo

eléctrico de la bomba (potencia nominal)

Los parámetros anteriores necesarios se resumen en la tabla 7.14.

Page 175: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

163

Demanda (m3) 20

Capacidad de almacenamiento

(KWh) 13,42

Carga máxima (KW) 0,37

Demanda (KWh/día) 8,95

Tabla 7.14. Valores de la carga, para un pozo de 30 m

7.1.2.7 Análisis económico de los sistemas de bombeo

Una vez ingresados los parámetros al Homer se eligen las opciones más económicas para

las diversas alternativas. Estas se resumen en la tabla 7.15, en la cual se aprecia como la opción

más económica para un consumo de 20 m3 es la eólica, en la cual se necesita una turbina BWC

XL.1, 10 baterías y un conversor de 5 KW. Se interpreta que las alternativas de SBFV e híbrida,

tienen un costo mayor en capital inicial. También se tiene que realizando un sistema híbrido se

combina la potencia de un aerogenerador junto con la de un SBFV lo que permite no

sobredimensionar el sistema con aerogeneradores y no tener un gran exceso de potencia, o tener

una mayor inversión inicial como seria el caso de SBFV.

Arreglo FV (KWp)

Cantidad de turbinas

BWC XL.1

Cantidad de Baterías

Potencia del Conversor

(kW)

Capital Inicial (US$)

NPC (US$)

COE (US$/kWh) US$/m3 $/m3

- 1 10 1 13148 21098 2,459 1,100 638 1,2 1 6 1 21308 27878 3,101 1,387 804,46 4,8 - 10 1 45648 51338 5,700 2,551 1479,58

Tabla 7.15. Opciones optimas de los sistemas de bombeo para una demanda de 20 m3

7.1.2.8 Análisis de sensibilidad de los sistemas de bombeo

En el análisis previo se utilizó la información de recursos eólico y solar correspondiente a

la localidad de Cerro Castillo y una demanda de 20 m3, surge de igual manera la necesidad de

estandarizar los resultados hacia otras localidades que presenten promedios de viento anual y

radiación global diferentes. Teniendo en cuenta estas consideraciones se procedió a variar el

Page 176: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

164

promedio de viento entre los 6-9 m/seg y una irradiancia global media diaria, entre 3-6

(KWh/m2 /día) estos valores se escogieron para poder llegar a la figura 7.21, que muestra la

opción que se tendría que ocupar para lo sistemas de bombeo según el recurso que se tenga en el

sector.

Figura 7.21 . Tipo de sistema óptimo según el recurso

De la gráfica 7.21 se observa que para una demanda de 20 m3 y condiciones de viento

superiores a 7,1 (m/s) la opción mas recomendable es la de SBEE independiente del recurso solar

que se tenga, y que para un recurso solar inferior a 2,4 (KWh/m2/día) y cualquier recurso eólico

también se tendría que ocupar una opción de SBEE. Ahora si el recurso que se tiene se encuentra

entre 6-7 (m/s) y 2,5-3,5(KWh/m2/día) sería recomendable utilizar la opción híbrida.

7.1.3 Electrificación rural mediante sistemas híbridos Eólico - Diesel

La disponibilidad de una red eléctrica confiable constituye en la actualidad un aspecto

vital en el desarrollo de los pueblos y villas aisladas de las grandes ciudades. Por muchos años,

los sistemas de generación más comunes han sido a base de grupos electrógenos, pero los

elevados costos de operación involucrados sumados al alto costo de adquisición y transporte del

combustible conducen al racionamiento eléctrico limitando el libre desarrollo de las

Page 177: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

165

comunidades, lo que a su vez ha motivado a la permanente búsqueda de nuevas alternativas de

suministro. Dentro de estas nuevas alternativas de suministro surgen con fuerza las opciones

basadas en ERES, principalmente pequeños parques eólicos, o sistemas híbridos Eólico – Diesel.

En el tema de la electrificación rural existen diferentes opciones en cuanto a sistemas de

generación de electricidad, siendo los más comunes los basados en grupos electrógenos

(generadores diesel). Los sistemas que se proponen en este apartado son del tipo híbrido eólico –

diesel, y dentro de este tipo de configuraciones también existen diversas opciones dependiendo

de qué es lo que se busca optimizar, pudiéndose por ejemplo concentrar la potencia necesaria en

un aerogenerador de gran tamaño o en varios de menor potencia.

La decisión de elegir cual sistema es mas conveniente pasa por factores técnicos,

económicos, de confiabilidad y continuidad de suministro. Respecto al factor económico, si lo

que se desea es un bajo costo de capital inicial la opción más recomendable es la del grupo

electrógeno, en perjuicio de los costos de operación y mantenimiento que en este caso son

elevados debido al costo de adquisición y transporte del combustible hacia la localidad donde se

lleve a cabo el proyecto. Por otro lado los sistemas eólico-diesel poseen una inversión inicial

mayor que la de los grupos electrógenos pero tienen la ventaja de disminuir los costos de

operación y mantenimiento del grupo electrógeno, además de producir un ahorro de combustible,

lo que hace de estas configuraciones más económicas a largo plazo.

Otro punto importante es la confiabilidad de estos sistemas, ya que si se concentra la

potencia instalada en un aerogenerador de gran tamaño, podría suceder que este falle en un

momento dado del proyecto, lo que provocaría que el sistema colapse. En cambio, al tener varios

aerogeneradores de menor potencia, pero de igual potencia total instalada, si uno de estos falla el

impacto hacia los usuarios sería menor, además de facilitar las labores de mantenimiento. En base

a lo anterior y teniendo en consideración la falta de experiencia en este tipo de proyectos en la

Page 178: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

166

región de Magallanes, se recomienda la opción de varios aerogeneradores de baja potencia

debido a su mayor confiabilidad, ya que si bien la probabilidad de que uno de ellos falle es mayor

que la de uno solo de mayor potencia, siempre existirá una fracción renovable presente en el

sistema, además de facilitar las labores de mantenimiento, ya sean del tipo correctivo, preventivo

y/o predictivo. Esta situación no se da en el caso de contar con solo un aerogenerador de mayor

potencia, donde tanto en caso de falla como de mantenimiento, el equipo electrógeno de respaldo

está obligado a satisfacer la totalidad de la demanda, además de presentar una mayor complejidad

en cuanto al mantenimiento necesario. Es por esto que se analizaran las ventajas y desventajas de

tener un mini parque eólico con varios aerogeneradores pequeños.

7.1.3.1 Antecedentes de evaluación de proyectos de

electrificación rural en la región de Magallanes

En este ámbito se tomará como referencia la curva de demanda de un proyecto de

titulación realizado en el Departamento de Ingeniería Eléctrica de la Universidad de Magallanes

en el año 1997, en el cual se evalúa la electrificación rural de la localidad de Villa Cerro Castillo

mediante energía eólica [22]. La metodología utilizada en dicho estudio corresponde a la

“Metodología de proyectos de electrificación rural” del Ministerio de Planificación [23].

La localidad de Cerro Castillo (51º16’(S), 72º25’(O)), es una villa rural dependiente de la

comuna de Torres del Paine, Provincia de Última Esperanza. Cuenta entre otras cosas con

instituciones activas y centros comunitarios tales como la Municipalidad, una escuela con

internado, retén de carabineros, junta de vecinos, club deportivo entre otros. Por tal motivo se

estima que la curva de carga de esta localidad es representativa para una villa rural típica en la

Región de Magallanes. Tal como se ha mencionado con anterioridad, el estudio teórico

energético se desarrollará utilizando el software HOMER.

Page 179: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

167

7.1.3.2 Parámetros de entrada para la simulación

Todas las configuraciones de sistemas a analizar serán del tipo híbrido eólico – diesel. La

especificación general de los equipos se presenta a continuación.

• Estimaciones de carga: En un proyecto de electrificación rural, uno de los factores más

relevantes es contar con una buena estimación de la demanda eléctrica del lugar, y para

obtenerla muchas veces es necesario realizar encuestas a la comunidad y establecer

diferencias entre consumos de invierno y verano, este estudio fue realizado anteriormente

[22] obteniéndose los perfiles horarios de demanda eléctrica para toda la villa tanto para

época de invierno como de verano. El resultado de este estudio entrega un valor de 371

(KWh/día), el cual se muestra en la figura 7.22, en donde se presentan los perfiles de

carga horarios para la villa para épocas de invierno y verano.

Figura 7.22. Perfil de carga horario de invierno y verano para Cerro Castillo

• Aerogeneradores: se considerarán cinco aerogeneradores marca Bergey modelo Excel S

de 10 KW de potencia nominal y torre de 30 metros, con una estimación de costos

descrita en el capítulo 5. La curva de potencia del aerogenerador se muestra en la figura

7.23.

Page 180: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

168

Figura 7.23. Curva de potencia de un Bergey 10 KW

• Generadores Diesel: Se utilizará para el análisis dos grupos electrógenos con potencia

nominal de 17,6 KW y 28 KW. Las curvas de rendimiento de los equipos electrógenos se

muestran en la figura. 7.24. En cuanto a la estrategia de control de estos equipos, se

plantea el funcionamiento simultaneo tanto del equipo electrógeno como de los

aerogeneradores, bajo la estrategia de control de seguimiento de carga donde el equipo

electrógeno produce solo la potencia suficiente para completar la demanda. El

seguimiento de carga suele ser la mejor opción en sistemas híbridos eolico-diesel como

los que están siendo objeto de análisis. Respecto a los costos asociados, estos se estimarán

en base a la información disponible [24] que considera un costo de 300 US$/KW.

0

5

10

15

20

25

30

35

0 20 40 60 80 100

Potencia de salida (% Pnom)

Efi

cien

cia

(%)

Gen 17.6KW Gen 28KW

Figura 7.24. Curva de eficiencia de equipos electrógenos

Page 181: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

169

• Recurso eólico: esta información corresponderá a la disponible en la base de datos de la

NASA analizada en el capítulo 3.

• Precio del diesel: se considerará el precio del diesel como el promedio anual del año 2005

el cual fue de 400,9 $/lt [25].

El diagrama esquemático general del sistema basado en ERES considerado se muestra en

la figura 7.25

Figura 7.25. Diagrama esquemático para electrificación rural

7.1.3.3 Análisis de resultados

De las configuraciones entregadas por el Software Homer, las de mayor interés teniendo

en consideración los criterios de confiabilidad y continuidad, mencionados anteriormente, se

presentan en la tabla 7.16.a y 7.16.b.

Alternativa Cantidad de aerogenerador

Gen 28(KW)

Gen 17,6(KW)

Capital inicial (US$)

NPC (US$)

COE (US$/kWh)

Porcentaje renovable

Diesel (L/año)

Gen 28KW (hrs/año)

Gen 17,6 KW (hrs/año)

1 2 28 17,6 103680 432800 0,376 33 36197 7637 460 2 3 28 17,6 148680 464477 0,404 45 32135 6842 412 3 4 28 17,6 193680 503947 0,438 55 29124 6200 377 4 5 28 17,6 238680 549433 0,478 62 26846 5707 352

Tabla 7.16.a. Alternativas para electrificación rural

Page 182: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

170

Alternativa Producción total (KWh)

Producción eólica (KWh)

% eólico

Producción Gen 17,6 KW (KWh)

% Gen 17,6 KW

Producción Gen 28 KW (KWh)

% Gen 28 KW

Exceso (KWh)

Exceso (%)

1 143882 47168 33 8096 6 88617 62 8840 6 2 156371 70752 45 7251 5 78367 50 21327 14 3 171912 94336 55 6635 4 70940 41 36866 21 4 189425 117920 62 6195 3 65309 34 54378 29

Tabla 7.16.b. Alternativas para electrificación rural

En términos generales, se ve que dadas las condiciones tanto de carga, como de recurso

eólico y precio del diesel, existe una relación directa entre la cantidad de turbinas y los costos de

generación y NPC, tal como se aprecia en la figura 7.26.

0,3

0,35

0,4

0,45

0,5

0,55

0,6

2 3 4 5

Cantidad de aerogeneradores

CO

E (

US

$/K

Wh)

300

350

400

450

500

550

600

NP

C (

Mile

s U

S$)

COE NPC

Figura 7.26. Relación entre NPC, COE y cantidad de turbinas

7.1.3.4 Ventajas y desventajas entre alternativas de suministro

En primera instancia, las alternativas con más de 2 turbinas no parecieran ser muy

recomendables desde el punto de vista económico, según la tabla 7.16.a. Los sistemas que

incluyen varios aerogeneradores pequeños poseen una mayor inversión inicial además de incurrir

en más gastos a lo largo del proyecto respecto de las primeras opciones, sin embargo existen

ventajas de estos sistemas que son dignas de considerar, aumentando por ejemplo el porcentaje de

aporte a la producción total de energía, y disminución en las horas de funcionamiento del grupo

electrógeno lo que se traduce en un ahorro de combustible. Tal como se aprecia en la tabla 7.16.a,

se obtienen aportes importantes de energía, pudiendo cubrir hasta un 55% de la demanda con 4

Page 183: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

171

aerogeneradores. Esta situación queda de manifiesto en la figura 7.27 donde se aprecia el aporte

de energía proveniente de los aerogeneradores para cada una de las alternativas de la tabla 7.16.a.

0

40

80

120

160

200

2 3 4 5

Cantidad de aerogeneradores

Pro

du

cció

n a

nu

al (

MW

h)

Prod. Eólica Gen 28KW Gen 17KW

Figura 7.27. Aporte de los componentes del sistema a la producción total anual

7.1.3.5 Consumo de combustible versus exceso de energía

Por lo general, el exceso de energía está inversamente relacionado con el consumo de

combustible del equipo electrógeno. Para minimizar al máximo la utilización de un equipo

electrógeno y con ello el gasto anual en combustible será necesaria la elección de una alternativa

con mayor cantidad de aerogeneradores, lo que a su vez implicará una mayor inversión inicial en

equipos y exceso anual de energía. En este caso, la situación anterior puede resumirse

perfectamente en el gráfico de la figura 7.28, donde se ve como a medida que aumenta la

cantidad de aerogeneradores el consumo anual de combustible disminuye desde 36197 lts/año a

26846 lts/año lo que se traduce en un ahorro cercano al 25,83 %.

Page 184: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

172

20

24

28

32

36

40

2 3 4 5

Cantidad de aerogeneradores

Co

nsu

mo

de

com

bu

stib

le

(mile

s lt

/añ

o)

Figura 7.28. Consumo de combustible versus cantidad de aerogeneradores

Lo que sucede con el exceso de energía asociado respecto la cantidad de aerogeneradores

se describe a continuación. Con 2 aerogeneradores, por ejemplo, se ve que el exceso de energía es

solo del 6% anual, lo que significa en promedio un exceso de 8,84 MWh al año, si se aumenta a 3

aerogeneradores, este aumenta a 21,33 MWh al año, mientras que para 4 aerogeneradores se tiene

en promedio 36,87 MWh al año para llegar finalmente a 54,38 MWh al año para 5

aerogeneradores. Como se puede apreciar en la figura 7.29, estos aumentos en el exceso van

acompañados de un correspondiente aumento en el aporte de las turbinas eólicas a la producción

anual de energía. El problema del exceso puede no ser grave si se piensa que este puede ser

aprovechado para otros propósitos como por ejemplo un pequeño sistema de calefacción para una

escuela.

0

40

80

120

160

200

2 3 4 5

Cantidad de aerogeneradores

Pro

du

ccio

n d

e en

erg

ía

(MW

h)

0

5

10

15

20

25

30

35

Exc

eso

de e

nerg

ía (

%)

Prod. eólica Prod. eq. electrógenos Exceso de energía

figura 7.29. Aportes de energía y exceso según cantidad de aerogeneradores

Page 185: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

173

Cabe señalar que para estas opciones la eficiencia de los equipos electrógenos son de

25,4% y 27,3% para el equipo diesel de 17,6 KW y 28 KW respectivamente. Existen además

otras ventajas asociadas a tener varios aerogeneradores pequeños en vez de concentrar la potencia

instalada en uno solo aerogenerador de mayor potencia, si bien es cierto que la industria eólica

presenta economías de escala (a mayor potencia nominal del aerogenerador, menor costo por

KW), estas comienzan a hacerse más notorias en niveles de potencia mayores, y en países donde

el rubro de las energías renovables ha alcanzado un elevado nivel tanto de desarrollo como de

experiencia. En nuestro país, aún no abundan los proyectos basados en ERES por lo que la

experiencia en este tipo de proyectos es baja. Con base en lo anterior y para los casos como los

que están siendo objeto de nuestro análisis, es más aconsejable la elección de una alternativa que

considere varias turbinas pequeñas, de esta manera se aumenta la confiabilidad del sistema, y se

facilitan por ejemplo las labores de mantenimiento, contando con un permanente respaldo por

parte del resto de las turbinas en caso de que alguna de ellas falle. Si se concentrara la producción

en un solo aerogenerador de gran potencia, se esta obligando a que los equipos electrógenos sean

capaz de satisfacer la totalidad de la carga por períodos prolongados de tiempo ante la

eventualidad de una falla del aerogenerador o durante las rutinas de mantenimiento, lo que

significa sobredimensionar los equipos.

7.1.3.6 Electrificación rural en otros sectores de la región

Para extender el análisis hacia otros posibles lugares que puedan ser objeto de estudio se

debe tener presente los antecedentes generales para una villa rural y las estimaciones de carga. En

la región Magallanes y Antártica Chilena existen varias villas rurales que presentan similitudes en

cuanto a su estructura social y de población. Dentro de las entidades consumidoras típicas de este

tipo de villas se encuentran las Municipalidades, escuelas con internado, retén de carabineros,

juntas de vecinos y/o clubes deportivos, entre otros, variando principalmente el número de

habitantes y de viviendas. Considerando lo anterior se realizará un análisis de sensibilidad por

Page 186: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

174

medio de variaciones tanto de carga eléctrica como de recurso eólico, dos de las variables más

importantes en este tipo de análisis.

Variaciones de carga: Para dar cuenta de las posibles variaciones en cuanto al consumo

eléctrico de las distintas villas de la región se considerará como situación base la carga de 370

KWh/día y se variará en un rago de +/- 30 % de este valor.

Variación del recurso eólico: Dadas la similitud para la región en cuanto a las tendencias

mensuales del recurso eólico vistas en el capítulo 3, se considerarán variaciones del promedio

anual de entre 7 y 10 m/seg a 50 metros de altura.

Respecto al equipamiento a utilizar en el análisis, se tiene que los aerogeneradores y los

generadores diesel serán como los utilizados en el apartado 7.1.3.2.

De la figura 7.30 se puede obtener el tipo de sistema óptimo para abastecer de energía

eléctrica a una villa con distintos niveles de consumo y recurso eólico.

Figura 7.30. Tipo de sistema óptimo para abastecer de energía eléctrica a una villa con distintos niveles de consumo diario y promedio anual de velocidad de viento

Page 187: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

175

La figura 7.30 indica la respuesta a varias de las preguntas más frecuentes, como por

ejemplo bajo qué condiciones de viento es recomendable añadir aerogeneradores al sistema

existente. Por ejemplo, para una villa rural con un consumo por sobre 300 KWh/día y un

promedio anual de viento inferior a 9 m/seg es probable que no sea una buena alternativa añadir

aerogeneradores al sistema debido principalmente a la elevada inversión necesaria, a no ser de

que parte de los equipos como por ejemplo los grupos electrógenos se encuentren operativos y no

sea necesaria la adquisición de uno nuevo, recordando que este análisis considera la adquisición

de la totalidad de los equipos. Los resultados indican además que los sistemas eólico-diesel son

factibles de implementar en lugares donde el promedio anual de velocidad de viento supera en

promedio los 9,5 m/seg a 50 metros de altura.

Para los sistemas que contemplan la incorporación de aerogeneradores, se puede encontrar

la cantidad óptima de estos que satisface de mejor manera los requerimientos. La figura 7.31

muestra los distintos niveles de consumo con la cantidad óptima de aerogeneradores que debería

tener el sistema. Luego en la figura 7.32, se muestra la cantidad óptima del grupo electrógeno de

17,6 KW, ya que al aumentar la carga llega un momento en que no es suficiente contar con uno

solo de ellos. Respecto al grupo electrógeno de 28 KW, los resultados indican que uno de estos es

suficiente independiente de la carga.

Page 188: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

176

Figura 7.31. Cantidad óptima de aerogeneradores según consumo y recurso eólico

Figura 7.32. Cantidad óptima de generadores diesel de 17,6 KW

De manera análoga se puede encontrar el consumo de anual de combustible para cada una

de las situaciones, tal como se muestra en la figura 33.

Page 189: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

177

Figura 7.33. Consumo de combustible del equipo electrógeno

Las figuras 7.30, 7.31, 7.32 y 7.33 deben ser utilizadas en conjunto para así poder obtener

la configuración híbrida eólico–diesel óptima dados los distintos niveles de consumo y de

velocidad de viento que pudiesen presentar las distintas localidades rurales de la región.

Para entender mejor la utilización de estos gráficos se analizará un ejemplo. Se desea

suministrar electricidad a una villa a la cual se realizó un estudio de carga y se concluyó que el

consumo diario de toda la villa es de aproximadamente 450 KWh. Paralelamente un estudio

eólico en la villa indicó además, que el promedio anual de viento a 50 metros de altura es de 9,8

m/seg. Esta información es suficiente para ir a la figura 7.30 y ver que el sistema óptimo es un

sistema híbrido eólico – diesel formado por aerogeneradores y un grupo electrógeno. Para saber

cuál es la cantidad óptima de aerogeneradores que se necesitan, se observa la figura 7.31 que

indica que para un consumo de 450 KWh y una velocidad de viento de 9,8 m/seg la cantidad

óptima de aerogeneradores es de 3. Luego en la figura 7.32 se aprecia que el equipo electrógeno

óptimo es de una potencia de 35,2 KW (puede ser 1 generador diesel de 35,2KW o 2 de 17,6KW)

junto a un generador diesel de 28 KW. Finalmente la figura 7.33 indica el consumo de

combustible para las condiciones mencionadas.

Page 190: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

178

7.2 Sistemas conectados a la red

7.2.1 Autogeneración eólica y FV con conexión a la red

en sectores residenciales. Medición neta de energía

Dada la actual situación crítica respecto a las fuentes de energía primaria para

generar energía eléctrica en Chile y su impacto ambiental, las energías renovables pueden

aminorar en alguna medida tal situación. Como se sabe, ya sea en forma concreta o intuitiva,

la energía eólica está presente a lo largo de las costas y en las partes altas de nuestro país.

En particular, la Región de Magallanes es una zona privilegiada en cuanto a potencial eólico

se refiere. Sin embargo, en la ciudad de Punta Arenas se tienen velocidades de viento

moderadas, debido a la situación topográfica del cerro Mirador que sin duda contribuye con

un efecto de sombra eólica sobre la ciudad. La radiación solar por su parte, también está

presente en la XII Región, y sin duda resulta ser una alternativa a considerar cada día más, ya

que los costos a nivel internacional de ambas tecnologías (aerogeneradores y paneles

fotovoltaicos) y en especial estas últimas están siendo cada día mas accesibles. Pero no solo

es necesario disponer de los recursos energéticos renovables y las tecnologías para su

conversión y posterior utilización, sino que además se requiere de un marco legal que

incentive la actividad privada y creatividad de las empresas y universidades para enfrentar

este desafío que implica, no sólo disminuir la dependencia energética de nuestro país, sino

que además crear una nueva actividad económica que redundaría en un mejor bienestar no

sólo para nuestros tiempos, sino que además para las futuras generaciones.

Un sistema eléctrico basado en pequeños aerogeneradores, un arreglo de paneles

fotovoltaicos o un pequeño sistema híbrido formado por ambos puede ser de mucha utilidad para

viviendas en sectores residenciales de una ciudad que presente niveles aceptables de velocidad de

viento y/o radiación solar. Un sistema eólico, fotovoltaico o híbrido conectado a la red y

Page 191: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

179

energizando una vivienda como carga puede ayudar a reducir considerablemente el consumo de

electricidad desde la red eléctrica central, implicando una disminución en el monto de la factura

mensual (o anual) de electricidad del usuario a cambio de una inversión inicial en equipos de

larga vida útil y reducidos costos de mantenimiento. En una configuración de este tipo, el usuario

residencial satisface la demanda eléctrica en base la energía generada por paneles fotovoltaicos

instalados, por ejemplo en el techo de la vivienda o por un pequeño aerogenerador instalado en el

patio trasero de la vivienda. La energía eléctrica que no se consume en la instalación no se

almacena en baterías si no que se inyecta a la red eléctrica, mientras que si la demanda eléctrica

de la instalación es superior a la energía generada por el sistema, la energía faltante para

completar la demandada es absorbida desde la red. La gran ventaja de estos sistemas es la no

incorporación de baterías, las cuales encarecen considerablemente estos sistemas, principalmente

por sus costos de operación y reemplazo. El medidor eléctrico es uno de los componentes

principales del sistema, ya que debe ser un medidor capaz de cuantificar tanto la energía

entregada como la absorbida de la red, de tal forma que el usuario pague solo por la diferencia

neta de energía, este tipo de medidores eléctricos se conoce con el nombre de medidor

bidireccional. En algunos casos, Estados Unidos por ejemplo, las cuentas de electricidad que

deben pagar los usuarios a las empresas eléctricas se han reducido hasta en un 50% mensual [26].

Esto se trata básicamente de normativas que simplemente establecen las condiciones técnicas y

legales básicas para estas instalaciones y obliga a las empresas eléctricas a medir de manera

bidireccional el consumo de los usuarios que coloquen tales instalaciones. De este modo se hace

posible para los usuarios, instalar energías limpias en sus propiedades y tener un intercambio

justo con las compañías eléctricas. Este marco regulatorio sería de enorme utilidad no sólo en la

XII Región, por las buenas condiciones de viento reinantes si no que también en todo el país,

sobre todo en tiempos difíciles en términos energéticos, teniendo en consideración la

inestabilidad existente en cuanto al precio de los combustibles fósiles, y las cada vez más

amenazadoras crisis de gas. El diagrama de bloques general de este tipo de configuración se

Page 192: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

180

muestra en la figura 7.34, mientras que un ejemplo real del diagrama de conexiones eléctricas se

muestra en la figura 7.35.

Figura 7.34. Diagrama de bloques de un sistema de medición neta

Figura 7.35. Ejemplo de un diagrama de conexiones para una configuración de medición neta de energía

En la figura 7.34 se muestra una descripción básica de este tipo de sistemas. El primer

bloque (unidad de generación a pequeña escala) corresponde ya sea a un aerogenerador pequeño,

un arreglo fotovoltaico o bien un sistema híbrido a base de ambos. El siguiente bloque (unidad de

Page 193: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

181

conversión y acondicionamiento de señal) corresponde a la etapa de conversión DC/AC y al

acondicionamiento de señal necesario para la sincronización con la red de manera de contaminar

lo menos posible esta última. El bloque de protecciones eléctricas es necesario para proteger los

distintos componentes del sistema, ya sea carga, arreglo FV, conversor, aerogenerador, etc. ante

la eventualidad de una falla en alguno de los componentes. Finalmente, el bloque de carga no es

más que la carga residencial, o casa habitación a la cual se suministra energía. El medidor

eléctrico como ya fue mencionado debe ser un medidor bidireccional, ya que los flujos de

potencia van hacia y desde la red. Las flechas celestes que se observan en la figura 7.34 indican

un flujo de potencia proveniente del sistema eólico, solar o híbrido hacia la carga y hacia la red,

mientras que las flechas rojas indican el flujo de potencia que va desde la red hacia la carga

quedando especificado el funcionamiento del sistema.

Lo que se presenta a continuación, consiste en evaluar (usando el software HOMER)

desde el punto de vista energético y económico la opción de conexión a la red eléctrica con un

pequeño sistema eléctrico basado en aerogeneradores o paneles solares a escala residencial en la

ciudad de Punta Arenas, y hacer una estimación preliminar del posible ahorro mensual o anual en

dinero por parte del usuario por concepto de compra de energía de la red. Actualmente el sistema

eléctrico de Punta Arenas no considera esta posibilidad, en la que el usuario paga sólo por la

cantidad de energía neta que absorbe de la red, ni existen normas que regulen esta situación, por

lo que se trata de evaluar el impacto que esta situación traería a nivel de usuario en relación a su

gasto mensual en energía eléctrica.

7.2.1.1 Parámetros de entrada para la simulación

• Estimaciones de carga: La estimación de las cargas residenciales a considerar para la

ciudad de Punta Arenas se basan en los resultados de un estudio realizado en años

anteriores [22]. En dicho estudio se considera un consumo diario de 3,2 KWh/día

Page 194: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

182

considerando sólo los consumos más básicos de iluminación, radio y TV. En el presente

estudio se considerará como base este consumo de 3,2 KWh/día escalado a una demanda

diaria de 5 KWh/día (manteniendo intacta la distribución horaria de la carga). La

distribución horaria de esta carga se muestra en la figura 7.36.

Figura 7.36. Distribución horaria considerada

para un consumo diario de 5 KWh/día

• Aerogeneradores: Por tratarse de viviendas en sectores residenciales de Punta Arenas

con consumos relativamente pequeños se considerará un aerogenerador marca Bergey

modelo BWC XL.1 de 1 KW de potencia nominal. La curva de potencia de este

aerogenerador se presenta en la figura 7.37. Los costos asociados a este aerogenerador

fueron estimados en el capítulo 5. Se considerará una altura de torre de 20 m y una vida

útil del equipamiento de 20 años.

Figura 7.37. Curva de potencia del aerogenerador Bergey BWC XL.1

Page 195: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

183

• Paneles fotovoltaicos: Se evaluará la opción de un arreglo fotovoltaicos de 1,2 KWp con

un ángulo de inclinación fijo de 53º (orientado hacia el norte) y una vida útil de 20 años.

• Conversor: Se considerará una opción de un conversor de potencia de 1,5 KW, con una

vida útil de 20 años y eficiencia de 90%.

• Recursos eólico y solar: Esta información corresponde a los resultados obtenidos en los

capítulos 3 y 4 sobre de los años típicos tanto eólico como solar para la ciudad de Punta

Arenas.

• Red eléctrica: Para poder evaluar el ahorro en dinero por parte del usuario con las

distintas configuraciones, es necesaria una estimación de los precios de compra de energía

desde la red, y de venta de energía hacia la red. Actualmente el costo estimado al que un

usuario residencial compra energía de la red considerando tarifa BT1 es de 94,51 $/KWh

(0,16 US$/KWh, tipo de cambio: 580 $/US$, promedio Abril del 2005). Este valor

corresponde al precio total que paga un usuario que compra energía de la red, e incluye

tanto el cargo por energía base como el cargo fijo y arriendo de medidor. Para llegar a tal

estimación se realizó un estudio del consumo mensual de un usuario residencial de Punta

Arenas por un período de un año (Agosto del 2004 a Julio del 2005), los resultados de

este análisis se resumen en la tabla 7.17.

Page 196: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

184

Mes Consumo (KWh)

Total a pagar ($)

Precio de compra de energía ($/KWh)

Precio de compra de energía (US$/KWh)

Ago 126 11300 89,68 0,15 Sep 127 11900 93,70 0,16 Oct 113 10750 95,13 0,16 Nov 109 10300 94,50 0,16 Dic 131 12000 91,60 0,16 Ene 120 11250 93,75 0,16

Feb 120 11600 96,67 0,17 Mar 136 12950 95,22 0,16 Abr 119 11550 97,06 0,17 May 121 11450 94,63 0,16 Jun 116 11100 95,69 0,16 Jul 114 11000 96,49 0,17

Promedio mensual

121,15 11300 94,51 0,16

Promedio diario 4,04

Tabla 7.17. Estimación del precio real de compra de energía de la red para un usuario residencial de Punta Arenas

Teniendo en consideración el reciente reglamento publicado en el Diario Oficial de la

República de Chile el 17 de Enero del 2006, se considerará una estimación para este precio de

venta de energía a la red en base al costo marginal instantáneo, el cual para la situación del

sistema Magallanes, es similar al precio de nudo de la energía, calculado por la CNE en Octubre

del 2005. El precio de nudo de energía fue de 25,32 $/KWh (0,044 US$/KWh), el cual

corresponde al 27,5% del valor total estimado que paga el usuario por comprar energía de la red

(0,16 US$/KWh).

El diagrama esquemático final del consumo residencial de 5 KWh/día es el que se muestra

en la figura 7.38.

Figura 7.38. Diagrama esquemático para sistema medición neta

Page 197: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

185

7.2.1.2 Estimación de producción de energía de un aerogenerador

y arreglo FV en la ciudad de Punta Arenas

De acuerdo a los resultados entregados por el software Homer, la producción del

aerogenerador BWC XL.1 de 1 KW de potencia nominal sujeto a las condiciones del año típico

de Punta Arenas es de 3358 KWh al año, mientras que la producción anual de un arreglo FV de 1

KWp es de 1273 KWh. De inmediato queda de manifiesto la diferencia entre ambas tecnologías

en cuanto a su capacidad para generar electricidad. La tabla 7.18 y figura 7.39 muestran la

producción de energía de ambos a lo largo del año bajo las condiciones de la ciudad de Punta

Arenas. Se asume que al aumentar la cantidad de aerogeneradores o potencia nominal del arreglo

fotovoltaico la producción anual de energía aumente en igual proporción. Para mayores detalles

en cuanto a la producción de energía eléctrica de los sistemas planteados vea el anexo H de este

trabajo

Mes Arreglo Fotovoltaico de 1,2 KW

Aerogenerador de 1 KW

Ene 150,09 346,40

Feb 122,04 268,63

Mar 110,64 273,89

Abr 90,46 260,72

May 54,21 189,17

Jun 39,34 185,68

Jul 65,36 213,86

Ago 91,07 265,39

Sep 109,48 288,99

Oct 140,63 338,89

Nov 145,23 377,00

Dic 154,28 349,84

Total anual 1.272,83 3.358,46

Tabla 7.18. Comparación de producción anual de energía para un arreglo FV de 1,2 KW y aerogenerador de 1 KW en la ciudad de Punta Arenas

Page 198: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

186

0

100

200

300

400

500

600

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Pro

du

cció

n d

e en

erg

ía (

KW

h)

Producción eólica (KWh) Producción FV (KWh)

Figura 7.39. Producción anual de energía para un arreglo fotovoltaico y aerogenerador de 1 KW en la ciudad de Punta Arenas

7.2.1.3 Análisis económico. Estimación de ahorro mensual

Con la intención de poder comparar de mejor manera las alternativas eólica y FV entre sí

y analizar sus respectivas ventajas y desventajas se plantean dos alternativas. Una alternativa

eólica, compuesta por un aerogenerador Bergey de 1 KW de potencia nominal, y un arreglo FV

de 1,2 KWp (10 paneles FV de 120 Wp). Las razones para la elección del aerogenerador Bergey

son principalmente de tipo técnico, ya que se adapta a las condiciones climáticas de la zona,

como bajas temperaturas en época de invierno y vientos arrachados. La tabla 7.19 muestra los

resultados de la evaluación económica para las configuraciones planteadas teniendo en

consideración las estimaciones de costos de adquisición e instalación de los equipos en Chile.

Tipo de configuración

Potencia del arreglo FV

(KWp)

Cantidad de turbinas (XL1)

Potencia del conversor (KW)

Capital inicial (US$)

NPC (US$) COE (US$/KWh)

Fracción renovable

Red - - - - 2486 0,16 -

Eólica - 1 1,5 9072 11885 0,37 0,77

Fotovoltaica 1,2 - 1,5 11572 12562 0,59 0,51

Tabla 7.19. Comparación entre alternativas eólica y FV considerando un consumo de 5 KWh/día

Como se aprecia en la tabla 7.19, desde el punto de vista económico, la opción más

conveniente corresponde a la red ya que esta no considera ninguna inversión inicial. En segundo

Page 199: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

187

lugar se encuentra la configuración eólica basada en un aerogenerador de 1 KW, ya que necesita

una inversión inicial menor que la opción FV, además de presentar un menor costo neto a lo largo

del proyecto (20 años) y que el costo de su energía generada también es menor que su similar FV.

Respecto a estos costos de generación de energía, ambas opciones, eólica y FV, presentan costos

de generación altos en comparación tanto al precio de la energía de la red, como al precio de

venta de energía hacia la red. Para la opción eólica por ejemplo, el costo de la energía es de 0,37

US$/KWh, mientras que el precio de venta del excedente de energía a la red se estimó en 0,044

US$/KWh, un valor muy por debajo del costo de generación, mientras que para el sistema FV

planteado, el costo de generación de energía se eleva a 0,59 US$/KWh.

7.2.1.4 Estimación de ahorro mensual en la cuenta de electricidad por parte del usuario

Una vez obtenidas la producción anual de energía por parte de las configuraciones eólica

y FV, interesa profundizar en el funcionamiento general del sistema de medición neta, es decir,

interesa cuantificar tanto la energía comprada como la vendida a la red, para así poder estimar el

ahorro por parte del usuario en su cuenta de electricidad.

Se comenzará realizando un análisis de lo que sucede actualmente para una casa

habitación en el sector residencial de Punta Arenas con un consumo diario de energía eléctrica

promedio de 5 KWh/día.

Situación actual: Actualmente el usuario está obligado a satisfacer la totalidad de su

demanda comprando energía eléctrica de la red a un precio aproximado de 94,51 $/KWh (0,16

US$/KWh), como fue estimado en el apartado 7.2.1.1.

Page 200: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

188

La tabla 7.20 resume la situación actual. En ella se aprecia una situación hipotética que da

cuenta de la cantidad de energía comprada a la red para cada mes del año. La figura 7.40 también

indica de manera más clara las diferencias en cuanto a consumos de invierno y verano.

Mes Consumo (KWh)

Consumo (KWh/día)

Gasto mensual ($)

Gasto mensual (US$)

Ene 136 4,53 12.644 21,8

Feb 119 3,97 11.020 19

Mar 178 5,93 16.530 28,5

Abr 168 5,6 15.602 26,9

May 164 5,47 15.196 26,2

Jun 168 5,6 15.602 26,9

Jul 170 5,67 15.776 27,2

Ago 183 6,1 16.994 29,3

Sep 136 4,53 12.644 21,8

Oct 135 4,5 12.528 21,6

Nov 131 4,37 12.180 21

Dic 137 4,57 12.702 21,9

Total 1825 - 169.360 292

Tabla 7.20. Estimación de la situación actual para un cliente con consumo de 5 KWh/día y tarifa BT1

0

25

50

75

100

125

150

175

200

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

mes

Con

sum

o (K

Wh)

Figura 7.40. Variaciones en nivel de consumo según

temporadas de invierno y verano

Page 201: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

189

Caso 1. Configuración eólica: Considerando un sistema de autogeneración eólica

conectado a la red en el cual parte de la demanda se satisface con el sistema eólico de la tabla

7.19, y teniendo en consideración las estimaciones de precios de compra y venta de electricidad

especificadas con anterioridad, un posible nuevo escenario sería el de la tabla 7.21.

Mes Energía

comprada (KWh)

Energía vendida (KWh)

Energía neta (KWh)

Gasto por compra (US$)

Ingreso por venta (US$)

Diferencia (US$)

Diferencia ($)

Gasto mensual sit actual

(US$)

Gasto mensual sit actual ($)

Ahorro (US$)

Ahorro ($)

Ene -66 208 142 -10,56 9,152 -1,408 -816,64 -24,48 -14198,40 23,072 13381,76 Feb -72 160 88 -11,52 7,04 -4,48 -2598,4 -21,6 -12528,00 17,12 9929,60 Mar -91 152 61 -14,56 6,688 -7,872 -4565,76 -25,6 -14848,00 17,728 10282,24 Abr -82 142 60 -13,12 6,248 -6,872 -3985,76 -24,16 -14012,80 17,288 10027,04 May -101 97 -4 -16,16 4,268 -11,892 -6897,36 -24 -13920,00 12,108 7022,64 Jun -101 93 -8 -16,16 4,092 -12,068 -6999,44 -24,32 -14105,60 12,252 7106,16 Jul -98 109 11 -15,68 4,796 -10,884 -6312,72 -24,64 -14291,20 13,756 7978,48

Ago -95 148 53 -15,2 6,512 -8,688 -5039,04 -26,08 -15126,40 17,392 10087,36 Sep -83 167 84 -13,28 7,348 -5,932 -3440,56 -24,32 -14105,60 18,388 10665,04 Oct -71 200 129 -11,36 8,8 -2,56 -1484,8 -24,48 -14198,40 21,92 12713,60 Nov -57 232 175 -9,12 10,208 1,088 631,04 -23,68 -13734,40 24,768 14365,44 Dic -73 212 139 -11,68 9,328 -2,352 -1364,16 -24,64 -14291,20 22,288 12927,04

Total -990 1920 930 -158,4 84,48 -73,92 -42873,6 -292 -169360,00 218,08 126486,40

Tabla 7.21. Compra y venta de energía de la red para configuración eólica y consumo de 5 KWh/día

Al comparar la tabla 7.21 con la situación actual, se observa que e l ahorro anual en

dinero del usuario por concepto de venta de su exceso de energía a la red es de $ 126486 (US$

218,08), lo que significa que se recuperaría la inversión inicial en aproximadamente 11 años.

También se aprecia que existen meses en los cuales se entrega mayor energía a la red y otros en

los que por el contrario se consume mayor o menor cantidad de energía de la red. Estas

variaciones se deben a las diferentes tendencias mensuales en cuanto a velocidad de viento que

influyen en la producción mensual de electricidad del aerogenerador.

Los resultados anteriores se obtuvieron al considerar que el usuario dispone del capital

necesario para la compra e instalación de todos los equipos. Esta situación en la práctica es poco

probable debido al elevado costo de los componentes del sistema, es por esta razón que se hacen

necesarios los incentivos estatales que hagan de estos sistemas un poco más atractivos para el

Page 202: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

190

usuario desde el punto de vista económico. Actualmente la legislación chilena no considera

ningún tipo de incentivos en este sentido, por lo que se evaluará una situación hipotética tomando

como referencia el modelo de incentivos de California en Estados Unidos [27] y adaptándolo a la

realidad de nuestro país. Se plantean los siguientes incentivos:

1º.- Bonificación por el uso de energías renovables no convencionales para la

generación de electricidad. Dicha bonificación podría alcanzar el 50% del costo total de

adquisición e instalación de los equipos. Esta medida puede ser acogida como parte de una

ley especial de fomento de uso de ERNC, específicamente en base a energía eólica y solar, o

bien como parte de una ley de excepción para zonas extremas, como ya existen en nuestra

región para activar ciertas aéreas de desarrollo.

2º.- Bonificación por potencia instalada. Se considera una devolución de 1235,4 $/W

(2,13 US$/W) instalado de energía eólica y 2030 $/Wp (3,5 US$/Wp) instalado de energía solar,

la diferencia se debe a que ambas tecnologías deben ser tratadas de manera diferente, ya que la

opción eólica tiene una mayor producción anual de energía y presenta además un menor costo por

KW instalado, y por lo mismo necesita menor incentivo.

3º.- Préstamos a largo plazo con una tasa de interés baja. En este estudio se considera un

préstamo bancario a 15 años con una tasa de interés real anual de 3,5% para financiar el saldo de

la inversión inicial luego de aplicar los incentivos antes menc ionados.

Los tres puntos anteriores se resumen en la tabla 7.22, para los tipos de sistemas

planteados anteriormente en la tabla 7.19.

Page 203: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

191

Sist. Eólico Sist. FV

Potencia instalada (W) 1000 1200

Inversión inicial (US$) 9596 12096

Inversión inicial ($) 5565680 7015680

Bonificación por el uso de ERES (50% en US$) 4798 6048

Pago por potencia instalada ( 2,13 US$/W eólico y 3,5 US$/Wp FV) 2130 4200

Costo neto del sistema (US$) 2668 1848

Costo neto del sistema ($) 1547440 1071840

Cuota mensual del prést amo 9647,48 6682,36

Tabla 7.22. Cálculos de incentivos y cuota mensual de préstamos.

Considerando los incentivos planteados en la tabla 7.22, se obtiene la tabla 7.23 en la

cual claramente se ve una disminución en el ahorro debido a la incorporación de la cuota

mensual del préstamo lo cual es un costo extra para el usuario durante los primeros 15 años. Aún

así se tiene un ahorro final que llega a $22086 al año, lo que implica que el capital se recuperaría

en 63 años, lo que hace inviable el proyecto, desde un punto de vista económico.

Mes Diferencia (US$) Diferencia ($) Cuota préstamo ($) Total ($) Gasto mensual sit.

actual ($) Ahorro ($)

Ene -1,408 -816,64 -8700,00 -9516,64 -14198,40 4681,76 Feb -4,48 -2598,4 -8700,00 -11298,40 -12528,00 1229,60 Mar -7,872 -4565,76 -8700,00 -13265,76 -14848,00 1582,24

Abr -6,872 -3985,76 -8700,00 -12685,76 -14012,80 1327,04 May -11,892 -6897,36 -8700,00 -15597,36 -13920,00 -1677,36 Jun -12,068 -6999,44 -8700,00 -15699,44 -14105,60 -1593,84 Jul -10,884 -6312,72 -8700,00 -15012,72 -14291,20 -721,52

Ago -8,688 -5039,04 -8700,00 -13739,04 -15126,40 1387,36 Sep -5,932 -3440,56 -8700,00 -12140,56 -14105,60 1965,04 Oct -2,56 -1484,8 -8700,00 -10184,80 -14198,40 4013,60 Nov 1,088 631,04 -8700,00 -8068,96 -13734,40 5665,44

Dic -2,352 -1364,16 -8700,00 -10064,16 -14291,20 4227,04 Total -73,92 -42873,6 -104400,00 -147273,60 -169360,00 22086,40

Tabla 7.23. Gasto mensual de la configuración eólica y consumo de 5 KWh/día

La figura 7.41 muestra la tendencia general anual del consumo de energía junto con

la estimación de producción de energía anual del aerogenerador. De ella se confirma que los

meses de mayor venta de energía a la red, serán los meses con mayor potencial eólico, es

decir los meses de primavera y verano, mientras que los meses de otoño e invierno serán en los

que se deberá comprar más energía de la red.

Page 204: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

192

050

100150200250300350400

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Mes

Ene

rgía

(K

Wh)

Consumo Producción eólica

Figura 7.41. Comparación entre el consumo eléctrico y generación eólica

La figura 7.42 muestra el consumo residencial y generación de electricidad del

aerogenerador en un mes de Primavera (Noviembre), comprobando de esta forma que las horas

del medio día son las más propicias para la venta de energía a la red. Por el contrario para meses

de otoño e invierno, como por ejemplo Junio (figura 7.43), el potencial eólico disminuye

considerablemente, con variaciones diarias muy pequeñas que hacen disminuir la producción de

energía, haciéndose necesaria la compra de más energía desde la red.

0

0,1

0,20,3

0,4

0,5

0,6

0,7

0,8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hora

Pot

enci

a (K

W)

Carga Produccion

Figura 7.42. Tendencias de producción de energía y consumo de 5 KWh/día para un día típico de Noviembre

Page 205: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

193

0

0,1

0,2

0,3

0,4

0,5

0,6

0 1 2 3 4 5 6 7 8 9 10 11 1213 1415 16 17 18 19 20 21 22 23

Hora

Pot

enci

a (K

W)

Carga Produccion

Figura 7.43. Tendencias de producción de energía y consumo de 5 KWh/día para un día típico de Junio

Caso 2. Configuración FV: Siguiendo la misma metodología de análisis empleada para

la configuración eólica, se obtiene la tabla 7.24 considerando la opción solar fotovoltaica de la

tabla 7.19.

Mes Energía

comprada (KWh)

Energía vendida (KWh)

Energía neta (KWh)

Gasto por compra (US$)

Ingreso por venta (US$)

Diferencia (US$)

Diferencia ($)

Gasto mensual sit actual

(US$)

Gasto mensual sit actual

($)

ahorro ($)

ahorro (US$)

Ene -110 78 -32 -17,60 3,43 -14,17 -8217,44 -24,48 -14198,40 5980,96 10,31 Feb -95 65 -30 -15,20 2,86 -12,34 -7157,2 -21,6 -12528,00 5370,80 9,26 Mar -120 58 -62 -19,20 2,55 -16,65 -9655,84 -25,6 -14848,00 5192,16 8,95 Abr -117 47 -70 -18,72 2,07 -16,65 -9658,16 -24,16 -14012,80 4354,64 7,51 May -130 23 -107 -20,80 1,01 -19,79 -11477,04 -24 -13920,00 2442,96 4,21 Jun -138 15 -123 -22,08 0,66 -21,42 -12423,6 -24,32 -14105,60 1682,00 2,90 Jul -130 33 -97 -20,80 1,45 -19,35 -11221,84 -24,64 -14291,20 3069,36 5,29

Ago -130 46 -84 -20,80 2,02 -18,78 -10890,08 -26,08 -15126,40 4236,32 7,30 Sep -116 65 -51 -18,56 2,86 -15,70 -9106 -24,32 -14105,60 4999,60 8,62 Oct -109 86 -23 -17,44 3,78 -13,66 -7920,48 -24,48 -14198,40 6277,92 10,82 Nov -100 78 -22 -16,00 3,43 -12,57 -7289,44 -23,68 -13734,40 6444,96 11,11 Dic -102 75 -27 -16,32 3,3 -13,02 -7551,6 -24,64 -14291,20 6739,60 11,62

Total -1397 669 -728 -223,52 29,44 -194,08 -112568,72 -292 -169360,00 56791,28 97,92

Tabla 7.24. Compra y venta de energía de la red para configuración FV y consumo de 5 KWh/día

Comparando con la situación original y con la configuración eólica, se observa que

e l ahorro disminuye bastante respecto a este último. A ún así, e l gasto anual en electricidad

disminuye de $ 171100 (US$ 292) a $ 112568 (US$ 97,92) es decir un ahorro de casi

$ 56791 (US$ 97,92), con lo cual se recuperaría el capital en 16 años. La cantidad de energía

Page 206: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

194

vendida a la red disminuye respecto a la opción eólica, debido obviamente al menor potencial

solar de la zona en estudio respecto de su similar eólico.

Debido al menor potencial solar de la zona y a las diferentes tendencias mensuales de la

radiación solar respecto de su similar eólico, la situación es radicalmente distinta a la opción

eólica. La figura 7.44 muestra la producción energética del arreglo FV planteado de 1,2 KWp

junto con el consumo mensual de energía de la carga. Se puede apreciar cómo los meses de

Invierno, que son los de mayor consumo energético por parte del usuario, son a su vez los de

menor potencial solar, lo que hace que el aporte a la red de un arreglo de 1,2 KWp sea bajo.

Figura 7.44. Comparación entre el consumo eléctrico y generación FV

Respecto a las tendencias horarias a lo largo del año estas sí son similares para los meses

de verano e invierno, como se analizó en el capítulo 4. Las horas de mayor potencial solar son las

del medio día. En las figuras 7.45 y 7.46 se ve las tendencias horarias de la carga y de producción

de energía del arreglo FV para dos épocas distintas del año.

Page 207: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

195

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 2021 22 23

Hora

Pot

enci

a (K

W)

Carga Produccion

Figura 7.45. Tendencias de recurso solar y consumo de 5 KWh/dia para un día típico de Noviembre

0

0,1

0,2

0,3

0,4

0,5

0,6

0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23

Hora

Po

ten

cia

(KW

)

Carga Produccion

Figura 7.46. Tendencias de recurso solar y consumo de 5 KWh/día para un día típ ico de Junio

En la tabla 7.25 se aprecia el gasto mensual de la configuración fotovoltaica luego de

haber aplicado los incentivos de la tabla 7.22, siendo estos como se mencionó anteriormente,

parte de un fondo estatal, esto para cubrir parte del capital inicial necesario para el proyecto. En

la tabla 7.25 se aprecia claramente que al incorporar un préstamo (como el planteado en la opción

eólica) para obtener la inversión inicial, el proyecto se torna inviable desde el punto de vista

económico, ya se tiene que pagar anualmente $12028 mas que en la situación sin proyecto.

Page 208: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

196

Mes Diferencia (US$) Diferencia ($) Cuota préstamo

($) Total ($) Gasto mensual sit actual ($) Ahorro ($)

Ene -14,168 -8217,44 -5735 -13952,44 -14198,40 245,96

Feb -12,34 -7157,2 -5735 -12892,20 -12528,00 -364,20

Mar -16,648 -9655,84 -5735 -15390,84 -14848,00 -542,84

Abr -16,652 -9658,16 -5735 -15393,16 -14012,80 -1380,36

May -19,788 -11477,04 -5735 -17212,04 -13920,00 -3292,04

Jun -21,42 -12423,6 -5735 -18158,60 -14105,60 -4053,00

Jul -19,348 -11221,84 -5735 -16956,84 -14291,20 -2665,64

Ago -18,776 -10890,08 -5735 -16625,08 -15126,40 -1498,68

Sep -15,7 -9106 -5735 -14841,00 -14105,60 -735,40

Oct -13,656 -7920,48 -5735 -13655,48 -14198,40 542,92

Nov -12,568 -7289,44 -5735 -13024,44 -13734,40 709,96

Dic -13,02 -7551,6 -5735 -13286,60 -14291,20 1004,60

Total -194,084 -112568,72 -68820 -181388,72 -169360,00 -12028,72

Tabla 7.25. Gasto mensual de la configuración FV y consumo de 5 KWh/día

Finalmente, se puede señalar que independientemente de los niveles tarifarios que se

consideren, lo que no variará es la fracción renovable de la tabla 7.19, la cual es función de la

producción de energía del arreglo FV o del aerogenerador (según sea el caso) y del consumo de la

vivienda. Estos valores son de mucha importancia ya que por ejemplo para el consumo de 5

KWh/día, un aerogenerador Bergey de 1 KW de potencia nominal puede satisfacer el 77% del

consumo anual de energía mientras que un arreglo FV de 1,2 KW estaría en condiciones de

satisfacer el 51% del consumo.

Por otra parte, del apartado 7.1.1.2, se tiene que la producción anual de energía eléctrica

del aerogenerador antes mencionado es de 3441 KWh, mientras que la producción anual del

arreglo FV de 1,2 KW llega a 1460,85 KWh. Teniendo en consideración estas cifras, se puede

establecer una relación entre ambas, cuyo resultado es que para igualar la producción anual de

energía del aerogenerador se necesitaría un arreglo FV de aproximadamente 23 paneles de 120

Wp, es decir, un arreglo FV de 2,76 KWp, con una inversión inicial necesaria que bordea los US$

20000 (MM$ 11,6) solo en adquisición de los paneles, sin considerar I.V.A.ni costos de

instalación.

Page 209: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

197

Tomando estos valores como referencia es indudable las ventajas de un sistema eólico

sobre uno FV, sin embargo existen otros factores que pueden hacer preferibles los últimos. Uno

de los inconvenientes principales de los sistemas basados en aerogeneradores es el espacio

necesario para su emplazamiento. En este estudio se consideró una torre de 20 metros de altura

recomendada por el fabricante, sin embargo el espacio necesario para su emplazamiento puede

transformarse en un problema al tratarse de sectores residenciales donde muchas veces las

viviendas no disponen de un patio amplio para la correcta instalación de la torre, que además es

una de las razones por la que se consideró solo un aerogenerador durante el análisis. La figura

7.47 muestra un ejemplo del espacio necesario para una torre de 20 m de altura.

Figura 7.47. Ejemplo de espacio requerido para un emplazamiento de aerogenerador

El análisis realizado toma como base un consumo energético diario de 5 KWh. Para

usuarios con niveles de consumo mayor es posible pensar en aerogeneradores de mayor potencia

nominal, de tal manera de poder mantener una fracción renovable relativamente alta. Para

optimizar la utilización de un aerogenerador de mayor potencia es recomendable considerar una

torre de mayor altura, es así como por ejemplo para un aerogenerador Bergey de 10 KW de

potencia nominal, el fabricante recomienda la utilización de una torre de 30 metros de altura, con

lo que en la figura 7.45 el radio r puede alcanzar los 18 m.

Page 210: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

198

Por su parte los sistemas basados en arreglos FV son mucho más modulares y pueden ser

instalados con mayor facilidad en los techos de las viviendas, sin embargo para optimizar el

rendimiento de estos arreglos, es necesario, en principio, que la inclinación de los paneles

corresponda efectivamente a la de la latitud del lugar, en este caso 53º, que estén orientados hacia

el norte, y que además no existan obstáculos que proyecten sombras sobre la superficie de los

paneles, como por ejemplo árboles, sobre todo en las horas del medio día que son las horas peak

de generación.

Finalmente después de analizar la situación planteada y dadas las condiciones del

mercado en relación a los costos de adquisición e instalación, además de la inexistencia de

políticas de incentivos adecuadas para su implementación se concluye que actualmente este tipo

de sistemas no es viable económicamente.

7.2.2 Conexión a la red con aerogeneradores de gran potencia en el subsistema eléctrico

Punta Arenas

En este apartado se analizará desde el punto de vista energético la opción de conexión a la

red con aerogeneradores de gran potencia y así contribuir al ahorro de otros tipos de combustible

a la empresa eléctrica.

Los proyectos de redes centrales basados en energía eólica se han vuelto cada vez más

comunes en todo el mundo. En áreas con buenas condiciones de viento, se agrupan

aerogeneradores con gran capacidad de generación para crear un parque eólico con capacidades

en el rango de los multi-MW. El terreno dentro del parque usualmente se puede utilizar para otros

propósitos, como la agricultura entre otras actividades.

Page 211: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

199

Un parque eólico consiste de varios aerogeneradores (los cuales por lo general se instalan

en filas perpendiculares a la dirección del viento), caminos de acceso, interconexiones eléctricas

y subestación, un sistema de monitoreo y control y una edificación de mantenimiento para los

parques más grandes. El desarrollo de un proyecto eólico incluye la determinación del recurso

viento, adquisición de todas las autorizaciones y permisos, diseño y especificación de

infraestructura civil, eléctrica y mecánica, disposición de los aerogeneradores, compra del

equipamiento, construcción y supervisión de la instalación. La construcción involucra preparar el

sitio, construir caminos de acceso, establecer las fundaciones para los aerogeneradores, instalar el

tendido eléctrico, levantar las turbinas, y la construcción de una subestación.

La valoración del recurso eólico y la aprobación para un parque eólico son por lo general

las actividades de mayor duración en el desarrollo de este tipo de proyectos. Esto puede llevar

más de cuatro años en el caso de un gran parque requiriendo un amplio y detallado estudio de

impacto ambiental. La construcción de un parque en sí puede completarse dentro de un año. La

determinación precisa del recurso eólico en el lugar exacto de la instalación del parque es uno de

los aspectos más importantes en el desarrollo de un proyecto de este tipo, ya que una estimación

incorrecta del recurso puede afectar drásticamente los costos de producción de energía. En el caso

de que un estudio de prefactibilidad indique que un proyecto propuesto puede ser factible

financieramente, es recomendable que los realizadores del proyecto consideren por lo menos un

año completo de mediciones en el lugar exacto de la instalación del parque. Para proyectos a muy

pequeña escala (por ejemplo carga de baterías y bombeo), los costos del monitoreo del recurso

pueden actualmente llegar a ser mayores que el costo de comprar e instalar un pequeño

aerogenerador por lo que no se hace recomendable.

Page 212: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

200

7.2.2.1 Situación actual del subsistema eléctrico Punta Arenas

Actualmente la región de Magallanes y Antártica Chilena cuenta con una sola empresa

eléctrica encargada tanto de la generación como de la distribución de la energía eléctrica, la

empresa Edelmag S.A. El parque generador de la empresa para la ciudad de Punta Arenas está

agrupado en dos centrales, la central Tres Puentes y la central Punta Arenas, ambas cuentan solo

con sistemas de generación convencionales a base de turbinas y motores a gas y motores diesel

tal como se muestra en la tabla 7.26.

Central Unidad Marca Cantidad Potencia (KW) Año de fabricación

Turbina a gas Hitachi 1 24000 1975

Turbina a gas Solar 1 13700 2002

Turbina a gas Solar 1 10000 1995

Motor a gas Caterpillar 1 2720 1997

Motor Diésel Caterpillar 1 1500 1997

Tres Puentes

Motor Diésel Caterpillar 2 2920 1993

Total Tres Puentes 7 54840

Punta Arenas Motor Diésel Sulzer 3 4200 1955

Total Punta Arenas 3 4200

Tabla 7.26. Situación actual del subsistema eléctrico Punta Arenas

La producción bruta de energía para Punta Arenas fue durante el año 2003 superior a los

160 GWh, mientras que la demanda máxima fue superior a los 30 MWh., ver figuras 7.48 y 7.49.

Figura 7.48 Producción bruta del sistema

eléctrico Magallanes

Page 213: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

201

Figura 7.49. Potencia instalada versus demanda máxima

7.2.2.2 Parámetros de entrada para la simulación

• Estimaciones de carga: La carga utilizada en el análisis para la ciudad de Punta Arenas

corresponde a una curva estimada y se muestra en la figura 7.51. Se tienen dos

situaciones, una para meses de verano y otra para meses de invierno. La carga en invierno

presenta un peak de 32,7 MW y corresponde al peak anual. El consumo anual de energía

es de aproximadamente 178,54 GWh.

Figura 7.51. Perfil horario de carga utilizado para Punta Arenas

• Aerogeneradores: Los aerogeneradores a considerar para el análisis serán de marca

Vestas modelo V90. Este modelo está disponible en 2 versiones, de 1,8 y de 2 MW de

Page 214: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

202

potencia nominal, en este análisis se utilizará la versión de 2 MW. Dentro de sus

características de operación se tiene una velocidad de viento de partida de 3,5 m/seg, una

velocidad nominal de 11,5 m/seg, mientras que la velocidad de corte de la turbina es de

25 m/seg. La figura 7.52 muestra la curva de potencia de este aerogenerador en sus dos

versiones, de 1,8 y 2 MW. El tamaño de la torre a considerar será de 80 m. Más

información técnica acerca de los aerogeneradores en el anexo G.

Figura 7.52. Curva de potencia de un aerogenerador V90

Sin embargo, se necesita una ecuación que permita simular esta curva de potencia,

existen varias maneras de hacerlo, muchos autores utilizan la ecuación 7.2 para simular la

potencia de salida de un aerogenerador.

≥∧≤≤≤

≤≤−

=)( 0

)(

)(

)(

Fc

FRR

Rckc

kR

kc

k

R

w

vvvvvvvP

vvvvv

vvP

vP (7.2)

Page 215: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

203

Donde PR es la potencia eléctrica nominal del aerogenerador, vc es la velocidad de

partida, vR es la velocidad de viento nominal, vF es la velocidad de corte y k es el

parámetro de forma de Weibull. Una característica interesante de este modelo es que

depende del factor de forma de Weibull, el cual a su vez es una característica del lugar del

emplazamiento del aerogenerador. Utilizando el modelo anterior con los datos del

aerogenerador Vestas V90 y el valor de k = 2,17 determinado en el capítulo 3 se obtiene

la siguiente curva de potencia, figura 7.53.

Figura 7.53. Curva teórica de potencia de salida del Vestas V90

Finalmente respecto a los costos asociados a este aerogenerador, por tratarse de un

modelo de gran potencia su costo de capital se estimará en 1000 US$/KW, con un costo

anual de operación y mantenimiento del 5% de la inversión inicial (ver capítulo 5)

• Recurso eólico: Respecto al lugar del emplazamiento, el sector elegido debe presentar

buenas condiciones de viento, además de encontrarse en las proximidades de la ciudad de

Punta Arenas, de tal modo de reducir los costos por extensión de las líneas de transmisión.

El sector recomendado corresponde a las cercanías del Seno Otway, según los resultados

del estudio cualitativo y según estudios realizados por el CERE/UMAG, teniendo una

Page 216: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

204

distancia de empalme de aproximadamente 40 Km hasta la red actual. En la figura 7.50 se

muestra dicho sector.

Figura 7.50. Vista general del sector del emplazamiento

En base a lo anterior, la información relativa al recurso eólico a considerar corresponde a

la serie de viento horaria para el sector Otway del año 2003 analizada en el capítulo 3. Esta serie

presenta un promedio anual de 8,36 m/seg a 12 metros de altura la cual debe ser extrapolada a la

altura del rotor de 80 metros.

• Red Eléctrica: Los precios de compra y venta de energía de la red serán irrelevantes en

este análisis ya que se abordará el tema desde el punto de vista energético.

El diagrama esquemático de la simulación se muestra en la figura 7.54.

Figura 7.54. Diagrama esquemático de la aplicación macro energética

Page 217: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

205

7.2.2.3 Análisis energético

La tabla 7.27 y figura 7.55 son de importancia, ya que corresponden a la evaluación

teórica de la producción anual de energía para el subsistema eléctrico de Punta Arenas, ante la

presencia de distintas cantidades de aerogeneradores. Al analizar la tabla 7.27, se aprecia que a

medida que aumenta la cantidad de turbinas en la red la fracción renovable comienza a aumentar.

Esto también se aprecia claramente en la figura 7.55 junto con la disminución de producción

energética de la red.

Cantidad de aerogeneradores

Potencia eólica total instalada (MW)

Producción eólica (GWh)

Producción de la red (GWh)

Producción total (GWh)

Fracción renovable (%)

1 2 11,64 166,89 178,53 7

2 4 23,29 155,25 178,54 13

3 6 34,93 143,6 178,53 20

4 8 46,58 131,96 178,54 26

5 10 58,22 120,32 178,54 33

6 12 69,86 108,86 178,72 39

7 14 81,51 98,22 179,73 45

8 16 93,15 88,66 181,81 51

9 18 104,8 79,64 184,44 57

10 20 116,44 71,39 187,83 62

Tabla 7.27. Producción anual de energía para distinta cantidad de aerogeneradores

Otro punto importante a considerar de acuerdo a la tabla 7.27, es que al tener una potencia

eólica instalada de 10 MW al subsistema Punta Arenas, la fracción renovable alcanza el 33%, lo

cual corresponde a un tercio del consumo anual de la ciudad.

0

40

80

120

160

200

2 4 6 8 10 12 14 16 18 20

Potencia eólica instalada (MW)

Pro

du

ccio

n d

e en

erg

ía

(GW

h)

0

10

20

30

40

50

60

70

Fra

cció

n r

eno

vab

le (

%)

Producción de la red Producción eólica Fracción renovable

Figura 7.55. Producción anual de energía para distinta cantidad de aerogeneradores

Page 218: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

206

Finalmente, al observar la figura 7.56, se observa que al superar los 10 MW de potencia

eólica instalada, el exceso de energía comienza a aumentar casi de manera exponencial, por lo

que la presencia de una mayor potencia eólica en la red puede no ser recomendable.

0

2000

4000

6000

8000

10000

2 4 6 8 10 12 14 16 18 20

Potencia eólica instalada (MW)

En

erg

ía (

MW

h)

Figura 7.56. Exceso de energía asociado a potencia eólica instalada

Page 219: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

207

ASPECTOS COMPLEMENTARIOS DE LAS ENERGÍAS EÓLICA Y SOLAR

8.1 Sector Eléctrico chileno

El sistema de abastecimiento eléctrico en Chile consta de cuatro subsistemas: El Sistema

Interconectado Norte Grande (SING), Sistema Interconectado Central (SIC), Sistema Aysén y

Sistema Magallanes [25].

El SING basa su mayor capacidad de generación en centrales térmicas de carbón y gas

natural. Su orientación está íntimamente ligada a abastecer a los proyectos de la Minería de la I y

II Región. El proceso de expansión del SING se consolidó a fines de la década de los 90, cuando

varias centrales de ciclo combinado con gas natural comenzaron a competir con las centrales

térmicas a carbón. A ello se sumó una línea de alta tensión de Salta (Argentina) hacia

Antofagasta (Chile) y la construcción de dos gasoductos para abastecer las centrales de ciclo

combinado.

Por su parte, el SIC cubre desde la III región hasta X región y posee la mayor capacidad

de generación y consumo a nivel nacional. Al igual que en el SING, la introducción del gas

natural y el uso de centrales termoeléctricas de ciclo combinado cambiaron fuertemente este

sistema desde 1997.

Finalmente, en cuanto a los sistemas Aysén y Magallanes, estos tienen una generación de

energía mucho menor. En estos últimos sistemas, los costos de la energía son mayores para el

usuario final. Sin embargo, su ampliación sustentable es necesaria para brindar oportunidades de

desarrollo a estas regiones, en este sentido cabe señalar que el sistema de Aysén es el único que

posee cont ribución de energía a base de aerogeneradores, Central Alto Baguales, con capacidad

de 2 MW de potencia instalada (3 turbinas de 660 KW).

Page 220: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

208

Las características más importantes del sistema eléctrico de Magallanes es que consta de 3

subsistemas que se resumen en la tabla 8.1, en la cual se aprecia que la potencia instalada del

sistema de Magallanes es de 64,7 MW.

Central Unidad Generadora

Cantidad Propietario Tipo Potencia (MW)

T.G. Hitachi 1 EDELMAG S.A. Gas Natural 23,75

T.G. Solar 1 EDELMAG S.A. Gas Natural 10

Caterpillar 2 EDELMAG S.A. Diesel 2,92

Caterpillar 1 EDELMAG S.A. Gas Natural 2,73

Tres Puentes

Solar Titan 1 EDELMAG S.A. Gas Natural 13,7

Punta Arenas Sulzer 3 EDELMAG S.A. Diesel 4,2

Potencia instalada 57,3

M. Waukesha 1 EDELMAG S.A. Gas Natural 1,18

T. G. Solar 2 EDELMAG S.A. Gas Natural 1,5

M. Caterpillar 1 EDELMAG S.A. Diesel 1,46 Puerto Natales

M. F. Morse 2 EDELMAG S.A. Diesel 0,3

Potencia instalada 4,44

M. Waukesha 1 EDELMAG S.A. Gas Natural 0,88

Caterpillar 1 EDELMAG S.A. Diesel 0,92 Porvenir

T. Gas 1 EDELMAG S.A. Gas Natural 1,18

Potencia instalada 2,98

Tabla 8.1. Características principales del sistema eléctrico Magallanes (Fuente http://www.edelmag.cl)

Durante los últimos años, en general en nuestro país, el consumo de energía primaria y el

consumo eléctrico han aumentado a tasas mucho más rápidas que el PIB. Esto se explica por

varios factores, entre los que destaca la masificación de procesos intensivos en el uso de energía

eléctrica, y la intensificación del uso en el sector comercial e industrial. Los sistemas que más se

han visto afectados por esta situación son sin duda alguna el SING y el SIC.

También ha influido la introducción masiva del gas natural en la matriz eléctrica, debido a

la reducción sistemática del precio de nudo. Este precio de nudo considera, en forma ponderada,

tanto el costo de la energía como el costo de la potencia. La evolución del precio de nudo para el

SING y el SIC entre 1982 y 2005 se presenta en las Figuras 8.1a y 8.1b.

Page 221: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

209

Figura 8.1a. Precios de nudo de potencia y

energía del SIC (Fuente: CNE 2005)

Figura 8.1b. Precios nudo de potencia y energía del SING (Fuente: CNE 2005)

En el caso del Sistema eléctrico Magallanes, subsistema Punta Arenas, el precio de nudo

de la energía presenta una leve disminución en los últimos años, la situación se aprecia en la

figura 8.2.

Figura 8.2. Precios de nudo de potencia y energía

del subsistema eléctrico Punta Arenas (fuente: CNE 2005)

Page 222: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

210

Las figuras anteriores muestran el fuerte impacto de la introducción de gas natural a la

matriz energética. Una primera lectura de ellos puede inducir a pensar que este fenómeno es

positivo, desde el punto de vista del consumidor final, sin embargo, esta apreciación puede ser

errónea, ya que en los últimos años este bajo precio de nudo desincentivó a las compañías a

invertir en generación eléctrica, ya que una reducción demasiado fuerte en la tarifa pagada al

generador lo desincentiva a realizar nuevas inversiones.

8.1.1 Precio de la electricidad en Chile

En el tema de generación de energía eléctrica, es necesario distinguir entre energía y

potencia. En el sistema eléctrico chileno se producen los mayores consumos en invierno,

especialmente entre 18:00 y 23:00 horas, conocidas como horas punta, pues se superpone el

consumo doméstico con el consumo industrial. Los precios de nudo para la energía eléctrica se

fijan semestralmente, en los meses de abril y octubre. Su determinación es efectuada por la

Comisión Nacional de Energía (CNE), quien a través de un informe técnico comunica sus

resultados al Ministerio de Economía, Fomento y Reconstrucción, el cual procede a su fijación

mediante un Decreto publicado en el Diario Oficial.

La política de costos reales y la ausencia de economías de escala en el segmento

generación, permiten fijar como precio el costo marginal de suministro, constituido por dos

componentes:

• La energía generada ($/kWh). Es el llamado "precio de nudo de la energía" y se calcula

según donde se inyecte la energía a la red.

• La potencia en punta ($/KW). Este precio se calcula en base al costo marginal de producir

1 KW adicional de potencia disponible en horas de punta. Lo recaudado por este concepto

Page 223: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

211

se utiliza para que el sistema disponga de la capacidad de generación que se utiliza en

horas punta y queda ociosa en horas fuera de este período.

El sistema opera de tal forma que lo recaudado a través de las distribuidoras, por concepto

de la potencia eléctrica demandada por sus clientes (industriales, comerciales y residenciales), se

integra a un fondo que luego es distribuido a las generadoras que contribuyeron a cubrir la

demanda de punta. Es decir, se genera un fondo para cubrir los costos de generación en horas de

punta, esto es el llamado mercado spot.

Los consumos en punta se producen desde mayo a septiembre; sin embargo, el cobro se

aplica durante los 12 meses. Este fondo, que sirve para cubrir las necesidades de punta, significa

un excedente importante sobre el precio nudo, que se reparte conforme a lo que cada empresa

generó para cubrir la necesidad de punta

8.1.2 Subsidios al Sistema Eléctrico

Al igual que otros sectores, el sector eléctrico cuenta con una serie de incentivos o

subsidios. Uno de ellos es discriminar entre potencia de punta y energía consumida. A partir de

ello, todos los usuarios pagan a este fondo, que sirve para mantener la capacidad de generar

energía en horas de punta. Esto se extiende incluso al usuario doméstico, puesto que el sistema

presume que su consumo residencial ocurrirá preferentemente en horas de punta, y ello se refleja

en el precio que paga por su energía.

Adicionalmente, existen otros dos subsidios a destacar. El primero es el subsidio otorgado

por el Programa de Electrificación Rural (PER). Con este mecanismo, para que un sector rural

pueda tener extensión del tendido eléctrico, el Estado debe subsidiar directamente a la empresa

que extiende el servicio, financiando gran parte del costo del proyecto. Con ello se obtiene el

Page 224: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

212

beneficio de llevar energía eléctrica a lugares y familias que no la tenían, pero también supone un

traspaso de recursos del sector público a las empresas privadas.

El segundo, más importante aún, es el trato tarifario que exime de pago de aranceles a las

importaciones de combustibles fósiles (carbón, petróleo o gas natural) para la generación de

energía eléctrica.

En resumen, tenemos un sistema eléctrico que incorpora una serie de incentivos diseñados

para asegurar su estabilidad. Sin embargo, tales mecanismos tienden a favorecer la generación a

gran escala y por combustibles fósiles, la mayoría importados, en lugar de apoyar otras opciones

ambientalmente más amigables y de gran disponibilidad a nivel nacional, como son las ERNC.

8.1.3 Vulnerabilidad del Sector Eléctrico

Un análisis más detallado del sector eléctrico da cuenta de la gran vulnerabilidad del

mismo debido a la fuerte demanda de energía y a la dependencia cada vez mayor de

hidrocarburos, esencialmente gas natural. En el caso del SIC, más del 60% de la generación

termoeléctrica se basa en gas natural mientras que en el caso del sistema Magallanes, la

dependencia es aún más notoria, con un 84,85% en base a gas natural y un 15,15% en base a

Diesel (tabla 8.1 sistema eléctrico Magallanes). La expansión de la oferta de energía contemplada

en el plan de obras de la CNE, también se basa en nuevas centrales termoeléctricas que operan

con dichos combustibles.

El abastecimiento chileno de gas natural depende casi en su totalidad de yacimientos

argentinos. En el caso de la zona central, depende de dos gasoductos de la zona de Neuquén. Pero

la cuenca de Neuquén es la cuenca gasífera con más años de explotación en Argentina y sus

reservas son muy escasas, no superando los 12 a 14 años de vida útil. Una proyección indica que

Page 225: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

213

es muy probable que el abastecimiento de esta cuenca entre en crisis entre el año 2007 y 2010,

como se ilustra en la figura 8.3 [28].

Figura 8.3. Proyecciones de consumo y reservas de gas en Neuquen.

A la fecha se han producido algunas situaciones energéticas de cuidado, debido a la

reactivación económica de Argentina, la cual de continuar en los próximos años provocará que el

abastecimiento se torne extremadamente vulnerable, ya que en el mejor de los casos, si se

interconectan nuevas cuencas, éstas implicarán inversiones adicionales y, por consiguiente, el

costo del gas natural subiría.

En el ámbito mundial, el precio y oportunidad de abastecimiento de los hidrocarburos está

afectado por la concentración de los recursos y situaciones políticas que desencadenan un

mercado de precios altos y volátiles. Las reservas mundiales de petróleo, además, están muy

próximas a alcanzar un punto de producción declinante, que redundará en mercados cada vez más

volátiles, precios en alza y, sobre todo, incertidumbre en la proyección de precios.

Mientras tanto, el sector eléctrico chileno creció a tasas mayores que el producto interno

bruto (PIB) y su programa de expansión se basó principalmente en plantas termoeléctricas que

operan a partir de gas natural, aunque el abastecimiento del mismo es incierto.

Page 226: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

214

En síntesis, el sistema eléctrico, en especial el SIC, está en una etapa muy vulnerable

donde cualquier incremento significativo en la demanda interna o cualquier alteración

hidrológica, pueden evidenciar su incapacidad para afrontar la demanda.

8.2 Mercado internacional de hidrocarburos y su influencia en el sector eléctrico

Chileno

Tal como se ha señalado, los planes de expansión del suministro eléctrico se basan

fundamentalmente en la entrada en operación de nuevas centrales termoeléctricas a gas natural

que operan en ciclo abierto o ciclo combinado. Pero el suministro de gas natural está sujeto a las

siguientes condiciones.

• Precio internacional de hidrocarburos: el gas natural en el plazo mediano tiene un precio en

relación a otros hidrocarburos, en especial el petróleo.

• Situación de demanda interna de Argentina: una mayor demanda de gas natural en Argentina,

producto de la reactivación económica interna, provoca un aumento de precios.

• Nuevas opciones de venta: hasta hace poco, el gas natural tenía un mercado limitado por lo

que se podían extender las tuberías de gas. Hoy se han abierto nuevos mercados a través de la

exportación como gas natural licuado (GNL). Este sistema de exportación a temperaturas

criogénicas será más común mientras aumente la incertidumbre del precio del petróleo y

derivados. La consecuencia lógica es una tendencia al alza de precios del gas natural.

La situación internacional en cuanto a abastecimiento de hidrocarburos está llegando a un

punto que se tornará crítico en los próximos 5 a 10 años. Ya en la década de los 70 se plantearon

argumentos que preveían una declinación en la producción mundial de petróleo, entre 1985 y

Page 227: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

215

1990. Estas predicciones se basaron en reconocidos modelos para prever la declinación de

producción de recursos no renovables, en particular recursos minerales. Los trabajos originales

fueron de Hubbert [29] y todos los análisis independientes actuales confirman, a grandes rasgos,

las conclusiones más importantes de estos estudios.

La producción mundial de petróleo alcanzó un primer peak a fines de la década de los 70

y luego declinó durante la década de los 80, recuperando después su producción creciente. La

razón de este declive radica en la implementación de técnicas más eficientes para el uso de

energía y, sobre todo, la puesta en marcha de centrales que utilizan gas natural (en ciclo

combinado) para la generación de energía eléctrica. De esta manera, el petróleo, que era una

importante fuente de energía para la generación eléctrica, ha sido desplazado por el gas natural.

Se prevé que, a nivel mundial, la producción de petróleo comenzará a declinar entre el 2005 y el

2010 y que la producción total de hidrocarburos (incluyendo gas natural y otros recursos)

comenzará a declinar hacia el 2015, como se aprecia en la figura 8.4 [28].

Figura 8.4. Proyección de la producción mundial de hidrocarburos

Un análisis más detallado de la producción petrolera muestra que en Estados Unidos el

máximo se produjo en 1970, en Europa el año 2000, en Rusia 1990, y los demás países (con la

excepción del Medio Oriente) están muy próximos a entrar en la fase de producción decreciente.

La situación a nivel mundial es tal, que la única zona capaz de resistir un aumento significativo

Page 228: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

216

de la producción es el Medio Oriente. La figura 8.5 muestra la producción de América del Norte

(Canadá, Estados Unidos y México).

Figura 8.5. Proyección para la producción de petróleo en América del Norte

Podría pensarse que la falta de nuevos recursos se compensaría con un mayor esfuerzo en

la exploración o a través de mejores técnicas para la recuperación de petróleo, sin embargo, esto

no es así. Los datos muestran que la producción sobrepasó los nuevos descubrimientos de

hidrocarburos ya en 1980. Entre 1940 y 1980 los nuevos descubrimientos de petróleo siempre

sobrepasaban la producción, pero desde hace 23 años la situación es otra. Literalmente, estamos

funcionando a partir de las reservas acumuladas en el pasado (figura 8.6).

Las investigaciones evidencian que los yacimientos reales por descubrir son marginales,

pequeños y de elevados costos de producción. También demuestran que, en unos 60 años, se

consumió casi la mitad de las reservas de petróleo del planeta, las cuales tardaron varios

centenares de millones de años en acumularse.

La situación implica que en un plazo de 5 a 7 años la oferta de petróleo e hidrocarburos a

nivel mundial se complicará notablemente, donde pueden originarse dos escenarios distintos.

Peak 1985

Page 229: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

217

Figura 8.6. Diferencia entre descubrimiento y reservas

de hidrocarburos a nivel mundia l

En el primer escenario, se logra que la curva de declinación de producción sea

relativamente simétrica con el aumento (el pasado histórico). Para que esto ocurra se debe

desplazar la utilización del petróleo (y otros hidrocarburos) por nuevos energéticos. Esta

situación tendería a llevar a una situación de precios creciente, pero con tendencia al alza

relativamente suave. El segundo escenario es que el consumo mundial se mantenga a niveles

parecidos al actual o siga creciendo. En este caso la declinación de producción será mucho más

rápida que lo que fue el aumento. Un escenario de este tipo implica fuerte inestabilidad en los

precios y fuertes fluctuaciones con tendencias al alza si se siguen simplemente las tendencias

actuales. Este escenario también implica fuertes problemas desde el punto de vista político al

querer los principales consumidores asegurarse un abastecimiento seguro.

El análisis actual indica que es mucho más probable el segundo escenario que el primero.

Solamente los países de la Unión Europea tienen una actitud proactiva en torno al tema, buscando

alternativas al esquema energético actual. Las tendencias indican que el precio del crudo no

bajará al igual que el gas natural. Las figuras 8.7a y 8.7b muestran la tendencia de precios del

petróleo y gas en los últimos diez años.

Page 230: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

218

Figura 8.7a. Evolución de precios del petróleo (Fuente: Nymex)

Figura 8.7b. Evolución de precios del gas natural (Fuente: Nymex)

El análisis anterior demuestra que el crecimiento del sector eléctrico en Chile no puede

estar basado exclusivamente en gas natural. Considerando que las reservas de la cuenca de

Neuquén son limitadas y que entrarán en la fase de producción decreciente en un período no

superior a los 7 años, basar la producción de energía eléctrica en el gas, suponiendo que este

recurso es suficiente para abastecer la demanda, es una hipótesis arriesgada. Ello sin considerar

que Argentina está entrando en un período de recuperación económica que implica aumentar su

demanda interna de gas.

Page 231: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

219

También es claro que, necesariamente, los precios reales de la energía eléctrica tendrán

que subir. Esto revierte la tendencia a la baja en los precios reales de nudo observada desde 1996

(figuras 8.1a, 8.1b, 8.2).

8.3 Barreras de entrada para las ERNC en Chile

El uso de tecnologías de generación con ERNC ha sido uno de los temas recurrentes en la

discusión actual acerca del futuro escenario energético, principalmente por la coyuntura creada a

partir de los recortes de gas argentino y en menor medida por la presión internacional dirigida a

reducir las emisiones de Gases de Efecto Invernadero, especialmente referidas al mecanismo de

desarrollo limpio y al protocolo de Kyoto.

Existen numerosas barreras que dificultan la entrada y desarrollo de estas nuevas

tecnologías. Entre ellas se pueden nombrar:

• Incertidumbre en cuanto a costos reales de inversión y operación de estas tecnologías en

Chile. Esto se supera con la experiencia. Al no haber en marcha proyectos reales de

generación de ERNC no existe una estimación exacta del real costo de un proyecto ni

mucho menos de los costos de operación y mantenimiento a lo largo de la vida útil de un

aerogenerador por ejemplo, que puede ser mayor a los 20 años, teniendo en consideración

que tal como se mencionó en el capítulo 5, estos costos son bajos para los primeros años

de funcionamiento y se incrementan con el tiempo.

• Dificultad de optar por fuentes menos conocidas frente a opciones de generación probadas

y establecidas.

Page 232: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

220

• Precio de la energía procedente de tecnologías convencionales muy bajo. Como se apreció

en las figuras 8.1a y b, el precio de nudo de la energía es bajo debido principalmente a la

entrada del gas a mediados de la década de los 90 por lo que las nuevas tecnologías deben

entrar a competir con estos precios.

• Dificultad para inyectar energía en redes de media o baja tensión. El sistema actual

incentiva la producción de grandes bloques de energía y desincentiva la generación en

pequeña escala. Una de las características de las ERNC es que son modulares, escalables

y de potencia no muy elevada.

• Inexistencia en Chile de un mercado consolidado de ERNC. Al no existir un mercado

nacional consolidado de importación, distribución, o fabricación de aerogeneradores de

baja potencia, o de paneles fotovoltaicos, son pocas las personas o las empresas que

tienen acceso a ellos y optan por invertir en generación distribuida o en autogeneración a

partir de ERNC en lugares remotos. Por otra parte, vemos que las políticas energéticas de

gobierno no incentivan el uso de estas tecnologías a pequeña escala, y por lo mismo se

impide el desarrollo de este mercado.

En Chile, el principal mecanismo planteado para la remoción de estas barreras lo

constituye el PER, el cual debería permitir el ingreso de estas tecnologías en sistemas aislados.

Este mecanismo es insuficiente para incentivar el uso de estas tecnologías ya que la mayoría de

los proyectos apoyados por el PER son extensiones de la red de distribución existente, y el resto

de los proyectos no han tenido el éxito esperado [30]. Actualmente son cuatro las razones

principales que hacen de este mecanismo algo incompatible con el uso de sistemas de generación

autónoma con ERNC:

Page 233: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

221

1. No existe una forma clara de evaluar la proyección de la demanda. Este hecho hace que

sistemas proyectados inicialmente para una determinada potencia colapsen en el mediano plazo

debido a que poblaciones que nunca han tenido energía triplican o cuadruplican su consumo

inicial comprando dispositivos eléctricos que antes no tenían.

2. Poca claridad en cuanto al mantenimiento y reemplazo de baterías. Las baterías de

sistemas de generación autónomos tienen una duración de cinco o seis años, y su reemplazo

significa una inversión importante y significativa, que no se incluye claramente en el precio final

de la energía.

3. Se incentiva el uso de sistemas de generación de baja potencia. El uso de paneles

fotovoltaicos en electrificación rural por ejemplo, permite instalar una insuficiente iluminación y

un par de equipos de radio, pero no permiten en ningún caso el uso de consumos de energía

“productivos” (refrigeración, motores, etc).

4. Ausencia casi absoluta de una política nacional de ahorro y eficiencia energética

Como se mencionó anteriormente, el PER es un mecanismo ideado para extender la red de

distribución eléctrica a localidades rurales. Es necesario, pero no ayuda a incorporar ERNC a la

matriz energética de la forma en que se esperaba. Es más, el uso de estos sistemas provoca un

incentivo mal enfocado ya que al instalar sistemas de generación de baja potencia no sacará en

ningún caso a una población rural de la pobreza, y sólo le darán acceso a iluminación, radio y

televisión. Se puede entonces estar creando índices de electrificación equívocos, al catalogar

como “electrificados” a algunos poblados que jamás lograrán un uso adecuado y completo de la

energía eléctrica si utilizan arreglos FV.

Page 234: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

222

En resumen se puede concluir que las leyes 19940 y 20018 puestas en vigencia el 2004 y

2005 respectivamente, incentivan el uso de las ERNC a gran escala (lo cual por ningún motivo es

un error), pero no a niveles residenciales, lo cual también es necesario a modo de crear un

mercado del rubro y acercar estas nuevas tecnologías a la comunidad, creando a su vez

conciencia sobre el verdadero impacto ambiental de los métodos de generación convencionales, y

evitando una actitud de rechazo por parte de la comunidad hacia proyectos de mayor

envergadura, sin olvidar que como ya se mencionó, la principal característica este tipo de

tecnologías es la de ser modular y escalable a las necesidades propias de cada consumidor.

También, se debe tener en cuenta que los países desarrollados llevan más de 20 años

trabajando en el desarrollo de la ERNC y nuestro país lleva solo unos pocos años, por lo cual no

se puede esperar que todos los aspectos legales estén funcionando adecuadamente y como se

mencionó anteriormente, esto se supera solo con experiencia, lo que no quita que se puedan

adoptar y adaptar modelos de otros países a nuestra realidad y poder desarrollar estas tecnologías

mas rápidamente.

8.4 Experiencia internacional en ERNC

8.4.1 Experiencia de otros países

El uso de las ERNC, como ya se mencionó, ha sido hasta ahora territorio de países

desarrollados, debido principalmente a su elevado costo inicial. Los países que han logrado

alcanzar niveles importantes de penetración de ERNC en sus matrices energéticas son contados y

se puede citar algunos pocos ejemplos exitosos, donde destacan especialmente Dinamarca (16%

de su matriz energética es renovable), Alemania (3,6%) y España (3,4%).

Page 235: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

223

En la figura 8.8 se aprecia claramente como los países pertenecientes al G7 tienen una

inversión en investigación y desarrollo (I&D) respecto al producto geográfico bruto (PGB)

mucho más elevado en comparación con Chile, que para el período 1981-2002 presenta un

porcentaje promedio del PGB destinado a I&D de 0,53% mientras que el G7 presenta un

promedio de 2,14% en igual período.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001

Año

Po

rcen

taje

del

PG

B

dest

inad

o a

I&D

(%

)

Chile Alemania Canadá Francia

Italia Japón Reino Unido E.E.U.U.

Figura 8.8. Porcentaje del PGB destinado a I&D de Chile y países pertenecientes al G7

Algunos ejemplos de países que han logrado buenos resultados en materia de ERNC son

los siguientes.

Alemania: Retribución de la electricidad obtenida en tierra a partir de la energía eólica.

La electricidad obtenida a partir de la energía eólica tiene una retribución especial durante 20

años. Durante este período, existen dos tarifas de retribución diferentes, una alta que se aplica

entre 5 y 12 años, según el rendimiento del parque respecto a uno de referencia y otra tarifa

básica para el resto de los años hasta completar los 20 años de validez.

• Tarifa alta 8,7 c€/KWh

• Tarifa básica 5,5 c€ /KWh

Page 236: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

224

La retribución se reducirá un 2% cada año. Se favorece la sustitución de parques antiguos

por otros de al menos 3 veces más de potencia, extendiéndose un 25% mas, el período de

retribución a tarifa alta.

El otro recurso importante que ha tenido apoyo, aunque más tardío, es el de la energía

solar, con el programa “100 mil techos” en que se crearon más de 65.000 sistemas fotovoltaicos

con una capacidad instalada de 342 MW. El programa fue en un principio incentivado por

ofrecimientos de préstamos a diez años sin interés, y se enfocaba mayoritariamente en sistemas

que se instalaban en viviendas, por lo que no se hacía un pago por capacidad. Sin embargo,

recientemente el acta de energías renovables del 2004 indica como pago base 45,7 c€/KWh para

la energía extraída de sistemas fotovoltaicos en centrales campestres. Hay pago extra

dependiendo del sistema, por ejemplo si es que se instala en paredes en vez de techos. Debido al

apoyo del gobierno y los incentivos a largo plazo, Alemania tiene mayor capacidad eólica

instalada que cualquier otro país. Además, para el fin del año 2004, Alemania fue el segundo

productor de sistemas fotovoltaicos y primer instalador en el mundo [31].

España: En países como España según la ley del sector eléctrico de 1997, cualquier

persona física puede convertirse en productor de energía eléctrica. La venta de energía generada

por fuentes procedentes de recursos renovables está regulada por el RD 436/2004, que establece

las primas económicas a recibir. Por ejemplo, para energía fotovoltaica de potencia nominal

inferior a 100 KW, la prima a recibir es de:

− 575 % de la tarifa eléctrica de referencia media durante los primeros 25 años. La tarifa

eléctrica media o de referencia (TRM) se establece como relación entre los costos

previstos necesarios para retribuir las actividades destinadas a realizar el suministro de

energía eléctrica y la previsión, para el mismo período considerado, de la demanda en

consumidor final determinada (RD 1432/2002).

Page 237: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

225

− 460% de la TRM a partir del año 26.

Para el 2005, la TRM fue fijada en 7,33 c€, de modo que por cada KWh vertido a la red,

se reciben 42,14 c€. Esta tarifa la regula anualmente el gobierno, y se debe tener en cuenta para el

cálculo de los ingresos anuales durante la vida útil de la instalación. Sin embargo, respecto a lo

que se conoce como net metering, en España está prohibido. De este modo, o se consume toda la

energía generada mediante la instalación FV o se vende en su totalidad a la red. Los sistemas FV

conectados a la red representan actualmente la opción más utilizada, frente a los sistemas

aislados.

En la actualidad, cerca del 60% del mercado FV español corresponde a sistemas

conectados a red, siendo la potencia instalada en 2004 del 90%, frente a sólo un 10% de sistemas

aislados, lo que refleja un crecimiento bastante acentuado.

Este crecimiento no sólo se debe a la aparición del sistema de primas comentado, sino

también a los programas de ayuda al financiamiento, tanto a escala autonómica como estatal. En

la tabla 8.2 se aprecian la tarifa, incentivos y primas para sistemas conectados a la red.

Sistema Potencia Tarifa (%) Incentivo (%) Prima (%)

Eólico <5MW 90 (primeros 15 años) 80 (después de 15 años)

10 40

Fotovoltaico <100KW 575 (primeros 25 años) 460 (después de 25 años)

- -

Fotovoltaico >100KW 300 (primeros 25 años) 240 (después de 25 años) 10 250 (primeros 25 años)

200 (después de 25 años)

Tabla 8.2. Tarifas, incentivos y primas de España de los sistemas ERNC. Nota: los porcentajes son respecto a la tarifa de referencia media (Fuente: RD 436/2004)

Estados Unidos: En este país se utiliza el concepto de Net metering planteado en el

capítulo 7, donde alrededor de 30 estados ofrecen esta opción, con diferentes tipos de incentivos

incluyendo el financiamiento en la compra de equipos. Por ejemplo, en Arizona para

instalaciones fotovoltaicas residenciales conectadas a la red, el Salt River Project (SRP) ayuda a

Page 238: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

226

financiar parte de la instalación con un pago de 3000 US$/KWp, hasta los 3 KWp (US$ 9000).

De esta manera se incentiva a los consumidores residenciales a invertir en este tipo de proyectos.

La tabla 8.3 es un ejemplo de cómo funcionan estos incentivos en el estado de Arizona, donde

para una instalación de 1 KWp el usuario puede llegar a pagar menos del 50% de la instalación.

Tamaño del sistema (KWp)

Costo típico (US$)

Bonificación del sistema (US$)

Crédito de impuesto

(US$)

Monto a pagar por

dueño (US$) 1 7000 3000 1000 3000

2 14000 6000 1000 7000

3 21000 9000 1000 11000

Tabla 8.3.Incentivos para instalaciones FV en el estado de Arizona, EEUU. (Fuente: http://www.wind-works.org)

A continuación se mencionaran un conjunto de iniciativas internacionales en el ámbito de

las ERNC con el objeto de plantear algunas referencias en este campo [30]:

Compra de energía (Feed in Tariffs): las distribuidoras son obligadas a comprar toda la

energía generada por fuentes renovables a un precio previamente fijado por el gobierno, que

depende de la tecnología de generación utilizada. Este es el mecanismo más común para

incentivar el uso de las energías renovables en la Unión Europea, y fue introducido inicialmente

con mucha fuerza en Alemania y Dinamarca, para ser posteriormente adaptado con algunas

variantes en España, Holanda, Bélgica, Irlanda, Grecia y Finlandia, por nombrar algunos países.

En el Reino Unido, se ha reemplazado este mecanismo por las “obligaciones de compra”

(Renewable Obligations), donde se les impone a las Distribuidoras de Electricidad comprar un

porcentaje de su energía de fuentes renovables, sin fijar el precio, pero con una elevada multa en

caso de no cumplimiento.

Impuestos específicos: En países como Dinamarca y el Reino Unido, se ha agregado un

impuesto específico a todas las tecnologías de generación. Dicho impuesto (1,3 c€/kWh en

Page 239: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

227

Dinamarca y 0,12 c€/kWh en el Reino Unido) se le descuenta a todos los compradores que

obtienen energía de fuentes renovables.

Sistemas de reducción de intereses: este mecanismo está siendo exitosamente utilizado

en España, y se basa en fondos destinados a subsidiar las tasas de interés para créditos orientados

a realizar inversiones en proyectos con energías renovables. Los proyectos, de acuerdo a sus

características técnicas y económicas, pueden optar desde un 1% hasta un 5% de reducción de

intereses anuales, lo que disminuye el riesgo asociado a la inversión en estas tecnologías.

Sistemas de subsidio a la inversión: Se entrega un subsidio directo a un porcentaje de la

inversión inicial correspondiente a proyectos relacionados con energías renovables. Grecia

subsidia hasta el 35% de la inversión en generación eléctrica renovable (dependiendo de la

tecnología utilizada) y hasta un 75% para sistemas de calentamiento de agua con energía solar.

Finlandia por su parte subsidia cerca del 30% de la inversión inicial para sistemas de generación

eólicos.

8.5 Aspecto Ambiental

Este punto está enfocado principalmente a la energía eólica ya que la mayoría de estos

proyectos requieren un Estudio de Impacto Medio Ambiental bajo la ley del país donde se esté

diseñando, para que permita ver los detalles completos de costos y de ventajas ambientales de un

proyecto que estará bajo dominio publico. Aunque la energía eólica es una tecnología limpia, no

está libre de impactos en el ambiente. Los principales puntos son [13]:

Impacto Visual: Una vez que se instala un aerogenerador o un parque eólico, estos pasan

a ser parte del entorno, y tienen un impacto en la armonía del ambiente. Las actitudes hacia ellos

dependerán de los juicios estéticos de belleza y diversidad, que son aspectos subjetivos. La

Page 240: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

228

consulta y aceptación de las comunidades locales son esenciales, especialmente en áreas rurales

donde existe un valor particularmente alto por la tranquilidad y belleza del paisaje. Al planificar

proyectos eólicos se recomienda evitar áreas con designaciones protegidas, o zonas de interés

turístico. Para mantener la aceptación pública, los parques eólicos necesitan ser diseñados de tal

manera de reducir al mínimo el impacto visual que puedan provocar.

Emisiones de sonidos: Los nuevos diseños de aerogeneradores han mejorado a tal punto

en que el ruido mecánico es insignificante, así que actualmente el problema es el ruido

aerodinámico de las aspas. Para un aerogenerador de 1 MW a una distancia de 300 m, el nivel de

sonido previsto sería 45 decibeles (DB). El ruido de las turbinas es enmascarado generalmente

por otros sonidos en el ambiente tales como el movimiento de árboles u otros cuando nos

acercamos a zonas de tipo industrial o urbano.

Aves: Las colisiones de las aves con los aerogeneradores han sido un tema para los

primeros emplazamientos de parques eólicos, especialmente el Paso Altamont en California,

donde un estudio indica que los principales factores son la ubicación, la antigüedad de los

aerogeneradores y la tecnología de la torre. Las experiencias subsecuentes en Alemania y

Dinamarca demuestran que tales efectos se pueden evitar por práctica responsable de la

planificación.

En los Estados Unidos, un estudio en 2001 estimaba un promedio de 2,2 muertes de aves

por cada aerogenerador. Se estima que entre 100 y 1000 millones de aves pueden morir cada año

en los EEUU por chocar con los vehículos, los edificios, las líneas de energía y otras estructuras.

Estas fatalidades representan entre 0,01 - 0,02% de las fatalidades anuales en los EEUU. En

España, un estudio en la provincia de Navarra demostró que 0,13 aves habían muerto por turbina

cada año.

Page 241: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

229

El impacto para las aves se debe poner en contexto, el 99% de las amenazas de la aves

están relacionados con los humano, desde la pérdida del hábitat a la industrialización, de la

explotación excesiva de recursos naturales, la caza, el comercio del animal doméstico, la

contaminación, etc. La pérdida del hábitat es la amenaza más grande para las aves, y el 12% de

las especie de aves del mundo 9800 hacen frente a la extinción.

Construcción: En el caso de parques eólicos el proceso de la construcción toma

generalmente algunas semanas dependiendo del tamaño del proyecto. Una vez que se ha

completado la construcción, aparte de las vías de acceso, el rubro agrícola pueda reasumir su

actividad hasta las bases de un aerogenerador. Entre 1% - 3% del parque eólico en un área es

utilizada por las turbinas, y entre el 97% - 99% de la tierra está disponible para otras aplicaciones.

Es evidente que las fuentes renovables de energía son mucho más benignas que las

tradicionales pero como toda actividad humana, generan un impacto ambiental perceptible. El

propósito de esta sección es informar sobre las principales implicancias ambientales de la

obtención de energía por medio de fuentes alternativas renovables. Obviamente no se pretende

estar en contra de la evolución, investigación y el desarrollo de nuevas fuentes de obtención de

energía más amigables con el entorno, pero parece que en un futuro cercano, cuando se empiecen

a implementar en mayor medida, tomará prioridad la discusión sobre las ventajas y desventajas

ambientales que ocasionarán estos parques eólicos.

8.6 Principales beneficios de la obtención de energía eléctrica de fuentes renovables

8.6.1 Reducción de emisiones gaseosas

El principal beneficio ambiental de las energías renovables es que reducen las emisiones

de gas provenientes de la combustión de residuos fósiles. Actualmente hacen que, 1500 millones

Page 242: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

230

de toneladas de dióxido de carbono no lleguen a la atmósfera y también producen una reducción

no cuantificada de los gases promotores de la lluvia ácida: dióxidos de azufre y nitrógeno.

En el Protocolo de Kyoto adoptado en diciembre de 1997 en la Tercera Conferencia de las

Partes de la Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMNUCC),

se adoptó el compromiso de reducir las emisiones totales de 6 gases de efecto invernadero (GEI):

Dióxido de carbono (CO2); metano (CH4) y óxido nitroso (N2O); además de los tres gases

fluorados: Hidrofluorocarbonos (HFC); perfluorocarbonos (PFC) y hexafluoruro de azufre (SF6))

en al menos un 5,2% por debajo de los niveles de 1990 entre el período 2008 – 2012.

El monto de reducción total que deberá alcanzar la UE es de 338 millones de toneladas de

GEI para el 1er período de compromiso. Los mayores niveles de reducción, en términos

cuantitativos, deberán ser afrontados por Luxemburgo, Alemania y Dinamarca. Contrariamente,

algunos países como Portugal, Grecia y España pueden aumentar considerablemente sus

emisiones (27, 25 y 15% respectivamente), tal como se aprecia en la tabla 8.4 [32] .

País Emisiones en 1990 (millones de toneladas)

Millones de toneladas a reducir o aumento permitido

Porcentaje de reducción o aumento permitido

Luxemburgo 13,45 -3,77 -28

Alemania 1222,77 -256,78 -21

Dinamarca 69,36 -14,57 -21

Austria 77,69 -10,06 -13

Reino Unido 742,49 -92,81 -12,5

Bélgica 142,74 -10,71 -7,5

Italia 520,57 -33,84 -6,5

Holanda 210,34 -12,62 -6

Finlandia 77,09 0 0

Francia 559,34 0 0

Suecia 70,57 2,82 4

Irlanda 53,70 6,98 13

España 286,43 42,96 15

Grecia 104,90 26,22 25

Portugal 64,95 17,54 27

Total 4216,38 -338,62

Tabla 8.4. Distribución de la carga de reducción de emisiones de la Unión Europea

Page 243: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

231

El Protocolo de Kyoto junto con autorizar la compra y venta de derechos de emisión entre

países desarrollados, autoriza lo que se llama mecanismos de desarrollo limpio (MDL). Esto

significa básicamente que naciones industrializadas pueden inve rtir en tecnologías de desarrollo

limpio en países en vías de desarrollo y obtener así créditos de emisiones adicionales.

Los mecanismos de desarrollo limpio tienen dos ventajas. Por un lado, contribuyen a que

los países del tercer mundo se desarrollen usando tecnologías más limpias; y por el otro, les

permiten a compañías de naciones industrializadas optar por desarrollar sus proyectos en países

en desarrollo, lo que les abarata mucho los costos. A cambio de su inversión, las compañías de

las naciones desarrolladas reciben bonos de carbono que les permiten emitir más en su país de

origen.

Los bonos de carbono son un mecanismo internacional de descontaminación para reducir

las emisiones contaminantes al medio ambiente. Un bono de carbono representa el derecho a

contaminar emitiendo una tonelada de dióxido de carbono.

El sistema ofrece incentivos económicos para que empresas privadas contribuyan a la

mejora de la calidad ambiental y se consiga regular la contaminación generada por sus procesos

productivos, considerando el derecho a contaminar como un bien canjeable y con un precio

establecido en el mercado. La transacción de los bonos de carbono permite mitigar la generación

de gases contaminantes, beneficiando a las empresas que no contaminan o disminuyen la

contaminación y haciendo pagar a las que contaminan más de lo permitido.

Tal como otros mercados financieros medioambientales que han surgido en los últimos

años, el mercado de bonos de carbono de la Unión Europea busca que los sectores energía e

industrial limiten sus emisiones de CO2 por medio de la asignación de derechos de emisión. La

meta es que dada la escasez de permisos y la libertad de las empresas para comprar o vender

Page 244: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

232

bonos, lentamente irá surgiendo un nuevo mercado, y como consecuencia contaminar ya no será

gratis.

La finalidad de esta estrategia, es que las compañías que no requieran de todos sus

permisos (porque son eficientes en el uso de la energía o porque usan tecnologías limpias) podrán

vender sus bonos de carbono en el mercado. En tanto, las compañías que necesiten exceder sus

cuotas podrán comprar bonos adicionales. Cualquier empresa que sea descubierta emitiendo más

de lo que los permisos la autorizan será multada.

Entre el 2005 y el 2008, el mercado cubrirá alrededor de 12.000 instalaciones industriales

en Europa, las cuales representan cerca de la mitad de las emisiones europeas de CO2.

Básicamente las industrias reguladas son las plantas de combustión, refinerías de petróleo,

plantas metalúrgicas y de acero, y fábricas de cemento, vidrio, cal, ladrillos, cerámica, pasta y

papel.

En Chile, la ley de bonos de descontaminación tiene el carácter marco, es decir, en un

número relativamente pequeño de disposiciones se concentran las bases para la aplicación de

Sistemas de Bonos de Descontaminación en las distintas zonas del país.

La modalidad que se preferirá en cada uno de los Sistemas de Bonos de

Descontaminación se determinará en función de las características propias de cada cuenca, el

recurso a proteger o el tamaño del mercado, entre otras consideraciones. Un Reglamento General

especificará aspectos técnicos relativos a la Ley, mientras que los Decretos de Aplicación

determinarán el diseño específico del Sistema de Bonos de Descontaminación en cada zona

geográfica.

Page 245: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

233

8.6.1.1 Tipos de bonos de descontaminación en Chile

Puro y simple: No se requiere certificar la reducción de emisiones previamente a la

generación del bono de descontaminación, sino que periódicamente, según determine la

autoridad, se deberá demostrar que las emisiones han tenido suficiente respaldo en cupos.

De certificación previa: El titular de una fuente que desea generar un bono para su venta, deberá

certificar la reducción de emisiones antes de la inscripción del bono en el Registro de Bonos,

Prohibiciones y Caduc idades.

Fuentes Voluntarias: Corresponden a fuentes emisoras que existen en una zona geográfica

pero que no están reguladas bajo el Sistema de Bonos de Descontaminación. No obstante, pueden

incorporarse voluntariamente a él, si es que desean reducir sus emisiones y ofrecerlas en el

mercado de bonos de descontaminación.

Sumideros: Corresponde a todo aparato, actividad o proceso, natural o antropogénico, que

captura o abate contaminantes ya presentes en el medio ambiente o disminuye la emisión de

aquellos contemplados en un Sistema de Bonos de Descontaminación; siempre que esta captura,

abatimiento o disminución sea verificable y cumpla los demás requisitos establecidos en la ley y

su reglamento. Algunos proyectos MDL en Chile se muestran en la tabla 8.5.

Proyecto Región Tipología

Nestlé Graneros VI Cambio de combustible

Agrosúper VI Recuperación de Metano industria pecuaria

Chacabuquito - Hidráulica de pasada

Watts RM CNG Cogeneración

Millalemu VIII Reforestación

Hornitos VI Hidráulica de pasada

Valdivia X Biomasa de Cogeneración

La Higuera VI Hidráulica de pasada

El Molle V Recuperación de Metano de RSD

Cosmito VIII Recuperación de Metano de RSD

Copiulemu VIII Recuperación de Metano de RSD

Tabla 8.5. Proyectos MDL aprobados en Chile (Noviembre 2005)

Page 246: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

234

8.6.2 Mejoras en la calidad y el acceso al agua potable

En muchas regiones del planeta la falta de agua potable es un problema sustancial para las

poblaciones que allí habitan, los problemas se deben a la escasez o a la falta de medios de acceso

al agua potable.

Los emprendimientos hidroeléctricos pueden proveer fuentes de agua, las pequeñas

turbinas de viento hace años que se utilizan para bombear agua subterránea, la siembra de

cultivos con valor energético, particularmente en áreas sobre explotadas, pueden reducir la

erosión del suelo y además requieren menos agroquímicos que los cultivos tradicionales.

8.6.3 Recuperación de tierras degradadas

El cultivo de especies con alto valor energético en tierras degradadas por sucesivas

prácticas agrícolas previas ayuda a recuperar las condiciones del suelo.

8.6.4 Reducción de la contaminación atmosférica ocasionada por el transporte

El Transporte urbano contribuye tanto a las emisiones nacionales atmosféricas como

también a los problemas locales de calidad del aire. El uso de fuentes de energía renovables

reduciría la polución urbana atmosférica, esto también ocurriría si todas las unidades utilizaran

como fuente energía eléctrica.

8.6.5 Distribución de Electricidad

Como las fuentes renovables de energía tienen la característica de estar muy distribuidas

en diferentes regiones, ya que cada región tiene características ambientales diferentes y por ende

Page 247: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

235

diferentes recursos energéticos para aprovechar, esto hace que se reduzca la necesidad de

desarrollo de nuevos sistemas de distribución de energía eléctrica y la construcción de nueva

infraestructura para transportar dicha energía, reduciendo relevantemente los impactos

ambientales negativos de la distribución de energía.

8.6.6 Beneficios Socioeconómicos

Dentro de los muchos beneficios socioeconómicos se pueden nombrar los siguientes:

− Diversificación y continuidad del suministro de energía, aumento de las

posibilidades de la estabilidad del precio.

− Provisión de oportunidades de trabajo en áreas rurales, minimizando la

urbanización.

− Promoción de la descentralización de los mercados energéticos.

− Ayuda al desarrollo económico de diferentes regiones por la reducción de la

importación de combustible.

− Aceleración de la llegada de electricidad a comunidades rurales en países en

desarrollo

8.7 Situación Actual y Futura de las ERNC

Actualmente los aspectos más importantes a considerar sobre las energías renovables

pueden ser que muchos países que han firmado el protocolo de Kyoto (aunque este no se haya

llevado a la práctica todavía) intentarán cumplir los retos que este propone, uno de estos retos es

llegar a emitir la misma cantidad de CO2, en los años 2008 – 2012 que emitían en el año 1990.

Page 248: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

236

La única forma de lograr esto es mediante el incremento del uso de energías renovables, o

la creación de nuevas fuentes.

A pesar de la joven etapa de desarrollo en que se encuentran las energías renovables, en la

actualidad muchas de estas se están volviendo competitivas con respecto a las fuentes

tradicionales en algunos mercados. Hay que tener en cuenta que los costos de la generación

convencional de energía no incluyen los costos ambientales. Estas externalidades deberían ser

internalizadas y en ese caso la competitividad de la obtención de energía proveniente de fuentes

renovables sería mucho mayor.

En muchos casos las objeciones a las energías renovables están basadas en el poco

conocimiento que se tiene sobre ellas, por lo que surge la necesidad general de educar a la

población en temas energéticos más específicamente en renovables.

En un futuro no muy lejano la demanda global de energía va a crecer significativamente,

por el aumento de la población mundial. Si esta demanda se cubre en su totalidad con fuentes de

energía tradicionales se producirán grandes daños al ambiente. Por lo que en el futuro deberán

desarrollarse mayormente las energías renovables para complementarse a las energías

convencionales. Actualmente las energías renovables proveen aproximadamente el 20% del total

de la energía primaria eléctrica, según datos del World Energy Council (WEC), pero se espera

que este porcentaje aumente de manera considerable, por lo que se tendrán más en cuenta los

impactos ambientales de estas formas de obtener energía.

Por lo que se sabe en la actualidad sobre los impactos ambientales de las energías

renovables, estos son reversibles, de incidencia local, y pueden ser atenuados con algunos

métodos conocidos que deberán ser aplicados para minimizar estos impactos.

Page 249: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

237

8.8 Mecanismos actuales de fomento de las ERNC en Chile

Hasta hace poco el único medio de fomento de las ERNC era el PER, sin embargo esta

situación ha empezado a cambiar debido a la puesta en marcha de las Leyes Nº19.940 [33] y

20.018 [34] comúnmente llamadas Ley Corta I y II respectivamente. Estas leyes aprobadas en

Marzo 2004 y Mayo 2005 respectivamente, abren las puertas del mercado eléctrico chileno a los

medios de generación basados en ERNC, mediante una serie de medidas, entre las cuales

destacan las siguientes:

• Obligación de permitir la conexión de pequeños medios de generación basados en

ERNC.

• El derecho a vender la energía proveniente de los pequeños medios de generación

basadas en ERNC que se inyecte al sistema.

De lo anterior surge la necesidad de algún incentivo para motivar el desarrollo de estos

sistemas, uno de estos incent ivos es la liberación del pago de peaje por el uso de las líneas en los

sistemas troncales.

Para entender un poco mejor lo que sucede en Chile, se realizará una interpretación del

recientemente publicado reglamento para medios de generación no convencionales y pequeños

medios de generación establecidos en los artículos 71º-7 y 91º de la Ley General de Servicios

Eléctricos [35].

Este reglamento se aplica en general a todas las empresas que posean medios de

generación conectados y sincronizados a un sistema eléctrico y que se encuentren en alguna de

las siguientes categorías (Art. 1):

Page 250: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

238

a) Pequeños medios de generación distribuidos (PMGD): son aquellas que tienen excedentes

de potencia menores o iguales a 9 MW y que están conectadas a una empresa

concesionaria de distribución, o a instalaciones de una empresa que posea líneas de

distribución de energía eléctrica que utilicen bienes nacionales de uso público.

b) Pequeños medios de generación (PMG): Son aquellos medios que tienen excedentes de

potencia inferior o igual a 9 MW conectados a instalaciones pertenecientes a un sistema

troncal, de subtransmisión o adicional.

c) Medios de generación no convencionales (MGNC): Son aquellos medios de generación

cuya fuente sea no convencional, y su excedente de potencia suministrada al sistema sea

inferior a 20 MW.

Otro punto importante a considerar, es que el reglamento establece que un MGNC debe

ser tratado legalmente como PMGD o un PMG según corresponda.

Para efectos de identificar a un MGNC, el reglamento establece la siguiente clasificación

(Art. 60):

a) Energía hidráulica de cursos de agua: Energía potencial y cinética del agua obtenida por

medio de centrales hidroeléctricas de potencia inferior a 20 MW.

b) Energía geotérmica: Corresponde a aquella que se obtenga del calor natural de la tierra,

que puede ser extraída del vapor, agua, gases, excluidos los hidrocarburos, o a través de

fluidos inyectados artificialmente para este fin.

c) Energía solar: Energía obtenida en forma directa de la radiación solar.

d) Energía eólica: Energía cinética del viento.

e) Energía de los mares: Toda forma de energía hidráulica producida por el movimiento de

las mareas, de las olas, y de las corrientes, así como cualquier otra forma de energía

proveniente de los mares.

Page 251: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

239

f) Energía obtenida de la biomasa: Es aque lla obtenida de cualquier tipo de materia orgánica

y biodegradable de origen vegetal o animal, que puede ser usada directamente como

combustible o convertida en otras fuentes energéticas líquidas o gaseosas antes de la

conversión.

El reglamento también establece (Art. 62, 63, 64) que la Comisión nacional de Energía

posee la facultad de considerar como MGNC a otras fuentes energéticas no incluidas en la

clasificación anterior, siempre y cuando estas acrediten un bajo impacto ambiental y contribuyan

a la seguridad del abastecimiento energético, todo esto previa presentación de informes. En lo

que se refiere al acceso a las redes eléctricas, ya sea a redes de distribución de empresas, o a

sistemas troncales, se establece la obligación de permitir el acceso a estas (Art. 7,9), previo

consenso técnico entre el interesado y la empresa distribuidora, o el CDEC, según se trate de un

PMGD o un PMG (Art. 15 a 28 y 49).

Respecto a los costos de la obras adicionales que sean necesarias para permitir la

inyección de excedentes de potencia de los PMGD o PMG deberán ser ejecutas por las empresas

distribuidoras o CDEC según corresponda y sus costos serán de cargo de los propietarios de los

PMGD o PMG. (Art. 8).

Dentro de los más importante de este reglamento en primer lugar se establece que los

propietarios de lo PMGD que además sean MGNC estarán exceptuados del pago total o una

porción de los peajes por el uso que las inyecciones de esos medios de generación hacen de los

sistemas de transmisión troncal (Art. 43 y 65 a 69). Y en segundo lugar se determina que los

propietarios de los medios de generación señalados en el Articulo 1, tienen derecho a vender la

energía que evacuen al sistema al costo marginal instantáneo, así como su excedente de potencia

al precio de nudo de la potencia, debiendo participar en las transferencias de energía y potencias

establecidas en la ley (Art. 2).

Page 252: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

240

CONCLUSIONES

Del trabajo realizado se pueden obtener varias conclusiones en los distintos ámbitos de las

ERNC, tales como energético, económico, y barreras de entrada que actualmente existen en Chile

para estas tecnologías. Las siguientes corresponden a las conclusiones más relevantes.

En lo que se refiere al recurso eólico, de los resultados del estudio de potencial realizados

tanto para Punta Arenas como para el resto de la región, se concluye que en Magallanes los

meses que presentan un mayor potencial son los meses de Primavera-Verano. En el caso

específico de Punta Arenas, la mayoría de estos meses superan los 5 m/seg de promedio mensual.

El mes de Noviembre presenta además el promedio de velocidad mensual más alto del año que

corresponde a 5,98 m/seg, además de alcanzar la velocidad más alta en todo el año, que

corresponde a un peak promedio de aproximadamente 8,11 m/seg.

Las tendencias mensuales se mantienen prácticamente para toda la región pero con

promedios anuales de velocidad de viento mayores, pudiendo encontrar sectores con un promedio

anual por sobre 9 m/seg a 50 m de altura (específicamente Tierra del Fuego) lo que se traduce en

una densidad de potencia que borde 1 KW/m2. También se observa que si se recorre el mapa de la

región de Norte a Sur, se aprecia cómo la velocidad promedio anual de cada sector aumenta

desde aproximadamente 7,2 m/seg a casi más de 9 m/seg.

Respecto al caso particular de la ciudad de Punta Arenas, hay que considerar que uno de

los factores más críticos es la existencia de un microclima para la ciudad debido a la cercanía de

cerros con alturas que pueden superar los 600 metros, un factor muy importante ya que la

dirección predominante de viento para Punta Arenas es la Oeste, por lo que la presencia de los

cerros antes mencionados contribuye con un efecto de sombra sobre la ciudad, haciendo que las

Page 253: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

241

mediciones de velocidad de viento provenientes de estaciones meteorológicas ubicadas dentro de

la ciudad sean menores que las registradas en los alrededores de la misma.

Con relación al recurso solar se tiene que el máximo valor para la ciudad de Punta

Arenas, se encuentra al mediodía entre las 12:00 y 14:00 horas, un dato interesante a considerar

para cualquier proyecto basado en esta tecnología. También se concluye que el mes con mayor

radiación solar en un plano horizontal es Enero con promedio de 218,10 (W/m2) y el de menor

valor es Junio con un promedio de 15,20 (W/m2). Si bien los promedios mensuales de radiación

global en un plano inclinado parecen ser bajos, cabe destacar que estos valores son similares a los

promedios mensuales de la ciudad de Hamburgo, Alemania, siendo este país uno de los mas

desarrollado en materia de ERNC.

Respecto al potencial solar se observa que los meses que presentan un mayor potencial

son los de primavera-verano, en donde el 50% de los meses supera la media del período, siendo

este un valor mensual de 185,37 (W/m2). Para la región se aprecia que el mes de mayor potencial

solar es el de Diciembre. También se observa que si se recorre el mapa de la región de Norte a

Sur y de Oeste a Este, se ve cómo los valores de mayor radiación se concentran en el sector

Sureste específicamente cerca de Tierra del Fuego.

En relación al recurso solar, para lograr un mejor aprovechamiento de este, se debe

orientar el arreglo FV hacia el Norte con un ángulo de inclinación que puede ser tanto fijo como

variable. El ángulo de inclinación del arreglo FV debe ser 53º orientado hacia Norte, para la

situación de un arreglo FV fijo, mientras que para la opción de un arreglo FV con ángulos de

inclinación variables se tiene para cada mes un valor óptimo, como se vió en el capítulo 4.

Respecto a las aplicaciones de las ERES en la Región de Magallanes, existen diferentes

áreas de desarrollo, abarcando desde sistemas aislados de baja potencia en sectores rurales para

Page 254: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

242

autosuministro hasta grandes aplicaciones como la conexión a la red con aerogeneradores de gran

potencia. En relación a los sistemas aislados de baja potencia, los resultados del capítulo 7

demuestran que desde el punto de vista energético estos sistemas son factibles de realizar debido

al bajo nivel de consumo eléctrico de estas cargas aisladas, pudiéndose aprovechar los excesos de

energía asociados mediante la utilización de cargas auxiliares de calefacción o bombeo en

viviendas rurales dispersas, pero los costos de estos sistemas son elevados para la realidad

económica de la región e incluso del país.

En el ámbito de la autogeneración eólica y FV con conexión a la red, se concluye luego

del análisis del apartado 7.2.1 que este tipo de sistemas no son factibles de implementar desde el

punto de vista económico, ya que si bien producen un ahorro energético y una mayor

independencia de la red para los usuarios, los costos de adquisición asociados a los componentes

de los sistemas son elevados en comparación con otros países.

Los poco alentadores resultados que se obtienen desde el punto de vista económico están

directamente vinculados a la situación actual del mercado eléctrico chileno y a las barreras de

entrada que presenta para los medios de generación no convencionales. Si bien en Magallanes

existe un buen potencial eólico, el costo de adquisición e instalación de equipos de generación

eólica es elevado en comparación con los estudios internacionales. Esta situación de elevados

costos se extiende también para los sistemas FV y no solo para Magallanes, si no que en general

para todo el país.

Algunas de las razones que provocan esta situación se deben a la inexistencia de un

mercado consolidado en el rubro de las ERNC a pequeña escala, además de la inexistencia de

incentivos estatales que hagan de estas tecnologías más atractivas para los consumidores finales

de electricidad, ya sean estos residenciales o comerciales a pequeña escala. Actualmente las leyes

19.940 y 20.018 incentivan la entrada al mercado eléctrico de grandes centrales basadas en

Page 255: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

243

ERNC, como por ejemplo parques eólicos, mediante el no pago de peajes por uso de las líneas de

transmisión. En este sentido, es importante destacar que las grandes potencias en el rubro de las

ERNC tales como Alemania y España no solo han concentrado sus esfuerzos en incentivar el

aspecto macro-energético, si no que han incorporado también de manera eficaz en sus políticas

energéticas los incentivos a pequeños productores de energía en base a tecnologías renovables no

convencionales tales como usuarios residenciales, los cuales pueden vender energía a la red a una

tarifa especial que les permite recuperar en un tiempo prudente la inversión inicial realizada.

Dichas iniciativas han traído como consecuencia un elevado desarrollo del mercado de ERNC en

dichos países, fomentando además la sana competencia entre las empresas, y creando conciencia

en la ciudadanía sobre los nocivos efectos que conllevan para el medio ambiente los medios de

generación convencionales.

Page 256: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

244

BIBLIOGRAFÍA

[1] Johnson Gary L. Wind Energy Systems

[2] http://www.retscreen.ca

[3] http://www.nrel.gov/homer

[4] Lin Lu, Hongxing Yang and John Burnett, Investigation on wind potential on Hong Kong

islands an analysis of wind power and wind turbine characteristics, Renewable Energy,

Vol.27 (2002), pp.1-12.

[5] Patel Mukund R, Wind and solar power systems. 1999

[6] Lorenzo Eduardo, Solar Electricity, Engineering of photovoltaic systems

[7] Humberto Rodríguez M. y Fabio González, Manual de radiación solar en Colombia, Vol.

1 y 2. Rodríguez y González editores, Bogotá. 1992

[8] Hernández Z. Emiliano. Obtención de la energía eléctrica mediante células solares.

Estudio específico para la latitud 53º S, Punta Arenas. Trabajo de titulación para optar al

título de Ingeniero de ejecución electricista. Universidad de Magallanes. Chile. 1984

[9] Sarmiento Pedro, “Energía Solar Aplicaciones e Ingeniería”, Ediciones Universitarias de

Valparaíso, 1980.

[10] Santana Ariel, Butorovic Nicolás. Resúmenes Meteorológicos. Anales del Instituto de la

Patagonia, serie Ciencias Naturales. Años 1978 al 2003

[11] http://eosweb.larc.nasa.gov/sse/

[12] http://www.earth.google.com

[13] http://www.ewea.org

[14] http://www.awea.org

[15] http://www.solarbuzz.com

[16] Pereda I.Celdas Fotovoltaicas en generación distribuida. Memoria para optar al título de

Ingeniero Civil Industrial Mención Electricidad. Pontificia Universidad Católica de Chile.

2005

Page 257: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

245

[17] Homer getting started guide, National Renewable Laboratory, 2003

[18] Aprovechamiento de la energía del viento en la región de Magallanes y potencialidades

para su uso en Chile, Arturo Kunstmann F. Miguel Mansilla C. Centro de estudio de los

recursos energéticos. Universidad de Magallanes

[19] http://www.renovables-rural.cl

[20] http://texasextension.tamu.edu

[21] Toledo M. y Velasquez J. Estudio de los sistemas de bombeo de agua sobre la base de

energía eólica y/o solar. Trabajo de titulación para optar al título de Ingeniero de

ejecución eléctrico con mención en electrónica. Universidad de Magallanes. Chile. 2002

[22] Sánchez Fredy. Evaluación de proyecto de electrificación rural empleando energía eólica.

Trabajo de titulación para optar al título de Ingeniero Civil en Electricidad. Universidad

de Magallanes. Chile. 1997

[23] Metodología de proyectos de electrificación rural, Mideplan. 1996.

[24] http://www.americasgenerators.com/documents/pages/generators.html

[25] http://www.cne.cl

[26] U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and

Hydropower Technologies Program. Small Wind Electrics Systems.

[27] http://www.dsireusa.org

[28] Román, Roberto. Fundamentos para un proyecto de ley de promoción de las energías

renovables. Departamento de Ingeniería Mecánica Universidad de Chile. 2003

[29] http://www.asponews.org

[30] Valencia Leonardo. Tecnologías renovables para Chile: un imposible. Fac. Ciencias y

Tecnología. Universidad Adolfo Ibáñez. 23 de mayo, 2005.

[31] Mohr Ricardo, Lira Francisco. Informe Pagos por capacidad a generación con energías

renovables. Escuela de Ingeniería. Pontificia Universidad Católica de Chile. 25 Mayo

2005.

Page 258: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

246

[32] García Javier. Ejecutivo de Inversiones y MDL. Seminario “Bonos de Carbono y Sector

Financiero”. Asociación de Bancos, CONAMA, Prochile, CORFO. Santiago, 15 de

Noviembre del 2005.

[33] Ley 19.940. Diario Oficial de la República de Chile. 13 de Marzo del 2004

[34] Ley 20.018. Diario Oficial de la República de Chile. 19 de Mayo del 2005

[35] Reglamento para medios de generación no convencionales y pequeños medios de

generación establecidos en la ley general de servicios eléctricos. Diario Oficial de la

República de Chile. 17 de Enero del 2006.

Page 259: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

247

TENDENCIAS HORARIAS DE VELOCIDAD DE VIENTO

E IRRADIACIÓN SOLAR PARA LA CIUDAD DE PUNTA ARENAS

Tendencias horarias de velocidad de viento en m/seg a 10 m

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hora del día

Vel

oci

dad

(m

/seg

)

1978

19791982

1983

1985

1987

1988

19891990

1991

1992

1993

1994

19951996

1997

1998

1999

2000

20012002

Figura A.1. Tendencias diarias de velocidad de viento para Enero

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hora del día

Vel

oci

dad

(m

/seg

)

1978

1979

1982

1983

19851987

1988

1989

1990

19911992

1993

1994

1995

19961997

1998

1999

2000

2001

2002

Figura A.2. Tendencias diarias de velocidad de viento para Febrero

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hora del día

Vel

oci

dad

(m

/seg

)

1978

1979

1982

19831985

1987

1988

1989

19901991

1992

1993

1994

19951996

1997

1998

19992000

2001

2002

Figura A.3. Tendencias diarias de velocidad de viento para Marzo

Page 260: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

248

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hora del día

Vel

oci

dad

(m

/seg

)

1978

1979

1982

19831985

1987

1988

1989

19901991

1992

1993

1994

19951996

1997

1998

19992000

2001

2002

Figura A.4. Tendencias diarias de velocidad de viento para Abril

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hora del día

Vel

oci

dad

(m

/seg

)

1978

1979

1982

19831985

1987

1988

1989

19901991

1992

1993

1994

19951996

1997

1998

19992000

2001

2002

Figura A.5. Tendencias diarias de velocidad de viento para Mayo

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hora del día

Vel

oci

dad

(m

/seg

)

1978

1979

1982

19831985

1987

1988

1989

19901991

1992

1993

1994

19951996

1997

1998

19992000

2001

2002

Figura A.6. Tendenc ias diarias de velocidad de viento para Junio

Page 261: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

249

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hora del día

Vel

oci

dad

(m

/seg

)

1978

1979

1982

19831985

1987

1988

1989

19901991

1992

1993

1994

19951996

1997

1998

19992000

2001

2002

Figura A.7. Tendencias diarias de velocidad de viento para Julio

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hora del día

Vel

oci

dad

(m

/seg

)

1978

1979

1982

19831985

1987

1988

1989

19901991

1992

1993

1994

19951996

1997

1998

19992000

2001

2002

Figura A.8. Tendencias diarias de velocidad de viento para Agosto

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hora del día

Vel

oci

dad

(m

/seg

)

1978

1979

1982

19831985

1987

1988

1989

19901991

1992

1993

1994

19951996

1997

1998

19992000

2001

2002

Figura A.9. Tendencias diarias de velocidad de viento para Septiembre

Page 262: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

250

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hora del día

Vel

oci

dad

(m

/seg

)

1978

1979

1982

19831985

1987

1988

1989

19901991

1992

1993

1994

19951996

1997

1998

19992000

2001

2002

Figura A.10. Tendencias diarias de velocidad de viento para Octubre

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hora del día

Vel

oci

dad

(m

/seg

)

1978

1979

1982

19831985

1987

1988

1989

19901991

1992

1993

1994

19951996

1997

1998

19992000

2001

2002

Figura A.11. Tendencias diarias de velocidad de viento para Noviembre

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hora del día

Vel

oci

dad

(m

/seg

)

1978

1979

1982

19831985

1987

1988

1989

19901991

1992

1993

1994

19951996

1997

1998

19992000

2001

2002

Figura A.12. Tendencias diarias de velocidad de viento para Diciembre

Page 263: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

251

Tendencias horarias de irradiación solar en W/m2

0

100

200

300

400

500

600

700

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24

Intervalo horario

Rad

iaci

ón

So

lar

(W/m

2)

197819791982

19831985

19871988

19891990

19911992

19931994

19951996

19971998

19992000

20012002

Figura A.13. Tendencias diarias para radiación solar para de Enero

0

100

200

300

400

500

600

700

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24

Intervalo horario

Rad

iaci

ón

So

lar

(W/m

2)

19781979

1982

19831985

19871988

19891990

19911992

1993

19941995

19961997

19981999

20002001

2002

Figura A.14. Tendencias diarias para radiación solar para de Febrero

0

100

200

300

400

500

600

700

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24

Intervalo horario

Rad

iaci

ón

So

lar

(W/m

2)

19781979

1982

19831985

19871988

19891990

19911992

1993

19941995

19961997

19981999

20002001

2002

Figura A.15. Tendencias diarias para radiación solar para de Marzo

Page 264: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

252

0

100

200

300

400

500

600

700

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24

Intervalo horario

Rad

iaci

ón

So

lar

(W/m

2)

197819791982

19831985

19871988

19891990

19911992

19931994

19951996

19971998

19992000

20012002

Figura A.16. Tendencias diarias para radiación solar para de Abril

0

100

200

300

400

500

600

700

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24

Intervalo Horario

Rad

iaci

ón

So

lar

(W/m

2)

19781979

19821983

19851987

19881989

19901991

1992

19931994

19951996

19971998

19992000

20012002

Figura A.17. Tendencias diarias para radiación solar para de Mayo

0

100

200

300

400

500

600

700

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24

Intervalo Horario

Rad

iaci

ón

So

lar

(W/m

2)

1978

19791982

19831985

1987

19881989

19901991

1992

19931994

19951996

1997

19981999

20002001

2002

Figura A.18. Tendencias diarias para radiación solar para de Junio

Page 265: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

253

0

100

200

300

400

500

600

700

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24

Intervalo horario

Rad

iaci

ón

So

lar

(W/m

2)

1978

1979

19821983

19851987

1988

19891990

19911992

19931994

1995

19961997

19981999

2000

2002

Figura A.19. Tendencias diarias para radiación solar para de Julio

0

100

200

300

400

500

600

700

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24

Intervalo horario

Rad

iaci

ón

So

lar

(W/m

2)

1978

19791982

19831985

1987

19881989

19901991

1992

19931994

19951996

1997

19981999

20002001

2002

Figura A.20. Tendencias diarias para radiación solar para de Agosto

0

100

200

300

400

500

600

700

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24

Intervalo horario

Rad

iaci

ón

So

lar

(W/m

2)

1978

19791982

19831985

1987

19881989

19901991

1992

19931994

19951996

1997

19981999

20002001

2002

Figura A.21. Tendencias diarias para radiación solar para de Septiembre

Page 266: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

254

0

100

200

300

400

500

600

700

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24

Intervalo horario

Rad

iaci

ón

So

lar

(W/m

2)

1978

1979

19821983

1985

19871988

19891990

1991

19921993

1994

19951997

19981999

2000

20012002

Figura A.22. Tendencias diarias para radiación solar para de Octubre

0

100

200

300

400

500

600

700

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24

Intervalo horario

Rad

iaci

ón

So

lar

(W/m

2)

19781979

1982

19831985

1987

19881989

1990

19911992

1993

19941995

1996

19971998

2000

20012002

Figura A.23. Tendencias diarias para radiación solar para de Noviembre

0

100

200

300

400

500

600

700

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24

Intervalo horario

Rad

iaci

ón

So

lar

(W/m

2)

1978

1979

19831985

1987

19881989

19901991

1992

19931994

1995

19961997

19981999

2000

20012002

Figura A.24. Tendencias diarias para radiación solar para de Diciembre

Page 267: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

255

MÉTODO UTILIZADO PARA LA DETERMINACIÓN DE LOS AÑOS TÍPICOS

EÓLICO Y SOLAR PARA PUNTA ARENAS

La determinación del año típico realizado en este trabajo tiene por objetivo caracterizar las

variables de viento y radiación solar para la ciudad de Punta Arenas, para lo cual se posee una

base de datos de 21 años, correspondiente al período 1978-2002, sin incluir los datos de los años

1980, 1981, 1984 y 1986, debido a la no disponibilidad de estos al momento de realizar el

estudio. La información fue recopilada de los anales del Instituto de la Patagonia dependiente de

la Universidad de Magallanes, y provienen de la estación meteorológica Jorge C. Schythe,

ubicada en los 53º08’ S y 70º53’ O, a una altura media de 6 m s.n.m. Los datos de viento fueron

reajustados a una altura de 10 metros de acuerdo a la ecuación 2.9 del capítulo 2 con α = 0,16.

El año típico esta formado por meses de distintos años, que en su conjunto reflejan el

mejor año común para las variables ya mencionadas.

Procedimiento de cálculo:

1. Se procede a separar la información por cada mes calendario, luego se determinan los

valores promedios anuales para cada variable, obteniendo un valor promedio anual por

cada variable para cada mes calendario.

2. Luego se obtienen los errores cuadráticos para las variables meteorológicas tanto de

viento como de radiación solar, los cuales consideran el valor de la variable de cada año

con respecto al valor promedio anual del grupo de años. Esto se realiza para las dos

variables tanto eólica como solar, y para todos los meses en forma separada. La fórmula 1

corresponde a la utilizada para la obtención de los errores cuadráticos.

Page 268: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

256

2

2

−=

ih

ihijhcijh x

xxE (B.1)

Donde:

CijhE corresponde al error cuadrático para la variables de radiación solar y/o velocidad de

viento correspondiente al mes i, año j y hora h.

ijhx corresponde a la variables de radiación solar y/o velocidad de viento correspondiente

al mes i, año j y hora h.

ihx corresponde al promedio total, considerando todos los años, de la variable de

radiación solar y/o velocidad de viento en la hora h del mes i.

3. Se realiza la suma de los errores de cada variables por cada año, de un mismo mes

calendario, luego de entre estos valores se busca el año que posea menor error cuadrático.

Se considera que este año posee en su conjunto un menor error discreto acercándose al

mes promedio.

Así se obtienen para cada mes un año donde el error es mínimo, los cuales forman en su

conjunto el año típico de la variable correspondiente

A continuación se presenta el detalle de los resultados obtenidos.

Page 269: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Tablas de velocidad de viento en m/seg a 10 metros s.n.m.

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio horario 1 4,26 3,38 3,91 3,62 3,92 4,63 4,08 4,66 4,50 3,97 3,81 3,94 3,00 3,50 3,39 4,11 3,89 3,31 2,80 5,00 4,70 3,92 2 4,00 2,97 3,68 3,76 4,50 4,60 4,60 4,05 3,86 3,97 4,11 3,78 3,39 3,81 3,69 4,50 4,19 3,19 2,60 4,90 5,10 3,96 3 4,12 3,35 3,73 3,65 4,34 4,70 4,66 3,99 3,86 4,22 3,81 3,69 3,39 3,61 3,61 4,61 4,39 3,39 3,10 4,70 5,40 4,02 4 4,12 3,15 4,38 3,53 4,31 4,63 4,50 4,15 4,11 4,50 4,00 3,83 3,19 3,61 3,61 4,11 4,31 3,39 3,20 4,50 5,10 4,01 5 4,32 2,97 4,44 3,62 3,92 4,02 4,28 4,47 3,72 4,61 4,00 3,75 3,39 3,86 3,19 4,00 4,11 3,31 3,20 4,40 4,50 3,91 6 4,29 2,97 4,50 3,62 3,86 4,08 4,79 4,70 3,94 4,64 3,61 4,06 3,39 3,61 3,61 4,00 4,39 3,61 3,30 4,70 4,90 4,03 7 5,06 3,24 4,29 4,15 4,21 5,34 5,69 5,31 4,72 4,50 3,89 3,53 4,00 4,19 3,69 4,39 4,81 4,00 3,30 4,80 4,90 4,38 8 5,82 4,15 4,94 4,68 5,05 6,24 6,27 5,66 5,97 5,47 4,39 4,53 4,89 4,89 4,39 5,61 5,11 4,31 3,50 5,60 5,70 5,10 9 6,44 4,91 5,91 5,88 5,50 7,27 6,95 5,79 6,42 6,11 5,50 5,03 5,19 4,89 5,11 6,11 5,11 4,89 3,60 6,50 6,80 5,71 10 6,76 5,32 6,44 6,62 6,34 7,49 7,62 6,40 6,83 6,81 5,61 5,56 5,31 5,31 5,81 6,89 5,19 5,31 3,80 7,10 7,40 6,19 11 7,50 5,53 6,82 7,09 7,17 7,98 7,91 6,63 7,11 7,08 6,31 5,67 5,89 5,89 6,19 6,89 5,69 5,50 3,90 7,70 8,70 6,63 12 7,76 5,73 7,68 7,15 7,78 8,56 8,43 6,75 7,19 7,25 6,81 5,50 5,81 6,19 6,39 6,81 5,69 5,61 3,80 8,20 9,00 6,86 13 8,03 6,00 7,85 7,21 8,36 8,68 8,62 6,98 7,33 7,64 6,89 6,00 5,89 6,39 6,81 7,11 6,11 5,61 3,70 8,10 8,80 7,05 14 8,18 6,56 7,79 7,32 8,20 8,52 8,56 6,98 7,83 7,64 7,00 6,19 6,00 6,39 6,50 7,39 6,19 5,89 3,80 7,80 8,70 7,12 15 7,97 6,79 8,18 7,23 8,01 8,49 8,27 6,88 7,61 7,78 7,11 6,14 6,31 6,31 6,50 6,89 6,31 5,89 3,70 7,90 8,80 7,10 16 7,50 6,76 8,12 7,38 7,72 7,85 8,01 6,63 7,69 7,56 7,50 6,08 6,19 6,39 6,39 6,61 6,11 5,81 3,60 7,90 9,00 6,99 17 7,59 6,41 7,73 7,38 7,24 7,65 7,49 6,63 7,28 7,17 7,00 6,11 5,69 6,19 6,39 6,19 6,19 5,81 3,40 7,50 9,00 6,76 18 5,85 5,85 7,18 7,35 6,75 7,72 7,08 5,92 6,92 7,14 7,11 6,53 5,50 6,11 6,39 6,19 6,00 5,61 3,20 7,90 8,20 6,50 19 6,26 5,47 6,76 7,23 5,76 6,98 6,46 5,60 6,92 6,47 6,61 6,08 4,81 5,39 6,00 5,89 5,61 5,11 3,20 7,50 7,10 6,06 20 5,65 4,47 6,38 6,18 4,76 6,21 5,56 4,76 6,03 5,50 5,61 5,53 4,19 4,61 5,11 4,81 5,19 4,81 3,10 7,20 6,70 5,35 21 5,00 3,88 5,79 5,26 4,63 5,69 4,66 4,08 5,19 4,61 4,50 4,75 3,61 4,11 4,61 4,00 4,50 3,89 2,90 6,60 5,70 4,67 22 4,68 3,26 5,12 4,50 3,99 4,82 4,54 4,57 4,58 4,75 4,31 5,42 2,69 3,69 4,39 4,31 3,89 3,61 2,60 5,50 5,20 4,31 23 5,03 2,94 4,26 4,23 3,54 4,37 4,25 4,92 4,44 4,53 4,11 4,53 3,19 3,81 4,11 4,00 3,81 3,39 2,90 5,50 4,90 4,13 24 4,97 3,26 3,79 3,35 3,57 3,99 4,18 4,54 4,56 4,19 3,69 4,56 3,31 3,61 3,69 4,11 3,69 3,61 2,90 5,50 5,00 4,00

Tabla B.1. Velocidades de viento para Enero

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1 0,00754 0,01905 0,00001 0,00609 0,00000 0,03256 0,00169 0,03558 0,02158 0,00015 0,00091 0,00003 0,05541 0,01166 0,01857 0,00228 0,00008 0,02481 0,08201 0,07526 0,03915 2 0,00008 0,06293 0,00531 0,00256 0,01841 0,02560 0,02560 0,00049 0,00069 0,00000 0,00136 0,00223 0,02111 0,00162 0,00466 0,01821 0,00335 0,03777 0,11852 0,05561 0,08194 3 0,00064 0,02725 0,00488 0,00843 0,00662 0,02871 0,02606 0,00005 0,00148 0,00265 0,00273 0,00639 0,02435 0,01014 0,01014 0,02200 0,00865 0,02435 0,05198 0,02906 0,11888 4 0,00070 0,04644 0,00854 0,01445 0,00555 0,02392 0,01503 0,00118 0,00062 0,01485 0,00001 0,00197 0,04146 0,00995 0,00995 0,00062 0,00538 0,02407 0,04090 0,01485 0,07368 5 0,01122 0,05766 0,01851 0,00557 0,00001 0,00081 0,00890 0,02065 0,00228 0,03226 0,00054 0,00165 0,01770 0,00015 0,03342 0,00054 0,00267 0,02383 0,03290 0,01578 0,02286 6 0,00437 0,06889 0,01375 0,01037 0,00173 0,00020 0,03608 0,02756 0,00042 0,02306 0,01068 0,00005 0,02513 0,01068 0,01068 0,00005 0,00806 0,01068 0,03262 0,02789 0,04695 7 0,02388 0,06846 0,00040 0,00287 0,00147 0,04779 0,08962 0,04464 0,00605 0,00073 0,01263 0,03796 0,00758 0,00182 0,02458 0,00000 0,00937 0,00758 0,06092 0,00913 0,01401 8 0,01990 0,03512 0,00101 0,00700 0,00011 0,04962 0,05247 0,01195 0,02901 0,00523 0,01959 0,01271 0,00176 0,00176 0,01959 0,00991 0,00000 0,02442 0,09868 0,00948 0,01368 9 0,01637 0,01957 0,00124 0,00090 0,00135 0,07454 0,04695 0,00019 0,01531 0,00493 0,00135 0,01428 0,00816 0,02068 0,01100 0,00493 0,01100 0,02068 0,13656 0,01914 0,03643 10 0,00873 0,01947 0,00169 0,00485 0,00059 0,04471 0,05393 0,00120 0,01094 0,01002 0,00864 0,01039 0,02026 0,02026 0,00379 0,01290 0,02570 0,02026 0,14879 0,02182 0,03850 11 0,01737 0,02742 0,00088 0,00485 0,00680 0,04154 0,03768 0,00000 0,00536 0,00476 0,00234 0,02097 0,01238 0,01238 0,00424 0,00157 0,01977 0,02888 0,16927 0,02627 0,09796 12 0,01730 0,02696 0,01408 0,00172 0,01806 0,06096 0,05205 0,00024 0,00235 0,00321 0,00007 0,03937 0,02368 0,00945 0,00474 0,00007 0,02893 0,03321 0,19908 0,03805 0,09714 13 0,01914 0,02231 0,01285 0,00047 0,03449 0,05350 0,04937 0,00011 0,00158 0,00690 0,00054 0,02228 0,02724 0,00886 0,00123 0,00007 0,01783 0,04179 0,22599 0,02204 0,06137 14 0,02217 0,00615 0,00906 0,00084 0,02328 0,03911 0,04092 0,00037 0,01016 0,00540 0,00027 0,01678 0,02460 0,01044 0,00750 0,00147 0,01678 0,02974 0,21716 0,00924 0,04954 15 0,01509 0,00184 0,02306 0,00037 0,01647 0,03853 0,02709 0,00092 0,00523 0,00917 0,00000 0,01826 0,01246 0,01246 0,00710 0,00087 0,01246 0,02901 0,22917 0,01277 0,05750 16 0,00530 0,00105 0,02597 0,00313 0,01088 0,01505 0,02123 0,00272 0,01015 0,00654 0,00532 0,01684 0,01296 0,00740 0,00740 0,00294 0,01582 0,02873 0,23523 0,01693 0,08265 17 0,01480 0,00273 0,02057 0,00832 0,00488 0,01733 0,01164 0,00042 0,00576 0,00353 0,00121 0,00933 0,02502 0,00710 0,00308 0,00710 0,00710 0,02010 0,24738 0,01182 0,10921 18 0,00993 0,00993 0,01081 0,01719 0,00153 0,03519 0,00785 0,00801 0,00411 0,00966 0,00884 0,00002 0,02367 0,00358 0,00029 0,00221 0,00592 0,01870 0,25775 0,04639 0,06840 19 0,00116 0,00942 0,01358 0,03772 0,00246 0,02314 0,00451 0,00581 0,02008 0,00467 0,00833 0,00002 0,04275 0,01220 0,00009 0,00078 0,00544 0,02444 0,22258 0,05665 0,02958 20 0,00307 0,02706 0,03717 0,02381 0,01216 0,02568 0,00160 0,01216 0,01604 0,00078 0,00238 0,00110 0,04667 0,01909 0,00200 0,01037 0,00085 0,01037 0,17690 0,11953 0,06364 21 0,00510 0,02824 0,05837 0,01643 0,00006 0,04842 0,00000 0,01552 0,01282 0,00014 0,00127 0,00032 0,05113 0,01415 0,00014 0,02038 0,00127 0,02775 0,14327 0,17175 0,04908 22 0,00742 0,05845 0,03556 0,00204 0,00542 0,01455 0,00285 0,00370 0,00417 0,01067 0,00000 0,06664 0,13999 0,02013 0,00038 0,00000 0,00936 0,02600 0,15689 0,07700 0,04319 23 0,04717 0,08306 0,00103 0,00062 0,02064 0,00345 0,00076 0,03651 0,00573 0,00919 0,00002 0,00919 0,05145 0,00623 0,00002 0,00102 0,00623 0,03232 0,08886 0,10968 0,03458 24 0,05823 0,03412 0,00276 0,02646 0,01174 0,00002 0,00196 0,01760 0,01898 0,00226 0,00598 0,01898 0,03043 0,00963 0,00598 0,00072 0,00598 0,00963 0,07602 0,13960 0,06188

Sumatoria 0,33667 0,76358 0,32109 0,20708 0,20470 0,74493 0,61584 0,24757 0,21089 0,17079 0,09501 0,32774 0,74737 0,24184 0,19057 0,12101 0,22800 0,57912 3,44942 1,13574 1,39182

Tabla B.2. Errores cuadráticos para Enero

Page 270: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio horario 1 3,47 4,97 5,44 4,85 5,05 4,12 3,86 4,18 3,86 3,53 3,53 3,53 3,50 4,11 3,11 2,11 2,19 3,69 1,50 6,00 3,90 3,83 2 3,79 5,12 5,71 4,41 5,40 4,15 3,92 4,12 3,86 3,28 3,50 6,19 3,61 4,11 2,89 2,39 2,11 3,60 1,50 6,70 4,10 4,02 3 3,82 4,94 5,91 4,94 5,69 4,37 4,12 3,57 3,53 3,69 3,11 6,75 3,31 3,81 3,00 2,61 2,11 3,61 1,50 6,30 3,80 4,02 4 3,41 5,06 6,12 5,09 5,34 4,34 3,47 3,83 3,64 3,86 3,50 6,17 3,81 3,69 3,11 2,31 2,19 3,81 1,40 6,40 3,90 4,02 5 3,56 5,56 5,59 4,85 4,73 4,15 3,86 4,15 3,61 3,61 3,11 6,19 4,11 3,50 3,11 2,31 2,31 3,19 1,40 6,50 4,20 3,98 6 3,41 4,85 5,56 4,73 4,89 4,21 4,44 4,02 3,44 3,78 3,61 5,89 3,69 3,69 3,50 2,61 2,19 3,61 1,30 6,70 3,80 4,00 7 3,68 4,79 5,44 4,85 4,82 4,12 4,60 3,76 3,25 3,53 4,00 6,11 3,50 3,81 3,69 2,69 2,31 3,81 1,50 6,10 4,40 4,04 8 3,91 5,53 5,65 5,32 5,11 4,82 5,15 4,21 3,53 4,00 4,11 5,83 4,00 4,50 3,89 3,19 2,50 3,69 1,70 6,00 4,30 4,33 9 4,21 6,71 6,59 6,82 6,50 5,56 6,24 5,27 3,75 4,86 4,89 6,33 5,19 5,11 4,19 3,19 3,11 4,89 1,70 6,80 5,50 5,12 10 4,50 7,97 7,47 7,85 7,20 6,14 6,98 5,69 4,39 5,39 5,50 6,89 5,69 5,61 4,50 3,50 3,19 5,19 1,80 7,40 5,20 5,62 11 4,35 8,62 8,12 7,38 7,59 6,72 7,59 6,27 5,17 6,03 6,19 6,50 6,11 6,19 4,61 3,61 3,19 5,39 2,00 8,00 5,70 5,97 12 5,23 8,62 8,41 7,94 7,69 6,72 7,88 6,79 5,75 6,28 6,11 6,44 5,89 6,61 4,69 4,19 3,39 5,89 2,20 8,70 5,50 6,23 13 6,03 8,68 9,00 8,18 7,88 7,17 7,94 6,98 6,64 6,14 6,89 7,06 6,50 6,81 4,39 4,50 3,69 5,89 2,30 8,90 5,40 6,52 14 5,91 8,50 8,79 8,06 8,65 7,01 8,07 7,37 6,72 6,61 7,11 7,31 6,89 7,00 5,00 4,69 3,81 6,11 2,40 9,60 5,40 6,71 15 5,65 8,32 9,09 7,53 9,07 7,01 8,01 7,56 6,75 6,72 7,39 7,44 6,81 6,69 5,19 4,50 4,00 6,11 2,30 8,90 5,00 6,67 16 5,59 7,94 8,18 7,23 9,04 6,98 7,98 7,33 6,17 6,33 7,11 7,44 6,69 6,81 5,19 4,11 3,69 5,89 2,30 8,80 5,40 6,49 17 5,79 7,41 8,50 6,94 9,26 6,59 7,94 7,11 5,86 6,03 7,39 7,19 6,39 6,69 5,11 3,69 3,69 5,69 1,90 7,80 5,40 6,30 18 5,18 6,88 8,35 6,56 8,81 6,59 7,17 6,56 5,53 5,36 6,39 6,50 5,81 5,69 4,61 3,61 3,60 5,19 1,90 7,20 5,10 5,84 19 5,06 6,47 8,03 5,53 8,33 5,82 6,37 5,66 5,08 4,47 6,50 5,78 5,11 5,11 4,50 3,19 3,11 4,89 1,80 6,90 4,80 5,36 20 4,35 5,79 6,59 5,26 7,75 5,08 5,56 4,50 3,94 3,97 4,81 5,42 4,61 4,19 3,50 2,89 3,19 4,89 1,70 6,70 4,30 4,72 21 4,41 5,65 5,29 4,73 6,85 4,73 4,86 4,60 3,75 3,97 3,89 5,03 4,31 3,61 3,19 2,39 2,81 4,11 1,60 6,10 4,20 4,29 22 3,15 5,79 4,65 4,15 6,30 4,28 4,82 4,31 4,11 3,33 4,19 5,42 3,89 3,39 2,89 2,19 2,50 4,00 1,60 6,50 4,10 4,07 23 2,74 5,59 5,50 4,56 5,92 4,18 5,08 4,60 3,72 3,50 3,81 5,14 4,19 3,81 2,89 2,50 2,31 3,69 1,50 6,40 4,10 4,08 24 2,91 5,59 5,79 4,41 5,15 4,12 4,15 4,47 3,81 3,17 3,19 5,64 3,81 3,81 2,81 2,11 2,31 3,69 1,60 6,80 4,30 3,98

Tabla B.3. Velocidades de viento para Febrero

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1 0,00899 0,08787 0,17570 0,07062 0,10061 0,00546 0,00005 0,00822 0,00005 0,00637 0,00637 0,00637 0,00758 0,00524 0,03553 0,20190 0,18284 0,00132 0,37056 0,31930 0,00030 2 0,00322 0,07412 0,17512 0,00936 0,11795 0,00100 0,00060 0,00056 0,00160 0,03425 0,01685 0,29168 0,01044 0,00049 0,07939 0,16489 0,22575 0,01102 0,39321 0,44324 0,00037 3 0,00248 0,05194 0,22005 0,05194 0,17211 0,00759 0,00054 0,01270 0,01519 0,00670 0,05144 0,45908 0,03186 0,00294 0,06473 0,12325 0,22594 0,01052 0,39339 0,32003 0,00309 4 0,02298 0,06656 0,27175 0,07039 0,10748 0,00638 0,01853 0,00232 0,00903 0,00158 0,01679 0,28475 0,00287 0,00659 0,05120 0,18200 0,20634 0,00287 0,42488 0,35005 0,00091 5 0,01126 0,15702 0,16292 0,04794 0,03523 0,00179 0,00093 0,00179 0,00863 0,00863 0,04774 0,30919 0,00107 0,01459 0,04774 0,17711 0,17711 0,03903 0,42032 0,40044 0,00303 6 0,02149 0,04575 0,15247 0,03403 0,04973 0,00292 0,01218 0,00003 0,01914 0,00302 0,00934 0,22388 0,00575 0,00575 0,01549 0,12027 0,20344 0,00934 0,45534 0,45707 0,00244 7 0,00796 0,03521 0,12107 0,04090 0,03814 0,00040 0,01947 0,00458 0,03795 0,01587 0,00008 0,26425 0,01765 0,00327 0,00717 0,11052 0,18386 0,00327 0,39485 0,26143 0,00812 8 0,00940 0,07645 0,09220 0,05242 0,03266 0,01297 0,03539 0,00074 0,03442 0,00585 0,00259 0,12025 0,00585 0,00152 0,01044 0,06890 0,17877 0,02162 0,36907 0,14842 0,00005 9 0,03164 0,09658 0,08282 0,11141 0,07295 0,00770 0,04830 0,00097 0,07125 0,00247 0,00196 0,05668 0,00024 0,00000 0,03242 0,14103 0,15353 0,00196 0,44579 0,10844 0,00565 10 0,03989 0,17429 0,10796 0,15726 0,07918 0,00858 0,05825 0,00016 0,04814 0,00173 0,00047 0,05073 0,00016 0,00000 0,03986 0,14251 0,18649 0,00580 0,46221 0,09994 0,00565 11 0,07332 0,19684 0,12953 0,05604 0,07384 0,01594 0,07384 0,00258 0,01806 0,00010 0,00143 0,00792 0,00057 0,00143 0,05174 0,15602 0,21604 0,00944 0,44212 0,11582 0,00203 12 0,02572 0,14598 0,12184 0,07485 0,05427 0,00611 0,06965 0,00783 0,00604 0,00005 0,00039 0,00113 0,00308 0,00364 0,06103 0,10709 0,20835 0,00308 0,41879 0,15635 0,01389 13 0,00571 0,10908 0,14431 0,06432 0,04339 0,00996 0,04759 0,00493 0,00032 0,00345 0,00317 0,00670 0,00001 0,00189 0,10695 0,09610 0,18794 0,00942 0,41904 0,13298 0,02958 14 0,01433 0,07060 0,09580 0,04001 0,08322 0,00195 0,04091 0,00939 0,00000 0,00024 0,00348 0,00774 0,00067 0,00180 0,06523 0,09054 0,18773 0,00809 0,41292 0,18459 0,03835 15 0,02350 0,06151 0,13153 0,01663 0,12966 0,00264 0,04037 0,01780 0,00015 0,00006 0,01166 0,01353 0,00042 0,00001 0,04888 0,10577 0,16016 0,00699 0,42917 0,11193 0,06262 16 0,01919 0,05027 0,06785 0,01331 0,15478 0,00578 0,05280 0,01706 0,00243 0,00056 0,00928 0,02182 0,00103 0,00242 0,03966 0,13409 0,18526 0,00848 0,41654 0,12725 0,02804 17 0,00658 0,03078 0,12112 0,01016 0,22014 0,00210 0,06762 0,01623 0,00496 0,00193 0,02956 0,01990 0,00018 0,00382 0,03585 0,17143 0,17143 0,00938 0,48811 0,05623 0,02060 18 0,01287 0,03195 0,18542 0,01521 0,25960 0,01674 0,05223 0,01534 0,00283 0,00668 0,00890 0,01285 0,00003 0,00061 0,04418 0,14552 0,14698 0,01216 0,45503 0,05440 0,01599 19 0,00313 0,04308 0,24846 0,00102 0,30778 0,00749 0,03557 0,00320 0,00263 0,02733 0,04543 0,00614 0,00212 0,00212 0,02564 0,16305 0,17585 0,00766 0,44096 0,08283 0,01084 20 0,00591 0,05233 0,15774 0,01357 0,41474 0,00605 0,03245 0,00202 0,02671 0,02482 0,00037 0,02215 0,00049 0,01219 0,06640 0,15000 0,10400 0,00136 0,40890 0,17723 0,00775 21 0,00081 0,10011 0,05481 0,01079 0,35662 0,01046 0,01750 0,00522 0,01581 0,00547 0,00872 0,02963 0,00001 0,02500 0,06516 0,19631 0,11967 0,00173 0,39311 0,17818 0,00043 22 0,05185 0,17798 0,01971 0,00031 0,29939 0,00249 0,03388 0,00334 0,00008 0,03310 0,00086 0,10849 0,00208 0,02832 0,08468 0,21292 0,14934 0,00034 0,36884 0,35432 0,00004 23 0,10886 0,13612 0,12064 0,01364 0,20241 0,00059 0,06004 0,01608 0,00776 0,02031 0,00458 0,06707 0,00076 0,00458 0,08541 0,15017 0,18936 0,00900 0,40007 0,32257 0,00002 24 0,07227 0,16263 0,20700 0,01163 0,08549 0,00115 0,00176 0,01507 0,00196 0,04192 0,03911 0,17315 0,00196 0,00196 0,08728 0,22074 0,17724 0,00521 0,35783 0,50086 0,00638

Sumatoria 0,58334 2,23505 3,36781 0,98775 3,49136 0,14424 0,82043 0,16815 0,33514 0,25247 0,32057 2,56508 0,09688 0,13020 1,25205 3,53213 4,30341 0,19907 9,98106 5,46390 0,26618

Tabla B.4. Errores cuadráticos para Febrero

Page 271: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio horario

1 3,26 3,73 6,00 4,09 4,73 3,83 4,57 3,76 5,17 3,78 3,78 3,78 3,11 4,11 3,50 2,69 3,31 3,00 2,70 6,60 3,00 3,93 2 3,24 3,82 5,94 3,97 4,57 3,67 5,11 3,86 4,78 3,72 4,19 3,94 2,89 4,50 3,61 2,81 3,31 2,81 2,70 5,90 3,00 3,92 3 2,97 3,73 5,79 3,97 4,41 3,67 5,11 3,80 4,67 3,89 4,31 4,03 3,19 3,69 4,19 3,19 3,50 2,69 2,10 5,80 3,30 3,91 4 3,38 3,62 5,53 3,79 4,15 3,96 5,24 4,18 5,28 3,64 3,69 4,94 2,89 3,50 3,69 3,31 3,11 2,89 2,10 5,80 3,60 3,92 5 3,09 3,88 5,09 3,47 4,15 3,83 4,54 4,02 5,31 3,89 3,50 5,06 2,89 3,39 3,31 3,39 3,00 3,19 2,20 5,80 3,40 3,83 6 3,26 4,09 4,94 4,35 4,02 3,89 3,99 3,83 5,19 3,89 3,61 4,36 3,11 3,69 3,69 3,39 2,81 3,11 2,30 6,30 3,50 3,87 7 3,32 4,56 5,12 4,62 4,73 4,18 4,18 3,76 5,33 4,03 3,81 4,08 3,19 3,19 3,89 3,39 2,89 2,81 2,50 6,90 3,30 3,99 8 3,32 4,65 5,32 4,59 5,15 4,41 4,70 4,28 5,42 3,97 3,81 4,36 3,00 3,11 4,19 3,69 3,11 3,39 2,40 6,40 3,10 4,11 9 3,41 4,56 6,29 4,79 5,60 5,18 5,40 5,08 5,83 4,81 4,31 5,08 3,31 4,39 4,50 4,69 3,39 3,89 2,40 6,60 3,50 4,62 10 3,73 5,35 7,65 4,94 6,08 6,01 6,24 5,89 6,56 5,14 4,81 5,64 3,89 5,69 4,69 4,00 3,69 4,31 2,40 7,10 4,80 5,17 11 4,44 6,00 8,38 5,21 6,14 6,56 6,82 6,21 6,89 5,81 4,89 6,31 4,39 6,11 5,00 4,31 4,19 4,39 2,60 8,30 4,50 5,59 12 5,00 6,12 8,79 5,94 6,82 6,82 7,59 6,21 7,25 5,78 5,81 6,81 4,50 6,39 5,39 4,81 4,61 4,69 2,50 8,90 5,20 6,00 13 4,94 6,26 9,12 6,44 6,95 7,08 8,01 6,34 7,67 5,97 6,11 7,08 5,00 6,69 5,61 4,39 4,81 4,31 2,60 9,10 5,70 6,20 14 5,29 6,56 8,76 6,44 7,43 7,37 7,65 6,53 7,94 5,81 6,50 7,56 4,89 6,89 5,89 4,89 4,69 4,31 2,80 9,20 5,90 6,35 15 5,53 6,44 9,15 6,32 7,62 6,98 7,62 6,46 7,42 6,25 5,89 7,58 4,39 6,81 6,11 4,69 4,61 4,19 3,10 8,80 6,50 6,31 16 4,94 6,44 8,94 5,85 7,82 6,66 7,43 6,53 7,36 5,58 5,31 7,03 4,11 6,39 6,19 5,19 4,61 4,00 3,20 8,50 5,80 6,09 17 4,76 5,73 8,00 5,41 7,27 6,37 6,72 5,82 6,31 5,72 4,81 6,64 3,50 6,11 5,89 4,69 4,39 3,69 2,70 8,30 5,30 5,63 18 4,32 5,32 7,18 5,32 6,40 5,95 6,05 5,18 5,72 5,22 4,00 6,17 3,39 5,50 5,31 4,39 4,00 2,89 2,50 7,60 5,50 5,14 19 4,09 4,41 6,26 4,50 5,27 5,66 5,37 4,50 5,19 4,67 3,89 5,50 2,89 4,69 4,61 4,31 3,39 2,89 2,50 6,30 4,70 4,55 20 3,32 4,15 5,68 4,50 4,60 5,34 5,11 4,05 4,58 4,08 3,19 5,42 2,61 4,89 4,19 3,89 3,00 2,81 2,40 5,70 3,80 4,16 21 3,06 3,94 5,59 4,21 4,76 4,92 5,15 3,67 4,58 4,08 4,11 3,97 2,50 4,39 4,00 2,89 3,31 3,11 2,30 5,20 4,30 4,00 22 3,09 4,15 5,03 4,15 4,63 4,41 4,63 3,51 4,64 3,92 3,50 4,44 2,81 4,39 4,00 3,00 3,11 3,00 2,20 5,90 3,60 3,91 23 3,21 3,94 5,15 4,12 4,73 4,34 4,82 3,35 4,44 4,19 3,61 4,31 2,81 4,61 3,69 3,00 3,19 2,89 2,20 6,00 2,30 3,85 24 3,18 3,85 5,23 3,71 4,70 4,76 4,37 3,60 4,69 4,11 3,89 4,53 3,11 4,50 3,50 2,81 3,19 2,89 2,20 6,30 2,00 3,86

Tabla B.5. Velocidades de viento para Marzo

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1 0,02856 0,00242 0,27797 0,00165 0,04145 0,00066 0,02645 0,00177 0,09937 0,00147 0,00147 0,00147 0,04328 0,00216 0,01189 0,09866 0,02513 0,05585 0,09777 0,46254 0,05585 2 0,03058 0,00062 0,26548 0,00016 0,02721 0,00419 0,09267 0,00024 0,04780 0,00256 0,00488 0,00004 0,06925 0,02184 0,00623 0,08089 0,02461 0,08089 0,09692 0,25490 0,05513 3 0,05732 0,00190 0,23377 0,00028 0,01646 0,00374 0,09579 0,00079 0,03800 0,00002 0,01050 0,00098 0,03314 0,00292 0,00548 0,03314 0,01077 0,09614 0,21370 0,23536 0,02403 4 0,01876 0,00592 0,16880 0,00102 0,00345 0,00009 0,11412 0,00449 0,12025 0,00510 0,00328 0,06849 0,06908 0,01142 0,00328 0,02449 0,04248 0,06908 0,21541 0,23043 0,00662 5 0,03733 0,00020 0,10842 0,00871 0,00706 0,00000 0,03418 0,00254 0,14913 0,00026 0,00732 0,10295 0,06013 0,01313 0,01859 0,01313 0,04674 0,02735 0,18080 0,26560 0,01247 6 0,02470 0,00308 0,07599 0,01532 0,00145 0,00002 0,00089 0,00014 0,11639 0,00002 0,00458 0,01588 0,03870 0,00213 0,00213 0,01563 0,07597 0,03870 0,16496 0,39264 0,00928 7 0,02790 0,02033 0,07989 0,02475 0,03427 0,00231 0,00231 0,00322 0,11345 0,00009 0,00213 0,00055 0,03972 0,03972 0,00064 0,02267 0,07612 0,08808 0,13940 0,53218 0,02987 8 0,03683 0,01687 0,08665 0,01336 0,06318 0,00511 0,02013 0,00162 0,10057 0,00116 0,00557 0,00365 0,07318 0,05929 0,00040 0,01033 0,05929 0,03096 0,17340 0,30939 0,06062 9 0,06840 0,00018 0,13130 0,00142 0,04472 0,01463 0,02880 0,01001 0,06903 0,00162 0,00462 0,01008 0,08091 0,00249 0,00067 0,00026 0,07098 0,02502 0,23086 0,18378 0,05874 10 0,07720 0,00122 0,22890 0,00200 0,03076 0,02655 0,04263 0,01906 0,07157 0,00004 0,00502 0,00815 0,06154 0,01021 0,00852 0,05135 0,08161 0,02806 0,28725 0,13898 0,00517 11 0,04239 0,00530 0,24880 0,00478 0,00971 0,03004 0,04811 0,01211 0,05377 0,00146 0,01582 0,01627 0,04630 0,00861 0,01121 0,05294 0,06247 0,04630 0,28630 0,23446 0,03814 12 0,02761 0,00041 0,21767 0,00008 0,01883 0,01883 0,07074 0,00125 0,04375 0,00132 0,00101 0,01823 0,06224 0,00430 0,01025 0,03941 0,05334 0,04711 0,33995 0,23459 0,01762 13 0,04118 0,00011 0,22165 0,00152 0,01459 0,02004 0,08529 0,00049 0,05610 0,00133 0,00020 0,02037 0,03739 0,00640 0,00898 0,08523 0,05050 0,09327 0,33704 0,21910 0,00647 14 0,02756 0,00110 0,14493 0,00022 0,02908 0,02572 0,04243 0,00082 0,06330 0,00729 0,00058 0,03622 0,05280 0,00728 0,00522 0,05280 0,06782 0,10348 0,31235 0,20195 0,00497 15 0,01526 0,00044 0,20240 0,00001 0,04343 0,01132 0,04343 0,00062 0,03087 0,00009 0,00442 0,04086 0,09258 0,00621 0,00098 0,06545 0,07238 0,11228 0,25865 0,15602 0,00092 16 0,03560 0,00332 0,21912 0,00152 0,08034 0,00870 0,04843 0,00521 0,04359 0,00692 0,01658 0,02373 0,10557 0,00241 0,00030 0,02161 0,05896 0,11776 0,22518 0,15665 0,00226 17 0,02345 0,00038 0,17800 0,00145 0,08532 0,01743 0,03799 0,00121 0,01460 0,00029 0,02126 0,03243 0,14278 0,00744 0,00219 0,02741 0,04834 0,11785 0,27047 0,22596 0,00335 18 0,02517 0,00129 0,15724 0,00129 0,06035 0,02497 0,03126 0,00006 0,01291 0,00027 0,04908 0,04005 0,11592 0,00495 0,00106 0,02127 0,04908 0,19165 0,26364 0,22952 0,00495 19 0,01041 0,00096 0,14138 0,00013 0,02518 0,05928 0,03236 0,00012 0,01989 0,00063 0,02124 0,04333 0,13353 0,00097 0,00017 0,00294 0,06532 0,13353 0,20326 0,14736 0,00105 20 0,04030 0,00001 0,13328 0,00675 0,01127 0,08071 0,05287 0,00064 0,01047 0,00032 0,05370 0,09164 0,13840 0,03090 0,00008 0,00419 0,07756 0,10579 0,17876 0,13754 0,00741 21 0,05553 0,00023 0,15714 0,00260 0,03596 0,05281 0,08184 0,00700 0,02114 0,00042 0,00075 0,00005 0,14080 0,00937 0,00000 0,07731 0,03025 0,04951 0,18081 0,08971 0,00557 22 0,04413 0,00369 0,08207 0,00369 0,03416 0,01619 0,03416 0,01064 0,03485 0,00000 0,01095 0,01875 0,07970 0,01506 0,00054 0,05409 0,04167 0,05409 0,19115 0,25938 0,00625 23 0,02819 0,00053 0,11286 0,00473 0,05167 0,01616 0,06369 0,01734 0,02362 0,00788 0,00392 0,01384 0,07384 0,03879 0,00168 0,04896 0,02917 0,06255 0,18398 0,31078 0,16238 24 0,03161 0,00001 0,12609 0,00166 0,04648 0,05394 0,01751 0,00455 0,04632 0,00412 0,00004 0,02961 0,03789 0,02719 0,00883 0,07494 0,02996 0,06359 0,18533 0,39795 0,23259

Sumatoria 0,85599 0,07051 3,99979 0,09911 0,81638 0,49345 1,14805 0,10595 1,40073 0,04468 0,24891 0,63763 1,82866 0,33521 0,10931 0,97909 1,25052 1,83890 5,21734 6,00678 0,81173

Tabla B.6. Errores cuadráticos para Marzo

Page 272: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio horario

1 4,88 5,41 3,88 2,65 4,47 5,02 3,92 3,60 4,39 4,83 4,83 4,83 4,11 3,81 2,69 3,89 1,50 3,69 4,70 5,90 5,00 4,19 2 4,82 5,79 3,65 2,62 4,63 4,28 3,44 3,99 4,11 5,00 3,81 4,11 4,11 3,81 2,69 3,81 1,61 3,39 5,00 5,60 4,60 4,04 3 5,09 5,71 3,32 2,68 4,37 4,31 3,31 4,50 4,00 5,17 4,00 4,69 3,69 3,69 2,69 3,89 1,61 3,39 5,00 5,60 4,70 4,07 4 5,12 5,76 3,76 2,74 4,47 3,63 3,47 4,50 3,97 4,75 4,11 4,61 3,69 3,50 2,50 3,61 1,39 3,00 5,50 5,60 4,50 4,01 5 4,68 5,09 4,44 2,88 4,60 4,08 3,63 4,47 4,19 4,78 3,81 4,83 3,39 3,31 2,50 3,69 1,89 2,89 5,60 5,90 4,20 4,04 6 4,62 5,47 4,15 2,68 4,60 3,80 3,47 4,25 4,42 4,61 3,81 5,22 3,81 3,31 2,39 3,89 1,81 2,89 5,90 5,50 4,40 4,05 7 4,76 5,12 4,18 2,44 4,44 3,76 3,35 4,12 4,47 4,83 3,61 5,33 3,39 3,50 2,39 3,89 1,81 3,11 5,60 5,70 4,60 4,02 8 4,82 5,09 4,21 2,47 4,76 3,83 2,96 3,92 4,75 4,72 3,50 5,44 3,61 3,50 2,31 3,81 2,11 3,69 5,50 5,10 4,00 4,00 9 4,73 5,06 3,97 2,71 4,95 4,02 3,18 4,08 4,89 4,83 3,81 5,50 3,50 3,81 2,11 3,69 2,11 3,50 5,80 5,20 3,90 4,06 10 5,00 5,26 4,32 2,82 4,66 4,60 3,86 4,50 5,50 5,22 4,19 5,36 3,81 4,31 2,50 4,11 2,39 3,81 5,80 6,40 4,10 4,41 11 5,56 5,62 6,15 3,03 5,24 4,63 4,60 5,53 6,17 5,67 4,69 5,92 4,11 5,19 3,00 4,69 2,69 4,69 6,40 6,80 4,70 5,00 12 6,73 6,50 6,47 3,56 5,73 5,37 4,95 6,08 6,42 5,81 4,81 6,31 4,50 5,50 3,31 4,89 1,78 4,81 6,70 7,30 5,00 5,36 13 7,41 6,82 6,35 3,85 5,79 5,95 5,24 6,05 6,33 6,14 4,81 6,86 4,89 5,81 3,39 5,11 2,81 4,81 6,60 7,60 5,30 5,61 14 7,79 7,09 6,44 4,50 6,21 5,76 5,24 6,18 6,17 6,08 4,61 6,94 5,00 5,89 3,39 4,81 2,69 4,81 6,80 8,00 5,60 5,71 15 7,44 6,73 6,18 4,44 6,34 5,89 5,50 6,11 6,11 5,86 5,00 6,53 4,69 5,61 3,39 4,81 2,69 4,81 6,10 7,50 5,00 5,56 16 6,76 6,44 5,47 4,18 6,11 5,73 5,15 5,89 6,42 5,08 4,81 6,39 4,31 5,00 3,39 4,89 2,50 4,69 6,20 7,30 4,70 5,30 17 6,68 5,88 4,88 3,44 5,82 5,31 4,57 5,24 5,39 4,31 4,50 5,67 4,19 4,61 3,39 4,00 2,11 4,31 5,40 6,70 5,40 4,85 18 5,68 5,41 4,26 3,18 5,44 5,15 4,02 4,44 4,47 4,14 4,11 4,97 3,81 4,69 3,11 3,61 2,00 4,11 5,40 6,50 4,30 4,42 19 5,62 5,29 3,97 2,82 4,54 4,73 3,83 4,08 4,19 3,75 4,11 4,69 3,69 4,39 2,81 3,81 2,00 3,89 4,90 6,00 4,60 4,18 20 5,38 5,35 3,68 3,09 3,89 4,37 3,70 4,34 4,06 4,25 3,89 4,33 3,31 4,39 2,50 3,61 1,81 3,89 4,70 5,70 4,40 4,03 21 5,32 5,32 3,53 3,18 4,28 4,34 3,67 4,34 4,58 4,67 4,11 4,42 3,61 4,00 2,61 3,50 1,81 3,50 5,30 5,90 4,20 4,10 22 5,44 5,85 3,94 3,21 4,70 4,70 3,47 4,25 4,33 4,92 4,19 4,22 3,81 3,81 2,69 3,31 1,81 3,31 5,20 6,10 4,20 4,16 23 4,94 5,71 3,56 3,21 4,44 4,99 3,54 3,96 4,17 4,53 3,89 4,00 3,50 3,89 2,81 3,19 1,61 3,31 5,30 5,80 5,00 4,06 24 5,21 5,32 3,62 2,82 4,05 5,08 4,08 3,89 4,39 4,69 3,69 3,75 3,61 3,61 2,61 3,61 1,61 3,50 5,20 5,80 4,60 4,04

Tabla B.7. Velocidades de viento para Abril

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1 0,02714 0,08470 0,00545 0,13580 0,00444 0,03885 0,00407 0,01975 0,00222 0,02345 0,02345 0,02345 0,00037 0,00848 0,12756 0,00521 0,41233 0,01406 0,01472 0,16617 0,03721 2 0,03744 0,18805 0,00953 0,12412 0,02135 0,00343 0,02202 0,00017 0,00030 0,05630 0,00340 0,00030 0,00030 0,00340 0,11106 0,00340 0,36159 0,02605 0,05630 0,14879 0,01912 3 0,06286 0,16203 0,03351 0,11704 0,00567 0,00354 0,03445 0,01144 0,00028 0,07296 0,00028 0,02372 0,00843 0,00843 0,11400 0,00194 0,36475 0,02786 0,05250 0,14185 0,02414 4 0,07630 0,19149 0,00374 0,10104 0,01323 0,00875 0,01786 0,01514 0,00009 0,03410 0,00064 0,02251 0,00618 0,01615 0,14175 0,00988 0,42720 0,06340 0,13817 0,15733 0,01496 5 0,02473 0,06715 0,00981 0,08221 0,01912 0,00012 0,01010 0,01133 0,00145 0,03328 0,00339 0,03848 0,02602 0,03310 0,14538 0,00734 0,28359 0,08125 0,14893 0,21174 0,00155 6 0,01994 0,12392 0,00062 0,11460 0,01872 0,00383 0,02000 0,00244 0,00840 0,01952 0,00353 0,08454 0,00353 0,03348 0,16773 0,00151 0,30662 0,08178 0,21002 0,12918 0,00766 7 0,03440 0,07469 0,00153 0,15415 0,01091 0,00405 0,02811 0,00060 0,01273 0,04107 0,01029 0,10698 0,02457 0,01667 0,16449 0,00105 0,30330 0,05102 0,15479 0,17499 0,02091 8 0,04174 0,07312 0,00251 0,14681 0,03558 0,00196 0,06819 0,00041 0,03462 0,03209 0,01589 0,12921 0,00967 0,01589 0,18004 0,00248 0,22360 0,00601 0,13938 0,07478 0,00000 9 0,02717 0,05974 0,00054 0,11181 0,04777 0,00012 0,04694 0,00002 0,04110 0,03574 0,00407 0,12465 0,01931 0,00407 0,23102 0,00830 0,23102 0,01931 0,18222 0,07799 0,00164 10 0,01813 0,03792 0,00036 0,12906 0,00342 0,00192 0,01539 0,00048 0,06162 0,03430 0,00231 0,04697 0,01858 0,00052 0,18716 0,00449 0,20961 0,01858 0,10006 0,20475 0,00483 11 0,01226 0,01500 0,05210 0,15578 0,00227 0,00555 0,00655 0,01113 0,05395 0,01752 0,00383 0,03324 0,03186 0,00144 0,16041 0,00383 0,21305 0,00383 0,07778 0,12876 0,00370 12 0,06611 0,04545 0,04314 0,11274 0,00472 0,00001 0,00569 0,01815 0,03911 0,00700 0,01061 0,03133 0,02561 0,00071 0,14667 0,00764 0,44643 0,01061 0,06282 0,13151 0,00445 13 0,10234 0,04629 0,01725 0,09851 0,00097 0,00357 0,00439 0,00592 0,01637 0,00871 0,02078 0,04926 0,01672 0,00115 0,15717 0,00805 0,25034 0,02078 0,03078 0,12499 0,00315 14 0,13244 0,05779 0,01617 0,04517 0,00746 0,00006 0,00680 0,00652 0,00628 0,00418 0,03725 0,04637 0,01561 0,00094 0,16558 0,02527 0,27925 0,02527 0,03613 0,16006 0,00040 15 0,11466 0,04479 0,01234 0,04043 0,01959 0,00347 0,00011 0,00989 0,00989 0,00297 0,01009 0,03042 0,02416 0,00009 0,15234 0,01834 0,26548 0,01834 0,00950 0,12203 0,01009 16 0,07573 0,04588 0,00098 0,04524 0,02313 0,00629 0,00089 0,01202 0,04397 0,00174 0,00884 0,04180 0,03546 0,00329 0,13040 0,00614 0,27951 0,01322 0,02851 0,14155 0,01298 17 0,14233 0,04556 0,00005 0,08418 0,04041 0,00900 0,00334 0,00666 0,01249 0,01249 0,00513 0,02858 0,01814 0,00237 0,09052 0,03055 0,31862 0,01249 0,01301 0,14611 0,01301 18 0,08093 0,05044 0,00122 0,07909 0,05295 0,02709 0,00813 0,00002 0,00015 0,00401 0,00485 0,01568 0,01926 0,00389 0,08759 0,03342 0,29964 0,00485 0,04930 0,22180 0,00072 19 0,11891 0,07150 0,00245 0,10502 0,00736 0,01742 0,00699 0,00049 0,00002 0,01044 0,00025 0,01536 0,01334 0,00258 0,10778 0,00790 0,27161 0,00475 0,02998 0,19053 0,01027 20 0,11249 0,10765 0,00772 0,05466 0,00118 0,00729 0,00676 0,00599 0,00004 0,00298 0,00123 0,00566 0,03233 0,00792 0,14415 0,01081 0,30469 0,00123 0,02763 0,17168 0,00842 21 0,08822 0,08822 0,01963 0,05112 0,00179 0,00336 0,01136 0,00336 0,01364 0,01879 0,00000 0,00580 0,01443 0,00064 0,13233 0,02166 0,31367 0,02166 0,08491 0,19149 0,00055 22 0,09404 0,16447 0,00287 0,05296 0,01633 0,01633 0,02747 0,00039 0,00166 0,03269 0,00005 0,00020 0,00740 0,00740 0,12453 0,04248 0,32077 0,04248 0,06193 0,21624 0,00008 23 0,04670 0,16347 0,01540 0,04451 0,00856 0,05158 0,01668 0,00069 0,00065 0,01310 0,00183 0,00024 0,01918 0,00183 0,09575 0,04568 0,36414 0,03473 0,09275 0,18285 0,05322 24 0,08389 0,10162 0,01078 0,09032 0,00002 0,06710 0,00014 0,00128 0,00763 0,02658 0,00718 0,00503 0,01110 0,01110 0,12468 0,01110 0,36102 0,01766 0,08311 0,19092 0,01950

Sumatoria 1,64091 2,11094 0,26969 2,27637 0,36694 0,28469 0,37242 0,14428 0,36863 0,54600 0,17917 0,90980 0,40153 0,18555 3,39009 0,31846 7,41184 0,62123 1,88521 3,80807 0,27257

Tabla B.8. Errores cuadráticos para Abril

Page 273: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio horario

1 2,76 3,53 3,35 3,03 4,18 3,41 3,60 4,54 5,08 4,56 4,56 4,56 4,19 3,31 3,39 2,19 1,69 3,00 4,10 4,00 5,00 3,72 2 2,97 3,44 3,65 2,79 4,18 3,92 3,67 4,12 5,14 4,53 4,19 3,92 3,89 3,39 3,39 2,61 1,69 3,00 3,90 4,10 4,60 3,67 3 2,94 3,68 3,44 3,03 4,25 4,28 3,83 4,31 4,67 4,64 4,19 3,67 3,89 3,39 3,50 2,31 1,89 2,69 3,40 3,70 4,70 3,64 4 3,09 3,71 3,41 3,03 4,21 3,86 3,83 4,60 4,69 4,58 4,11 3,61 3,89 3,69 4,00 2,19 1,89 2,50 3,10 3,80 4,50 3,63 5 3,41 3,85 3,41 2,97 3,76 3,67 3,70 4,89 4,83 4,56 4,19 3,94 3,69 4,00 4,11 1,81 1,81 2,39 3,00 4,10 4,20 3,63 6 3,47 3,91 3,18 3,24 3,86 3,83 3,54 4,79 4,72 5,25 3,61 3,72 4,11 3,31 4,11 1,69 1,89 2,50 3,40 3,60 4,40 3,63 7 3,41 3,82 3,06 3,68 4,18 4,02 3,70 4,54 4,58 5,14 3,50 3,39 4,50 3,50 4,00 1,61 1,69 2,50 3,60 3,30 4,60 3,63 8 3,29 3,91 3,18 3,53 3,89 4,05 3,63 4,76 4,58 4,97 3,61 3,25 4,81 3,39 4,00 1,69 1,81 2,39 3,50 3,70 4,00 3,62 9 3,29 4,00 3,62 3,68 3,73 4,31 3,47 4,50 4,50 5,11 3,61 3,28 5,19 3,39 3,50 2,00 1,81 2,61 3,80 3,70 3,90 3,67 10 3,44 3,97 3,44 3,47 3,28 4,12 3,89 4,50 4,25 5,17 3,69 3,06 5,00 3,81 4,00 1,69 1,81 3,19 3,80 3,90 4,10 3,69 11 3,97 4,29 3,59 3,65 3,44 4,76 4,05 4,95 4,31 5,42 4,31 3,39 5,31 3,81 4,11 2,19 2,00 3,50 4,00 4,30 4,70 4,00 12 4,12 4,32 4,29 3,76 3,67 5,05 4,28 5,69 4,58 5,17 4,31 3,89 5,31 4,19 4,19 2,61 2,19 3,50 4,00 4,70 5,00 4,23 13 4,47 4,68 4,65 4,41 3,96 5,60 4,37 5,82 4,78 5,03 4,19 3,75 5,89 4,61 4,61 2,61 2,39 3,69 4,00 5,20 5,30 4,48 14 4,23 4,50 4,53 4,35 4,25 5,44 4,86 5,85 4,75 5,33 4,19 4,08 5,61 4,61 4,31 2,69 2,19 3,81 4,20 5,60 5,60 4,52 15 4,26 4,18 3,88 4,26 4,44 5,44 4,89 5,18 5,14 4,89 4,31 4,25 5,00 4,19 3,89 2,81 2,19 3,61 4,10 5,10 5,00 4,33 16 3,71 3,97 3,71 3,79 4,41 4,82 4,57 4,63 4,86 4,53 4,00 3,83 4,61 3,81 4,11 2,81 2,19 3,19 3,90 4,80 4,70 4,05 17 3,41 3,79 3,97 3,29 4,54 4,15 3,92 4,25 4,14 5,25 4,11 3,75 4,00 3,69 4,00 2,31 1,89 3,19 4,20 4,80 5,40 3,91 18 3,09 3,62 3,76 2,94 4,57 3,89 3,60 4,47 4,14 5,14 4,00 3,47 3,89 3,69 4,11 2,11 2,00 3,69 4,50 4,90 4,30 3,80 19 3,06 3,73 3,82 2,97 4,18 4,02 3,67 4,73 4,53 4,61 4,50 3,39 4,31 3,61 3,89 2,11 2,11 3,11 4,70 4,40 4,60 3,81 20 3,32 3,53 3,97 3,18 4,31 3,86 3,57 4,79 4,75 4,72 4,19 3,25 4,50 3,69 3,81 2,31 1,81 3,00 4,10 4,20 4,40 3,77 21 3,09 3,50 3,85 3,24 4,18 3,96 3,83 4,57 4,67 5,69 3,81 3,19 4,31 3,39 3,39 2,19 1,69 2,89 3,60 4,40 4,20 3,70 22 3,26 3,71 3,29 2,82 3,99 4,05 3,47 4,66 4,83 5,81 3,61 3,03 4,61 3,39 4,00 2,31 1,81 3,00 4,00 4,30 4,20 3,72 23 3,15 3,68 3,21 2,88 3,86 3,83 3,54 4,63 5,03 5,25 3,81 3,69 4,19 3,31 4,19 2,00 1,81 3,00 4,00 4,40 5,00 3,74 24 3,09 3,53 3,35 3,12 4,15 3,67 3,38 4,73 4,97 4,89 4,39 3,92 4,00 3,39 4,11 2,19 1,81 2,89 4,40 4,10 4,60 3,75

Tabla B.9. Velocidades de viento para Mayo

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1 0,06555 0,00252 0,00955 0,03415 0,01570 0,00680 0,00093 0,04862 0,13546 0,05108 0,05108 0,05108 0,01660 0,01219 0,00774 0,16763 0,29592 0,03711 0,01069 0,00585 0,11945 2 0,03643 0,00393 0,00004 0,05709 0,01932 0,00475 0,00000 0,01476 0,15989 0,05447 0,02033 0,00448 0,00352 0,00591 0,00591 0,08336 0,28990 0,03341 0,00389 0,01366 0,06404 3 0,03665 0,00011 0,00291 0,02795 0,02798 0,03102 0,00274 0,03421 0,08011 0,07585 0,02347 0,00007 0,00479 0,00466 0,00142 0,13404 0,23105 0,06718 0,00425 0,00030 0,08538 4 0,02253 0,00039 0,00373 0,02766 0,02549 0,00388 0,00285 0,07069 0,08528 0,06836 0,01729 0,00004 0,00495 0,00028 0,01018 0,15684 0,23052 0,09730 0,02155 0,00210 0,05689 5 0,00372 0,00365 0,00372 0,03329 0,00128 0,00009 0,00033 0,11946 0,10912 0,06445 0,02387 0,00734 0,00028 0,01019 0,01730 0,25305 0,25305 0,11729 0,03037 0,01651 0,02434 6 0,00182 0,00624 0,01534 0,01158 0,00419 0,00312 0,00058 0,10369 0,09159 0,20091 0,00001 0,00072 0,01797 0,00777 0,01797 0,28364 0,22939 0,09633 0,00386 0,00005 0,04569 7 0,00376 0,00270 0,02510 0,00013 0,02265 0,01129 0,00031 0,06142 0,06818 0,17137 0,00137 0,00456 0,05673 0,00137 0,01012 0,30992 0,28491 0,09742 0,00009 0,00846 0,07059 8 0,00797 0,00664 0,01483 0,00059 0,00579 0,01453 0,00002 0,09998 0,07144 0,14048 0,00000 0,01028 0,10806 0,00397 0,01123 0,28248 0,25077 0,11524 0,00104 0,00053 0,01123 9 0,01035 0,00823 0,00018 0,00001 0,00031 0,03076 0,00278 0,05198 0,05162 0,15512 0,00023 0,01126 0,17354 0,00575 0,00207 0,20664 0,25766 0,08290 0,00132 0,00008 0,00404 10 0,00471 0,00558 0,00471 0,00368 0,01254 0,01309 0,00286 0,04790 0,02262 0,15883 0,00000 0,02990 0,12490 0,00091 0,00684 0,29305 0,26139 0,01831 0,00082 0,00310 0,01206 11 0,00006 0,00532 0,01070 0,00788 0,01961 0,03591 0,00016 0,05651 0,00576 0,12498 0,00576 0,02346 0,10612 0,00241 0,00074 0,20399 0,25024 0,01573 0,00000 0,00555 0,03043 12 0,00071 0,00048 0,00023 0,01212 0,01774 0,03755 0,00013 0,11962 0,00698 0,04903 0,00032 0,00650 0,06465 0,00007 0,00007 0,14647 0,23157 0,02978 0,00296 0,01235 0,03314 13 0,00000 0,00199 0,00144 0,00021 0,01352 0,06259 0,00052 0,09028 0,00453 0,01516 0,00397 0,02634 0,09953 0,00090 0,00090 0,17365 0,21749 0,03053 0,01133 0,02611 0,03383 14 0,00407 0,00003 0,00000 0,00143 0,00377 0,04068 0,00543 0,08651 0,00251 0,03206 0,00529 0,00946 0,05782 0,00038 0,00232 0,16348 0,26509 0,02518 0,00511 0,05665 0,05665 15 0,00026 0,00132 0,01086 0,00026 0,00059 0,06467 0,01642 0,03800 0,03453 0,01642 0,00004 0,00037 0,02364 0,00103 0,01053 0,12433 0,24366 0,02780 0,00291 0,03127 0,02364 16 0,00705 0,00034 0,00705 0,00386 0,00797 0,03712 0,01666 0,02101 0,04068 0,01423 0,00012 0,00274 0,01957 0,00351 0,00027 0,09391 0,20932 0,04423 0,00129 0,03482 0,02620 17 0,01611 0,00085 0,00026 0,02466 0,02580 0,00383 0,00002 0,00749 0,00351 0,11805 0,00272 0,00162 0,00056 0,00297 0,00056 0,16807 0,26687 0,03330 0,00561 0,05218 0,14591 18 0,03547 0,00242 0,00011 0,05152 0,04021 0,00053 0,00282 0,03068 0,00773 0,12304 0,00264 0,00762 0,00049 0,00084 0,00650 0,19810 0,22496 0,00084 0,03343 0,08293 0,01697 19 0,03906 0,00041 0,00001 0,04874 0,00939 0,00299 0,00145 0,05777 0,03527 0,04396 0,03258 0,01232 0,01677 0,00277 0,00041 0,19908 0,19908 0,03380 0,05428 0,02380 0,04274 20 0,01428 0,00422 0,00270 0,02511 0,02015 0,00051 0,00292 0,07278 0,06684 0,06309 0,01240 0,01929 0,03698 0,00045 0,00007 0,15142 0,27208 0,04208 0,00745 0,01273 0,02749 21 0,02711 0,00284 0,00178 0,01560 0,01719 0,00493 0,00125 0,05547 0,06886 0,29207 0,00087 0,01846 0,02713 0,00693 0,00693 0,16514 0,29336 0,04775 0,00068 0,03620 0,01854 22 0,01509 0,00002 0,01321 0,05827 0,00513 0,00791 0,00444 0,06408 0,08923 0,31354 0,00088 0,03476 0,05712 0,00799 0,00559 0,14478 0,26507 0,03760 0,00559 0,02415 0,01652 23 0,02484 0,00025 0,02012 0,05219 0,00111 0,00061 0,00279 0,05755 0,11968 0,16438 0,00035 0,00012 0,01510 0,01325 0,01510 0,21585 0,26692 0,03877 0,00501 0,03165 0,11459 24 0,03085 0,00335 0,01102 0,02815 0,01159 0,00045 0,00969 0,06875 0,10718 0,09311 0,02947 0,00208 0,00460 0,00908 0,00951 0,17154 0,26831 0,05234 0,03049 0,00894 0,05199

Sumatoria 0,40845 0,06383 0,15962 0,52610 0,32899 0,41958 0,07810 1,47922 1,46859 2,60405 0,23506 0,28488 1,04145 0,10557 0,15030 4,49046 6,05858 1,22221 0,24403 0,48996 1,13237

Tabla B.10. Errores cuadráticos para Mayo

Page 274: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio horario

1 6,23 4,18 2,74 4,00 3,57 3,73 4,63 4,18 4,17 4,56 4,56 4,56 3,11 3,11 4,31 2,61 2,50 1,89 3,50 4,70 4,60 3,88 2 5,94 4,38 2,79 4,00 3,67 4,15 4,12 3,96 4,44 4,83 3,69 2,81 3,19 2,81 4,69 2,39 2,31 2,11 3,80 4,90 4,40 3,78 3 6,38 4,18 2,68 3,94 3,57 4,44 4,63 5,11 4,83 4,67 3,89 3,08 3,31 3,00 4,50 2,61 2,39 1,89 3,80 5,00 4,10 3,90 4 7,03 4,26 2,65 4,71 3,76 3,99 4,34 3,73 4,36 4,81 4,00 2,78 3,19 2,81 4,00 3,11 2,50 1,89 3,70 4,40 3,80 3,80 5 7,26 4,32 2,56 4,56 3,73 4,41 3,96 3,96 4,25 4,92 3,50 2,97 3,50 2,81 3,69 2,81 2,81 2,00 2,90 5,10 3,90 3,80 6 6,91 4,47 2,74 4,53 3,47 4,41 4,08 3,99 4,47 4,86 3,00 3,19 3,61 2,81 3,39 3,00 2,61 2,11 2,80 4,60 4,40 3,78 7 6,35 4,44 2,62 4,73 3,44 4,12 4,21 4,02 4,14 4,53 3,50 3,03 3,19 2,69 3,50 2,81 2,50 2,11 3,40 4,60 4,00 3,71 8 6,06 3,76 2,35 4,56 3,57 4,34 3,57 4,05 4,19 4,86 3,89 2,83 3,11 2,61 3,39 2,81 2,61 2,19 3,60 4,60 4,40 3,68 9 6,21 3,88 2,24 4,29 3,38 4,05 3,76 3,92 4,94 4,75 3,39 2,61 3,19 2,39 3,39 2,69 2,50 2,11 3,80 5,00 4,00 3,64 10 5,71 4,59 2,03 3,97 3,02 4,15 4,12 4,31 4,75 4,50 3,31 2,42 4,19 2,61 4,00 2,89 2,31 2,11 3,90 5,10 4,00 3,71 11 5,76 4,26 2,18 3,94 3,18 4,34 4,18 4,60 4,75 4,72 3,31 2,61 3,89 2,69 3,89 2,69 2,50 2,19 4,00 5,40 5,00 3,81 12 6,32 4,56 2,32 3,59 3,80 4,50 4,66 4,79 5,00 4,83 3,31 2,89 3,81 3,00 3,69 2,69 3,00 2,50 4,10 5,30 5,10 3,99 13 6,88 4,85 3,15 4,03 4,08 4,50 4,86 5,34 4,58 5,17 3,69 2,94 4,31 3,11 3,89 2,89 3,31 2,39 4,40 5,10 5,50 4,24 14 6,85 4,73 3,03 4,62 4,02 5,02 4,60 4,89 4,61 4,75 3,61 3,11 4,19 3,31 3,69 2,81 3,81 2,39 4,50 5,20 5,60 4,25 15 6,47 4,73 2,76 4,09 3,73 4,95 4,92 4,66 4,83 4,83 3,39 2,83 3,89 3,11 3,50 2,39 3,11 2,31 4,40 4,90 5,40 4,06 16 6,00 4,38 2,44 3,50 3,60 4,12 4,63 4,31 4,42 4,47 3,31 2,83 3,61 3,31 3,39 2,39 3,11 2,19 4,60 5,30 5,90 3,90 17 5,73 4,50 2,24 3,56 3,38 3,76 4,66 4,15 4,31 4,39 3,39 2,86 3,69 3,11 3,11 2,39 3,31 2,11 4,00 5,20 4,10 3,71 18 5,82 4,47 2,03 3,35 3,70 4,05 4,54 4,18 4,17 4,50 3,50 2,78 3,61 2,81 3,19 2,69 3,19 1,89 4,10 5,00 4,30 3,71 19 6,09 4,50 2,26 3,38 3,57 3,83 4,54 3,80 4,39 4,42 3,50 2,64 3,89 3,00 3,19 2,50 3,00 2,19 3,90 4,70 4,20 3,69 20 6,50 4,59 2,47 3,12 3,31 3,54 4,73 3,92 4,33 4,53 3,11 2,81 3,31 3,19 4,00 2,39 3,00 1,81 3,70 4,50 4,70 3,69 21 6,62 4,59 2,82 3,32 3,38 3,63 4,47 4,41 4,56 4,39 3,31 2,81 3,50 3,31 4,11 2,69 3,31 1,89 3,90 4,90 5,10 3,86 22 6,94 4,41 2,82 4,18 3,38 3,60 4,28 4,50 4,47 4,83 3,19 2,97 3,81 3,00 4,00 2,69 3,19 2,31 4,10 5,20 5,60 3,98 23 6,47 4,35 2,82 4,35 3,57 3,80 4,31 4,37 4,69 4,83 3,39 2,97 3,31 3,31 4,39 2,69 2,69 2,31 4,20 5,10 5,30 3,96 24 5,76 4,00 2,82 4,29 3,60 3,80 4,47 4,41 4,06 4,64 3,11 2,97 3,11 3,11 4,39 2,69 2,39 2,00 3,70 5,00 5,00 3,78

Tabla B.11. Velocidades de viento para Junio

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1 0,36974 0,00594 0,08678 0,00100 0,00627 0,00142 0,03786 0,00615 0,00557 0,03061 0,03061 0,03061 0,03904 0,03904 0,01221 0,10663 0,12617 0,26298 0,00946 0,04504 0,03476 2 0,32666 0,02535 0,06807 0,00337 0,00090 0,00953 0,00794 0,00217 0,03088 0,07763 0,00051 0,06647 0,02401 0,06647 0,05850 0,13545 0,15217 0,19494 0,00003 0,08776 0,02689 3 0,40251 0,00484 0,09897 0,00009 0,00733 0,01871 0,03467 0,09595 0,05658 0,03810 0,00002 0,04424 0,02354 0,05367 0,02325 0,10974 0,15069 0,26650 0,00072 0,07871 0,00251 4 0,72138 0,01488 0,09217 0,05667 0,00010 0,00244 0,02029 0,00034 0,02174 0,06990 0,00275 0,07244 0,02544 0,06855 0,00275 0,03292 0,11712 0,25302 0,00070 0,02486 0,00000 5 0,82647 0,01855 0,10730 0,03921 0,00038 0,02499 0,00158 0,00158 0,01368 0,08537 0,00642 0,04790 0,00642 0,06899 0,00084 0,06899 0,06899 0,22503 0,05657 0,11584 0,00062 6 0,68333 0,03294 0,07679 0,03882 0,00671 0,02711 0,00634 0,00293 0,03313 0,08112 0,04289 0,02424 0,00208 0,06681 0,01088 0,04289 0,09602 0,19539 0,06757 0,04657 0,02655 7 0,50640 0,03863 0,08688 0,07606 0,00528 0,01195 0,01831 0,00694 0,01327 0,04840 0,00324 0,03392 0,01940 0,07507 0,00324 0,05956 0,10653 0,18591 0,00704 0,05734 0,00605 8 0,41522 0,00047 0,13061 0,05630 0,00096 0,03189 0,00096 0,01000 0,01918 0,10204 0,00309 0,05334 0,02420 0,08484 0,00643 0,05688 0,08484 0,16351 0,00052 0,06178 0,03774 9 0,49463 0,00430 0,14937 0,03189 0,00533 0,01264 0,00109 0,00594 0,12759 0,09231 0,00487 0,08024 0,01517 0,11852 0,00487 0,06781 0,09845 0,17684 0,00185 0,13872 0,00960 10 0,28788 0,05549 0,20566 0,00479 0,03450 0,01379 0,01183 0,02584 0,07798 0,04491 0,01205 0,12191 0,01680 0,08808 0,00597 0,04927 0,14370 0,18614 0,00253 0,13951 0,00597 11 0,26128 0,01391 0,18444 0,00110 0,02730 0,01914 0,00925 0,04235 0,06016 0,05664 0,01780 0,09952 0,00038 0,08621 0,00038 0,08621 0,11874 0,18037 0,00237 0,17279 0,09661 12 0,34233 0,02038 0,17436 0,01011 0,00236 0,01660 0,02861 0,04056 0,06423 0,04480 0,02936 0,07606 0,00212 0,06147 0,00545 0,10532 0,06147 0,13934 0,00077 0,10801 0,07757 13 0,38975 0,02112 0,06619 0,00240 0,00129 0,00395 0,02142 0,06771 0,00669 0,04818 0,01638 0,09304 0,00026 0,07059 0,00674 0,10121 0,04831 0,19023 0,00148 0,04152 0,08890 14 0,37299 0,01277 0,08292 0,00728 0,00302 0,03220 0,00659 0,02226 0,00704 0,01358 0,02285 0,07220 0,00020 0,04972 0,01731 0,11595 0,01112 0,19225 0,00334 0,04943 0,10008 15 0,35323 0,02781 0,10162 0,00005 0,00650 0,04865 0,04522 0,02227 0,03649 0,03649 0,02720 0,09109 0,00174 0,05446 0,01892 0,16919 0,05446 0,18651 0,00710 0,04304 0,10934 16 0,29160 0,01558 0,13945 0,01034 0,00567 0,00322 0,03568 0,01130 0,01788 0,02190 0,02295 0,07437 0,00534 0,02295 0,01693 0,14961 0,04057 0,19071 0,03268 0,12993 0,26468 17 0,29704 0,04505 0,15828 0,00171 0,00813 0,00019 0,06577 0,01388 0,02559 0,03327 0,00757 0,05253 0,00002 0,02619 0,02619 0,12703 0,01198 0,18597 0,00603 0,16075 0,01094 18 0,32515 0,04220 0,20503 0,00920 0,00001 0,00862 0,04970 0,01626 0,01527 0,04557 0,00316 0,06298 0,00069 0,05927 0,01921 0,07476 0,01921 0,24073 0,01115 0,12131 0,02545 19 0,42237 0,04818 0,14920 0,00695 0,00105 0,00139 0,05249 0,00082 0,03591 0,03882 0,00264 0,08111 0,00291 0,03494 0,01802 0,10397 0,03494 0,16423 0,00325 0,07497 0,01913 20 0,57759 0,05873 0,10959 0,02429 0,01059 0,00176 0,07858 0,00392 0,03008 0,05112 0,02482 0,05773 0,01100 0,01822 0,00692 0,12468 0,03520 0,26119 0,00000 0,04777 0,07438 21 0,51194 0,03588 0,07185 0,01916 0,01549 0,00333 0,02530 0,02028 0,03278 0,01900 0,02045 0,07434 0,00858 0,02045 0,00433 0,09087 0,02045 0,26040 0,00012 0,07309 0,10381 22 0,55632 0,01203 0,08399 0,00255 0,02264 0,00881 0,00579 0,01761 0,01562 0,04657 0,03859 0,06368 0,00183 0,06020 0,00004 0,10383 0,03859 0,17644 0,00098 0,09489 0,16700 23 0,39998 0,00964 0,08275 0,00964 0,00984 0,00180 0,00765 0,01075 0,03402 0,04818 0,02101 0,06254 0,02755 0,02755 0,01152 0,10251 0,10251 0,17497 0,00356 0,08224 0,11373 24 0,27659 0,00346 0,06381 0,01867 0,00215 0,00002 0,03368 0,02772 0,00542 0,05200 0,03112 0,04545 0,03112 0,03112 0,02619 0,08221 0,13513 0,22142 0,00042 0,10473 0,10473

Sumatoria 10,41239 0,56811 2,77610 0,43167 0,18378 0,30413 0,60659 0,47553 0,78679 1,22648 0,39235 1,58193 0,28982 1,35341 0,30710 2,26750 1,87736 4,87502 0,22026 2,10060 1,50702

Tabla B.12. Errores cuadráticos para Junio

Page 275: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio horario

1 4,82 4,23 4,15 5,15 4,31 5,53 4,73 3,41 5,11 4,08 4,08 4,08 3,61 4,00 3,69 3,81 4,89 3,31 3,70 4,20 4,50 4,26 2 4,65 4,38 4,23 4,68 4,60 5,50 4,57 3,47 4,89 4,17 3,11 3,89 3,50 4,19 3,61 3,50 4,89 3,61 3,60 4,10 4,10 4,15 3 4,32 4,68 4,26 4,47 4,82 5,44 4,34 3,47 4,58 3,94 3,19 3,78 3,69 4,31 3,31 3,11 5,31 3,81 3,50 4,20 3,90 4,12 4 4,15 4,32 4,50 5,21 4,41 4,89 4,31 3,60 4,28 4,17 3,19 3,61 4,19 4,31 2,69 3,39 5,31 3,69 3,30 3,90 3,80 4,06 5 4,29 4,41 4,82 5,38 4,05 4,63 3,92 3,60 4,06 4,44 3,00 4,03 4,00 4,11 3,11 4,31 5,19 3,19 3,40 3,50 3,70 4,06 6 4,35 4,29 4,94 5,29 4,05 5,02 4,21 3,54 4,17 4,44 3,19 3,92 3,61 4,11 3,19 3,81 5,81 3,19 3,30 3,70 4,10 4,11 7 4,79 4,26 4,79 5,15 4,21 4,76 4,21 3,73 4,33 4,14 3,11 4,14 3,39 4,11 2,89 3,81 5,69 3,19 3,30 3,50 3,70 4,06 8 5,03 4,41 4,76 4,44 4,02 4,63 3,99 3,35 4,22 3,97 3,81 3,69 3,50 4,11 2,69 3,61 5,89 2,69 3,40 3,70 3,90 3,99 9 5,12 4,38 4,65 4,41 3,63 4,73 4,28 3,38 3,83 4,06 4,00 3,92 3,89 4,50 2,89 3,00 5,69 2,81 2,90 3,90 3,80 3,99 10 5,03 4,73 4,09 4,59 3,76 4,60 4,70 3,86 3,83 4,11 4,00 3,89 4,00 4,61 3,39 3,39 4,89 2,69 2,90 4,10 3,70 4,04 11 5,15 5,18 4,21 4,91 4,02 4,70 4,95 3,99 3,67 4,08 3,50 3,94 4,19 4,69 3,61 3,31 5,39 2,81 3,30 4,40 4,10 4,19 12 5,53 5,23 4,18 5,59 4,89 5,11 5,15 4,18 4,22 3,86 3,89 4,44 4,11 4,61 3,81 3,39 6,61 3,00 3,40 4,90 4,60 4,51 13 5,65 5,29 5,15 5,97 4,86 5,18 5,18 4,82 5,00 4,00 4,31 4,67 5,00 4,39 4,11 3,61 6,50 3,19 3,30 5,10 4,60 4,76 14 5,73 5,53 5,59 6,29 4,79 5,02 5,24 4,47 5,19 4,42 4,39 4,53 4,69 4,50 4,19 3,11 6,61 3,31 3,10 5,00 5,00 4,80 15 5,35 5,21 5,18 6,15 4,76 4,79 5,02 4,02 5,25 4,00 4,00 4,31 4,39 4,50 4,11 3,31 6,19 3,00 3,00 4,40 4,50 4,54 16 5,15 5,12 4,56 5,88 4,82 5,08 5,08 3,47 4,78 3,75 3,69 3,97 4,31 4,19 4,00 3,31 5,89 2,81 3,20 4,10 4,20 4,35 17 5,12 4,50 4,35 5,62 4,34 4,57 5,21 3,38 4,42 4,03 3,50 3,83 4,11 3,81 3,31 3,61 5,39 2,69 2,70 3,60 4,10 4,10 18 4,79 4,35 4,18 5,94 3,96 4,86 4,82 3,28 3,89 4,03 3,31 3,61 4,00 3,81 3,31 3,31 5,39 2,61 2,40 3,50 4,00 3,97 19 5,00 4,53 4,65 5,56 3,76 5,05 4,57 3,51 4,36 3,89 3,50 3,83 4,31 4,11 3,61 3,50 5,39 2,50 3,00 3,50 3,70 4,09 20 5,15 4,47 4,38 5,15 3,92 5,24 4,31 3,67 4,33 3,72 3,11 3,94 4,19 4,11 3,00 3,31 5,50 2,50 3,10 3,60 3,80 4,02 21 4,91 4,44 4,50 5,59 4,41 5,40 4,37 3,80 4,47 4,03 3,31 4,06 4,00 4,19 3,61 3,11 5,00 2,81 3,40 3,70 4,10 4,15 22 4,47 4,29 4,38 5,56 4,44 5,47 4,21 3,57 4,47 4,22 3,00 4,19 4,11 4,61 3,81 3,69 4,69 2,61 3,30 3,70 4,10 4,14 23 4,62 4,00 4,06 5,82 4,73 5,24 4,34 3,57 4,83 4,31 3,69 4,39 3,69 4,69 3,89 3,50 4,89 2,89 3,80 3,80 4,30 4,24 24 4,82 4,09 4,73 5,38 4,47 5,34 4,57 3,47 4,53 4,14 4,31 4,78 3,61 4,39 4,19 3,11 5,19 3,00 3,90 4,30 4,00 4,30

Tabla B.13. Velocidades de viento para Julio

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1 0,01768 0,00003 0,00067 0,04367 0,00015 0,08973 0,01224 0,03965 0,04025 0,00166 0,00166 0,00166 0,02302 0,00365 0,01746 0,01125 0,02203 0,04995 0,01712 0,00018 0,00326 2 0,01404 0,00300 0,00038 0,01577 0,01148 0,10493 0,00988 0,02684 0,03126 0,00001 0,06306 0,00408 0,02481 0,00009 0,01710 0,02481 0,03126 0,01710 0,01781 0,00017 0,00017 3 0,00253 0,01851 0,00130 0,00740 0,02963 0,10278 0,00302 0,02436 0,01289 0,00174 0,05014 0,00676 0,01049 0,00212 0,03878 0,05961 0,08351 0,00569 0,02240 0,00042 0,00276 4 0,00048 0,00427 0,01185 0,07997 0,00738 0,04194 0,00386 0,01260 0,00294 0,00072 0,04528 0,01212 0,00113 0,00372 0,11290 0,02718 0,09453 0,00802 0,03488 0,00151 0,00404 5 0,00345 0,00770 0,03583 0,10697 0,00000 0,02018 0,00105 0,01248 0,00000 0,00920 0,06774 0,00005 0,00019 0,00019 0,05422 0,00380 0,07887 0,04508 0,02612 0,01876 0,00768 6 0,00357 0,00207 0,04121 0,08348 0,00018 0,04916 0,00067 0,01919 0,00021 0,00675 0,04937 0,00215 0,01458 0,00000 0,04937 0,00539 0,17105 0,04937 0,03861 0,00982 0,00000 7 0,03285 0,00258 0,03285 0,07193 0,00146 0,02993 0,00146 0,00650 0,00460 0,00040 0,05446 0,00040 0,02720 0,00017 0,08302 0,00388 0,16257 0,04530 0,03491 0,01892 0,00779 8 0,06753 0,01105 0,03746 0,01266 0,00005 0,02570 0,00000 0,02624 0,00334 0,00002 0,00217 0,00554 0,01517 0,00090 0,10561 0,00909 0,22590 0,10561 0,02197 0,00534 0,00053 9 0,08008 0,00973 0,02723 0,01124 0,00788 0,03439 0,00526 0,02349 0,00151 0,00028 0,00001 0,00032 0,00062 0,01645 0,07601 0,06142 0,18295 0,08796 0,07448 0,00049 0,00223 10 0,05976 0,02947 0,00013 0,01830 0,00473 0,01909 0,02626 0,00202 0,00264 0,00030 0,00010 0,00142 0,00010 0,01990 0,02605 0,02605 0,04401 0,11105 0,07974 0,00021 0,00712 11 0,05148 0,05471 0,00001 0,02917 0,00173 0,01427 0,03268 0,00242 0,01585 0,00071 0,02744 0,00356 0,00000 0,01418 0,01936 0,04494 0,08102 0,10969 0,04551 0,00239 0,00051 12 0,05109 0,02586 0,00547 0,05715 0,00707 0,01796 0,01993 0,00530 0,00406 0,02068 0,01895 0,00021 0,00781 0,00051 0,02438 0,06176 0,21715 0,11206 0,06055 0,00749 0,00040 13 0,03508 0,01279 0,00675 0,06518 0,00045 0,00789 0,00789 0,00021 0,00264 0,02526 0,00896 0,00035 0,00264 0,00595 0,01838 0,05794 0,13450 0,10779 0,09371 0,00524 0,00107 14 0,03833 0,02336 0,02726 0,09753 0,00000 0,00214 0,00868 0,00459 0,00691 0,00625 0,00720 0,00312 0,00045 0,00381 0,01573 0,12341 0,14327 0,09656 0,12504 0,00181 0,00181 15 0,03164 0,02118 0,01934 0,12435 0,00226 0,00299 0,01085 0,01328 0,02413 0,01434 0,01434 0,00276 0,00117 0,00009 0,00908 0,07429 0,13190 0,11547 0,11547 0,00101 0,00009 16 0,03348 0,03106 0,00228 0,12390 0,01187 0,02826 0,02826 0,04062 0,00965 0,01905 0,02274 0,00756 0,00011 0,00129 0,00649 0,05769 0,12504 0,12611 0,06994 0,00332 0,00120 17 0,06099 0,00931 0,00368 0,13601 0,00337 0,01276 0,07275 0,03134 0,00582 0,00034 0,02164 0,00434 0,00000 0,00528 0,03783 0,01441 0,09808 0,11793 0,11700 0,01507 0,00000 18 0,04328 0,00938 0,00275 0,24709 0,00001 0,05014 0,04658 0,03001 0,00040 0,00023 0,02788 0,00810 0,00006 0,00168 0,02788 0,02788 0,12819 0,11695 0,15617 0,01392 0,00006 19 0,04990 0,01172 0,01878 0,12969 0,00627 0,05554 0,01383 0,02020 0,00451 0,00234 0,02061 0,00384 0,00287 0,00004 0,01354 0,02061 0,10154 0,15074 0,07070 0,02061 0,00895 20 0,07777 0,01227 0,00790 0,07777 0,00062 0,09166 0,00504 0,00790 0,00590 0,00564 0,05149 0,00039 0,00179 0,00047 0,06479 0,03190 0,13446 0,14347 0,05276 0,01112 0,00311 21 0,03339 0,00482 0,00699 0,11946 0,00374 0,09077 0,00285 0,00740 0,00593 0,00090 0,04160 0,00054 0,00135 0,00010 0,01700 0,06289 0,04166 0,10521 0,03284 0,01187 0,00016 22 0,00642 0,00140 0,00346 0,11768 0,00525 0,10316 0,00033 0,01886 0,00650 0,00041 0,07569 0,00018 0,00004 0,01303 0,00648 0,01152 0,01804 0,13622 0,04106 0,01123 0,00009 23 0,00787 0,00324 0,00185 0,13917 0,01320 0,05580 0,00057 0,02501 0,01951 0,00023 0,01660 0,00122 0,01660 0,01144 0,00689 0,03052 0,02335 0,10164 0,01081 0,01081 0,00019 24 0,01471 0,00246 0,01016 0,06310 0,00155 0,05822 0,00382 0,03703 0,00277 0,00143 0,00000 0,01227 0,02575 0,00041 0,00062 0,07657 0,04311 0,09153 0,00871 0,00000 0,00491

Sumatoria 0,81741 0,31198 0,30556 1,97862 0,12034 1,10936 0,31777 0,43755 0,21421 0,11889 0,68914 0,08295 0,17796 0,10546 0,84896 0,92881 2,51799 2,15653 1,36828 0,17170 0,05815

Tabla B.14. Errores cuadráticos para Julio

Page 276: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio horario

1 4,56 4,56 3,41 4,21 5,73 3,51 3,92 3,57 5,00 4,36 4,36 4,36 4,31 4,00 4,19 2,89 4,81 3,00 5,30 5,60 5,00 4,32 2 4,65 4,56 3,32 4,21 6,11 3,51 4,02 3,86 5,72 4,67 4,19 4,28 4,00 4,19 4,00 3,00 4,89 3,00 4,80 5,30 5,40 4,37 3 4,79 4,73 3,26 4,82 5,69 3,47 3,80 3,63 5,58 5,25 4,50 4,03 3,89 4,19 4,11 3,11 5,31 2,89 4,90 5,20 5,30 4,40 4 4,88 4,79 3,24 4,35 5,60 3,76 3,92 3,60 5,58 5,22 4,39 4,47 3,61 4,31 4,00 3,11 5,19 3,19 4,70 5,30 4,80 4,38 5 5,18 4,56 3,12 4,56 5,47 3,76 4,21 3,86 5,44 5,28 4,81 4,53 3,39 4,31 3,69 3,00 5,11 2,89 4,70 5,60 4,90 4,40 6 4,79 4,53 2,91 4,18 5,40 3,60 3,96 3,67 5,14 5,83 4,81 4,42 3,39 4,11 3,61 2,89 5,00 3,11 4,90 5,20 4,70 4,29 7 4,88 4,59 2,71 4,15 5,95 3,47 4,12 3,86 5,33 5,53 4,61 4,39 3,81 3,81 3,89 2,89 4,89 3,81 5,20 5,30 4,50 4,37 8 5,44 4,44 2,47 3,71 5,89 3,51 4,21 3,92 5,58 5,56 4,69 4,58 3,50 4,00 3,39 3,00 4,89 3,89 5,00 4,90 4,30 4,33 9 5,26 4,26 2,74 3,26 6,18 3,38 4,37 3,44 5,83 5,86 4,89 4,58 3,11 3,81 3,61 3,00 5,11 3,39 4,50 5,60 4,20 4,30 10 5,26 4,79 2,94 3,62 6,11 3,57 4,50 4,25 5,53 5,67 4,89 4,61 3,19 4,31 3,39 3,19 5,19 3,50 5,40 5,60 4,60 4,48 11 5,91 4,91 3,59 3,91 6,85 3,86 4,86 4,92 5,56 5,72 5,11 4,67 3,89 4,81 4,61 3,50 5,61 3,31 5,90 6,20 4,50 4,87 12 6,50 5,21 3,41 3,88 7,33 4,25 5,27 5,18 5,92 6,00 4,61 5,17 4,31 4,89 4,50 3,61 6,00 3,69 5,80 6,50 4,50 5,07 13 6,18 5,53 3,50 4,03 7,62 4,50 5,53 5,24 6,56 5,92 5,11 5,61 5,11 5,00 5,19 3,89 6,11 4,11 6,00 6,60 4,60 5,33 14 6,68 5,76 4,06 4,44 7,59 4,54 5,47 5,40 6,36 5,61 5,61 5,33 5,69 4,89 5,00 3,69 6,11 3,69 6,70 6,50 5,20 5,44 15 6,88 5,53 3,85 4,47 8,07 4,44 5,47 5,21 5,92 5,78 4,89 4,94 5,61 4,81 4,89 3,89 5,61 4,69 6,90 6,50 5,30 5,41 16 5,56 5,50 3,76 4,26 8,14 4,25 5,08 4,57 6,08 5,14 4,69 4,72 5,19 5,00 4,89 3,69 6,31 4,69 7,00 6,30 5,50 5,25 17 5,26 5,18 3,50 3,88 7,59 3,80 4,54 3,80 5,86 5,25 4,11 4,72 4,61 4,89 4,39 3,11 5,50 4,39 6,30 5,90 5,10 4,84 18 5,03 4,65 3,18 3,15 6,53 3,57 4,12 3,80 5,56 4,86 3,61 4,81 4,61 4,19 3,89 2,81 5,00 4,00 6,70 5,60 4,60 4,49 19 4,97 4,65 2,97 3,15 5,79 3,70 3,67 3,76 5,31 4,64 3,81 4,03 4,11 3,81 4,00 2,89 4,89 3,69 5,80 4,90 4,80 4,25 20 4,65 5,26 2,76 3,73 4,95 3,41 4,02 3,54 5,39 4,78 3,81 3,97 4,11 4,00 3,89 3,31 5,11 4,11 5,80 5,20 4,60 4,30 21 4,73 5,12 2,82 4,03 5,21 3,60 3,80 3,73 5,56 4,25 3,89 4,03 4,39 4,31 3,39 3,00 4,61 3,39 6,00 5,60 4,80 4,30 22 5,26 5,15 3,15 3,79 5,11 3,89 4,08 4,21 5,47 4,28 3,81 4,22 4,50 4,19 3,81 2,89 5,00 3,00 5,60 5,80 4,80 4,38 23 5,26 5,26 3,00 4,15 4,92 3,47 4,02 4,18 5,25 4,11 3,89 4,28 4,19 4,00 3,81 2,81 4,89 3,50 5,50 5,90 4,70 4,34 24 4,91 4,82 3,29 4,06 5,05 3,54 4,31 3,86 5,25 4,36 4,11 4,28 4,11 3,69 4,31 2,81 4,31 3,19 5,50 5,70 5,00 4,31

Tabla B.15. Velocidades de viento para Agosto

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1 0,00315 0,00315 0,04393 0,00066 0,10659 0,03524 0,00825 0,02986 0,02511 0,00011 0,00011 0,00011 0,00001 0,00536 0,00079 0,10934 0,01286 0,09297 0,05197 0,08850 0,02511 2 0,00415 0,00195 0,05700 0,00134 0,15990 0,03878 0,00625 0,01343 0,09659 0,00476 0,00154 0,00040 0,00701 0,00154 0,00701 0,09784 0,01437 0,09784 0,00991 0,04582 0,05616 3 0,00785 0,00566 0,06692 0,00908 0,08575 0,04459 0,01907 0,03050 0,07179 0,03695 0,00048 0,00728 0,01366 0,00225 0,00441 0,08614 0,04196 0,11831 0,01271 0,03272 0,04145 4 0,01299 0,00880 0,06856 0,00005 0,07674 0,01997 0,01095 0,03169 0,07508 0,03671 0,00000 0,00042 0,03098 0,00031 0,00762 0,08416 0,03432 0,07349 0,00525 0,04383 0,00908 5 0,03129 0,00133 0,08479 0,00133 0,05917 0,02084 0,00176 0,01498 0,05661 0,04001 0,00859 0,00087 0,05265 0,00044 0,02559 0,10105 0,02629 0,11775 0,00471 0,07469 0,01303 6 0,01363 0,00303 0,10352 0,00074 0,06698 0,02586 0,00614 0,02126 0,03887 0,12883 0,01428 0,00084 0,04432 0,00179 0,02520 0,10693 0,02716 0,07576 0,02002 0,04468 0,00901 7 0,01402 0,00260 0,14453 0,00250 0,13188 0,04170 0,00323 0,01341 0,04920 0,07095 0,00318 0,00003 0,01643 0,01643 0,01190 0,11437 0,01440 0,01643 0,03658 0,04587 0,00096 8 0,06622 0,00069 0,18413 0,02064 0,12978 0,03602 0,00069 0,00868 0,08428 0,08059 0,00721 0,00351 0,03654 0,00572 0,04702 0,09407 0,01685 0,01026 0,02418 0,01753 0,00004 9 0,04973 0,00009 0,13292 0,05837 0,18897 0,04639 0,00026 0,04018 0,12618 0,13081 0,01844 0,00420 0,07685 0,01343 0,02594 0,09183 0,03513 0,04523 0,00207 0,09061 0,00059 10 0,03048 0,00484 0,11821 0,03721 0,13216 0,04137 0,00002 0,00278 0,05447 0,06989 0,00825 0,00083 0,08251 0,00155 0,05947 0,08251 0,02528 0,04799 0,04197 0,06225 0,00070 11 0,04613 0,00009 0,06900 0,03849 0,16637 0,04278 0,00000 0,00013 0,02008 0,03095 0,00254 0,00168 0,04033 0,00015 0,00275 0,07881 0,02344 0,10285 0,04514 0,07514 0,00566 12 0,07912 0,00069 0,10724 0,05509 0,19863 0,02658 0,00159 0,00043 0,02769 0,03342 0,00828 0,00034 0,02287 0,00131 0,01274 0,08301 0,03342 0,07381 0,02056 0,07918 0,01274 13 0,02514 0,00138 0,11798 0,05963 0,18488 0,02411 0,00143 0,00027 0,05279 0,01208 0,00170 0,00277 0,00170 0,00385 0,00065 0,07316 0,02143 0,05234 0,01576 0,05669 0,01879 14 0,05114 0,00345 0,06482 0,03399 0,15537 0,02790 0,00002 0,00006 0,02834 0,00094 0,00094 0,00042 0,00211 0,01042 0,00667 0,10333 0,01499 0,10333 0,05317 0,03758 0,00202 15 0,07375 0,00047 0,08302 0,03028 0,24179 0,03235 0,00011 0,00139 0,00870 0,00457 0,00934 0,00746 0,00135 0,01256 0,00934 0,07920 0,00135 0,01758 0,07560 0,04042 0,00043 16 0,00335 0,00218 0,08039 0,03549 0,30117 0,03684 0,00107 0,01709 0,02491 0,00048 0,01134 0,01025 0,00013 0,00234 0,00483 0,08811 0,04005 0,01134 0,11042 0,03963 0,00219 17 0,00762 0,00477 0,07681 0,03928 0,32243 0,04669 0,00401 0,04669 0,04435 0,00712 0,02276 0,00061 0,00226 0,00010 0,00874 0,12774 0,01850 0,00874 0,09075 0,04780 0,00285 18 0,01454 0,00125 0,08542 0,08929 0,20693 0,04181 0,00683 0,02381 0,05661 0,00692 0,03816 0,00501 0,00076 0,00427 0,01781 0,14051 0,01303 0,01181 0,24299 0,06142 0,00063 19 0,02841 0,00855 0,09099 0,06768 0,13045 0,01699 0,01902 0,01328 0,06121 0,00822 0,01108 0,00281 0,00112 0,01108 0,00355 0,10290 0,02233 0,01726 0,13225 0,02312 0,01652 20 0,00630 0,04966 0,12805 0,01753 0,02268 0,04328 0,00437 0,03174 0,06340 0,01206 0,01346 0,00597 0,00203 0,00502 0,00934 0,05389 0,03507 0,00203 0,12061 0,04323 0,00470 21 0,01035 0,03637 0,11769 0,00390 0,04513 0,02617 0,01366 0,01738 0,08568 0,00012 0,00904 0,00394 0,00045 0,00000 0,04471 0,09116 0,00532 0,04471 0,15692 0,09184 0,01367 22 0,04053 0,03044 0,07946 0,01802 0,02791 0,01251 0,00460 0,00148 0,06190 0,00057 0,01731 0,00133 0,00073 0,00183 0,01731 0,11610 0,01989 0,09947 0,07726 0,10471 0,00910 23 0,04561 0,04561 0,09515 0,00194 0,01808 0,03968 0,00535 0,00130 0,04422 0,00273 0,01071 0,00019 0,00109 0,00606 0,01505 0,12477 0,01614 0,03730 0,07178 0,12970 0,00697 24 0,01964 0,01432 0,05539 0,00335 0,02968 0,03192 0,00000 0,01082 0,04786 0,00015 0,00208 0,00005 0,00208 0,02026 0,00000 0,12159 0,00000 0,06678 0,07662 0,10448 0,02583

Sumatoria 0,68515 0,23139 2,25590 0,62586 3,18940 0,80037 0,11868 0,37262 1,30590 0,71995 0,22080 0,06132 0,43995 0,12807 0,36844 2,35253 0,51360 1,34539 1,49921 1,48144 0,27820

Tabla B.16. Errores cuadráticos para Agosto

Page 277: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio horario

1 3,59 3,59 3,53 4,06 4,63 4,54 4,28 4,63 3,39 4,44 4,44 4,44 4,39 5,31 3,69 2,81 3,81 3,69 4,40 4,10 4,20 4,09 2 3,62 3,71 3,59 3,97 4,66 4,41 4,28 4,41 3,44 4,81 4,31 5,64 3,89 4,89 3,69 2,69 3,39 3,39 4,30 3,90 3,80 4,04 3 3,85 3,85 3,59 3,85 4,95 4,37 4,41 4,25 3,33 4,83 4,19 5,44 3,81 5,31 4,11 3,00 3,61 3,69 4,60 4,30 3,80 4,15 4 3,68 4,00 3,32 3,88 5,02 4,34 4,50 4,60 3,39 4,17 4,39 5,00 4,19 5,50 3,69 3,31 3,69 3,81 4,60 4,70 3,50 4,16 5 4,03 4,03 3,38 4,21 4,37 4,82 4,50 5,15 3,22 4,14 3,89 4,72 4,31 5,19 3,69 3,31 3,81 4,11 4,40 5,10 3,90 4,20 6 3,71 4,32 3,32 3,79 4,34 4,73 4,44 5,47 3,39 4,33 4,11 4,56 4,61 5,39 3,39 3,00 3,31 4,39 4,70 5,30 3,80 4,21 7 3,73 4,68 3,21 4,09 4,95 4,76 4,31 5,69 3,19 4,31 3,89 4,25 4,61 5,61 4,00 2,89 3,39 5,11 4,60 5,70 4,20 4,34 8 4,03 4,18 2,97 4,00 5,27 4,79 4,41 5,69 3,67 4,22 4,39 4,53 5,19 5,69 4,00 3,11 3,61 5,00 4,80 5,80 4,00 4,45 9 4,73 4,94 3,44 4,41 5,31 5,05 4,57 5,89 4,03 4,50 4,89 5,33 5,00 5,69 4,11 3,31 3,89 5,50 5,30 6,20 3,70 4,75 10 4,76 4,85 4,06 5,68 6,30 5,95 5,40 6,85 5,03 4,83 5,89 5,78 5,19 6,89 4,50 3,81 4,19 5,89 5,30 6,20 4,10 5,31 11 5,12 5,18 4,82 6,44 6,63 6,01 5,76 7,46 4,92 5,28 5,89 6,72 5,89 7,50 4,89 4,39 4,81 5,69 5,70 6,60 4,60 5,73 12 5,38 5,88 5,06 6,56 7,27 6,43 6,05 7,69 5,08 5,47 5,61 8,56 6,39 7,31 5,50 4,31 5,11 5,69 6,20 6,50 4,20 6,01 13 5,38 6,12 5,53 7,03 7,98 7,01 6,27 7,65 5,19 5,53 6,50 7,22 6,69 6,61 6,00 4,31 5,11 5,39 6,20 6,60 4,50 6,13 14 5,26 5,65 5,73 7,21 7,78 7,04 6,56 7,20 4,94 5,47 6,61 7,28 6,89 6,69 6,00 4,39 5,31 4,89 6,60 5,80 5,70 6,14 15 5,15 5,76 5,88 7,32 7,85 6,63 6,75 7,33 5,00 6,53 6,61 6,83 6,69 6,31 5,81 4,39 4,69 4,69 6,40 5,30 5,60 6,07 16 4,73 5,26 5,44 7,76 8,01 6,43 6,40 7,14 5,22 5,81 6,50 6,61 6,39 5,89 5,50 4,11 4,50 4,39 6,20 4,80 5,10 5,82 17 4,65 5,06 5,35 6,97 7,49 6,53 6,01 6,40 4,72 5,33 5,89 6,08 5,69 6,00 5,11 4,00 4,81 4,19 5,70 4,40 4,70 5,48 18 4,41 4,56 4,88 5,68 6,50 5,60 5,44 5,40 4,06 5,00 5,61 5,42 5,31 5,50 4,39 3,50 4,39 3,89 5,40 4,40 4,40 4,94 19 4,32 4,32 4,35 4,35 5,66 5,02 4,63 4,86 3,58 4,92 4,81 5,00 5,11 5,61 3,61 3,19 4,31 4,00 4,80 4,50 4,20 4,53 20 4,03 4,06 3,68 4,12 5,66 4,66 4,28 5,21 3,58 4,56 4,50 4,78 5,39 5,50 3,89 3,00 4,39 4,11 4,60 4,10 3,70 4,37 21 3,79 4,41 3,53 4,18 5,44 4,79 3,96 4,99 3,42 4,36 4,19 5,03 5,39 5,19 4,00 3,19 3,81 4,11 4,40 3,90 3,20 4,25 22 3,56 4,03 3,21 4,44 5,69 4,66 4,47 4,47 3,83 4,39 4,31 5,92 5,11 4,81 3,69 3,19 4,00 4,19 5,00 3,90 3,30 4,29 23 3,59 3,79 3,26 4,41 5,92 4,79 3,99 4,57 3,64 4,25 4,11 5,31 4,61 4,81 3,81 3,11 4,11 3,89 5,20 4,10 3,30 4,22 24 3,50 3,79 3,26 4,12 5,21 4,57 3,89 4,95 3,53 4,08 4,81 4,83 4,39 5,19 3,81 3,11 3,69 4,31 4,90 4,30 3,70 4,19

Tabla B.17. Velocidades de viento para Septiembre

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1 0,01524 0,01524 0,01899 0,00007 0,01730 0,01166 0,00203 0,01730 0,02960 0,00737 0,00737 0,00737 0,00522 0,08774 0,00949 0,09896 0,00494 0,00949 0,00562 0,00000 0,00068 2 0,01080 0,00674 0,01237 0,00027 0,02411 0,00838 0,00356 0,00838 0,02154 0,03626 0,00443 0,15749 0,00134 0,04455 0,00720 0,11058 0,02577 0,02577 0,00425 0,00115 0,00344 3 0,00515 0,00515 0,01837 0,00515 0,03742 0,00291 0,00381 0,00053 0,03876 0,02707 0,00011 0,09721 0,00690 0,07746 0,00009 0,07683 0,01688 0,01207 0,01173 0,00130 0,00713 4 0,01335 0,00142 0,04017 0,00435 0,04294 0,00200 0,00696 0,01137 0,03409 0,00001 0,00313 0,04121 0,00008 0,10452 0,01235 0,04190 0,01235 0,00712 0,01140 0,01711 0,02493 5 0,00173 0,00173 0,03822 0,00000 0,00164 0,02180 0,00506 0,05024 0,05453 0,00024 0,00562 0,01520 0,00058 0,05551 0,01469 0,04567 0,00898 0,00049 0,00218 0,04543 0,00523 6 0,01432 0,00073 0,04431 0,00974 0,00100 0,01519 0,00297 0,08940 0,03799 0,00087 0,00054 0,00677 0,00911 0,07854 0,03799 0,08253 0,04609 0,00182 0,01359 0,06715 0,00945 7 0,01952 0,00594 0,06845 0,00341 0,01986 0,00930 0,00005 0,09691 0,06980 0,00007 0,01087 0,00044 0,00386 0,08552 0,00619 0,11195 0,04814 0,03143 0,00355 0,09792 0,00106 8 0,00878 0,00368 0,11013 0,01006 0,03479 0,00608 0,00008 0,07872 0,03070 0,00253 0,00016 0,00034 0,02837 0,07891 0,01005 0,09011 0,03524 0,01555 0,00635 0,09281 0,01005 9 0,00001 0,00158 0,07611 0,00513 0,01365 0,00393 0,00151 0,05697 0,02322 0,00281 0,00083 0,01498 0,00273 0,03935 0,01818 0,09263 0,03298 0,02479 0,01331 0,09288 0,04899 10 0,01048 0,00735 0,05539 0,00482 0,03525 0,01466 0,00033 0,08455 0,00278 0,00799 0,01199 0,00785 0,00045 0,08876 0,02315 0,08009 0,04399 0,01199 0,00000 0,02827 0,05177 11 0,01137 0,00929 0,02496 0,01547 0,02456 0,00250 0,00003 0,09164 0,02006 0,00618 0,00079 0,03012 0,00079 0,09570 0,02146 0,05466 0,02594 0,00003 0,00002 0,02317 0,03878 12 0,01097 0,00047 0,02514 0,00827 0,04375 0,00491 0,00003 0,07768 0,02384 0,00805 0,00444 0,17907 0,00394 0,04633 0,00724 0,08054 0,02244 0,00278 0,00098 0,00660 0,09081 13 0,01506 0,00001 0,00975 0,02124 0,09016 0,02044 0,00050 0,06142 0,02349 0,00979 0,00355 0,03143 0,00833 0,00603 0,00048 0,08890 0,02784 0,01478 0,00011 0,00575 0,07100 14 0,02049 0,00655 0,00443 0,02986 0,07126 0,02147 0,00462 0,02983 0,03810 0,01194 0,00579 0,03408 0,01471 0,00804 0,00055 0,08158 0,01861 0,04171 0,00552 0,00313 0,00521 15 0,02327 0,00259 0,00099 0,04236 0,08543 0,00829 0,01259 0,04307 0,03122 0,00561 0,00785 0,01568 0,01047 0,00147 0,00194 0,07690 0,05153 0,05153 0,00290 0,01620 0,00607 16 0,03472 0,00909 0,00423 0,11169 0,14158 0,01112 0,00998 0,05155 0,01052 0,00001 0,01369 0,01852 0,00958 0,00014 0,00301 0,08616 0,05139 0,06041 0,00428 0,03068 0,01527 17 0,02317 0,00594 0,00055 0,07381 0,13492 0,03658 0,00948 0,02816 0,01916 0,00073 0,00554 0,01208 0,00152 0,00897 0,00455 0,07301 0,01518 0,05509 0,00160 0,03889 0,02030 18 0,01141 0,00593 0,00013 0,02227 0,09954 0,01773 0,01012 0,00885 0,03199 0,00015 0,01853 0,00936 0,00551 0,01291 0,01240 0,08488 0,01240 0,04520 0,00872 0,01190 0,01190 19 0,00211 0,00211 0,00156 0,00156 0,06214 0,01152 0,00049 0,00516 0,04377 0,00723 0,00366 0,01070 0,01637 0,05679 0,04124 0,08704 0,00248 0,01375 0,00352 0,00005 0,00535 20 0,00612 0,00511 0,02526 0,00337 0,08710 0,00449 0,00045 0,03690 0,03246 0,00179 0,00087 0,00867 0,05425 0,06673 0,01216 0,09837 0,00002 0,00353 0,00275 0,00384 0,02356 21 0,01158 0,00142 0,02885 0,00031 0,07764 0,01621 0,00482 0,02983 0,03853 0,00067 0,00018 0,03337 0,07162 0,04923 0,00349 0,06179 0,01099 0,00109 0,00123 0,00682 0,06114 22 0,02935 0,00381 0,06426 0,00117 0,10612 0,00741 0,00169 0,00169 0,01151 0,00049 0,00001 0,14277 0,03620 0,01418 0,01950 0,06558 0,00469 0,00054 0,02702 0,00842 0,05360 23 0,02227 0,01008 0,05105 0,00212 0,16266 0,01860 0,00295 0,00689 0,01881 0,00006 0,00063 0,06659 0,00872 0,01946 0,00953 0,06880 0,00063 0,00606 0,05430 0,00077 0,04731 24 0,02701 0,00886 0,04863 0,00029 0,05961 0,00820 0,00500 0,03339 0,02485 0,00062 0,02174 0,02374 0,00230 0,05775 0,00834 0,06612 0,01389 0,00079 0,02890 0,00072 0,01358

Sumatoria 0,34827 0,12081 0,77231 0,37680 1,47444 0,28539 0,08911 1,00043 0,71133 0,13851 0,13233 0,96504 0,30298 1,18460 0,28525 1,90555 0,53338 0,43781 0,21383 0,60098 0,62662

Tabla B.18. Errores cuadráticos para Septiembre

Page 278: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio horario

1 4,35 5,71 4,50 4,71 3,57 3,89 4,66 6,05 5,94 4,83 4,83 4,83 3,69 3,81 4,00 3,00 5,50 3,69 6,50 4,20 3,60 4,57 2 4,85 5,59 4,65 4,88 3,96 3,89 4,60 6,40 6,03 4,42 6,00 4,58 3,89 3,89 3,61 3,31 5,31 3,50 6,40 4,20 4,00 4,66 3 4,35 5,18 4,41 4,18 3,96 3,96 4,63 6,24 5,33 3,86 5,69 4,39 3,69 3,69 3,39 3,50 4,81 4,19 5,70 4,50 3,60 4,44 4 4,44 5,29 4,91 4,21 4,15 3,80 4,57 5,98 5,42 4,00 6,00 4,67 3,81 3,69 3,00 3,19 4,50 4,61 6,40 3,90 3,60 4,48 5 4,15 5,68 5,09 4,85 3,83 3,70 4,41 6,40 5,03 4,39 5,69 5,00 3,50 3,50 3,00 3,11 4,39 5,31 6,70 3,80 4,00 4,55 6 4,32 5,23 5,50 5,06 3,89 3,99 4,28 6,24 5,08 5,50 5,31 5,00 3,89 4,00 3,39 3,11 4,50 5,89 7,00 4,20 3,70 4,72 7 4,23 5,41 5,59 5,41 4,31 4,25 4,50 6,24 5,50 5,72 4,81 4,83 4,39 4,11 3,39 3,50 4,89 6,11 7,00 4,50 3,90 4,89 8 5,47 6,15 6,00 5,62 4,25 4,60 5,02 6,56 5,47 6,17 4,81 5,03 4,69 4,31 3,69 3,69 5,89 6,00 8,00 4,70 4,90 5,29 9 6,06 6,32 6,76 6,65 5,37 5,27 5,69 7,75 6,11 5,89 6,39 5,14 5,50 4,50 4,31 3,81 6,00 6,81 7,80 5,10 4,90 5,82 10 6,88 6,76 7,12 7,53 6,34 6,11 5,92 8,81 7,03 6,39 6,81 5,64 6,19 4,89 5,39 4,31 6,50 6,31 8,20 5,00 5,50 6,36 11 7,44 7,29 7,38 7,71 6,50 7,20 6,30 8,94 7,58 7,39 7,39 5,94 6,50 5,50 5,81 4,69 6,81 6,19 8,60 5,40 6,00 6,79 12 8,12 7,62 7,56 7,91 6,56 7,59 6,50 9,49 8,11 6,78 7,50 6,42 6,69 5,61 5,81 4,89 7,19 6,00 9,10 5,60 6,80 7,04 13 8,44 7,68 7,50 7,97 6,69 7,33 6,59 9,46 8,03 6,67 7,89 6,61 6,69 5,50 5,81 5,31 7,39 5,69 9,60 5,60 6,80 7,11 14 8,32 7,56 7,53 7,53 6,56 7,04 6,79 9,07 8,61 7,19 8,11 6,75 6,69 5,69 5,61 5,19 7,39 5,50 9,90 5,50 7,00 7,12 15 7,91 7,35 7,06 7,38 6,56 6,75 7,01 9,13 8,75 7,22 8,19 6,92 6,89 6,19 5,81 5,19 7,61 4,89 9,50 5,30 6,80 7,07 16 7,56 7,56 7,44 7,18 6,79 6,34 6,92 8,65 9,03 5,64 8,69 6,64 6,50 5,81 5,81 5,11 7,11 4,61 9,00 5,10 6,70 6,87 17 7,09 7,38 7,32 6,06 6,98 6,14 6,37 8,14 8,08 5,64 9,00 5,86 5,81 5,69 5,61 5,11 7,00 4,50 8,70 4,90 6,30 6,56 18 6,73 6,47 7,21 5,23 6,40 5,53 5,79 7,24 7,94 5,00 7,11 5,14 5,89 5,39 5,11 4,89 6,50 4,31 8,60 5,00 5,40 6,04 19 6,12 6,23 6,79 4,65 5,69 4,92 5,27 6,63 7,19 5,03 6,31 4,83 5,31 5,00 4,31 4,61 5,61 4,19 7,60 4,50 4,90 5,51 20 5,53 5,53 5,65 4,18 4,60 4,18 5,08 6,66 5,58 5,17 5,61 4,25 4,50 4,81 4,11 4,31 5,39 3,89 6,10 4,20 4,40 4,94 21 4,91 5,35 5,12 3,94 3,92 4,15 4,89 6,14 6,22 5,11 5,31 4,25 4,11 4,50 4,00 3,81 5,31 3,61 6,30 4,30 4,60 4,75 22 4,85 5,38 4,97 4,21 3,47 3,96 4,57 5,63 6,08 4,83 5,61 4,47 3,69 3,69 3,81 3,31 5,39 3,50 6,80 4,20 4,00 4,59 23 4,82 4,94 4,94 4,09 3,51 4,34 5,05 5,40 5,97 5,25 5,89 4,67 3,39 4,00 3,61 3,00 5,69 3,61 6,20 4,00 4,10 4,59 24 4,41 5,53 4,62 4,29 3,63 4,12 5,02 5,82 6,17 4,97 6,11 4,83 3,61 4,11 3,81 2,69 5,61 3,39 6,00 4,10 4,10 4,62

Tabla B.19. Velocidades de viento para Octubre

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1 0,00217 0,06234 0,00021 0,00094 0,04752 0,02177 0,00046 0,10528 0,09123 0,00344 0,00344 0,00344 0,03640 0,02770 0,01534 0,11757 0,04190 0,03640 0,17955 0,00641 0,04472 2 0,00163 0,03922 0,00001 0,00218 0,02304 0,02741 0,00019 0,13863 0,08550 0,00281 0,08205 0,00030 0,02762 0,02762 0,05096 0,08484 0,01892 0,06229 0,13854 0,00990 0,02027 3 0,00039 0,02742 0,00004 0,00355 0,01191 0,01191 0,00185 0,16413 0,04040 0,01704 0,07971 0,00014 0,02824 0,02824 0,05610 0,04488 0,00675 0,00308 0,08041 0,00018 0,03584 4 0,00009 0,03274 0,00915 0,00382 0,00553 0,02351 0,00036 0,11196 0,04342 0,01159 0,11459 0,00169 0,02281 0,03091 0,10939 0,08258 0,00002 0,00082 0,18297 0,01689 0,03877 5 0,00779 0,06148 0,01407 0,00448 0,02511 0,03488 0,00097 0,16587 0,01112 0,00123 0,06351 0,00987 0,05312 0,05312 0,11587 0,09984 0,00123 0,02772 0,22382 0,02706 0,01453 6 0,00701 0,01199 0,02743 0,00520 0,03067 0,02393 0,00871 0,10402 0,00599 0,02746 0,01550 0,00357 0,03089 0,02317 0,07937 0,11601 0,00214 0,06158 0,23391 0,01206 0,04656 7 0,01773 0,01159 0,02067 0,01159 0,01387 0,01715 0,00613 0,07686 0,01583 0,02934 0,00027 0,00011 0,01033 0,02512 0,09383 0,08042 0,00000 0,06295 0,18735 0,00622 0,04068 8 0,00121 0,02650 0,01821 0,00392 0,03874 0,01687 0,00258 0,05821 0,00124 0,02775 0,00826 0,00239 0,01253 0,03441 0,09066 0,09066 0,01301 0,01824 0,26359 0,01229 0,00533 9 0,00174 0,00761 0,02660 0,02041 0,00583 0,00864 0,00044 0,11081 0,00258 0,00016 0,00972 0,01354 0,00294 0,05117 0,06742 0,11946 0,00101 0,02898 0,11644 0,01514 0,02479 10 0,00666 0,00398 0,01406 0,03359 0,00002 0,00156 0,00488 0,14831 0,01093 0,00002 0,00485 0,01294 0,00070 0,05365 0,02342 0,10452 0,00047 0,00008 0,08340 0,04586 0,01838 11 0,00920 0,00552 0,00761 0,01820 0,00185 0,00374 0,00511 0,10050 0,01368 0,00780 0,00780 0,01548 0,00181 0,03606 0,02099 0,09520 0,00001 0,00768 0,07114 0,04187 0,01351 12 0,02340 0,00672 0,00542 0,01531 0,00462 0,00612 0,00595 0,12094 0,02315 0,00139 0,00427 0,00784 0,00241 0,04120 0,03075 0,09337 0,00048 0,02182 0,08562 0,04184 0,00116 13 0,03522 0,00641 0,00305 0,01475 0,00344 0,00102 0,00521 0,10929 0,01680 0,00383 0,01211 0,00486 0,00337 0,05112 0,03352 0,06424 0,00158 0,03949 0,12308 0,04495 0,00186 14 0,02846 0,00376 0,00327 0,00327 0,00618 0,00012 0,00221 0,07488 0,04376 0,00011 0,01931 0,00272 0,00360 0,04015 0,04498 0,07322 0,00141 0,05184 0,15223 0,05184 0,00029 15 0,01422 0,00162 0,00000 0,00197 0,00514 0,00197 0,00006 0,08547 0,05662 0,00047 0,02539 0,00046 0,00064 0,01528 0,03191 0,07028 0,00590 0,09506 0,11837 0,06258 0,00144 16 0,01019 0,01019 0,00702 0,00205 0,00013 0,00593 0,00005 0,06775 0,09924 0,03190 0,07101 0,00109 0,00283 0,02382 0,02382 0,06528 0,00128 0,10780 0,09671 0,06611 0,00058 17 0,00656 0,01584 0,01367 0,00577 0,00417 0,00397 0,00082 0,05815 0,05424 0,01958 0,13891 0,01125 0,01312 0,01728 0,02079 0,04859 0,00458 0,09838 0,10689 0,06383 0,00153 18 0,01314 0,00502 0,03707 0,01785 0,00352 0,00712 0,00175 0,03911 0,09915 0,02974 0,03131 0,02234 0,00064 0,01168 0,02374 0,03642 0,00575 0,08260 0,17925 0,02974 0,01129 19 0,01217 0,01734 0,05433 0,02452 0,00111 0,01140 0,00181 0,04107 0,09356 0,00764 0,02089 0,01505 0,00137 0,00855 0,04774 0,02658 0,00034 0,05696 0,14401 0,03356 0,01223 20 0,01428 0,01428 0,02054 0,02384 0,00472 0,02352 0,00084 0,12119 0,01704 0,00213 0,01854 0,01944 0,00789 0,00073 0,02808 0,01643 0,00831 0,04518 0,05530 0,02237 0,01190 21 0,00108 0,01580 0,00581 0,02930 0,03053 0,01622 0,00080 0,08529 0,09526 0,00562 0,01342 0,01127 0,01832 0,00287 0,02520 0,03985 0,01342 0,05785 0,10562 0,00915 0,00106 22 0,00323 0,02962 0,00679 0,00707 0,05928 0,01916 0,00003 0,05101 0,10554 0,00277 0,04929 0,00068 0,03818 0,03818 0,02931 0,07845 0,03015 0,05652 0,23131 0,00728 0,01660 23 0,00248 0,00569 0,00569 0,01214 0,05611 0,00301 0,00983 0,03104 0,08998 0,02038 0,07943 0,00025 0,06883 0,01673 0,04579 0,12041 0,05736 0,04579 0,12218 0,01673 0,01157 24 0,00198 0,03906 0,00000 0,00489 0,04525 0,01171 0,00755 0,06814 0,11274 0,00594 0,10481 0,00221 0,04743 0,01199 0,03086 0,17335 0,04641 0,07072 0,08980 0,01252 0,01252

Sumatoria 0,22205 0,46173 0,30074 0,27062 0,42830 0,30263 0,06859 2,23790 1,22898 0,26015 0,97838 0,16292 0,43601 0,67074 1,13984 1,94244 0,26240 1,13982 3,37149 0,65638 0,38742

Tabla B.20. Errores cuadráticos para Octubre

Page 279: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio horario

1 4,21 4,44 3,29 5,85 3,80 5,27 6,18 4,57 6,03 3,72 3,72 3,72 4,19 4,81 4,31 3,31 3,81 3,31 5,20 6,10 3,90 4,46 2 4,18 4,26 3,71 5,38 4,12 5,15 5,92 4,66 6,50 3,72 3,39 4,61 4,11 4,81 4,69 3,11 3,50 3,11 5,00 6,80 4,20 4,52 3 4,23 4,03 3,68 5,91 4,28 5,02 5,76 4,41 6,89 3,58 3,11 5,22 4,31 5,00 5,19 2,89 4,00 3,31 5,10 6,10 3,90 4,57 4 4,06 4,18 3,62 6,15 4,34 4,57 5,27 4,50 6,33 4,11 3,00 5,42 4,11 4,81 5,19 2,81 3,81 3,50 5,10 6,10 3,80 4,51 5 3,91 4,03 3,50 6,91 4,28 5,02 5,50 4,34 6,53 3,86 2,81 5,08 3,69 4,81 5,00 2,69 4,00 3,39 5,70 6,30 3,20 4,50 6 3,65 4,53 3,88 7,06 3,99 5,11 5,69 4,37 7,28 4,11 2,69 5,06 3,89 4,61 4,61 2,89 4,31 3,69 6,00 6,70 4,30 4,69 7 4,53 5,26 4,32 7,47 4,12 6,37 6,34 5,15 7,00 5,08 3,50 5,58 4,61 4,81 4,81 2,89 4,69 4,19 6,60 6,90 4,60 5,18 8 4,71 6,44 5,00 8,09 4,92 6,53 6,79 5,98 8,11 5,61 4,39 5,50 5,11 5,31 5,31 3,19 4,89 4,81 6,80 7,30 5,40 5,72 9 5,47 6,76 5,32 9,06 5,53 7,17 7,33 6,30 8,19 5,97 4,81 6,61 5,50 6,31 6,69 3,61 5,89 5,61 7,50 7,80 6,00 6,35 10 5,56 7,18 6,15 9,32 6,05 7,37 7,85 7,72 8,39 6,61 5,19 6,94 5,81 7,00 7,19 4,39 6,19 6,00 8,10 8,00 6,20 6,82 11 6,21 7,41 6,56 10,41 6,46 8,30 8,81 8,23 8,83 6,72 5,39 7,42 6,31 7,39 7,61 4,61 6,69 6,11 8,50 8,60 6,40 7,28 12 6,47 7,73 6,79 10,91 6,56 8,75 9,52 8,46 9,14 7,11 5,61 7,69 6,31 7,89 8,00 4,89 6,61 6,50 8,60 8,90 6,70 7,58 13 6,44 7,15 6,62 11,18 6,95 9,17 9,78 8,78 9,25 7,17 5,89 8,11 6,39 8,00 8,19 4,61 6,69 6,31 9,40 8,60 6,90 7,69 14 6,91 7,53 6,41 11,47 6,82 9,07 9,75 8,88 9,00 7,47 5,89 8,31 6,31 8,11 8,19 4,50 6,81 6,19 9,00 9,20 7,40 7,77 15 6,68 7,82 6,21 11,23 7,04 8,39 10,13 8,88 8,94 6,64 6,00 7,78 6,69 8,00 8,39 4,69 6,61 5,89 9,00 9,00 7,60 7,70 16 5,91 7,18 5,94 10,76 7,62 8,36 9,65 8,88 8,94 7,28 5,69 7,33 6,11 7,50 7,89 4,61 6,31 5,81 8,70 9,30 7,60 7,49 17 5,97 6,56 5,71 10,41 7,08 7,72 8,56 8,85 8,42 6,17 5,61 7,11 5,69 7,19 8,19 4,31 6,11 5,50 8,60 8,40 7,30 7,12 18 5,85 5,76 5,12 9,18 6,50 7,49 8,23 7,75 8,64 5,47 5,50 6,69 5,89 6,61 7,69 4,19 5,69 5,19 8,70 7,40 6,60 6,67 19 5,47 5,26 4,88 7,62 5,98 6,95 7,82 7,27 7,31 5,19 4,69 5,94 5,39 6,19 6,69 4,11 5,61 4,39 7,00 7,00 5,60 6,02 20 4,76 4,73 4,09 6,38 4,92 6,53 6,85 5,95 6,97 5,03 4,00 5,72 4,19 5,39 5,39 3,50 4,89 3,89 6,40 6,60 5,10 5,30 21 4,53 4,21 3,53 5,50 4,50 6,05 6,08 5,02 6,83 4,89 3,31 5,03 4,19 5,50 5,31 3,19 4,61 3,81 6,50 6,10 4,70 4,92 22 4,41 3,85 3,82 5,79 4,08 5,79 5,85 5,18 6,50 4,31 3,11 5,17 4,00 5,00 5,11 3,19 4,11 3,50 6,30 6,20 4,10 4,73 23 4,23 4,29 3,79 5,71 4,15 5,76 5,53 5,08 6,17 4,14 3,31 5,19 4,00 4,50 5,00 3,00 4,11 3,69 5,50 5,90 4,20 4,63 24 4,38 4,32 3,50 6,12 3,76 5,66 5,79 4,57 6,47 4,19 3,39 4,78 4,11 4,11 4,39 3,31 4,11 3,69 5,40 6,10 4,00 4,58

Tabla B.21. Velocidades de viento para Noviembre

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1 0,00333 0,00002 0,06863 0,09693 0,02238 0,03310 0,14724 0,00055 0,12294 0,02755 0,02755 0,02755 0,00362 0,00589 0,00124 0,06725 0,02170 0,06725 0,02727 0,13455 0,01591 2 0,00580 0,00321 0,03249 0,03632 0,00797 0,01917 0,09561 0,00101 0,19178 0,03118 0,06266 0,00040 0,00820 0,00398 0,00148 0,09720 0,05096 0,09720 0,01126 0,25431 0,00502 3 0,00529 0,01388 0,03806 0,08661 0,00401 0,00973 0,06791 0,00124 0,25842 0,04640 0,10164 0,02057 0,00328 0,00898 0,01886 0,13503 0,01542 0,07631 0,01361 0,11264 0,02134 4 0,01014 0,00557 0,03938 0,13105 0,00143 0,00015 0,02852 0,00000 0,16274 0,00792 0,11238 0,04012 0,00792 0,00421 0,02281 0,14312 0,02456 0,05037 0,01693 0,12370 0,02495 5 0,01723 0,01105 0,04960 0,28622 0,00249 0,01309 0,04910 0,00127 0,20237 0,02029 0,14203 0,01665 0,03220 0,00453 0,01222 0,16124 0,01245 0,06116 0,07076 0,15941 0,08367 6 0,04925 0,00113 0,02949 0,25598 0,02221 0,00831 0,04608 0,00445 0,30559 0,01509 0,18072 0,00619 0,02899 0,00026 0,00026 0,14717 0,00662 0,04484 0,07850 0,18449 0,00681 7 0,01588 0,00025 0,02747 0,19495 0,04224 0,05243 0,04962 0,00005 0,12309 0,00036 0,10535 0,00600 0,01213 0,00528 0,00528 0,19581 0,00885 0,03632 0,07489 0,10992 0,01261 8 0,03159 0,01574 0,01596 0,17078 0,01962 0,01987 0,03457 0,00206 0,17421 0,00038 0,05432 0,00151 0,01142 0,00531 0,00531 0,19517 0,02123 0,02568 0,03545 0,07598 0,00318 9 0,01938 0,00415 0,02636 0,18094 0,01676 0,01656 0,02371 0,00006 0,08380 0,00363 0,05944 0,00163 0,01810 0,00006 0,00286 0,18641 0,00538 0,01370 0,03247 0,05171 0,00312 10 0,03419 0,00273 0,00973 0,13477 0,01283 0,00642 0,02276 0,01742 0,05298 0,00093 0,05677 0,00034 0,02210 0,00070 0,00303 0,12702 0,00840 0,01443 0,03527 0,02998 0,00825 11 0,02195 0,00030 0,00995 0,18416 0,01266 0,01936 0,04401 0,01698 0,04519 0,00596 0,06773 0,00033 0,01807 0,00020 0,00201 0,13470 0,00657 0,02595 0,02783 0,03260 0,01475 12 0,02139 0,00042 0,01073 0,19334 0,01801 0,02384 0,06566 0,01350 0,04239 0,00380 0,06739 0,00023 0,02821 0,00168 0,00309 0,12595 0,01629 0,02025 0,01817 0,03041 0,01344 13 0,02652 0,00506 0,01958 0,20483 0,00940 0,03667 0,07340 0,01997 0,04093 0,00469 0,05502 0,00295 0,02875 0,00159 0,00424 0,16052 0,01686 0,03255 0,04920 0,01388 0,01064 14 0,01227 0,00098 0,03065 0,22636 0,01504 0,02791 0,06449 0,02023 0,02497 0,00149 0,05870 0,00471 0,03560 0,00190 0,00296 0,17723 0,01546 0,04120 0,02497 0,03376 0,00229 15 0,01758 0,00027 0,03753 0,21130 0,00719 0,00823 0,10011 0,02354 0,02630 0,01888 0,04858 0,00011 0,01695 0,00156 0,00810 0,15214 0,01988 0,05516 0,02869 0,02869 0,00016 16 0,04461 0,00180 0,04297 0,19036 0,00030 0,01343 0,08270 0,03406 0,03746 0,00083 0,05767 0,00046 0,03406 0,00000 0,00278 0,14799 0,02515 0,05077 0,02589 0,05807 0,00020 17 0,02595 0,00615 0,03932 0,21429 0,00003 0,00718 0,04089 0,05900 0,03338 0,01781 0,04475 0,00000 0,03993 0,00012 0,02294 0,15602 0,01996 0,05160 0,04346 0,03253 0,00067 18 0,01518 0,01861 0,05445 0,14039 0,00071 0,01507 0,05457 0,02602 0,08659 0,03246 0,03098 0,00001 0,01386 0,00009 0,02334 0,13808 0,02157 0,04918 0,09207 0,01181 0,00013 19 0,00829 0,01568 0,03563 0,07061 0,00003 0,02386 0,08926 0,04322 0,04578 0,01872 0,04836 0,00015 0,01092 0,00086 0,01264 0,10039 0,00457 0,07327 0,02663 0,02663 0,00482 20 0,01021 0,01136 0,05228 0,04169 0,00510 0,05383 0,08568 0,01507 0,09960 0,00263 0,06014 0,00636 0,04349 0,00028 0,00028 0,11531 0,00601 0,07086 0,04311 0,06020 0,00142 21 0,00640 0,02122 0,08014 0,01373 0,00727 0,05215 0,05517 0,00037 0,15065 0,00005 0,10791 0,00046 0,02188 0,01375 0,00605 0,12325 0,00401 0,05150 0,10267 0,05720 0,00205 22 0,00461 0,03458 0,03693 0,05025 0,01874 0,04986 0,05611 0,00887 0,13944 0,00815 0,11740 0,00841 0,02397 0,00319 0,00639 0,10564 0,01725 0,06784 0,10966 0,09612 0,01787 23 0,00733 0,00532 0,03271 0,05377 0,01084 0,05910 0,03783 0,00946 0,10989 0,01131 0,08195 0,01478 0,01859 0,00080 0,00633 0,12408 0,01262 0,04093 0,03517 0,07503 0,00868 24 0,00185 0,00312 0,05556 0,11284 0,03174 0,05582 0,06989 0,00001 0,17096 0,00705 0,06755 0,00189 0,01044 0,01044 0,00172 0,07734 0,01044 0,03731 0,03215 0,11034 0,01599

Sumatoria 0,41622 0,18263 0,87561 3,48245 0,28902 0,62510 1,48488 0,31841 2,73144 0,28756 1,81698 0,16179 0,49268 0,07568 0,17622 3,29409 0,37219 1,15562 1,05607 1,90397 0,27795

Tabla B.22. Errores cuadráticos para Noviembre

Page 280: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio horario

1 4,73 4,03 4,32 4,76 5,63 4,18 5,92 3,89 3,92 3,33 3,33 3,33 2,89 4,39 3,50 2,81 4,39 4,00 4,70 6,10 4,20 4,21 2 4,85 4,38 3,85 4,29 5,21 4,25 5,60 4,21 3,44 3,03 3,31 3,69 2,31 4,50 3,89 2,69 4,39 4,31 4,20 5,90 3,90 4,10 3 4,73 4,23 4,06 4,68 4,21 4,25 5,69 3,80 3,56 3,39 3,11 3,72 2,31 4,61 3,69 2,69 4,19 4,31 4,50 6,00 3,80 4,07 4 4,73 4,29 4,21 4,03 4,50 4,63 5,34 4,05 3,67 3,47 3,11 3,75 2,31 4,39 4,11 3,00 4,19 4,11 4,50 5,70 3,90 4,10 5 4,82 3,79 3,85 4,09 4,63 4,60 4,79 3,99 4,03 3,47 3,11 3,64 2,50 4,00 4,00 3,11 4,31 4,19 4,20 5,30 3,40 3,99 6 4,94 3,82 4,18 4,03 4,54 4,82 4,99 4,21 3,94 3,47 2,89 3,81 2,50 3,81 4,39 3,11 4,61 4,39 4,20 5,40 3,50 4,07 7 4,79 4,62 4,59 4,71 5,02 5,27 5,73 4,79 4,36 4,08 2,69 4,06 3,19 3,81 4,89 3,31 5,19 4,89 4,50 6,30 4,10 4,52 8 6,97 5,59 5,85 5,35 6,40 5,69 6,53 5,31 5,31 4,86 3,11 4,78 3,69 4,31 5,50 3,81 5,61 5,50 5,10 7,70 5,00 5,33 9 8,18 6,35 6,73 6,32 7,08 6,11 6,98 5,95 5,78 4,92 4,00 5,47 4,19 5,61 6,11 4,61 6,19 6,11 5,50 8,10 5,60 6,00 10 8,12 6,44 6,82 6,79 7,91 6,72 7,56 6,95 6,06 5,50 4,81 5,97 4,61 6,31 6,19 4,89 6,19 6,31 6,10 8,30 6,10 6,41 11 8,73 6,71 7,50 6,94 8,36 7,53 8,23 7,11 6,50 6,00 5,19 6,25 5,11 6,50 6,39 5,31 6,39 6,81 6,70 8,70 6,30 6,82 12 8,97 6,76 7,76 7,56 8,59 7,59 8,65 7,49 6,89 5,75 5,69 6,33 5,11 6,89 6,50 5,31 6,89 7,00 6,80 9,30 6,90 7,08 13 9,26 7,21 8,35 8,21 8,52 7,27 9,13 7,69 7,22 6,17 5,81 6,44 5,50 6,89 6,81 5,31 6,69 7,19 7,10 9,10 7,20 7,29 14 9,62 7,09 8,50 8,35 8,68 7,30 9,04 7,72 6,97 6,44 5,89 6,36 5,69 7,50 6,89 5,11 7,31 7,31 7,40 9,50 7,60 7,44 15 9,71 7,26 8,35 8,00 8,72 7,46 8,85 7,62 7,11 6,03 6,00 6,25 6,11 7,81 7,00 5,31 7,31 7,19 7,90 9,50 8,40 7,52 16 10,03 6,71 8,65 7,56 9,01 7,82 8,68 7,17 6,69 6,47 5,89 6,56 5,81 7,50 7,11 5,00 7,61 7,11 7,60 9,60 7,90 7,45 17 9,53 6,38 8,09 7,44 8,68 7,75 8,62 7,04 6,94 6,28 5,69 6,14 5,61 7,00 6,69 4,81 7,19 6,89 7,20 9,40 7,80 7,20 18 8,65 6,23 7,65 6,97 8,39 7,11 8,52 6,27 7,06 5,67 5,61 5,78 5,11 6,00 6,69 4,50 6,81 6,50 6,70 8,80 7,70 6,80 19 7,53 5,62 6,82 6,65 7,88 6,30 7,98 6,01 6,33 5,11 5,69 5,22 4,89 6,00 6,19 4,11 6,39 5,69 6,20 8,10 7,00 6,27 20 6,06 4,79 6,03 6,00 7,37 5,60 6,98 5,53 5,64 4,53 5,00 4,81 4,69 5,61 5,39 3,61 5,89 5,19 6,00 7,30 6,00 5,62 21 5,26 4,09 4,88 5,26 6,43 4,60 6,30 4,99 5,17 3,31 4,81 4,00 3,89 4,69 4,61 3,00 5,69 4,61 4,90 6,60 5,60 4,89 22 5,00 3,76 4,79 4,91 6,18 4,41 5,53 4,34 4,75 3,17 3,61 3,72 3,50 4,69 4,11 3,69 5,39 4,31 4,50 6,00 5,40 4,56 23 5,15 3,26 4,76 5,00 5,69 4,02 5,63 4,02 4,31 3,33 2,50 4,14 3,19 4,50 3,69 2,50 4,89 3,89 4,20 5,20 5,00 4,23 24 5,21 3,94 4,59 5,15 5,53 4,12 5,27 4,08 3,83 3,28 3,00 4,11 3,31 4,50 3,50 2,61 4,81 3,81 4,60 5,90 4,70 4,28

Tabla B.23. Velocidades de viento para Diciembre

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1 0,01570 0,00180 0,00075 0,01750 0,11406 0,00004 0,16527 0,00563 0,00478 0,04318 0,04318 0,04318 0,09823 0,00186 0,02828 0,11104 0,00186 0,00243 0,01369 0,20227 0,00000 2 0,03317 0,00456 0,00378 0,00212 0,07255 0,00118 0,13204 0,00070 0,02589 0,06885 0,03792 0,01000 0,19214 0,00927 0,00277 0,11806 0,00479 0,00239 0,00054 0,19124 0,00249 3 0,02640 0,00158 0,00001 0,02191 0,00119 0,00179 0,15817 0,00465 0,01615 0,02822 0,05578 0,00742 0,18832 0,01745 0,00864 0,11457 0,00089 0,00326 0,01099 0,22381 0,00450 4 0,02439 0,00235 0,00072 0,00026 0,00991 0,01715 0,09226 0,00011 0,01095 0,02315 0,05775 0,00711 0,19099 0,00514 0,00001 0,07153 0,00059 0,00001 0,00977 0,15355 0,00227 5 0,04335 0,00246 0,00122 0,00058 0,02568 0,02316 0,04021 0,00000 0,00008 0,01695 0,04868 0,00782 0,13968 0,00000 0,00000 0,04868 0,00617 0,00257 0,00272 0,10738 0,02199 6 0,04532 0,00378 0,00063 0,00012 0,01284 0,03399 0,05011 0,00118 0,00100 0,02179 0,08457 0,00433 0,14921 0,00433 0,00599 0,05582 0,01742 0,00599 0,00096 0,10603 0,01982 7 0,00371 0,00048 0,00024 0,00171 0,01220 0,02803 0,07133 0,00368 0,00121 0,00927 0,16295 0,01049 0,08586 0,02489 0,00672 0,07205 0,02239 0,00672 0,00002 0,15547 0,00857 8 0,09442 0,00231 0,00954 0,00002 0,04020 0,00459 0,05046 0,00002 0,00002 0,00779 0,17346 0,01079 0,09429 0,03704 0,00100 0,08193 0,00275 0,00100 0,00189 0,19732 0,00387 9 0,13226 0,00355 0,01521 0,00299 0,03249 0,00037 0,02695 0,00006 0,00132 0,03237 0,11077 0,00761 0,09023 0,00411 0,00037 0,05331 0,00110 0,00037 0,00683 0,12323 0,00435 10 0,07072 0,00002 0,00411 0,00354 0,05477 0,00234 0,03198 0,00698 0,00309 0,02022 0,06276 0,00470 0,07887 0,00027 0,00115 0,05641 0,00115 0,00027 0,00236 0,08672 0,00236 11 0,07863 0,00029 0,00987 0,00030 0,05102 0,01067 0,04286 0,00176 0,00222 0,01451 0,05690 0,00702 0,06288 0,00222 0,00402 0,04940 0,00402 0,00001 0,00032 0,07582 0,00585 12 0,07096 0,00203 0,00925 0,00450 0,04514 0,00514 0,04908 0,00337 0,00075 0,03542 0,03843 0,01120 0,07750 0,00075 0,00677 0,06297 0,00075 0,00014 0,00160 0,09798 0,00067 13 0,07341 0,00013 0,02128 0,01580 0,02868 0,00001 0,06411 0,00298 0,00008 0,02371 0,04142 0,01342 0,06024 0,00301 0,00440 0,07404 0,00665 0,00017 0,00067 0,06173 0,00015 14 0,08545 0,00226 0,02021 0,01498 0,02789 0,00036 0,04603 0,00139 0,00398 0,01795 0,04353 0,02108 0,05512 0,00006 0,00551 0,09807 0,00033 0,00033 0,00003 0,07652 0,00045 15 0,08462 0,00114 0,01231 0,00410 0,02541 0,00006 0,03116 0,00019 0,00293 0,03929 0,04077 0,02845 0,03502 0,00146 0,00475 0,08660 0,00080 0,00185 0,00258 0,06950 0,01376 16 0,11969 0,01001 0,02574 0,00021 0,04356 0,00240 0,02741 0,00139 0,01030 0,01725 0,04394 0,01444 0,04876 0,00004 0,00208 0,10820 0,00046 0,00208 0,00040 0,08321 0,00363 17 0,10466 0,01290 0,01522 0,00112 0,04254 0,00588 0,03893 0,00047 0,00125 0,01639 0,04370 0,02170 0,04867 0,00077 0,00492 0,11056 0,00000 0,00186 0,00000 0,09343 0,00696 18 0,07412 0,00682 0,01565 0,00065 0,05534 0,00211 0,06460 0,00595 0,00146 0,02762 0,03040 0,02245 0,06147 0,01372 0,00022 0,11415 0,00000 0,00190 0,00020 0,08694 0,01769 19 0,04008 0,01093 0,00769 0,00355 0,06565 0,00002 0,07377 0,00169 0,00009 0,03430 0,00850 0,02805 0,04868 0,00189 0,00016 0,11876 0,00034 0,00850 0,00013 0,08484 0,01344 20 0,00609 0,02161 0,00530 0,00456 0,09650 0,00002 0,05855 0,00024 0,00001 0,03776 0,01216 0,02099 0,02711 0,00000 0,00169 0,12775 0,00229 0,00573 0,00458 0,08939 0,00458 21 0,00584 0,02693 0,00000 0,00584 0,09947 0,00354 0,08357 0,00038 0,00319 0,10502 0,00030 0,03315 0,04194 0,00161 0,00326 0,14942 0,02703 0,00326 0,00000 0,12221 0,02106 22 0,00927 0,03047 0,00262 0,00592 0,12541 0,00114 0,04540 0,00229 0,00173 0,09341 0,04333 0,03378 0,05407 0,00086 0,00971 0,03606 0,03300 0,00312 0,00018 0,09964 0,03389 23 0,04665 0,05231 0,01579 0,03285 0,11908 0,00251 0,10882 0,00251 0,00030 0,04513 0,16755 0,00049 0,06015 0,00400 0,01616 0,16755 0,02405 0,00659 0,00006 0,05226 0,03289 24 0,04699 0,00621 0,00524 0,04122 0,08594 0,00142 0,05429 0,00204 0,01081 0,05467 0,08925 0,00152 0,05168 0,00269 0,03308 0,15183 0,01520 0,01220 0,00566 0,14374 0,00973

Sumatoria 1,33592 0,20692 0,20237 0,18635 1,28751 0,14792 1,60736 0,04968 0,10360 0,83420 1,49801 0,37120 2,04110 0,13745 0,15168 2,23876 0,17404 0,07277 0,06617 2,78424 0,23497

Tabla B.24. Errores cuadráticos para Diciembre

Page 281: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Tablas de radiación solar en W/m2

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio 0-2 10,47 1,16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,55 2-4 5,82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0,33 4-6 8,14 12,79 0,00 0,00 2,33 18,61 26,75 9,30 17,45 31,40 25,59 44,19 33,73 46,52 32,56 25,59 60,48 46,52 86,06 16,28 18,61 26,80 6-8 116,30 166,31 76,76 97,69 107,00 213,99 191,90 132,58 153,52 167,47 154,68 234,93 205,85 234,93 225,62 154,68 186,08 196,55 233,76 153,52 169,80 170,19 8-10 323,31 355,88 314,01 300,05 293,08 376,81 405,89 348,90 389,61 373,32 323,31 359,37 325,64 424,50 383,79 323,31 362,86 396,58 414,03 394,26 357,04 359,31 10-12 498,93 516,37 467,53 452,41 474,50 496,60 488,46 471,02 488,46 490,79 471,02 466,36 434,96 544,28 464,04 471,02 475,67 491,95 553,59 471,02 495,44 484,97 12-14 560,57 558,24 523,35 572,20 564,06 571,03 551,26 555,91 536,14 524,51 529,17 497,76 487,30 552,43 500,09 529,17 484,97 477,99 573,36 515,21 491,95 531,27 14-16 503,58 490,79 481,48 517,54 534,98 523,35 538,47 550,10 464,04 507,07 510,56 455,90 445,43 497,76 479,16 510,56 438,45 467,53 489,62 495,44 505,91 495,60 16-18 384,95 350,06 383,79 434,96 372,16 372,16 388,44 372,16 384,95 366,35 367,51 326,80 336,11 337,27 394,26 367,51 334,94 293,08 377,98 326,80 380,30 364,41 18-20 203,53 144,21 195,38 245,39 173,29 174,45 168,64 176,78 181,43 172,12 138,40 139,56 111,65 143,05 179,10 138,40 119,79 91,88 162,82 123,28 166,31 159,50 20-22 65,13 32,56 48,85 60,48 37,22 30,24 15,12 37,22 17,45 17,45 12,79 9,30 9,30 9,30 25,59 12,79 8,14 0 0 4,65 2,33 21,71 22-24 25,59 11,63 6,98 2,33 4,65 1,16 0 3,49 0 0 0 0 0 0 0 0 0 0 0 0 0 2,66

Tabla B.25 . Radiación solar para Enero

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 0-2 320,41000 1,21000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2-4 272,25000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 1 1 1 1 4-6 0,48481 0,27324 1 1 0,83398 0,09350 0 0,42627 0,12192 0,02941 0,00207 0,42089 0,06670 0,54101 0,04617 0,00207 1,57803 0,54101 4,88739 0,15410 0,09350 6-8 0,10025 0,00052 0,30137 0,18145 0,13786 0,06626 0,01627 0,04882 0,00959 0,00025 0,00830 0,14471 0,04392 0,14471 0,10611 0,00830 0,00872 0,02399 0,13956 0,00959 0,00001 8-10 0,01004 0,00009 0,01590 0,02720 0,03398 0,00237 0,01680 0,00084 0,00711 0,00152 0,01004 0,00000 0,00878 0,03291 0,00464 0,01004 0,00010 0,01076 0,02319 0,00946 0,00004 10-12 0,00083 0,00419 0,00129 0,00451 0,00047 0,00058 0,00005 0,00083 0,00005 0,00014 0,00083 0,00147 0,01063 0,01496 0,00186 0,00083 0,00037 0,00021 0,02002 0,00083 0,00047 12-14 0,00304 0,00258 0,00022 0,00593 0,00381 0,00560 0,00142 0,00215 0,00008 0,00016 0,00002 0,00398 0,00685 0,00159 0,00344 0,00002 0,00759 0,01006 0,00628 0,00091 0,00548 14-16 0,00026 0,00009 0,00081 0,00196 0,00631 0,00313 0,00748 0,01209 0,00406 0,00054 0,00091 0,00642 0,01025 0,00002 0,00110 0,00091 0,01330 0,00321 0,00015 0,00000 0,00043 16-18 0,00318 0,00155 0,00283 0,03749 0,00045 0,00045 0,00435 0,00045 0,00318 0,00003 0,00007 0,01065 0,00603 0,00555 0,00671 0,00007 0,00654 0,03832 0,00139 0,01065 0,00190 18-20 0,07620 0,00918 0,05063 0,29003 0,00748 0,00879 0,00328 0,01174 0,01891 0,00627 0,01750 0,01563 0,09000 0,01063 0,01511 0,01750 0,06198 0,17974 0,00043 0,05157 0,00182 20-22 4,00000 0,25000 1,56250 3,18878 0,51020 0,15434 0,09216 0,51020 0,03858 0,03858 0,16869 0,32653 0,32653 0,32653 0,03189 0,16869 0,39063 1 1 0,61735 0,79719 22-24 74,39063 11,39063 2,64063 0,01563 0,56250 0,31641 1 0,09766 1 1 1 1 1 1 1 1 1 1 1 1 1 Suma 671,72923 14,14208 7,57618 6,75296 4,09704 2,65143 3,14182 3,11105 3,20349 3,07690 3,20842 3,93027 3,56970 4,07791 3,21703 3,20842 10,31726 4,80730 9,07840 3,85446 3,90085

Tabla B.26. Errores cuadráticos para Enero

Page 282: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio 0-2 10,47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,50 2-4 5,82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,28 4-6 2,33 0 0 0 0 1,16 3,49 0 8,14 6,98 8,14 3,49 3,49 1,16 8,14 8,14 4,65 10,47 2,33 0 0 3,43 6-8 58,15 91,88 55,82 34,89 63,97 77,92 94,20 43,03 101,18 90,71 107,00 126,77 108,16 105,83 136,07 107,00 134,91 226,79 118,63 110,49 1,16 94,98 8-10 224,46 280,28 279,12 258,19 269,82 274,47 290,75 207,01 307,03 270,98 286,10 301,22 265,16 309,36 309,36 286,10 318,66 369,83 307,03 317,50 208,18 282,89 10-12 380,30 448,92 418,68 402,40 382,63 446,59 419,84 360,53 433,80 387,28 443,10 426,82 410,54 401,24 410,54 443,10 423,33 459,39 458,22 447,76 366,35 417,68 12-14 475,67 480,32 474,50 460,55 480,32 477,99 504,74 426,82 501,25 438,45 501,25 480,32 454,73 509,39 459,39 501,25 464,04 451,24 462,87 473,34 466,36 473,56 14-16 469,85 377,98 460,55 459,39 489,62 476,83 476,83 418,68 461,71 414,03 450,08 452,41 457,06 462,87 411,70 450,08 354,72 383,79 429,15 424,50 451,24 439,67 16-18 352,39 257,02 334,94 337,27 344,25 354,72 318,66 301,22 331,46 268,65 309,36 284,94 272,14 311,68 266,33 309,36 234,93 204,69 270,98 279,12 338,43 299,17 18-20 153,52 53,50 153,52 162,82 110,49 157,01 97,69 132,58 107,00 101,18 108,16 77,92 58,15 88,39 98,86 108,16 60,48 32,56 107,00 102,34 170,96 106,77 20-22 52,34 15,12 34,89 37,22 11,63 39,54 5,82 33,73 10,47 6,98 2,33 0 2,33 0 11,63 2,33 0 0 0 0 66,29 15,84 22-24 24,42 4,65 0 2,33 1,16 4,65 0 6,98 0 0 0 0 0 0 0 0 0 0 0 0 0 2,10

Tabla B.27. Radiación solar para Febrero

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 0-2 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2-4 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4-6 0,10406 1,00000 1 1 1 0,43730 0,00026 1 1,87955 1,06556 1,87955 0,00026 0,00026 0,43730 1,87955 1,87955 0,12591 4,19589 0,10406 1 1 6-8 0,15035 0,00107 0,16995 0,40025 0,10662 0,03225 0,00007 0,29914 0,00426 0,00202 0,01601 0,11202 0,01926 0,01306 0,18719 0,01601 0,17674 1,92586 0,06199 0,02666 0,97566 8-10 0,04266 0,00008 0,00018 0,00762 0,00213 0,00089 0,00077 0,07193 0,00729 0,00177 0,00013 0,00420 0,00392 0,00876 0,00876 0,00013 0,01599 0,09447 0,00729 0,01497 0,06975 10-12 0,00801 0,00559 0,00001 0,00134 0,00704 0,00479 0,00003 0,01872 0,00149 0,00530 0,00370 0,00048 0,00029 0,00155 0,00029 0,00370 0,00018 0,00997 0,00942 0,00518 0,01511 12-14 0,00002 0,00020 0,00000 0,00076 0,00020 0,00009 0,00433 0,00974 0,00342 0,00550 0,00342 0,00020 0,00158 0,00572 0,00090 0,00342 0,00040 0,00222 0,00051 0,00000 0,00023 14-16 0,00471 0,01969 0,00226 0,00201 0,01291 0,00714 0,00714 0,00228 0,00251 0,00340 0,00056 0,00084 0,00156 0,00279 0,00405 0,00056 0,03734 0,01615 0,00057 0,00119 0,00069 16-18 0,03165 0,01985 0,01430 0,01622 0,02271 0,03447 0,00425 0,00005 0,01165 0,01040 0,00116 0,00226 0,00816 0,00175 0,01205 0,00116 0,04611 0,09974 0,00888 0,00449 0,01723 18-20 0,19163 0,24896 0,19163 0,27552 0,00121 0,22131 0,00724 0,05842 0,00000 0,00274 0,00017 0,07302 0,20738 0,02965 0,00550 0,00017 0,18802 0,48305 0,00000 0,00172 0,36137 20-22 5,30932 0,00207 1,44672 1,82156 0,07061 2,23952 0,40052 1,27548 0,11503 0,31297 0,72786 1 0,72786 1 0,07061 0,72786 1 1 1 1 10,14623 22-24 112,47161 1,46537 1 0,01108 0,20014 1,46537 1 5,36288 1 1 1 1 1 1 1 1 1 1 1 1 1 Suma 918,31402 4,76289 5,82504 5,53635 3,42358 6,44315 3,42461 10,09865 5,02521 4,40966 5,63256 4,19329 3,97029 4,50059 5,16890 5,63256 4,59070 10,82736 4,19272 5,05421 15,58626

Tabla B.28. Errores cuadráticos para Febrero

Page 283: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio

0-2 23,26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,11 2-4 16,28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,78 4-6 10,47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,50 6-8 18,61 25,59 6,98 2,33 18,61 36,05 23,26 24,42 41,87 59,31 48,85 55,82 37,22 37,22 65,13 48,85 17,45 61,64 68,62 52,34 67,45 38,93 8-10 133,75 183,75 146,54 127,93 174,45 246,56 161,66 198,87 213,99 190,73 184,92 204,69 175,61 198,87 202,36 184,92 169,80 216,32 210,50 174,45 202,36 185,86 10-12 268,65 325,64 320,99 298,89 312,85 372,16 281,45 361,69 339,60 309,36 300,05 350,06 332,62 326,80 329,13 300,05 298,89 351,23 304,71 289,59 332,62 319,38 12-14 334,94 396,58 404,72 371,00 416,35 430,31 361,69 402,40 383,79 348,90 333,78 431,47 384,95 445,43 410,54 333,78 274,47 366,35 330,29 262,84 380,30 371,66 14-16 309,36 343,09 355,88 371,00 391,93 372,16 338,43 345,41 304,71 284,94 283,77 374,49 317,50 376,81 382,63 283,77 223,30 295,40 284,94 167,47 293,08 319,05 16-18 211,67 190,73 202,36 239,58 229,11 226,79 204,69 190,73 169,80 148,86 157,01 202,36 151,19 183,75 215,16 157,01 65,13 153,52 141,89 75,60 134,91 173,90 18-20 109,32 43,03 48,85 94,20 45,36 70,94 38,38 44,19 23,26 18,61 22,10 46,52 15,12 24,42 53,50 22,10 9,30 3,49 44,19 9,30 13,96 38,10 20-22 60,48 13,96 6,98 0 8,14 12,79 3,49 10,47 1,16 0 1,16 0 0 0 0 1,16 0 0 0 0 0 5,70 22-24 37,22 3,49 0 0 1,16 0 0 2,33 0 0 0 0 0 0 0 0 0 0 0 0 0 2,10

Tabla B.29. Radiación solar para Marzo

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 0-2 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2-4 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4-6 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6-8 0,27253 0,11752 0,67366 0,88408 0,27253 0,00547 0,16205 0,13890 0,00568 0,27402 0,06483 0,18823 0,00194 0,00194 0,45270 0,06483 0,30462 0,34014 0,58132 0,11850 0,53667 8-10 0,07862 0,00013 0,04476 0,09714 0,00377 0,10665 0,01696 0,00490 0,02291 0,00069 0,00003 0,01026 0,00304 0,00490 0,00788 0,00003 0,00747 0,02686 0,01758 0,00377 0,00788 10-12 0,02523 0,00038 0,00003 0,00412 0,00042 0,02731 0,01411 0,01755 0,00401 0,00099 0,00366 0,00923 0,00172 0,00054 0,00093 0,00366 0,00412 0,00994 0,00211 0,00870 0,00172 12-14 0,00976 0,00450 0,00791 0,00000 0,01446 0,02490 0,00072 0,00684 0,00106 0,00375 0,01039 0,02590 0,00128 0,03939 0,01094 0,01039 0,06839 0,00020 0,01239 0,08573 0,00054 14-16 0,00092 0,00568 0,01332 0,02651 0,05218 0,02771 0,00369 0,00683 0,00202 0,01143 0,01223 0,03019 0,00002 0,03278 0,03971 0,01223 0,09007 0,00549 0,01143 0,22571 0,00663 16-18 0,04717 0,00937 0,02680 0,14266 0,10082 0,09250 0,03135 0,00937 0,00056 0,02072 0,00943 0,02680 0,01705 0,00321 0,05629 0,00943 0,39122 0,01374 0,03388 0,31955 0,05027 18-20 3,49386 0,01673 0,07951 2,16791 0,03625 0,74290 0,00005 0,02556 0,15174 0,26176 0,17645 0,04881 0,36385 0,12889 0,16327 0,17645 0,57125 0,82525 0,02556 0,57125 0,40160 20-22 92,19729 2,09266 0,04986 1 0,18249 1,54435 0,15082 0,69714 0,63380 1 0,63380 1 1 1 1 0,63380 1 1 1 1 1 22-24 278,36288 0,43283 1 1 0,20014 1 1 0,01108 1 1 1 1 1 1 1 1 1 1 1 1 1 Suma 1574,48826 5,67980 4,89585 8,32243 3,86306 6,57180 4,37975 3,91818 4,82178 5,57336 4,91082 5,33942 5,38890 5,21166 5,73173 4,91082 6,43714 6,22162 5,68429 6,33322 6,00531

Tabla B.30. Errores cuadráticos para Marzo

Page 284: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio 0-2 12,79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,61 2-4 8,14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,39 4-6 4,65 0 0 0 0 0 1,163 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,28 6-8 2,33 0 0 0 1,16 3,49 11,63 1,16 5,82 9,30 10,47 13,96 5,82 0 20,93 10,47 26,75 27,91 10,47 32,56 0 9,25 8-10 66,29 68,62 55,82 61,64 48,85 117,46 93,04 63,97 122,12 91,88 98,86 139,56 83,74 112,81 90,71 98,86 110,49 202,36 129,09 137,23 126,77 100,96 10-12 222,13 220,97 195,38 187,24 165,15 243,07 217,48 202,36 293,08 200,04 205,85 258,19 201,20 219,81 186,08 205,85 236,09 282,61 246,56 265,16 215,16 222,35 12-14 304,71 298,89 244,23 332,62 259,35 280,28 352,39 246,56 315,17 276,79 247,72 288,42 222,13 257,02 234,93 247,72 245,39 290,75 274,47 268,65 268,65 274,14 14-16 252,37 237,25 216,32 211,67 219,81 205,85 216,32 194,22 248,88 218,64 176,78 209,34 163,98 198,87 157,01 176,78 150,03 182,59 195,38 177,94 182,59 199,65 16-18 130,26 91,88 83,74 118,63 97,69 62,80 76,76 65,13 62,80 69,78 60,48 69,78 44,19 69,78 67,45 60,48 55,82 60,48 60,48 55,82 81,41 73,60 18-20 52,34 23,26 13,96 32,56 29,08 12,79 5,82 11,63 4,65 6,98 0 6,98 5,82 3,49 1,16 0 2,33 2,33 9,30 0 0 10,69 20-22 30,24 5,82 0 0 8,14 2,33 0 2,33 0 0 0 0 0 0 0 0 0 0 0 0 0 2,33 22-24 19,77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,94

Tabla B.31. Radiación solar para Abril

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 0-2 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2-4 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4-6 249,64000 1 1 1 1 1 10,24000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6-8 0,56026 1 1 1 0,76432 0,38782 0,06630 0,76432 0,13783 0,00004 0,01735 0,25906 0,13783 1 1,59636 0,01735 3,58048 4,07218 0,01735 6,35523 1 8-10 0,11792 0,10262 0,19987 0,15169 0,26644 0,02672 0,00615 0,13427 0,04391 0,00809 0,00043 0,14618 0,02910 0,01378 0,01030 0,00043 0,00890 1,00880 0,07765 0,12909 0,06534 10-12 0,00000 0,00004 0,01471 0,02493 0,06620 0,00868 0,00048 0,00808 0,10116 0,01007 0,00551 0,02597 0,00905 0,00013 0,02661 0,00551 0,00382 0,07343 0,01185 0,03707 0,00105 12-14 0,01244 0,00815 0,01190 0,04551 0,00291 0,00050 0,08148 0,01012 0,02241 0,00009 0,00929 0,00272 0,03598 0,00390 0,02046 0,00929 0,01099 0,00367 0,00000 0,00040 0,00040 14-16 0,06974 0,03548 0,00697 0,00362 0,01020 0,00097 0,00697 0,00074 0,06081 0,00905 0,01312 0,00236 0,03191 0,00002 0,04562 0,01312 0,06177 0,00730 0,00046 0,01182 0,00730 16-18 0,59252 0,06166 0,01896 0,37422 0,10713 0,02153 0,00184 0,01325 0,02153 0,00270 0,03180 0,00270 0,15964 0,00270 0,00698 0,03180 0,05834 0,03180 0,03180 0,05834 0,01126 18-20 15,18172 1,38337 0,09345 4,18870 2,95911 0,03877 0,20790 0,00776 0,31896 0,12051 1 0,12051 0,20790 0,45370 0,79422 1 0,61212 0,61212 0,01678 1 1 20-22 144 2,25000 1 1 6,25000 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 22-24 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Suma 1610,17459 8,84132 6,34586 10,78868 14,42631 4,48498 14,61113 4,93854 5,70661 5,15056 6,07751 5,55949 5,61142 6,47422 7,50055 6,07751 9,33643 10,80931 5,15589 12,59195 7,08535

Tabla B.32. Errores cuadráticos para Abril

Page 285: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio 0-2 10,47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,50 2-4 5,82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,28 4-6 2,33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,11 6-8 1,16 0 0 0 0 0 0 0 0 11,63 2,33 3,49 1,16 0 3,49 2,33 0 5,82 1,16 1,16 5,82 1,88 8-10 22,10 12,79 20,93 18,61 19,77 18,61 13,96 30,24 39,54 83,74 53,50 83,74 41,87 83,74 69,78 53,50 37,22 82,57 46,52 43,03 61,64 44,64 10-12 100,02 117,46 69,78 117,46 95,37 97,69 96,53 129,09 123,28 166,31 134,91 159,33 141,89 170,96 133,75 134,91 75,60 207,01 111,65 122,12 138,40 125,88 12-14 137,23 153,52 111,65 173,29 138,40 157,01 162,82 177,94 151,19 167,47 167,47 176,78 193,06 201,20 151,19 167,47 95,37 169,80 146,54 147,70 162,82 157,61 14-16 113,97 123,28 90,71 124,44 108,16 120,95 113,97 107,00 77,92 69,78 105,83 103,51 118,63 146,54 83,74 105,83 81,41 139,56 96,53 140,72 84,90 107,49 16-18 70,94 41,87 41,87 36,05 46,52 29,08 25,59 33,73 17,45 11,63 19,77 16,28 17,45 29,08 13,96 19,77 36,05 45,36 33,73 12,79 6,98 28,85 18-20 43,03 10,47 13,96 8,14 22,10 6,98 4,65 8,14 2,33 0 1,16 0 1,16 1,16 0 1,16 11,63 10,47 1,16 0 0 7,03 20-22 29,08 4,65 6,98 0 5,82 1,16 0 0 0 0 0 0 0 0 0 0 1,16 0 0 0 0 2,33 22-24 18,61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,89

Tabla B.33. Radiación solar para Mayo

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 0-2 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2-4 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4-6 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6-8 0,14619 1 1 1 1 1 1 1 1 26,79585 0,05536 0,72751 0,14619 1 0,72751 0,05536 1 4,36073 0,14619 0,14619 4,36073 8-10 0,25499 0,50894 0,28198 0,34004 0,31033 0,34004 0,47244 0,10406 0,01303 0,76725 0,03941 0,76725 0,00385 0,76725 0,31728 0,03941 0,02764 0,72229 0,00178 0,00129 0,14508 10-12 0,04221 0,00447 0,19862 0,00447 0,05876 0,05015 0,05437 0,00065 0,00043 0,10314 0,00514 0,07061 0,01617 0,12825 0,00390 0,00514 0,15958 0,41541 0,01278 0,00089 0,00989 12-14 0,01672 0,00068 0,08505 0,00989 0,01487 0,00001 0,00109 0,01663 0,00166 0,00391 0,00391 0,01478 0,05057 0,07647 0,00166 0,00391 0,15598 0,00598 0,00494 0,00396 0,00109 14-16 0,00363 0,02156 0,02437 0,02485 0,00004 0,01567 0,00363 0,00002 0,07569 0,12310 0,00024 0,00138 0,01072 0,13193 0,04885 0,00024 0,05888 0,08898 0,01041 0,09555 0,04418 16-18 2,12790 0,20345 0,20345 0,06226 0,37489 0,00006 0,01282 0,02853 0,15634 0,35632 0,09909 0,18983 0,15634 0,00006 0,26658 0,09909 0,06226 0,32716 0,02853 0,30983 0,57480 18-20 26,19505 0,23833 0,96875 0,02480 4,58702 0,00006 0,11464 0,02480 0,44795 1 0,69663 1 0,69663 0,69663 1 0,69663 0,42712 0,23833 0,69663 1 1 20-22 132,25000 1 4 1 2,25000 0,25000 1 1 1 1 1 1 1 1 1 1 0,25000 1 1 1 1 22-24 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Suma 1761,03670 6,97743 10,76222 6,46631 12,59591 5,65599 6,65900 6,17469 6,69509 34,14958 5,89978 7,77137 6,08047 7,80059 7,36578 5,89978 6,14146 11,15887 5,90126 6,55772 11,13577

Tabla B.34. Errores cuadráticos para Mayo

Page 286: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio 0-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6-8 0 0 0 0 1,16300 0 0 0 0 0 0 0 1,16300 0 0 0 0 0 0 0 0 0,11076 8-10 6,97800 2,32600 20,93400 6,97800 11,63000 8,14100 8,14100 17,44500 16,28200 27,91200 32,56400 58,15000 39,54200 38,37900 52,33500 32,56400 20,93400 48,84600 12,79300 26,74900 25,58600 24,53376 10-12 67,45400 68,61700 76,75800 81,41000 52,33500 70,94300 61,63900 80,24700 101,18100 96,52900 101,18100 127,93000 100,01800 111,64800 123,27800 101,18100 70,94300 83,73600 72,10600 129,09300 112,81100 90,04943 12-14 120,95200 125,60400 118,62600 136,07100 86,06200 117,46300 108,15900 117,46300 161,65700 126,76700 130,25600 141,88600 117,46300 153,51600 143,04900 130,25600 97,69200 90,71400 111,64800 129,09300 132,58200 123,66567 14-16 82,57300 82,57300 76,75800 98,85500 69,78000 72,10600 66,29100 72,10600 83,73600 70,94300 61,63900 82,57300 40,70500 86,06200 76,75800 61,63900 86,06200 51,17200 87,22500 70,94300 82,57300 74,43200 16-18 34,89000 23,26000 20,93400 37,21600 31,40100 19,77100 16,28200 22,09700 16,28200 15,11900 1,16300 4,65200 8,14100 22,09700 5,81500 1,16300 17,44500 18,60800 43,03100 22,09700 20,93400 19,16181 18-20 10,46700 5,81500 6,97800 6,97800 16,28200 5,81500 1,16300 6,97800 2,32600 0 0 0 0 0 0 0 9,30400 3,48900 0 0 0 3,59976 20-22 2,32600 1,16300 0 0 4,65200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,38767 22-24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tabla B.35. Radiación solar para Junio

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 0-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6-8 1 1 1 1 90,25000 1 1 1 1 1 1 1 90,25000 1 1 1 1 1 1 1 1 8-10 0,51205 0,81937 0,02153 0,51205 0,27663 0,44645 0,44645 0,08349 0,11313 0,01896 0,10713 1,87746 0,37422 0,31847 1,28410 0,10713 0,02153 0,98202 0,22902 0,00815 0,00184 10-12 0,06296 0,05665 0,02179 0,00920 0,17541 0,04502 0,09954 0,01185 0,01528 0,00518 0,01528 0,17696 0,01225 0,05753 0,13616 0,01528 0,04502 0,00492 0,03971 0,18799 0,06389 12-14 0,00048 0,00025 0,00166 0,01006 0,09246 0,00252 0,01572 0,00252 0,09438 0,00063 0,00284 0,02171 0,00252 0,05826 0,02457 0,00284 0,04411 0,07100 0,00944 0,00193 0,00520 14-16 0,01196 0,01196 0,00098 0,10767 0,00391 0,00098 0,01196 0,00098 0,01563 0,00220 0,02954 0,01196 0,20532 0,02441 0,00098 0,02954 0,02441 0,09766 0,02954 0,00220 0,01196 16-18 0,67373 0,04574 0,00855 0,88773 0,40797 0,00101 0,02259 0,02346 0,02259 0,04451 0,88230 0,57339 0,33079 0,02346 0,48516 0,88230 0,00803 0,00084 1,55168 0,02346 0,00855 18-20 3,63929 0,37870 0,88071 0,88071 12,41207 0,37870 0,45822 0,88071 0,12521 1 1 1 1 1 1 1 2,51101 0,00095 1 1 1 20-22 25 4 1 1 121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22-24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Suma 30,90047 6,31267 2,93522 4,40743 224,61846 2,87467 3,05449 3,00300 2,38620 3,07148 4,03709 5,66148 93,17511 3,48214 4,93097 4,03709 4,65411 3,15738 4,85939 3,22373 3,09145

Tabla B.36. Errores cuadráticos para Junio

Page 287: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio 0-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,33 0 0,11 6-8 0 0 0 0 0 0 0 0 1,16 0 0 0 2,33 0 0 0 5,82 0 0 65,13 33,73 5,15 8-10 6,98 2,33 20,93 12,79 15,12 10,47 20,93 19,77 34,89 32,56 31,40 23,26 66,29 27,91 52,34 31,40 12,79 23,26 33,73 204,69 124,44 38,49 10-12 45,36 96,53 118,63 113,97 75,60 74,43 104,67 83,74 117,46 119,79 127,93 98,86 141,89 122,12 123,28 127,93 81,41 76,76 107,00 296,57 163,98 115,14 12-14 65,13 146,54 188,41 165,15 113,97 126,77 169,80 123,28 145,38 150,03 163,98 159,33 141,89 155,84 143,05 163,98 137,23 95,37 137,23 354,72 107,00 150,19 14-16 63,97 111,65 118,63 119,79 86,06 89,55 108,16 82,57 86,06 94,20 102,34 146,54 55,82 101,18 76,76 102,34 107,00 68,62 104,67 246,56 31,40 100,18 16-18 38,38 40,71 34,89 40,71 32,56 23,26 27,91 15,12 12,79 19,77 18,61 60,48 6,98 12,79 5,82 18,61 33,73 19,77 34,89 113,97 0 29,13 18-20 22,10 15,12 13,96 12,79 15,12 5,82 5,82 2,33 0 0 0 6,98 0 0 0 0 3,49 1,16 0 13,96 0 5,65 20-22 10,47 2,33 6,98 1,16 2,33 1,16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,16 22-24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tabla B.37. Radiación solar para Julio

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 0-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 400 1 6-8 1 1 1 1 1 1 1 1 0,59938 1 1 1 0,30073 1 1 1 0,01665 1 1 135,60978 30,78460 8-10 0,67028 0,88279 0,20804 0,44572 0,36868 0,53007 0,20804 0,23652 0,00875 0,02370 0,03392 0,15657 0,52172 0,07553 0,12939 0,03392 0,44572 0,15657 0,01531 18,64500 4,98671 10-12 0,36731 0,02612 0,00092 0,00010 0,11795 0,12499 0,00826 0,07438 0,00041 0,00163 0,01235 0,02000 0,05397 0,00367 0,00500 0,01235 0,08581 0,11111 0,00500 2,48301 0,17998 12-14 0,32078 0,00059 0,06473 0,00991 0,05815 0,02433 0,01704 0,03211 0,00103 0,00000 0,00843 0,00370 0,00306 0,00141 0,00226 0,00843 0,00744 0,13326 0,00744 1,85430 0,08272 14-16 0,13070 0,01309 0,03389 0,03829 0,01987 0,01126 0,00634 0,03090 0,01987 0,00356 0,00046 0,21408 0,19606 0,00010 0,05468 0,00046 0,00462 0,09928 0,00200 2,13460 0,47137 16-18 0,10080 0,15788 0,03909 0,15788 0,01389 0,04061 0,00175 0,23135 0,31454 0,10323 0,13048 1,15787 0,57829 0,31454 0,64061 0,13048 0,02490 0,10323 0,03909 8,48293 1 18-20 8,47837 2,81055 2,16263 1,59948 2,81055 0,00087 0,00087 0,34602 1 1 1 0,05536 1 1 1 1 0,14619 0,63062 1 2,16263 1 20-22 64 1 25 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22-24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Suma 76,06824 6,89103 29,50930 4,25139 6,38910 2,73212 3,24229 3,95128 3,94397 4,13213 4,18564 4,60758 4,65384 4,39525 4,83194 4,18564 2,73134 4,23407 4,06885 572,37226 40,50538

Tabla B.38. Errores cuadráticos para Julio

Page 288: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio 0-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6-8 5,82 0 0 1,16 0 0 2,33 10,47 6,98 10,47 2,33 9,30 1,16 3,49 17,45 2,33 31,40 0 0 0 2,33 5,10 8-10 67,45 33,73 55,82 32,56 52,34 43,03 75,60 100,02 98,86 113,97 55,82 96,53 81,41 133,75 111,65 55,82 127,93 62,80 124,44 86,06 79,08 80,41 10-12 163,98 161,66 195,38 131,42 180,27 148,86 195,38 216,32 210,50 213,99 179,10 203,53 187,24 231,44 220,97 179,10 212,83 126,77 226,79 200,04 160,49 187,91 12-14 218,64 220,97 272,14 197,71 210,50 217,48 239,58 248,88 248,88 238,42 244,23 213,99 244,23 243,07 227,95 244,23 191,90 145,38 247,72 232,60 200,04 226,12 14-16 158,17 207,01 195,38 180,27 180,27 183,75 168,64 167,47 180,27 148,86 177,94 147,70 161,66 170,96 136,07 177,94 97,69 122,12 183,75 157,01 134,91 163,71 16-18 69,78 96,53 62,80 82,57 58,15 56,99 62,80 45,36 39,54 22,10 53,50 43,03 33,73 41,87 50,01 53,50 27,91 52,34 88,39 52,34 53,50 54,61 18-20 26,75 33,73 13,96 24,42 6,98 9,30 12,79 0 2,33 0 2,33 0 2,33 0 0 2,33 0 5,82 0 1,16 0 6,87 20-22 15,12 10,47 6,98 4,65 1,16 1,16 1,16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,94 22-24 3,49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,17

Tabla B.39. Radiación solar para Agosto

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 0-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6-8 0,01997 1 1 0,59558 1 1 0,29537 1,11165 0,13658 1,11165 0,29537 0,68242 0,59558 0,09936 5,87535 0,29537 26,65702 1 1 1 0,29537 8-10 0,02597 0,33707 0,09350 0,35407 0,12192 0,21611 0,00359 0,05944 0,05260 0,17419 0,09350 0,04017 0,00015 0,43986 0,15088 0,09350 0,34917 0,04796 0,29978 0,00493 0,00027 10-12 0,01621 0,01952 0,00158 0,09037 0,00165 0,04317 0,00158 0,02286 0,01446 0,01927 0,00220 0,00691 0,00001 0,05366 0,03096 0,00220 0,01759 0,10587 0,04281 0,00417 0,02128 12-14 0,00109 0,00052 0,04142 0,01579 0,00477 0,00146 0,00354 0,01013 0,01013 0,00296 0,00641 0,00288 0,00641 0,00562 0,00007 0,00641 0,02291 0,12751 0,00912 0,00082 0,01331 14-16 0,00114 0,06998 0,03744 0,01023 0,01023 0,01500 0,00091 0,00053 0,01023 0,00822 0,00756 0,00956 0,00016 0,00196 0,02850 0,00756 0,16261 0,06455 0,01500 0,00168 0,03095 16-18 0,07722 0,58944 0,02253 0,26232 0,00421 0,00190 0,02253 0,02869 0,07610 0,35442 0,00041 0,04493 0,14619 0,05441 0,00709 0,00041 0,23897 0,00173 0,38274 0,00173 0,00041 18-20 8,38196 15,29819 1,06556 6,53544 0,00026 0,12591 0,74460 1 0,43730 1 0,43730 1 0,43730 1 1 0,43730 1 0,02348 1 0,68997 1 20-22 46,24000 19,36000 6,76000 1,96000 0,16000 0,16000 0,16000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22-24 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Suma 454,76357 37,67472 10,02204 10,82381 2,30305 2,56355 2,23212 4,23330 2,73740 4,67070 2,84276 3,78686 3,18582 3,65488 9,09284 2,84276 30,44827 3,37110 4,74945 3,70330 3,36159

Tabla B.40. Errores cuadráticos para Agosto

Page 289: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio 0-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,16 0,06 6-8 4,65 9,30 20,93 15,12 2,33 44,19 31,40 48,85 38,38 25,59 29,08 58,15 54,66 39,54 81,41 29,08 133,75 56,99 41,87 47,68 68,62 41,98 8-10 168,64 133,75 167,47 168,64 118,63 196,55 170,96 230,27 182,59 179,10 176,78 201,20 258,19 200,04 247,72 176,78 180,27 152,35 230,27 197,71 195,38 187,30 10-12 269,82 282,61 327,97 318,66 288,42 364,02 319,83 362,86 332,62 296,57 296,57 339,60 389,61 325,64 341,92 296,57 248,88 218,64 377,98 323,31 284,94 314,62 12-14 297,73 365,18 397,75 411,70 366,35 423,33 364,02 398,91 388,44 309,36 353,55 382,63 380,30 357,04 350,06 353,55 219,81 245,39 419,84 339,60 282,61 352,72 14-16 212,83 340,76 319,83 337,27 309,36 326,80 315,17 303,54 293,08 251,21 261,68 295,40 279,12 270,98 248,88 261,68 166,31 186,08 343,09 240,74 189,57 273,97 16-18 83,74 189,57 146,54 173,29 145,38 108,16 138,40 103,51 110,49 93,04 100,02 127,93 90,71 63,97 88,39 100,02 111,65 91,88 147,70 91,88 74,43 113,36 18-20 20,93 58,15 27,91 43,03 18,61 15,12 24,42 1,16 9,30 4,65 4,65 6,98 5,82 1,16 4,65 4,65 2,33 3,49 0 0 5,82 12,52 20-22 11,63 9,30 6,98 9,30 1,16 3,49 1,16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,05 22-24 3,49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,17

Tabla B.41. Radiación solar para Septiembre

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 0-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 400 6-8 0,79064 0,60585 0,25132 0,40940 0,89225 0,00278 0,06349 0,02676 0,00735 0,15249 0,09449 0,14840 0,09127 0,00337 0,88231 0,09449 4,77867 0,12782 0,00001 0,01846 0,40267 8-10 0,00993 0,08175 0,01121 0,00993 0,13443 0,00244 0,00761 0,05265 0,00063 0,00192 0,00316 0,00551 0,14324 0,00462 0,10406 0,00316 0,00141 0,03481 0,05265 0,00309 0,00186 10-12 0,02028 0,01035 0,00180 0,00017 0,00693 0,02465 0,00027 0,02351 0,00327 0,00329 0,00329 0,00630 0,05681 0,00123 0,00753 0,00329 0,04366 0,09306 0,04055 0,00076 0,00890 12-14 0,02431 0,00125 0,01629 0,02796 0,00149 0,04008 0,00103 0,01715 0,01026 0,01511 0,00001 0,00719 0,00611 0,00015 0,00006 0,00001 0,14200 0,09259 0,03621 0,00138 0,03951 14-16 0,04980 0,05943 0,02801 0,05338 0,01668 0,03719 0,02262 0,01165 0,00486 0,00690 0,00201 0,00612 0,00035 0,00012 0,00839 0,00201 0,15442 0,10291 0,06364 0,01471 0,09490 16-18 0,06831 0,45186 0,08563 0,27940 0,07973 0,00211 0,04876 0,00756 0,00065 0,03214 0,01386 0,01651 0,03992 0,18989 0,04854 0,01386 0,00023 0,03593 0,09174 0,03593 0,11794 18-20 0,45235 13,29345 1,51312 5,94410 0,23690 0,04325 0,90502 0,82279 0,06586 0,39478 0,39478 0,19579 0,28665 0,82279 0,39478 0,39478 0,66286 0,52019 1 1 0,28665 20-22 21,86194 12,53543 5,78598 12,53543 0,18700 0,49379 0,18700 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22-24 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Suma 424,27756 29,03936 9,69336 21,25976 3,55542 2,64629 3,23580 3,96207 3,09289 3,60664 3,51160 3,38581 3,62436 4,02217 4,44567 3,51160 8,78324 4,00730 4,28480 4,07434 402,95245

Tabla B.42 . Errores cuadráticos para Septiembre

Page 290: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio

0-2 1,16 1,16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,11 2-4 0 1,16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,06 4-6 0 1,16 0 0 0 2,33 1,16 11,63 3,49 4,65 2,33 16,28 3,49 4,65 6,98 2,33 18,61 0 20,93 0 50,01 7,14 6-8 109,32 101,18 83,74 108,16 105,83 105,83 123,28 139,56 75,60 98,86 91,88 137,23 124,44 152,35 136,07 91,88 127,93 120,95 139,56 102,34 237,25 119,68 8-10 300,05 332,62 320,99 315,17 322,15 300,05 336,11 336,11 266,33 307,03 277,96 320,99 290,75 339,60 344,25 277,96 227,95 213,99 418,68 291,91 409,38 311,91 10-12 467,53 494,28 453,57 448,92 479,16 445,43 427,98 445,43 438,45 430,31 429,15 433,80 445,43 515,21 412,87 429,15 296,57 277,96 488,46 441,94 466,36 436,57 12-14 553,59 555,91 467,53 501,25 496,60 466,36 441,94 488,46 487,30 503,58 467,53 430,31 484,97 545,45 122,12 467,53 324,48 310,52 511,72 482,65 421,01 453,85 14-16 525,68 448,92 446,59 430,31 454,73 411,70 394,26 410,54 440,78 402,40 402,40 353,55 397,75 433,80 369,83 402,40 276,79 241,90 348,90 403,56 295,40 394,87 16-18 395,42 253,53 258,19 234,93 288,42 233,76 226,79 196,55 244,23 230,27 217,48 173,29 215,16 215,16 181,43 217,48 175,61 166,31 139,56 262,84 118,63 221,19 18-20 247,72 68,62 76,76 77,92 61,64 46,52 60,48 24,42 38,38 31,40 39,54 40,71 27,91 19,77 43,03 39,54 56,99 52,34 0 68,62 20,93 54,44 20-22 73,27 15,12 20,93 13,96 5,82 9,30 4,65 0 1,16 0 0 0 0 0 0 0 0 0 0 0 0 6,87 22-24 20,93 4,65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,22

Tabla B.43. Radiación solar para Octubre

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 0-2 90,25000 90,25000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2-4 1 400,00000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4-6 1 0,70092 1 1 1 0,45484 0,70092 0,39427 0,26176 0,12169 0,45484 1,63602 0,26176 0,12169 0,00054 0,45484 2,57491 1 3,72580 1 36 6-8 0,00749 0,02389 0,09019 0,00926 0,01338 0,01338 0,00090 0,02760 0,13568 0,03027 0,05396 0,02152 0,00158 0,07454 0,01876 0,05396 0,00475 0,00011 0,02760 0,02098 0,96514 8-10 0,00144 0,00441 0,00085 0,00011 0,00108 0,00144 0,00602 0,00602 0,02135 0,00024 0,01185 0,00085 0,00460 0,00788 0,01075 0,01185 0,07246 0,09855 0,11719 0,00411 0,09766 10-12 0,00503 0,01747 0,00152 0,00080 0,00952 0,00041 0,00039 0,00041 0,00002 0,00021 0,00029 0,00004 0,00041 0,03245 0,00295 0,00029 0,10284 0,13200 0,01413 0,00015 0,00466 12-14 0,04830 0,05058 0,00091 0,01091 0,00887 0,00076 0,00069 0,00582 0,00543 0,01201 0,00091 0,00269 0,00470 0,04074 0,53426 0,00091 0,08125 0,09973 0,01626 0,00403 0,00524 14-16 0,10974 0,01874 0,01716 0,00806 0,02299 0,00182 0,00000 0,00158 0,01352 0,00036 0,00036 0,01095 0,00005 0,00972 0,00402 0,00036 0,08941 0,15006 0,01355 0,00048 0,06345 16-18 0,62044 0,02138 0,02797 0,00386 0,09239 0,00323 0,00064 0,01241 0,01085 0,00169 0,00028 0,04690 0,00074 0,00074 0,03232 0,00028 0,04246 0,06156 0,13620 0,03545 0,21501 18-20 12,60503 0,06782 0,16807 0,18605 0,01749 0,02116 0,01230 0,30401 0,08703 0,17909 0,07489 0,06365 0,23745 0,40555 0,04392 0,07489 0,00219 0,00149 1 0,06782 0,37879 20-22 93,49642 1,44387 4,19589 1,06556 0,02348 0,12591 0,10406 1 0,68997 1 1 1 1 1 1 1 1 1 1 1 1 22-24 261,85124 7,94215 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Suma 460,99514 500,54123 8,50256 5,28460 4,18920 3,62296 3,82592 4,75212 4,22562 4,34556 4,59738 5,78262 4,51131 4,69331 4,64752 4,59738 6,97027 5,54351 9,05073 5,13302 41,72995

Tabla B.44. Errores cuadráticos para Octubre

Page 291: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio 0-2 6,98 2,33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,44 2-4 1,16 1,16 0 0 0 0 0 0 0 0 2,33 6,98 0 0 0 0 12,79 0 0 0 0 1,16 4-6 4,65 9,30 0,00 5,82 17,45 17,45 46,52 27,91 41,87 23,26 25,59 41,87 34,89 43,03 45,36 25,59 89,55 10,47 52,34 0 80,25 30,63 6-8 101,18 191,90 104,67 150,03 147,70 183,75 237,25 188,41 212,83 157,01 177,94 18,61 209,34 260,51 220,97 177,94 268,65 88,39 227,95 108,16 291,91 177,39 8-10 276,79 465,20 329,13 395,42 304,71 368,67 448,92 429,15 418,68 352,39 369,83 379,14 416,35 490,79 431,47 369,83 437,29 205,85 446,59 284,94 412,87 382,57 10-12 493,11 622,21 404,72 536,14 437,29 555,91 569,87 532,65 594,29 460,55 491,95 451,24 521,02 643,14 501,25 491,95 522,19 265,16 528,00 451,24 519,86 504,47 12-14 553,59 628,02 484,97 623,37 487,30 601,27 630,35 633,84 610,58 543,12 550,10 451,24 524,51 639,65 555,91 550,10 532,65 291,91 516,37 474,50 534,98 543,73 14-16 525,68 481,48 424,50 561,73 466,36 503,58 502,42 608,25 531,49 471,02 482,65 360,53 434,96 567,54 498,93 482,65 427,98 265,16 462,87 474,50 436,13 474,78 16-18 395,42 304,71 305,87 423,33 345,41 305,87 310,52 418,68 338,43 316,34 344,25 220,97 283,77 332,62 312,85 344,25 234,93 191,90 319,83 383,79 266,33 319,05 18-20 247,72 122,12 144,21 173,29 136,07 100,02 109,32 124,44 82,57 86,06 97,69 54,66 66,29 101,18 94,20 97,69 72,11 103,51 116,30 170,96 97,69 114,20 20-22 73,27 27,91 46,52 29,08 23,26 16,28 6,98 9,30 3,489 3,49 6,98 0 5,82 0 2,33 6,98 5,82 8,14 0 0 6,98 13,46 22-24 20,93 5,82 5,82 0 2,33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,66

Tabla B.45. Radiación solar para Noviembre

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 0-2 217,56250 18,06250 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2-4 0 0 1 1 1 1 1 1 1 1 1 25 1 1 1 1 100 1 1 1 1 4-6 0,71928 0,48470 1 0,65631 0,18523 0,18523 0,26935 0,00785 0,13475 0,05784 0,02708 0,13475 0,01939 0,16408 0,23137 0,02708 3,70197 0,43326 0,50248 1 2,62522 6-8 0,18455 0,00669 0,16804 0,02379 0,02800 0,00129 0,11390 0,00386 0,03993 0,01320 0,00001 0,80120 0,03245 0,21961 0,06037 0,00001 0,26473 0,25172 0,08125 0,15230 0,41686 8-10 0,07645 0,04665 0,01951 0,00113 0,04143 0,00132 0,03008 0,01482 0,00891 0,00622 0,00111 0,00008 0,00780 0,08001 0,01634 0,00111 0,02046 0,21338 0,02800 0,06513 0,00627 10-12 0,00051 0,05447 0,03909 0,00394 0,01773 0,01040 0,01681 0,00312 0,03171 0,00758 0,00062 0,01113 0,00108 0,07557 0,00004 0,00062 0,00123 0,22502 0,00218 0,01113 0,00093 12-14 0,00033 0,02403 0,01168 0,02145 0,01077 0,01120 0,02538 0,02746 0,01511 0,00000 0,00014 0,02893 0,00125 0,03112 0,00050 0,00014 0,00041 0,21449 0,00253 0,01621 0,00026 14-16 0,01149 0,00020 0,01122 0,03354 0,00031 0,00368 0,00339 0,07903 0,01427 0,00006 0,00027 0,05791 0,00703 0,03817 0,00259 0,00027 0,00972 0,19492 0,00063 0,00000 0,00663 16-18 0,05730 0,00202 0,00171 0,10683 0,00683 0,00171 0,00071 0,09751 0,00369 0,00007 0,00624 0,09450 0,01223 0,00181 0,00038 0,00624 0,06952 0,15884 0,00001 0,04117 0,02731 18-20 1,36715 0,00481 0,06909 0,26776 0,03670 0,01541 0,00182 0,00805 0,07668 0,06069 0,02089 0,27179 0,17598 0,01299 0,03065 0,02089 0,13585 0,00876 0,00034 0,24710 0,02089 20-22 19,75309 1,15364 6,03582 1,34675 0,53056 0,04405 0,23182 0,09526 0,54870 0,54870 0,23182 1 0,32251 1 0,68419 0,23182 0,32251 0,15607 1 1 0,23182442 22-24 134,56000 6,25000 6,25000 1 0,16000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Suma 374,29264 26,08971 15,60616 5,46150 3,01756 3,27428 3,69326 3,33697 3,87375 3,69437 3,28817 29,40030 3,57971 4,62335 4,02644 3,28817 106,52640 4,85647 4,61742 5,53305 6,33618

Tabla B.46. Errores cuadráticos para Noviembre

Page 292: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Promedio 0-2 6,98 2,33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,44 2-4 1,16 1,16 0 0 0 0 0 0 0 0 2,33 6,98 0 0 0 0 12,79 0 0 0 0 1,16 4-6 4,65 9,30 0,00 5,82 17,45 17,45 46,52 27,91 41,87 23,26 25,59 41,87 34,89 43,03 45,36 25,59 89,55 10,47 52,34 0 80,25 30,63 6-8 101,18 191,90 104,67 150,03 147,70 183,75 237,25 188,41 212,83 157,01 177,94 18,61 209,34 260,51 220,97 177,94 268,65 88,39 227,95 108,16 291,91 177,39 8-10 276,79 465,20 329,13 395,42 304,71 368,67 448,92 429,15 418,68 352,39 369,83 379,14 416,35 490,79 431,47 369,83 437,29 205,85 446,59 284,94 412,87 382,57 10-12 493,11 622,21 404,72 536,14 437,29 555,91 569,87 532,65 594,29 460,55 491,95 451,24 521,02 643,14 501,25 491,95 522,19 265,16 528,00 451,24 519,86 504,47 12-14 553,59 628,02 484,97 623,37 487,30 601,27 630,35 633,84 610,58 543,12 550,10 451,24 524,51 639,65 555,91 550,10 532,65 291,91 516,37 474,50 534,98 543,73 14-16 525,68 481,48 424,50 561,73 466,36 503,58 502,42 608,25 531,49 471,02 482,65 360,53 434,96 567,54 498,93 482,65 427,98 265,16 462,87 474,50 436,13 474,78 16-18 395,42 304,71 305,87 423,33 345,41 305,87 310,52 418,68 338,43 316,34 344,25 220,97 283,77 332,62 312,85 344,25 234,93 191,90 319,83 383,79 266,33 319,05 18-20 247,72 122,12 144,21 173,29 136,07 100,02 109,32 124,44 82,57 86,06 97,69 54,66 66,29 101,18 94,20 97,69 72,11 103,51 116,30 170,96 97,69 114,20 20-22 73,27 27,91 46,52 29,08 23,26 16,28 6,98 9,30 3,489 3,49 6,98 0 5,82 0 2,33 6,98 5,82 8,14 0 0 6,98 13,46 22-24 20,93 5,82 5,82 0 2,33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,66

Tabla B.47. Radiación solar para Diciembre

Hora 1978 1979 1982 1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 0-2 217,56250 18,06250 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2-4 0 0 1 1 1 1 1 1 1 1 1 25 1 1 1 1 100 1 1 1 1 4-6 0,71928 0,48470 1 0,65631 0,18523 0,18523 0,26935 0,00785 0,13475 0,05784 0,02708 0,13475 0,01939 0,16408 0,23137 0,02708 3,70197 0,43326 0,50248 1 2,62522 6-8 0,18455 0,00669 0,16804 0,02379 0,02800 0,00129 0,11390 0,00386 0,03993 0,01320 0,00001 0,80120 0,03245 0,21961 0,06037 0,00001 0,26473 0,25172 0,08125 0,15230 0,41686 8-10 0,07645 0,04665 0,01951 0,00113 0,04143 0,00132 0,03008 0,01482 0,00891 0,00622 0,00111 0,00008 0,00780 0,08001 0,01634 0,00111 0,02046 0,21338 0,02800 0,06513 0,00627 10-12 0,00051 0,05447 0,03909 0,00394 0,01773 0,01040 0,01681 0,00312 0,03171 0,00758 0,00062 0,01113 0,00108 0,07557 0,00004 0,00062 0,00123 0,22502 0,00218 0,01113 0,00093 12-14 0,00033 0,02403 0,01168 0,02145 0,01077 0,01120 0,02538 0,02746 0,01511 0,00000 0,00014 0,02893 0,00125 0,03112 0,00050 0,00014 0,00041 0,21449 0,00253 0,01621 0,00026 14-16 0,01149 0,00020 0,01122 0,03354 0,00031 0,00368 0,00339 0,07903 0,01427 0,00006 0,00027 0,05791 0,00703 0,03817 0,00259 0,00027 0,00972 0,19492 0,00063 0,00000 0,00663 16-18 0,05730 0,00202 0,00171 0,10683 0,00683 0,00171 0,00071 0,09751 0,00369 0,00007 0,00624 0,09450 0,01223 0,00181 0,00038 0,00624 0,06952 0,15884 0,00001 0,04117 0,02731 18-20 1,36715 0,00481 0,06909 0,26776 0,03670 0,01541 0,00182 0,00805 0,07668 0,06069 0,02089 0,27179 0,17598 0,01299 0,03065 0,02089 0,13585 0,00876 0,00034 0,24710 0,02089 20-22 19,75309 1,15364 6,03582 1,34675 0,53056 0,04405 0,23182 0,09526 0,54870 0,54870 0,23182 1 0,32251 1 0,68419 0,23182 0,32251 0,15607 1 1 0,23182442 22-24 134,56000 6,25000 6,25000 1 0,16000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Suma 374,29264 26,08971 15,60616 5,46150 3,01756 3,27428 3,69326 3,33697 3,87375 3,69437 3,28817 29,40030 3,57971 4,62335 4,02644 3,28817 106,52640 4,85647 4,61742 5,53305 6,33618

Tabla B.48. Errores cuadráticos para Diciembre

Page 293: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

281

PROMEDIOS MENSUALES DE VELOCIDAD DE VIENTO E

INSOLACIÓN SOLAR PARA LA REGIÓN DE MAGALLANES

Promedios mensuales de velocidades de viento en m/seg a 50 m. de altura

para la región de Magallanes

Lat (ºS) Long (ºO) Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Prom

49 73 8,33 7,80 7,20 6,67 5,89 5,88 6,16 6,95 7,18 7,81 8,61 8,58 7,26

49 74 8,37 7,85 7,19 6,57 5,78 5,78 6,07 6,93 7,16 7,87 8,69 8,66 7,24

49 75 8,42 7,89 7,19 6,46 5,66 5,68 5,98 6,90 7,13 7,92 8,77 8,74 7,23

50 72 8,27 7,68 7,44 7,43 6,69 6,55 6,90 7,26 7,45 7,67 8,38 8,31 7,50

50 73 8,18 7,71 7,44 7,33 6,56 6,48 6,79 7,28 7,43 7,72 8,35 8,27 7,46

50 74 8,24 7,75 7,29 6,92 6,12 6,09 6,40 7,06 7,24 7,76 8,50 8,42 7,32

50 75 8,30 7,78 7,15 6,50 5,69 5,69 6,01 6,85 7,05 7,80 8,64 8,58 7,17

51 72 8,26 7,78 7,63 7,58 6,82 6,69 7,08 7,49 7,63 7,82 8,49 8,31 7,63

51 73 8,32 7,89 7,72 7,55 6,75 6,67 7,05 7,54 7,62 7,96 8,57 8,42 7,67

51 74 8,66 8,21 7,92 7,60 6,75 6,72 7,12 7,73 7,81 8,30 9,00 8,78 7,88

52 68 9,34 9,21 9,43 9,82 9,35 9,20 9,62 9,80 9,75 9,38 9,86 9,40 9,51

52 69 8,92 8,70 8,79 9,07 8,49 8,34 8,70 9,00 9,06 8,81 9,37 8,92 8,85

52 70 8,49 8,20 8,15 8,32 7,63 7,49 7,79 8,20 8,37 8,23 8,88 8,44 8,18

52 71 8,37 8,02 7,88 7,82 7,05 6,94 7,25 7,79 7,97 8,07 8,76 8,36 7,86

52 72 8,55 8,18 7,97 7,58 6,76 6,70 7,10 7,75 7,85 8,31 9,02 8,70 7,87

52 73 8,74 8,34 8,06 7,33 6,47 6,47 6,94 7,72 7,74 8,55 9,27 9,04 7,89

52 74 9,63 9,23 9,06 8,63 7,66 7,68 8,23 8,92 8,86 9,50 10,18 9,71 8,94

53 68 9,31 9,41 9,68 10,02 9,44 9,43 9,76 10,13 10,03 9,66 10,03 9,29 9,68

53 69 8,89 8,92 9,05 9,27 8,61 8,58 8,88 9,36 9,36 9,10 9,55 8,83 9,03

53 70 8,46 8,44 8,42 8,51 7,78 7,73 8,00 8,58 8,69 8,53 9,07 8,37 8,38

53 71 8,43 8,32 8,19 8,01 7,19 7,16 7,46 8,17 8,30 8,43 9,04 8,42 8,09

53 72 8,78 8,56 8,35 7,74 6,86 6,86 7,28 8,12 8,18 8,78 9,46 9,00 8,16

53 73 9,14 8,80 8,51 7,47 6,53 6,56 7,10 8,08 8,06 9,13 9,88 9,57 8,24

54 67 8,68 9,06 9,53 9,80 9,10 9,47 9,65 10,20 10,02 9,52 9,66 8,61 9,44

54 68 8,59 8,91 9,15 9,34 8,55 8,77 9,03 9,67 9,56 9,22 9,49 8,43 9,06

54 69 8,39 8,69 8,82 8,88 8,10 8,25 8,53 9,24 9,19 8,94 9,27 8,25 8,71

54 70 8,18 8,47 8,50 8,42 7,64 7,73 8,03 8,80 8,82 8,67 9,05 8,06 8,36

54 71 8,37 8,54 8,48 8,15 7,32 7,37 7,73 8,59 8,63 8,76 9,24 8,38 8,30

54 72 8,94 8,90 8,78 8,06 7,13 7,17 7,63 8,60 8,61 9,23 9,82 9,19 8,51

55 67 8,63 9,23 9,82 9,90 9,07 9,67 9,76 10,51 10,31 9,90 9,93 8,51 9,60

55 68 8,56 9,12 9,48 9,49 8,58 9,03 9,22 10,05 9,91 9,65 9,79 8,34 9,27

55 69 8,58 9,13 9,41 9,30 8,44 8,77 9,02 9,88 9,79 9,60 9,79 8,37 9,17

Tabla C.1. Velocidades promedios mensuales para Magallanes (Fuente NASA [11])

Page 294: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

282

Promedios mensuales de insolación solar global en plano horizontal

en KWh/m2/día para la región de Magallanes

Lat (ºS) Lon (ºO) Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Promedio

49 73 4,27 3,98 2,74 1,74 1,05 0,66 0,82 1,52 2,36 3,23 4,24 4,49 2,59

49 74 3,64 3,57 2,42 1,56 0,96 0,63 0,8 1,41 2,13 2,8 3,57 3,91 2,28

49 75 3,63 3,54 2,4 1,55 0,96 0,64 0,82 1,42 2,15 2,83 3,53 3,92 2,28

50 72 4,73 4,19 2,92 1,83 1,04 0,64 0,78 1,54 2,52 3,59 4,8 4,96 2,8

50 73 4,18 3,82 2,64 1,67 0,97 0,61 0,76 1,45 2,32 3,22 4,21 4,47 2,53

50 74 3,63 3,45 2,36 1,51 0,9 0,58 0,74 1,36 2,12 2,85 3,61 3,97 2,26

50 75 3,62 3,42 2,33 1,49 0,89 0,59 0,76 1,36 2,12 2,85 3,55 3,98 2,25

51 72 4,58 3,99 2,8 1,75 0,94 0,6 0,71 1,47 2,47 3,56 4,72 4,89 2,71

51 73 4,14 3,69 2,56 1,62 0,89 0,57 0,7 1,4 2,3 3,26 4,22 4,51 2,49

51 74 3,7 3,38 2,33 1,48 0,84 0,55 0,69 1,33 2,13 2,97 3,72 4,12 2,27

52 68 5,8 4,88 3,35 1,97 0,97 0,68 0,81 1,63 2,96 4,35 5,71 6,11 3,27

52 69 5,45 4,58 3,18 1,91 0,95 0,64 0,75 1,57 2,8 4,13 5,49 5,75 3,1

52 70 5,09 4,29 3,02 1,84 0,92 0,6 0,69 1,5 2,65 3,91 5,28 5,39 2,93

52 71 4,76 4,03 2,85 1,76 0,89 0,57 0,65 1,44 2,51 3,69 4,98 5,08 2,77

52 72 4,44 3,8 2,66 1,65 0,86 0,55 0,65 1,39 2,39 3,49 4,6 4,81 2,61

52 73 4,12 3,56 2,48 1,55 0,82 0,53 0,65 1,34 2,27 3,28 4,21 4,54 2,45

52 74 3,8 3,33 2,29 1,45 0,78 0,52 0,64 1,29 2,14 3,07 3,82 4,28 2,28

53 68 5,42 4,53 3,11 1,79 0,88 0,61 0,72 1,47 2,71 4,04 5,38 5,77 3,04

53 69 5,06 4,22 2,91 1,71 0,85 0,58 0,67 1,41 2,56 3,81 5,11 5,41 2,86

53 70 4,69 3,9 2,71 1,64 0,83 0,55 0,62 1,35 2,41 3,58 4,85 5,04 2,68

53 71 4,46 3,7 2,57 1,58 0,8 0,53 0,59 1,3 2,31 3,42 4,62 4,82 2,56

53 72 4,3 3,59 2,46 1,52 0,78 0,52 0,59 1,27 2,24 3,31 4,38 4,69 2,47

53 73 4,14 3,47 2,35 1,46 0,75 0,5 0,59 1,24 2,17 3,2 4,14 4,56 2,38

54 67 5,41 4,53 3,1 1,68 0,81 0,56 0,68 1,37 2,6 3,97 5,36 5,8 2,99

54 68 5,04 4,19 2,86 1,6 0,79 0,54 0,63 1,31 2,46 3,73 5,04 5,43 2,8

54 69 4,67 3,85 2,63 1,52 0,76 0,52 0,59 1,26 2,32 3,49 4,73 5,06 2,62

54 70 4,29 3,51 2,39 1,44 0,74 0,51 0,55 1,2 2,17 3,25 4,42 4,7 2,43

54 71 4,15 3,38 2,28 1,4 0,72 0,49 0,53 1,17 2,11 3,15 4,25 4,56 2,35

54 72 4,15 3,38 2,25 1,38 0,7 0,48 0,54 1,15 2,1 3,14 4,16 4,57 2,33

55 67 5,16 4,22 2,9 1,52 0,71 0,46 0,58 1,21 2,36 3,68 5 5,5 2,78

55 68 4,87 3,96 2,7 1,46 0,69 0,45 0,55 1,17 2,25 3,5 4,76 5,23 2,63

55 69 4,58 3,7 2,51 1,4 0,68 0,43 0,52 1,12 2,15 3,33 4,51 4,95 2,49 Promedio de Magallanes 4,50 3,86 2,66 1,61 0,85 0,56 0,67 1,36 2,35 3,43 4,53 4,85 2,60

Tabla C.2. Insolación promedio mensual para Magallanes (Fuente NASA [11])

Page 295: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

283

Figura C.1. Mapa resumen con promedios anuales de velocidades de viento

e insolación solar para Magallanes (Fuente NASA [11])

Page 296: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

284

PROMEDIOS MENSUALES DE DENSIDAD DE POTENCIA EÓLICA

PARA LA REGIÓN DE MAGALLANES

Promedios mensuales de densidad de potencia eólica W/m2 a 50 m. de altura

para la región de Magallanes

Factor de forma de la distribución de Weibull k = 2

Lat (ºS)

Long (ºO) Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Prom

49 73 688,84 565,55 444,82 353,64 243,52 242,28 278,57 400,07 441,12 567,73 760,67 752,74 478,30

49 74 698,82 576,49 442,97 337,97 230,13 230,13 266,53 396,63 437,45 580,91 782,07 774,00 479,51

49 75 711,41 585,35 442,97 321,28 216,09 218,39 254,85 391,50 431,97 592,05 803,87 795,65 480,45

50 72 674,07 539,85 490,80 488,82 356,83 334,90 391,50 456,03 492,78 537,74 701,32 683,89 512,38

50 73 652,30 546,20 490,80 469,35 336,43 324,27 373,07 459,81 488,82 548,32 693,82 674,07 504,77

50 74 666,76 554,74 461,71 394,92 273,17 269,18 312,41 419,37 452,27 556,89 731,88 711,41 483,73

50 75 681,43 561,21 435,62 327,28 219,54 219,54 258,71 383,05 417,59 565,55 768,65 752,74 465,91

51 72 671,62 561,21 529,37 519,03 378,04 356,83 422,95 500,76 529,37 569,91 729,30 683,89 537,69

51 73 686,37 585,35 548,32 512,89 366,52 353,64 417,59 510,86 527,29 601,07 750,12 711,41 547,62

51 74 774,00 659,50 592,05 523,15 366,52 361,65 430,16 550,46 567,73 681,43 868,79 806,62 598,50

52 68 971,02 931,03 999,36 1128,55 974,14 928,00 1060,99 1121,67 1104,59 983,55 1142,40 989,85 1027,93

52 69 845,83 784,77 809,38 889,22 729,30 691,33 784,77 868,79 886,28 814,92 980,40 845,83 827,57

52 70 729,30 657,09 645,15 686,37 529,37 500,76 563,38 657,09 698,82 664,33 834,50 716,50 656,89

52 71 698,82 614,76 583,13 569,91 417,59 398,35 454,15 563,38 603,34 626,33 801,12 696,31 585,60

52 72 744,88 652,30 603,34 519,03 368,15 358,43 426,54 554,74 576,49 683,89 874,59 784,77 595,60

52 73 795,65 691,33 624,01 469,35 322,77 322,77 398,35 548,32 552,60 744,88 949,35 880,42 608,32

52 74 1064,30 937,11 886,28 765,98 535,64 539,85 664,33 845,83 828,87 1021,78 1257,27 1091,05 869,86

53 68 961,69 993,01 1080,97 1198,92 1002,54 999,36 1107,99 1238,84 1202,51 1074,28 1202,51 955,51 1084,84

53 69 837,32 845,83 883,35 949,35 760,67 752,74 834,50 977,27 977,27 898,07 1038,00 820,48 881,24

53 70 721,60 716,50 711,41 734,47 561,21 550,46 610,18 752,74 782,07 739,66 889,22 698,82 705,69

53 71 713,95 686,37 654,69 612,47 442,97 437,45 494,77 649,91 681,43 713,95 880,42 711,41 639,98

53 72 806,62 747,49 693,82 552,60 384,73 384,73 459,81 638,05 652,30 806,62 1008,93 868,79 667,04

53 73 909,96 812,15 734,47 496,76 331,84 336,43 426,54 628,67 624,01 906,98 1149,36 1044,53 700,14

54 67 779,37 886,28 1031,49 1121,67 898,07 1012,13 1070,95 1264,70 1198,92 1028,25 1074,28 760,67 1010,56

54 68 755,38 842,98 912,95 971,02 744,88 803,87 877,50 1077,62 1041,26 934,07 1018,56 713,95 891,17

54 69 703,84 782,07 817,70 834,50 633,35 669,19 739,66 940,16 924,98 851,53 949,35 669,19 792,96

54 70 652,30 724,16 731,88 711,41 531,45 550,46 617,07 812,15 817,70 776,68 883,35 624,01 702,72

54 71 698,82 742,27 726,73 645,15 467,43 477,08 550,46 755,38 765,98 801,12 940,16 701,32 689,32

54 72 851,53 840,15 806,62 624,01 431,97 439,28 529,37 758,02 760,67 937,11 1128,55 924,98 752,69

55 67 765,98 937,11 1128,55 1156,36 889,22 1077,62 1107,99 1383,55 1306,06 1156,36 1166,90 734,47 1067,51

55 68 747,49 904,00 1015,34 1018,56 752,74 877,50 934,07 1209,72 1159,86 1070,95 1118,24 691,33 958,32

55 69 752,74 906,98 993,01 958,59 716,50 803,87 874,59 1149,36 1118,24 1054,39 1118,24 698,82 928,78

Tabla D.1. Promedios de densidad de potencia eólica a 50 m. para la región de Magallanes

Page 297: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

285

TABLAS DE OBTENCIÓN DE RADIACIÓN SOLAR EXTRATERRESTRE

PARA LA CIUDAD DE PUNTA ARENAS

En donde:

n = Día del año (01-ene = 1; 02-ene = 2; ... ;31-dic = 365) d = Angulo de declinación solar ( º ) Ws = Angulo horario de salida del sol ( º ) ws = Angulo horario de puesta de sol ( º ) H = Horas reales de sol ( Horas ) C = Variación de la distancia de la Tierra al Sol

Día del año n d° Ws° ws° H (horas) C IH (W/m2)

01-ene 1 -23,0116 124,3062 -124,3062 16,5742 1,0330 12242,9409

02-ene 2 -22,9305 124,1526 -124,1526 16,5537 1,0330 12221,3901

03-ene 3 -22,8427 123,9868 -123,9868 16,5316 1,0330 12197,9457

04-ene 4 -22,7480 123,8087 -123,8087 16,5078 1,0329 12172,6184

05-ene 5 -22,6466 123,6186 -123,6186 16,4825 1,0329 12145,4194

06-ene 6 -22,5385 123,4168 -123,4168 16,4556 1,0328 12116,3610

07-ene 7 -22,4237 123,2033 -123,2033 16,4271 1,0328 12085,4563

08-ene 8 -22,3023 122,9784 -122,9784 16,3971 1,0327 12052,7188

09-ene 9 -22,1742 122,7423 -122,7423 16,3656 1,0326 12018,1633

10-ene 10 -22,0396 122,4952 -122,4952 16,3327 1,0325 11981,8049

11-ene 11 -21,8985 122,2374 -122,2374 16,2983 1,0324 11943,6596

12-ene 12 -21,7509 121,9690 -121,9690 16,2625 1,0323 11903,7440

13-ene 13 -21,5968 121,6903 -121,6903 16,2254 1,0322 11862,0755

14-ene 14 -21,4363 121,4016 -121,4016 16,1869 1,0320 11818,6720

15-ene 15 -21,2695 121,1030 -121,1030 16,1471 1,0319 11773,5522

16-ene 16 -21,0963 120,7949 -120,7949 16,1060 1,0318 11726,7353

17-ene 17 -20,9170 120,4775 -120,4775 16,0637 1,0316 11678,2412

18-ene 18 -20,7314 120,1509 -120,1509 16,0201 1,0314 11628,0903

19-ene 19 -20,5397 119,8155 -119,8155 15,9754 1,0313 11576,3036

20-ene 20 -20,3419 119,4715 -119,4715 15,9295 1,0311 11522,9026

21-ene 21 -20,1380 119,1192 -119,1192 15,8826 1,0309 11467,9095

22-ene 22 -19,9282 118,7588 -118,7588 15,8345 1,0307 11411,3468

23-ene 23 -19,7125 118,3904 -118,3904 15,7854 1,0304 11353,2377

24-ene 24 -19,4910 118,0145 -118,0145 15,7353 1,0302 11293,6057

25-ene 25 -19,2636 117,6312 -117,6312 15,6842 1,0300 11232,4749

26-ene 26 -19,0306 117,2408 -117,2408 15,6321 1,0297 11169,8699

27-ene 27 -18,7919 116,8434 -116,8434 15,5791 1,0295 11105,8156

28-ene 28 -18,5477 116,4394 -116,4394 15,5253 1,0292 11040,3374

29-ene 29 -18,2979 116,0289 -116,0289 15,4705 1,0290 10973,4613

30-ene 30 -18,0428 115,6123 -115,6123 15,4150 1,0287 10905,2134

31-ene 31 -17,7823 115,1896 -115,1896 15,3586 1,0284 10835,6204

Promedio - -20,8472 120,4222 -120,4222 497,7452 1,0314 11659,9254

Tabla E.1. Valores para obtener la radiación extraterrestre en Punta Arenas para Enero

Page 298: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

286

Día del año n d° Ws° ws° H (horas) C IH (W/m2)

01-feb 32 -17,5165 114,7611 -114,7611 15,3015 1,0281 10764,7094

02-feb 33 -17,2455 114,3271 -114,3271 15,2436 1,0278 10692,5078

03-feb 34 -16,9695 113,8877 -113,8877 15,1850 1,0275 10619,0435

04-feb 35 -16,6883 113,4431 -113,4431 15,1257 1,0272 10544,3447

05-feb 36 -16,4023 112,9936 -112,9936 15,0658 1,0269 10468,4398

06-feb 37 -16,1114 112,5393 -112,5393 15,0052 1,0265 10391,3577

07-feb 38 -15,8157 112,0805 -112,0805 14,9441 1,0262 10313,1278

08-feb 39 -15,5153 111,6173 -111,6173 14,8823 1,0258 10233,7796

09-feb 40 -15,2104 111,1498 -111,1498 14,8200 1,0255 10153,3430

10-feb 41 -14,9009 110,6783 -110,6783 14,7571 1,0251 10071,8481

11-feb 42 -14,5870 110,2030 -110,2030 14,6937 1,0247 9989,3256

12-feb 43 -14,2688 109,7240 -109,7240 14,6299 1,0244 9905,8063

13-feb 44 -13,9463 109,2414 -109,2414 14,5655 1,0240 9821,3213

14-feb 45 -13,6198 108,7555 -108,7555 14,5007 1,0236 9735,9020

15-feb 46 -13,2892 108,2664 -108,2664 14,4355 1,0232 9649,5801

16-feb 47 -12,9546 107,7741 -107,7741 14,3699 1,0228 9562,3877

17-feb 48 -12,6162 107,2790 -107,2790 14,3039 1,0224 9474,3570

18-feb 49 -12,2741 106,7810 -106,7810 14,2375 1,0219 9385,5204

19-feb 50 -11,9283 106,2804 -106,2804 14,1707 1,0215 9295,9108

20-feb 51 -11,5790 105,7772 -105,7772 14,1036 1,0211 9205,5611

21-feb 52 -11,2263 105,2716 -105,2716 14,0362 1,0206 9114,5046

22-feb 53 -10,8703 104,7638 -104,7638 13,9685 1,0202 9022,7747

23-feb 54 -10,5110 104,2537 -104,2537 13,9005 1,0197 8930,4051

24-feb 55 -10,1486 103,7416 -103,7416 13,8322 1,0193 8837,4297

25-feb 56 -9,7832 103,2276 -103,2276 13,7637 1,0188 8743,8824

26-feb 57 -9,4149 102,7117 -102,7117 13,6949 1,0183 8649,7976

27-feb 58 -9,0438 102,1941 -102,1941 13,6259 1,0179 8555,2097

28-feb 59 -8,6700 101,6748 -101,6748 13,5566 1,0174 8460,1531

Promedio - -13,3253 108,4071 -108,4071 404,7198 1,0232 9664,0118

Tabla E.2. Valores para obtener la radiación extraterrestre en Punta Arenas para Febrero

Page 299: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

287

Día del año n d° Ws° ws° H (horas) C IH (W/m2)

01-mar 60 -8,2937 101,1540 -101,1540 13,4872 1,0169 8364,6626

02-mar 61 -7,9149 100,6317 -100,6317 13,4176 1,0164 8268,7730

03-mar 62 -7,5338 100,1080 -100,1080 13,3477 1,0159 8172,5193

04-mar 63 -7,1504 99,5831 -99,5831 13,2777 1,0154 8075,9364

05-mar 64 -6,7649 99,0570 -99,0570 13,2076 1,0149 7979,0594

06-mar 65 -6,3774 98,5297 -98,5297 13,1373 1,0144 7881,9237

07-mar 66 -5,9880 98,0014 -98,0014 13,0669 1,0139 7784,5642

08-mar 67 -5,5969 97,4722 -97,4722 12,9963 1,0134 7687,0164

09-mar 68 -5,2041 96,9420 -96,9420 12,9256 1,0129 7589,3155

10-mar 69 -4,8097 96,4111 -96,4111 12,8548 1,0123 7491,4967

11-mar 70 -4,4139 95,8794 -95,8794 12,7839 1,0118 7393,5954

12-mar 71 -4,0168 95,3470 -95,3470 12,7129 1,0113 7295,6466

13-mar 72 -3,6185 94,8140 -94,8140 12,6419 1,0107 7197,6856

14-mar 73 -3,2192 94,2805 -94,2805 12,5707 1,0102 7099,7473

15-mar 74 -2,8189 93,7465 -93,7465 12,4995 1,0097 7001,8669

16-mar 75 -2,4177 93,2120 -93,2120 12,4283 1,0091 6904,0790

17-mar 76 -2,0159 92,6772 -92,6772 12,3570 1,0086 6806,4183

18-mar 77 -1,6134 92,1421 -92,1421 12,2856 1,0080 6708,9195

19-mar 78 -1,2105 91,6068 -91,6068 12,2142 1,0075 6611,6169

20-mar 79 -0,8072 91,0713 -91,0713 12,1428 1,0069 6514,5445

21-mar 80 -0,4037 90,5357 -90,5357 12,0714 1,0064 6417,7363

22-mar 81 0,0000 90,0000 -90,0000 12,0000 1,0058 6321,2260

23-mar 82 0,4037 89,4643 -89,4643 11,9286 1,0052 6225,0469

24-mar 83 0,8072 88,9287 -88,9287 11,8572 1,0047 6129,2321

25-mar 84 1,2105 88,3932 -88,3932 11,7858 1,0041 6033,8143

26-mar 85 1,6134 87,8579 -87,8579 11,7144 1,0035 5938,8261

27-mar 86 2,0159 87,3228 -87,3228 11,6430 1,0030 5844,2994

28-mar 87 2,4177 86,7880 -86,7880 11,5717 1,0024 5750,2660

29-mar 88 2,8189 86,2535 -86,2535 11,5005 1,0018 5656,7570

30-mar 89 3,2192 85,7195 -85,7195 11,4293 1,0013 5563,8034

31-mar 90 3,6185 85,1860 -85,1860 11,3581 1,0007 5471,4355

Promedio - -2,3892 93,1973 -93,1973 385,2155 1,0090 6909,0913

Tabla E.3. Valores para obtener la radiación extraterrestre en Punta Arenas para Marzo

Page 300: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

288

Día del año n d° Ws° ws° H (horas) C IH (W/m2)

01-abr 91 4,0168 84,6530 -84,6530 11,2871 1,0001 5379,6832

02-abr 92 4,4139 84,1206 -84,1206 11,2161 0,9996 5288,5761

03-abr 93 4,8097 83,5889 -83,5889 11,1452 0,9990 5198,1429

04-abr 94 5,2041 83,0580 -83,0580 11,0744 0,9984 5108,4121

05-abr 95 5,5969 82,5278 -82,5278 11,0037 0,9979 5019,4115

06-abr 96 5,9880 81,9986 -81,9986 10,9331 0,9973 4931,1683

07-abr 97 6,3774 81,4703 -81,4703 10,8627 0,9967 4843,7093

08-abr 98 6,7649 80,9430 -80,9430 10,7924 0,9962 4757,0605

09-abr 99 7,1504 80,4169 -80,4169 10,7223 0,9956 4671,2474

10-abr 100 7,5338 79,8920 -79,8920 10,6523 0,9950 4586,2946

11-abr 101 7,9149 79,3683 -79,3683 10,5824 0,9945 4502,2265

12-abr 102 8,2937 78,8460 -78,8460 10,5128 0,9939 4419,0664

13-abr 103 8,6700 78,3252 -78,3252 10,4434 0,9934 4336,8371

14-abr 104 9,0438 77,8059 -77,8059 10,3741 0,9928 4255,5607

15-abr 105 9,4149 77,2883 -77,2883 10,3051 0,9923 4175,2585

16-abr 106 9,7832 76,7724 -76,7724 10,2363 0,9917 4095,9513

17-abr 107 10,1486 76,2584 -76,2584 10,1678 0,9912 4017,6590

18-abr 108 10,5110 75,7463 -75,7463 10,0995 0,9906 3940,4006

19-abr 109 10,8703 75,2362 -75,2362 10,0315 0,9901 3864,1946

20-abr 110 11,2263 74,7284 -74,7284 9,9638 0,9895 3789,0587

21-abr 111 11,5790 74,2228 -74,2228 9,8964 0,9890 3715,0098

22-abr 112 11,9283 73,7196 -73,7196 9,8293 0,9885 3642,0639

23-abr 113 12,2741 73,2190 -73,2190 9,7625 0,9879 3570,2364

24-abr 114 12,6162 72,7210 -72,7210 9,6961 0,9874 3499,5418

25-abr 115 12,9546 72,2259 -72,2259 9,6301 0,9869 3429,9939

26-abr 116 13,2892 71,7336 -71,7336 9,5645 0,9864 3361,6058

27-abr 117 13,6198 71,2445 -71,2445 9,4993 0,9858 3294,3895

28-abr 118 13,9463 70,7586 -70,7586 9,4345 0,9853 3228,3565

29-abr 119 14,2688 70,2760 -70,2760 9,3701 0,9848 3163,5174

30-abr 120 14,5870 69,7970 -69,7970 9,3063 0,9843 3099,8821

Promedio - 9,4932 77,0988 -77,0988 308,3950 0,9921 4172,8172

Tabla E.4. Valores para obtener la radiación extraterrestre en Punta Arenas para Abril

Page 301: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

289

Día del año n d° Ws° ws° H (horas) C IH (W/m2)

01-may 121 14,9009 69,3217 -69,3217 9,2429 0,9838 3037,4597

02-may 122 15,2104 68,8502 -68,8502 9,1800 0,9833 2976,2585

03-may 123 15,5153 68,3827 -68,3827 9,1177 0,9828 2916,2861

04-may 124 15,8157 67,9195 -67,9195 9,0559 0,9824 2857,5492

05-may 125 16,1114 67,4607 -67,4607 8,9948 0,9819 2800,0539

06-may 126 16,4023 67,0064 -67,0064 8,9342 0,9814 2743,8057

07-may 127 16,6883 66,5569 -66,5569 8,8743 0,9809 2688,8090

08-may 128 16,9695 66,1123 -66,1123 8,8150 0,9805 2635,0679

09-may 129 17,2455 65,6729 -65,6729 8,7564 0,9800 2582,5856

10-may 130 17,5165 65,2389 -65,2389 8,6985 0,9796 2531,3646

11-may 131 17,7823 64,8104 -64,8104 8,6414 0,9791 2481,4069

12-may 132 18,0428 64,3877 -64,3877 8,5850 0,9787 2432,7138

13-may 133 18,2979 63,9711 -63,9711 8,5295 0,9783 2385,2859

14-may 134 18,5477 63,5606 -63,5606 8,4747 0,9778 2339,1233

15-may 135 18,7919 63,1566 -63,1566 8,4209 0,9774 2294,2256

16-may 136 19,0306 62,7592 -62,7592 8,3679 0,9770 2250,5917

17-may 137 19,2636 62,3688 -62,3688 8,3158 0,9766 2208,2201

18-may 138 19,4910 61,9855 -61,9855 8,2647 0,9762 2167,1087

19-may 139 19,7125 61,6096 -61,6096 8,2146 0,9758 2127,2551

20-may 140 19,9282 61,2412 -61,2412 8,1655 0,9754 2088,6562

21-may 141 20,1380 60,8808 -60,8808 8,1174 0,9751 2051,3087

22-may 142 20,3419 60,5285 -60,5285 8,0705 0,9747 2015,2089

23-may 143 20,5397 60,1845 -60,1845 8,0246 0,9743 1980,3527

24-may 144 20,7314 59,8491 -59,8491 7,9799 0,9740 1946,7357

25-may 145 20,9170 59,5225 -59,5225 7,9363 0,9736 1914,3531

26-may 146 21,0963 59,2051 -59,2051 7,8940 0,9733 1883,2001

27-may 147 21,2695 58,8970 -58,8970 7,8529 0,9730 1853,2714

28-may 148 21,4363 58,5984 -58,5984 7,8131 0,9727 1824,5617

29-may 149 21,5968 58,3097 -58,3097 7,7746 0,9723 1797,0655

30-may 150 21,7509 58,0310 -58,0310 7,7375 0,9720 1770,7771

31-may 151 21,8985 57,7626 -57,7626 7,7017 0,9717 1745,6908

Promedio - 18,8058 63,0368 -63,0368 260,5523 0,9773 2300,8501

Tabla E.5. Valores para obtener la radiación extraterrestre en Punta Arenas para Mayo

Page 302: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

290

Día del año n d° Ws° ws° H (horas) C IH (W/m2)

01-jun 152 22,0396 57,5048 -57,5048 7,6673 0,9714 1721,8009

02-jun 153 22,1742 57,2577 -57,2577 7,6344 0,9712 1699,1014

03-jun 154 22,3023 57,0216 -57,0216 7,6029 0,9709 1677,5867

04-jun 155 22,4237 56,7967 -56,7967 7,5729 0,9706 1657,2509

05-jun 156 22,5385 56,5832 -56,5832 7,5444 0,9704 1638,0885

06-jun 157 22,6466 56,3814 -56,3814 7,5175 0,9701 1620,0938

07-jun 158 22,7480 56,1913 -56,1913 7,4922 0,9699 1603,2614

08-jun 159 22,8427 56,0132 -56,0132 7,4684 0,9697 1587,5861

09-jun 160 22,9305 55,8474 -55,8474 7,4463 0,9694 1573,0627

10-jun 161 23,0116 55,6938 -55,6938 7,4258 0,9692 1559,6866

11-jun 162 23,0859 55,5528 -55,5528 7,4070 0,9690 1547,4530

12-jun 163 23,1533 55,4244 -55,4244 7,3899 0,9688 1536,3577

13-jun 164 23,2139 55,3088 -55,3088 7,3745 0,9687 1526,3967

14-jun 165 23,2676 55,2061 -55,2061 7,3608 0,9685 1517,5663

15-jun 166 23,3144 55,1164 -55,1164 7,3488 0,9683 1509,8631

16-jun 167 23,3543 55,0398 -55,0398 7,3386 0,9682 1503,2842

17-jun 168 23,3873 54,9764 -54,9764 7,3302 0,9680 1497,8269

18-jun 169 23,4133 54,9263 -54,9263 7,3235 0,9679 1493,4890

19-jun 170 23,4324 54,8895 -54,8895 7,3186 0,9678 1490,2686

20-jun 171 23,4446 54,8661 -54,8661 7,3155 0,9676 1488,1643

21-jun 172 23,4498 54,8560 -54,8560 7,3141 0,9675 1487,1752

22-jun 173 23,4480 54,8594 -54,8594 7,3146 0,9674 1487,3005

23-jun 174 23,4394 54,8761 -54,8761 7,3168 0,9674 1488,5401

24-jun 175 23,4237 54,9062 -54,9062 7,3208 0,9673 1490,8942

25-jun 176 23,4012 54,9497 -54,9497 7,3266 0,9672 1494,3635

26-jun 177 23,3717 55,0065 -55,0065 7,3342 0,9671 1498,9490

27-jun 178 23,3352 55,0764 -55,0764 7,3435 0,9671 1504,6521

28-jun 179 23,2919 55,1596 -55,1596 7,3546 0,9671 1511,4748

29-jun 180 23,2416 55,2558 -55,2558 7,3674 0,9670 1519,4192

30-jun 181 23,1845 55,3650 -55,3650 7,3820 0,9670 1528,4879

Promedio - 23,0771 55,5636 -55,5636 222,2545 0,9686 1548,6482

Tabla E.6. Valores para obtener la radiación extraterrestre en Punta Arenas para Junio

Page 303: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

291

Día del año n d° Ws° ws° H (horas) C IH (W/m2)

01-jul 182 23,1205 55,4870 -55,4870 7,3983 0,9670 1538,6839

02-jul 183 23,0496 55,6217 -55,6217 7,4162 0,9670 1550,0104

03-jul 184 22,9719 55,7690 -55,7690 7,4359 0,9670 1562,4711

04-jul 185 22,8874 55,9288 -55,9288 7,4572 0,9670 1576,0698

05-jul 186 22,7962 56,1008 -56,1008 7,4801 0,9671 1590,8106

06-jul 187 22,6981 56,2849 -56,2849 7,5046 0,9671 1606,6980

07-jul 188 22,5934 56,4808 -56,4808 7,5308 0,9671 1623,7365

08-jul 189 22,4819 56,6886 -56,6886 7,5585 0,9672 1641,9310

09-jul 190 22,3638 56,9078 -56,9078 7,5877 0,9673 1661,2863

10-jul 191 22,2391 57,1383 -57,1383 7,6184 0,9674 1681,8076

11-jul 192 22,1077 57,3799 -57,3799 7,6507 0,9674 1703,5001

12-jul 193 21,9699 57,6324 -57,6324 7,6843 0,9675 1726,3691

13-jul 194 21,8255 57,8955 -57,8955 7,7194 0,9676 1750,4197

14-jul 195 21,6746 58,1691 -58,1691 7,7559 0,9678 1775,6573

15-jul 196 21,5173 58,4528 -58,4528 7,7937 0,9679 1802,0873

16-jul 197 21,3537 58,7465 -58,7465 7,8329 0,9680 1829,7147

17-jul 198 21,1837 59,0498 -59,0498 7,8733 0,9682 1858,5448

18-jul 199 21,0074 59,3627 -59,3627 7,9150 0,9683 1888,5824

19-jul 200 20,8249 59,6847 -59,6847 7,9580 0,9685 1919,8325

20-jul 201 20,6363 60,0157 -60,0157 8,0021 0,9687 1952,2998

21-jul 202 20,4415 60,3554 -60,3554 8,0474 0,9688 1985,9885

22-jul 203 20,2407 60,7036 -60,7036 8,0938 0,9690 2020,9030

23-jul 204 20,0339 61,0600 -61,0600 8,1413 0,9692 2057,0470

24-jul 205 19,8211 61,4244 -61,4244 8,1899 0,9694 2094,4243

25-jul 206 19,6025 61,7966 -61,7966 8,2395 0,9697 2133,0379

26-jul 207 19,3780 62,1762 -62,1762 8,2902 0,9699 2172,8907

27-jul 208 19,1478 62,5631 -62,5631 8,3417 0,9701 2213,9853

28-jul 209 18,9120 62,9570 -62,9570 8,3943 0,9704 2256,3236

29-jul 210 18,6705 63,3578 -63,3578 8,4477 0,9706 2299,9071

30-jul 211 18,4235 63,7650 -63,7650 8,5020 0,9709 2344,7371

31-jul 212 18,1710 64,1786 -64,1786 8,5572 0,9712 2390,8140

Promedio - 21,1015 59,1334 -59,1334 244,4179 0,9684 1877,7604

Tabla E.7. Valores para obtener la radiación extraterrestre en Punta Arenas para Julio

Page 304: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

292

Día del año n d° Ws° ws° H (horas) C IH (W/m2)

01-ago 213 17,9132 64,5984 -64,5984 8,6131 0,9714 2438,1379

02-ago 214 17,6500 65,0240 -65,0240 8,6699 0,9717 2486,7083

03-ago 215 17,3817 65,4552 -65,4552 8,7274 0,9720 2536,5242

04-ago 216 17,1081 65,8920 -65,8920 8,7856 0,9723 2587,5838

05-ago 217 16,8295 66,3340 -66,3340 8,8445 0,9727 2639,8850

06-ago 218 16,5459 66,7810 -66,7810 8,9041 0,9730 2693,4247

07-ago 219 16,2574 67,2329 -67,2329 8,9644 0,9733 2748,1996

08-ago 220 15,9641 67,6895 -67,6895 9,0253 0,9736 2804,2053

09-ago 221 15,6661 68,1506 -68,1506 9,0867 0,9740 2861,4369

10-ago 222 15,3634 68,6159 -68,6159 9,1488 0,9743 2919,8890

11-ago 223 15,0562 69,0854 -69,0854 9,2114 0,9747 2979,5552

12-ago 224 14,7445 69,5588 -69,5588 9,2745 0,9751 3040,4287

13-ago 225 14,4284 70,0360 -70,0360 9,3381 0,9754 3102,5016

14-ago 226 14,1081 70,5168 -70,5168 9,4022 0,9758 3165,7656

15-ago 227 13,7836 71,0011 -71,0011 9,4668 0,9762 3230,2116

16-ago 228 13,4550 71,4887 -71,4887 9,5318 0,9766 3295,8296

17-ago 229 13,1224 71,9794 -71,9794 9,5973 0,9770 3362,6091

18-ago 230 12,7859 72,4731 -72,4731 9,6631 0,9774 3430,5386

19-ago 231 12,4456 72,9697 -72,9697 9,7293 0,9778 3499,6061

20-ago 232 12,1017 73,4690 -73,4690 9,7959 0,9783 3569,7988

21-ago 233 11,7541 73,9709 -73,9709 9,8628 0,9787 3641,1029

22-ago 234 11,4031 74,4753 -74,4753 9,9300 0,9791 3713,5043

23-ago 235 11,0487 74,9820 -74,9820 9,9976 0,9796 3786,9876

24-ago 236 10,6910 75,4910 -75,4910 10,0655 0,9800 3861,5373

25-ago 237 10,3302 76,0021 -76,0021 10,1336 0,9805 3937,1366

26-ago 238 9,9663 76,5152 -76,5152 10,2020 0,9809 4013,7683

27-ago 239 9,5994 77,0301 -77,0301 10,2707 0,9814 4091,4144

28-ago 240 9,2297 77,5469 -77,5469 10,3396 0,9819 4170,0562

29-ago 241 8,8573 78,0654 -78,0654 10,4087 0,9824 4249,6742

30-ago 242 8,4822 78,5854 -78,5854 10,4781 0,9828 4330,2483

31-ago 243 8,1046 79,1070 -79,1070 10,5476 0,9833 4411,7577

Promedio - 13,2960 71,6169 -71,6169 296,0164 0,9769 3341,9364

Tabla E.8. Valores para obtener la radiación extraterrestre en Punta Arenas para Agosto

Page 305: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

293

Día del año n d° Ws° ws° H (horas) C IH (W/m2)

01-sep 244 7,7246 79,6300 -79,6300 10,6173 0,9838 4494,1809

02-sep 245 7,3424 80,1543 -80,1543 10,6872 0,9843 4577,4958

03-sep 246 6,9579 80,6798 -80,6798 10,7573 0,9848 4661,6796

04-sep 247 6,5714 81,2065 -81,2065 10,8275 0,9853 4746,7088

05-sep 248 6,1830 81,7343 -81,7343 10,8979 0,9858 4832,5594

06-sep 249 5,7927 82,2631 -82,2631 10,9684 0,9864 4919,2067

07-sep 250 5,4007 82,7928 -82,7928 11,0390 0,9869 5006,6255

08-sep 251 5,0071 83,3233 -83,3233 11,1098 0,9874 5094,7900

09-sep 252 4,6120 83,8547 -83,8547 11,1806 0,9879 5183,6738

10-sep 253 4,2155 84,3867 -84,3867 11,2516 0,9885 5273,2499

11-sep 254 3,8178 84,9194 -84,9194 11,3226 0,9890 5363,4909

12-sep 255 3,4190 85,4527 -85,4527 11,3937 0,9895 5454,3690

13-sep 256 3,0191 85,9865 -85,9865 11,4649 0,9901 5545,8556

14-sep 257 2,6184 86,5207 -86,5207 11,5361 0,9906 5637,9218

15-sep 258 2,2169 87,0553 -87,0553 11,6074 0,9912 5730,5383

16-sep 259 1,8147 87,5903 -87,5903 11,6787 0,9917 5823,6754

17-sep 260 1,4120 88,1255 -88,1255 11,7501 0,9923 5917,3029

18-sep 261 1,0089 88,6609 -88,6609 11,8215 0,9928 6011,3901

19-sep 262 0,6054 89,1965 -89,1965 11,8929 0,9934 6105,9062

20-sep 263 0,2018 89,7322 -89,7322 11,9643 0,9939 6200,8198

21-sep 264 -0,2018 90,2678 -90,2678 12,0357 0,9945 6296,0994

22-sep 265 -0,6054 90,8035 -90,8035 12,1071 0,9950 6391,7131

23-sep 266 -1,0089 91,3391 -91,3391 12,1785 0,9956 6487,6286

24-sep 267 -1,4120 91,8745 -91,8745 12,2499 0,9962 6583,8136

25-sep 268 -1,8147 92,4097 -92,4097 12,3213 0,9967 6680,2352

26-sep 269 -2,2169 92,9447 -92,9447 12,3926 0,9973 6776,8605

27-sep 270 -2,6184 93,4793 -93,4793 12,4639 0,9979 6873,6565

28-sep 271 -3,0191 94,0135 -94,0135 12,5351 0,9984 6970,5897

29-sep 272 -3,4190 94,5473 -94,5473 12,6063 0,9990 7067,6268

30-sep 273 -3,8178 95,0806 -95,0806 12,6774 0,9996 7164,7340

Promedio - 1,9936 87,3342 -87,3342 349,3367 0,9915 5795,8133

Tabla E.9. Valores para obtener la radiación extraterrestre en Punta Arenas para Septiembre

Page 306: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

294

Día del año n d° Ws° ws° H (horas) C IH (W/m2)

01-oct 274 -4,2155 95,6133 -95,6133 12,7484 1,0001 7261,8776

02-oct 275 -4,6120 96,1453 -96,1453 12,8194 1,0007 7359,0237

03-oct 276 -5,0071 96,6767 -96,6767 12,8902 1,0013 7456,1385

04-oct 277 -5,4007 97,2072 -97,2072 12,9610 1,0018 7553,1877

05-oct 278 -5,7927 97,7369 -97,7369 13,0316 1,0024 7650,1375

06-oct 279 -6,1830 98,2657 -98,2657 13,1021 1,0030 7746,9535

07-oct 280 -6,5714 98,7935 -98,7935 13,1725 1,0035 7843,6018

08-oct 281 -6,9579 99,3202 -99,3202 13,2427 1,0041 7940,0482

09-oct 282 -7,3424 99,8457 -99,8457 13,3128 1,0047 8036,2585

10-oct 283 -7,7246 100,3700 -100,3700 13,3827 1,0052 8132,1986

11-oct 284 -8,1046 100,8930 -100,8930 13,4524 1,0058 8227,8344

12-oct 285 -8,4822 101,4146 -101,4146 13,5219 1,0064 8323,1320

13-oct 286 -8,8573 101,9346 -101,9346 13,5913 1,0069 8418,0575

14-oct 287 -9,2297 102,4531 -102,4531 13,6604 1,0075 8512,5769

15-oct 288 -9,5994 102,9699 -102,9699 13,7293 1,0080 8606,6565

16-oct 289 -9,9663 103,4848 -103,4848 13,7980 1,0086 8700,2628

17-oct 290 -10,3302 103,9979 -103,9979 13,8664 1,0091 8793,3620

18-oct 291 -10,6910 104,5090 -104,5090 13,9345 1,0097 8885,9209

19-oct 292 -11,0487 105,0180 -105,0180 14,0024 1,0102 8977,9062

20-oct 293 -11,4031 105,5247 -105,5247 14,0700 1,0107 9069,2848

21-oct 294 -11,7541 106,0291 -106,0291 14,1372 1,0113 9160,0238

22-oct 295 -12,1017 106,5310 -106,5310 14,2041 1,0118 9250,0904

23-oct 296 -12,4456 107,0303 -107,0303 14,2707 1,0123 9339,4520

24-oct 297 -12,7859 107,5269 -107,5269 14,3369 1,0129 9428,0763

25-oct 298 -13,1224 108,0206 -108,0206 14,4027 1,0134 9515,9310

26-oct 299 -13,4550 108,5113 -108,5113 14,4682 1,0139 9602,9842

27-oct 300 -13,7836 108,9989 -108,9989 14,5332 1,0144 9689,2041

28-oct 301 -14,1081 109,4832 -109,4832 14,5978 1,0149 9774,5591

29-oct 302 -14,4284 109,9640 -109,9640 14,6619 1,0154 9859,0179

30-oct 303 -14,7445 110,4412 -110,4412 14,7255 1,0159 9942,5495

31-oct 304 -15,0562 110,9146 -110,9146 14,7886 1,0164 10025,1230

Promedio - -9,8485 103,4073 -103,4073 427,4167 1,0085 8680,0462

Tabla E.10. Valores para obtener la radiación extraterrestre en Punta Arenas para Octubre

Page 307: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

295

Día del año n d° Ws° ws° H (horas) C IH (W/m2)

01-nov 305 -15,3634 111,3841 -111,3841 14,8512 1,0169 10106,7078

02-nov 306 -15,6661 111,8494 -111,8494 14,9133 1,0174 10187,2736

03-nov 307 -15,9641 112,3105 -112,3105 14,9747 1,0179 10266,7903

04-nov 308 -16,2574 112,7671 -112,7671 15,0356 1,0183 10345,2282

05-nov 309 -16,5459 113,2190 -113,2190 15,0959 1,0188 10422,5576

06-nov 310 -16,8295 113,6660 -113,6660 15,1555 1,0193 10498,7495

07-nov 311 -17,1081 114,1080 -114,1080 15,2144 1,0197 10573,7748

08-nov 312 -17,3817 114,5448 -114,5448 15,2726 1,0202 10647,6049

09-nov 313 -17,6500 114,9760 -114,9760 15,3301 1,0206 10720,2116

10-nov 314 -17,9132 115,4016 -115,4016 15,3869 1,0211 10791,5667

11-nov 315 -18,1710 115,8214 -115,8214 15,4428 1,0215 10861,6427

12-nov 316 -18,4235 116,2350 -116,2350 15,4980 1,0219 10930,4122

13-nov 317 -18,6705 116,6422 -116,6422 15,5523 1,0224 10997,8482

14-nov 318 -18,9120 117,0430 -117,0430 15,6057 1,0228 11063,9241

15-nov 319 -19,1478 117,4369 -117,4369 15,6583 1,0232 11128,6137

16-nov 320 -19,3780 117,8238 -117,8238 15,7098 1,0236 11191,8910

17-nov 321 -19,6025 118,2034 -118,2034 15,7605 1,0240 11253,7305

18-nov 322 -19,8211 118,5756 -118,5756 15,8101 1,0244 11314,1073

19-nov 323 -20,0339 118,9400 -118,9400 15,8587 1,0247 11372,9966

20-nov 324 -20,2407 119,2964 -119,2964 15,9062 1,0251 11430,3742

21-nov 325 -20,4415 119,6446 -119,6446 15,9526 1,0255 11486,2163

22-nov 326 -20,6363 119,9843 -119,9843 15,9979 1,0258 11540,4997

23-nov 327 -20,8249 120,3153 -120,3153 16,0420 1,0262 11593,2014

24-nov 328 -21,0074 120,6373 -120,6373 16,0850 1,0265 11644,2992

25-nov 329 -21,1837 120,9502 -120,9502 16,1267 1,0269 11693,7713

26-nov 330 -21,3537 121,2535 -121,2535 16,1671 1,0272 11741,5963

27-nov 331 -21,5173 121,5472 -121,5472 16,2063 1,0275 11787,7535

28-nov 332 -21,6746 121,8309 -121,8309 16,2441 1,0278 11832,2228

29-nov 333 -21,8255 122,1045 -122,1045 16,2806 1,0281 11874,9846

30-nov 334 -21,9699 122,3676 -122,3676 16,3157 1,0284 11916,0199

Promedio - -19,0505 117,3626 -117,3626 469,4506 1,0231 11107,2190

Tabla E.11. Valores para obtener la radiación extraterrestre en Punta Arenas para Noviembre

Page 308: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

296

Día del año n d° Ws° ws° H (horas) C IH (W/m2)

01-dic 335 -22,1077 122,6201 -122,6201 16,3493 1,0287 11955,3104

02-dic 336 -22,2391 122,8617 -122,8617 16,3816 1,0290 11992,8384

03-dic 337 -22,3638 123,0922 -123,0922 16,4123 1,0292 12028,5868

04-dic 338 -22,4819 123,3114 -123,3114 16,4415 1,0295 12062,5393

05-dic 339 -22,5934 123,5192 -123,5192 16,4692 1,0297 12094,6804

06-dic 340 -22,6981 123,7151 -123,7151 16,4954 1,0300 12124,9951

07-dic 341 -22,7962 123,8992 -123,8992 16,5199 1,0302 12153,4692

08-dic 342 -22,8874 124,0712 -124,0712 16,5428 1,0304 12180,0894

09-dic 343 -22,9719 124,2310 -124,2310 16,5641 1,0307 12204,8431

10-dic 344 -23,0496 124,3783 -124,3783 16,5838 1,0309 12227,7185

11-dic 345 -23,1205 124,5130 -124,5130 16,6017 1,0311 12248,7046

12-dic 346 -23,1845 124,6350 -124,6350 16,6180 1,0313 12267,7913

13-dic 347 -23,2416 124,7442 -124,7442 16,6326 1,0314 12284,9693

14-dic 348 -23,2919 124,8404 -124,8404 16,6454 1,0316 12300,2302

15-dic 349 -23,3352 124,9236 -124,9236 16,6565 1,0318 12313,5665

16-dic 350 -23,3717 124,9935 -124,9935 16,6658 1,0319 12324,9715

17-dic 351 -23,4012 125,0503 -125,0503 16,6734 1,0320 12334,4394

18-dic 352 -23,4237 125,0938 -125,0938 16,6792 1,0322 12341,9656

19-dic 353 -23,4394 125,1239 -125,1239 16,6832 1,0323 12347,5459

20-dic 354 -23,4480 125,1406 -125,1406 16,6854 1,0324 12351,1776

21-dic 355 -23,4498 125,1440 -125,1440 16,6859 1,0325 12352,8584

22-dic 356 -23,4446 125,1339 -125,1339 16,6845 1,0326 12352,5874

23-dic 357 -23,4324 125,1105 -125,1105 16,6814 1,0327 12350,3642

24-dic 358 -23,4133 125,0737 -125,0737 16,6765 1,0328 12346,1897

25-dic 359 -23,3873 125,0236 -125,0236 16,6698 1,0328 12340,0655

26-dic 360 -23,3543 124,9602 -124,9602 16,6614 1,0329 12331,9943

27-dic 361 -23,3144 124,8836 -124,8836 16,6512 1,0329 12321,9796

28-dic 362 -23,2676 124,7939 -124,7939 16,6392 1,0330 12310,0258

29-dic 363 -23,2139 124,6912 -124,6912 16,6255 1,0330 12296,1384

30-dic 364 -23,1533 124,5756 -124,5756 16,6101 1,0330 12280,3235

31-dic 365 -23,0859 124,4472 -124,4472 16,5930 1,0330 12262,5883

Promedio - -23,0956 124,4708 -124,4708 514,4794 1,0315 12247,9209

Tabla E.12. Valores para obtener la radiación extraterrestre en Punta Arenas para Diciembre

Page 309: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Cant. Descripción Cod.

1 Aerogenerador Bergey de 1 KW1 Bergey XL1- Normal 24VDC - 1000W con Powercenter incluido

Turbina Eólica - Bergey XL1 - 24VDC - 1000W con Powercenter incluido, sin protección contra ambientes marinos - USA- Para especificaciones ver catálogo

BWC XL.1-24

Subtotal 3538,46

1 Aerogenerador Bergey de 10 KW1 Bergey Excel-R/48 Turbina Eólica 7.5kW, Cargador de

Baterias,48VDC, con Export Packing (CRATE) y Pintura Anticorrosion (ECP) + Aspas Negras (BLK)

Turbina Eólica - Bergey Excel-R/48 Turbina Eólica 7.5kW, Cargador de Baterias,48VDC, con Export Packing (CRATE) y Pintura Anticorrosion (ECP) + Aspas Negras (BLK) - USA- Para especificaciones ver catálogo

BWC Excel-R.

Subtotal 30745,75

10 Paneles fotovoltaicos 120Wp10 KC120 Panel Solar Policristalino - 120W - 12V - Marca Kyocera -

Origen Japón

KC120 Panel Solar Policristalino - 120W - 12V - Marca Kyocera - Origen USA (fábrica en México). (Modelo y Voltaje sujeto a disponibilidad del fabricante al momento de la compra)

KC120

Subtotal 7846,20

Universidad de Magallanes - Centro de Estudios de Recursos Energéticos

At: Rodrigo Silva Mancilla, Elio Oyarzún Oyarzo

2 días

Cliente:

Fono/Fax:

RC5-4125 UMAG

2 A 6 SEMANAS

Plazo de Entrega Lugar de EntregaCondiciones de PagoValidez

Mar, 11 Oct 2005

Dirección

CotizaciónFecha:

----------------- TIPO DE CAMBIO $530 ----------------

Wireless Energy Chile Ltda.Parcela 6; Km 6.5, Ruta 5

Puerto Montt, Chile RUT: 78-882-560-9

Fono: (56) 65-292-100 Fax: (56) 65-292-102

[email protected]

Anticipo 30%. Saldocontra entrega

Por pagar a todo Chile

Los precios están en dólares, no incluye IVA. El pago es en Pesos Chilenos al valor del dólar cotizado o el dolar observado. (No menos que lo cotizado)

Punta Arenas

Page 310: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

Cant. Descripción Cod.

Inversores en el rango de 1 a 10 KW1 Xantrex - SW4548EInversor/Cargador, 4500W, 48VDC/220V, 50Hz,

SW4548E, Xantrex -

Inversor/Cargador - Xantrex - SW4548EInversor/Cargador, 4500W, 48VDC/220V, 50Hz, incluye sensor de temperatura, Xantrex - - USA- Para especificaciones ver catálogo

Xantrex - SW.

Subtotal 4418,46

5 baterías Trojan L16P o similar 1 TROJAN L16HC, 395AH,6V - Batería de ciclo profundo

Bateria Solar de ciclo profundo 350Ah, 6V, Humeda, Plomo Acido,L16, TROJAN Largo 295mm x Ancho 178mm x Alto 424mm. Necesita evacuar gases al exterior del recinto de instalación. ORIGEN: USA

104008

Subtotal 386,03

TOTAL (SIN IVA) USD 46934,90

RC5-4125 UMAGMar, 11 Oct 2005

Cotización

Page 311: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

CONDICIONES COMERCIALES Y GARANTÍA:

LAS SIGUIENTES CONDICIONES COMERCIALES Y GARANTÍA RIGEN PARA LA COMPRA O ADQUISICIÓN DE LOSPRODUCTOS, SERVICIOS Y/O SISTEMAS DE WIRELESS ENERGY CHILE LTDA. Y SE ENTIENDEN CONOCIDAS Y ACEPTADAS POR EL CLIENTE AL MOMENTO DE LA COMPRA

COTIZACIONES1.- VALORES: tienen los descuentos incluidos. No incluyen IVA, instalación ni cargos de despacho.2.- MONEDA: Valores expresados en Dólares Norteamericanos, se pagan en Pesos Chilenos.3.- PAGO EN DÓLARES: sólo con consulta y aprobación de Gerencia de Wireless Energy.4.- TIPO DE CAMBIO: A firme al valor del Dólar observado al día de la Orden de Compra o Firma del Contrato.5.- FORMA DE PAGO: Depósito del 30% del valor total de venta con IVA Incluido, contra Firma de Contrato u Ordende Compra. El saldo es pagadero al contado previo a la entrega de la mercadería. Se aceptan cheques al día, personales, previa verificación.

CONDICIONES GENERALES DE VENTA6.- ORDEN DE COMPRA Y CONTRATO: Para proyectos la venta se genera sólo contra Firma de Contrato y si procede Orden de Compra. Para venta de suministros se requiere sólo de Orden de Compra, donde se debe detallar los datos de Facturación con firma y timbre del comprador según corresponda.7.- PLAZO DE ENTREGA: A confirmar con el vendedor y a partir de la fecha de recepción de la Orden de Compra. 8.- PROPIEDAD: Los productos serán de propiedad de Wireless Energy Chile Ltda hasta que este pagado el 100% del valor de ellos.9.- ENTREGA: La mercadería será entregada una vez recibida copia del depósito final y cobrado el cheque al día. No se aceptan cheques de terceros.10.- FLETE NACIONAL: Los productos se entregan Puestos en la Bodegas de Wireless Energy en Puerto Montt a menos que el flete sea cotizado expresamente como parte del proyecto. Los despachos fuera de Puerto Montt son vía terrestre y por pagar. Otras formas de despacho deben ser especificadas en la Orden de Compra.

GARANTÍA:

LOS PRODUCTOS TIENEN GARANTÍAS LIMITADAS DE ACUERDO A CADA FABRICANTE. LAS INSTALACIONES REALIZADAS POR PERSONAL DE WIRELESS ENERGY TIENEN GARANTÍA DE 1 AÑO.

LA GARANTÍA DE TODO PRODUCTO VENDIDO O INSTALADO POR WIRELESS ENERGY CHILE LTDA. ES CONTRA DEFECTOS DE FABRICACIÓN Y NO CUBRE FALLOS POR MALA INSTALACIÓN DEL CLIENTE, MANTENCIÓN INADECUADA, ABUSO, MAL USO U OPERACIÓN DEFICIENTE DE LOS PRODUCTOS O SISTEMAS.

PARA HACER EFECTIVA LA GARANTÍA, EL COMPRADOR DEBERÁ REMITIR EL PRODUCTO Y COPIA DE LA FACTURA DE VENTA A LA OFICINA CENTRAL DE WIRELESS ENERGY UBICADAS EN PARCELA 6 - KM 6.5 - RUTA 5 - PUERTO MONTT.

PARA PROYECTO Y EN CUALQUIER CASO, TODOS LOS COSTOS DE TRANSPORTE, MOVILIZACIÓN, MANO DE OBRA ESPECIALIZADA, IMPORTACIÓN DE REPUESTOS Y OTROS GASTOS RELACIONADOS SERÁN DE EXCLUSIVO CARGO DEL CLIENTE.

LA GARANTÍA NO CUBRE DEFECTOS O FALLOS EN EQUIPOS, DISPOSITIVOS Y OTROS CONECTADOS O ENERGIZADOS POR LOS PRODUCTOS O SISTEMAS DE WIRELESS ENERGY CHILE LTDA.

WIRELESS ENERGY CHILE LTDA.- CASILLA 287 - PUERTO MONTT- CHILE - [email protected]

Page 312: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

300

ESPECIFICACIONES TÉCNICAS

Especificaciones técnicas generales del aerogenerador Bergey XL.1 (1 KW)

• Tipo: 3 Aspas

• Diámetro del rotor: 2,5 m

• Velocidad de viento de partida: 3 m/s

• Velocidad de viento nominal: 11 m/s

• Potencia nominal: 1 KW (a velocidad de viento

nominal)

• Potencia máxima capaz de generar: ~ 1,6 KW

• Velocidad de viento máxima de diseño: 54 m/s

• Protección para altas velocidades: AutoFurl

• Caja de transmisión: Ninguna, acoplamiento directo

• Rango de temperaturas: -40ºC a +60ºC

• Generador eléctrico: Alternador de imanes

permanentes

• Tipo de señal de salida: 24 VDC Nominal

Page 313: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

301

Especificaciones técnicas generales del aerogenerador Bergey EXCEL - S (10 KW)

• Tipo: 3 Aspas

• Diámetro del rotor: 6,7 m

• Velocidad de viento de partida: 3,4 m/s

• Velocidad de viento nominal: 13,8 m/s

• Potencia nominal: 10 KW

• Velocidad de viento máxima de diseño: 54 m/s

• Protección para altas velocidades: AutoFurl

• Caja de transmisión: Ninguna, acoplamiento directo

• Rango de temperaturas: -40ºC a +60ºC

• Generador eléctrico: Alternador de imanes

permanentes

• Tipo de señal de salida: Alterna trifásica, frecuencia

variable (48 - 240 VDC después del VCS-10 o 240

VAC, monofásica, 60 Hz, o 220 VAC, monofásica, 50

Hz con inversor GridTek)

Page 314: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

302

Especificaciones técnicas generales del aerogenerador Vestas V.90 (2 MW)

Page 315: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

303

Page 316: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

KC120-1MODULOFOTOVOLTAICOPOLICRISTALINODE ALTORENDIMIENTOPOTENCIA PICO NOMINAL 120 W

25 AÑOS DE GARANTIA

MODELO KC120-1

CARACTERISTICAS SOBRESALIENTES

La tecnología de última generación de las celdas Kyocera, junto con procesos de fabricación totalmente automáticos, dan como resultado estos módulos fotovoltaicos policristalinos de alta eficiencia. La eficiencia de conversión de las celdassolares Kyocera es mas de 14%. El frente del módulo es de vidrio templado, de bajo contenido de hierro. Las celdas estánencapsuladas entre capas de material plástico (E.V.A.) para darles resistencia a la humedad, estabilidad a la radiación ultravioletay aislación eléctrica. La cara posterior esta formada por un polímero de capas múltiples de alta resistencia a la acción mecánica (PET). El marco es de aluminio anodizado, para dar al módulo su resistencia estructural y facilidad de instalación.

APLICACIONES

ESPECIFICACIONES

• Sistemas de telecomunicaciones.• Sistemas satelitales.• Sistemas de protección catódica.• Repetidoras de TV.• Sistemas de telemetría.• Sistemas de telesupervisión.• Electrificación de pueblos en áreas remotas.• Electrificación de escuelas y viviendas aisladas.

� Especificaciones Eléctricas � Especificaciones Físicas (en mm)

• Electrificación de puestos médicos, de fuerzas deseguridad aislados y otros.

• Sistemas de bombeo de agua.• Sistemas de desalinización.• Sistemas de señalización y balizamiento:

terrestre, fluvial, marítimo y aéreo.• Cargadores de baterías en general para embarcaciones,

casas rodantes, etc.

MODELO KC120-1Potencia Pico Nominal 120 vatiosTensión a PPN 16.9 voltiosCorriente a PPN 7.10 amperiosTensión de circuito abierto 21.5 voltiosCorriente de corto circuito 7.45 amperiosLargo 1425 mm (56.1 in.) Ancho 652 mm (25.7 in.)Espesor 52 mm (2.0 in.)Peso 11.9 kg (26.24 lbs.)

Nota: Las especificaciones eléctricas indicadas corresponden a condicionesnormalizadas de pruebas: 1000 W/m2, masa de aire: 1.5 ytemperatura de celda: 25°C

652 52

36

608

1425

943

1367

Page 317: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

7812 East Acoma DriveScottsdale, Arizona 85260 USATel.: +1 (480) 951-6330Fax: +1 (480) 951-6329Website: www.kyocerasolar.come-mail: [email protected]

KYOCERA se reserva el derecho de modificar las presentes especificaciones sin previo aviso previo. También se surten pedidos especiales de laminados y módulos con especificaciones señaladas por el cliente.

Impreso en los EE.UU.Impreso en papel reciclado11/03

MODELO KC120-1

CURVAS CARACTERISTICAS

Curvas I-V (corriente - tensión) a distintastemperaturas de celda.

IRRADIANCIA: 1000 W / m2MASADE AIRE: 1.5

8

6

4

0 10 20 30

50°C 25°C75°C

2

Tensión (voltios)

Co

rrie

nte

(am

per

ios)

Curvas I-V (corriente - tensión) a distinto nivelesde irradiancía.

TEMPERATURA DE CELDA: 25°C

200W / m2

400W / m2

600W / m2

800W / m2

1000W / m2

Tensión (voltios)

Co

rrie

nte

(am

per

ios)

10 20 30

8

6

4

0

2

CONTROL DE CALIDAD

Los módulos fotovalticos policristalinos de KYOCERA sobrepasan las especificaciones gubernamentales respecto a los siguientes ensayos:

• De ciclado Térmico• De choque Térmico• De ciclado a alta temperatura y congelamiento

a elevada humedad• De aislación elétrica.

Certificados:• U.L. 1703, 3• ISO 9000• CEC SPEC 503• Clase 1, División 2, Grupos A, B, C y D

• De impacto de granizo.• De cargas mecánicas y de torsión.• De niebla salina.• De exposición a la luz y al agua.• De exposición a campo.

Para cualquier otra información no dude en comunicarse con nosotros.

Page 318: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

306

ELECTROBOMBAS SUMERGIBLES RADIALES

APLICACIONES Adecuada para la elevación, presurización y distribución en instalaciones de tipo civil e industrial, distribución a autoclaves y cisternas, sistemas antiincendio y de lavado, sistemas de riego, con trasiego de pozos, tanques y cuencas. CARACTERÍSTICAS DE CONSTRUCCIÓN DE LA BOMBA La nueva serie de electrobombas sumergidas de 4” FS 98 utiliza impulsores de tipo flotante, con deslizamiento axial, que evitan el bloqueo de la bomba aun en presencia de arena. Los componentes son realizados con materiales especiales que aseguran una fuerte resistencia al desgaste. La bomba representa la soluccion ideal en el bombeo de agua con presencia de arena en suspension, hasta 300 g/m3. ACOPLAMIENTO La electrobomba está equipada con un motor eléctrico serie CL 95 4” (Motor en baño de aceite) o MF 4” (Motor en resina en baño de agua). La brida de acoplamiento al motor y la parte sobresaliente del eje son conformes a la normativa NEMA 1-18.388. DATOS DE FUNCIONAMIENTO Las características hidráulicas indicadas se refieren a agua fría (15°C) con presión atmosférica de 1 bar y densidad de 1000kg/m3. Las bombas son producidas en serie y por lo tanto son fabricadas de acuerdo con la normativa ISO 9906, parrafo A.

• Líquido bomb eado: químicamente y mecánicamente no agresivo, con un contenido máximo de partículas sólidas de dureza y granulometría del limo (300 g/m3)

• Temperatura máxima: 30°C • Presión de funcionamiento máxima: 39 bar • Dirección de rotación: hacia izquierda, mirando desde el orificio de impulsión. • Instalación: vertical / horizontal.

Page 319: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

≅ 2900 1/min• TABELLA DELLE CARATTERISTICHE IDRAULICHE• TABLE OF THE HYDRAULIC FEATURES• TABLA DE LAS CARACTERISTICAS HIDRAULICAS• TABLEAU DES CARACTERISTIQUES HYDRAULIQUES• TABELLE DER HYDRAULISCHEN EIGENSCHAFTEN• TABELA DE CARACTERÍSTICAS HIDRÁULICAS

* Funzionamento in orizzontale possibile. Si raccomanda la corretta posa dei supporti onde evitare che l’elettropompa lavori a sbalzo.• Horizontal operation is possible. The motor shall be correctly installed with the relative supports in order to ensure the electric pumpworks properly. • El funcionamiento en posición horizontal es posible. Se aconseja colocar correctamente los soportes oportunos paraevitar que la electrobomba funcione en voladizo. • Fonctionnement à l’horizontale possible. Veiller à poser correctement les supportspour éviter que l’électropompe travaille par sauts. • Betrieb in horizontaler Stellung möglich. Damit die Elektropumpe nicht überhängendarbeitet, wird der korrekte Einbau der Halterungen empfohlen. • Funcionamento possível na horizontal. Aconselha-se colocarcorrectamente os suportes correspondentes para que a bomba trabalhe adequadamente.• Potenza nominale motore • Rated power of motor • Potencia nominal del motor • Puissance nominale moteur • Nennleistung des Motors• Potência nominal do motor.

** A richiesta si fornisce motore 230V con funzionamento 3~ • On request motor 230V with functioning 3~ • Bajo demanda motor230V con funcionamento 3~ • Sur demande on livre moteur 230V fonctionnement 3~ • Auf anfrage mit motor 230V mit betrieb 3~• Sob pedido motor 230 V com funcionamento 3~

FS 98A

TipoType

MotoreMotor

•kW HP

In(A)

3~ 1~**400 V 230 V

U.S.g.p.m.

Q m3/h

l/min

0 1,8 3,5 5,3 7,0 8,8 10,6 12,3

0 0,4 0,8 1,2 1,6 2 2,4 2,8

0 7 13 20 27 33 40 47

H

(m)

43 41 39 35 32 28 22 13

68 64 60 55 50 43 34 20

92 87 82 75 68 59 47 27

129 122 115 105 95 82 65 38

178 169 159 145 131 114 90 53

226 215 202 185 167 145 115 67

267 256 240 220 198 172 137 80

318 302 284 260 234 203 162 94

372 354 334 305 276 238 190 110

0,37 0,5 1,3 3,2

0,55 0,75 1,7 4,3

0,75 1 2,2 5,3

1,1 1,5 3,2 7,8

1,5 2 4 9,9

2,2 3 5 14

2,2 3 5,9 14,9

3 4 7 -

3 4 7,8 -

FS 98 A/7*

FS 98 A/11*

FS 98 A/15*

FS 98 A/21*

FS 98 A/29*

FS 98 A/37*

XFS 98 A/44XFS 98 A/52XFS 98 A/61

• DIMENSIONI E PESI• TABLE OF THE HYDRAULIC FEATURES• TABLA DE LAS CARACTERISTICAS HIDRAULICAS• TABLEAU DES CARACTERISTIQUES HYDRAULIQUES• TABELLE DER HYDRAULISCHEN EIGENSCHAFTEN• DIMENSÕES E PESO COM MOTOR MONOFÁSICO

FS 98 A/7 FP 98 A/7FS 98 A/11 FP 98 A/11FS 98 A/15 FP 98 A/15FS 98 A/21 FP 98 A/21FS 98 A/29 FP 98 A/29FS 98 A/37 FP 98 A/37XFS 98 A/44 XFP 98 A/44XFS 98 A/52 XFP 98 A/52XFS 98 A/61 XFP 98 A/61

597• 354 243• 100 1" 1/2 95 4" CL 95 NEMA 1.18.388 4,5 12,5

702• 431 271• 100 1" 1/2 95 4" CL 95 NEMA 1.18.388 5 15

805• 506 299• 100 1" 1/2 95 4" CL 95 NEMA 1.18.388 6 17

948• 620 328• 100 1" 1/2 95 4" CL 95 NEMA 1.18.388 7 19

1169• 813 356• 100 1" 1/2 95 4" CL 95 NEMA 1.18.388 8,5 22,5

1425• 964 461• 100 1" 1/2 95 4" CL 95 NEMA 1.18.388 9,5 27,5

1554• 1093 461• 100 1" 1/2 95 4" CL95 NEMA 1.18.388 10 28

1799 1285 514 100 1" 1/2 95 4" MF 95 NEMA 1.18.388 11 29

1970 1456 514 100 1" 1/2 95 4" MF 95 NEMA 1.18.388 12,5 30,5

Tipo / Type L + H Peso (Kg)

L NEMA H TT H

T H L(mm) (mm) (mm)

ØMax(mm)

Ø D Ø d“G (mm)

• Dimensioni e pesi con motore monofase - Dimensions and weight with single phase motor - Dimensiones y pesos con motormonofasico - Dimensions et poids avec moteur monophasé - Abmessungen und Gewichte mit einphasigem Motor - Dimensões epeso com motor monofásico.• Fino a giugno 2003 saranno fornite con bocca di mandata 2” gas, poi da 1” 1/2 gas - They will be provided with 2” outlet untilJune 2003, then 1” 1/2 - Hasta el mes de Junio de 2003 vienen con descarga 2” gas; después de esta fecha con descarga 1” 1/2gas - Jusqu’à Juin 2003 seront livrées avec orifice de refoulement 2” Gas et en suite avec 1” 1/2 Gas - Sie werden mit 2” Auslassbis Juni 2003 geliefert, nachmer 1” 1/2 - Até Junio 2003 se forneceram con boca de impulsão de 2” gas. Depois con diametro de1” 1/2 gas.

Page 320: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

ELETTROPOMPE

P= Potenza assorbita per singolo stadio • P= Absorbed power for each stage • P= Potencia absorbida por cada etapa • P= Puissance absorbée par étage • P= Leistungsaufnahmein jeder Stufe • P= Potência absorvida por cada conjunto.Le curve di prestazione sono basate su valori di viscosità cinematica = 1 mm2/s e densità pari a 1000 kg/m3. Tolleranza e curve secondo ISO 9906 - Appendice A • Theperformance curves are based on the kinematic viscosity values = 1 mm2/s and density equal to 1000 kg/m3. Tolerance and curves according to ISO 9906 - Attachment A• Las curvas de rendimiento se refieren a valores de viscosidad cinemática = 1 mm2/s y densidad de 1000 Kg/m3. Tolerancia de las curvas de acuerdo con ISO 9906 - ParrafoA • Les courbes de performances sont basées sur des valeurs de viscosité cinématique égale à 1 mm2/s et une densité égale à 1000 kg/m3. Tolérance et courbes conformesaux normes ISO 9906 - Annexe A • Die Leistungskurven beruhen auf einer kinematischen Zähflüssigkeit von 1 mm2/s und einer Dichte von 1000 kg/m3. Abweichung undKurven gemäß ISO 9906 - Anhang A • As curvas de rendimento referem-se a valores de viscosidade = 1 mm2/s e densidade igual a 1000 kg/m3. Tolerância das curvasde acordo com ISO 9906 - Parágrafo A

Page 321: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

309

ESTIMACIÓN DE PRODUCCIÓN DE ELECTRICIDAD DE UN AEROGENERADOR

DE 1 KW Y ARREGLO FV DE 1,2 KW EN LA CIUDAD DE PUNTA ARENAS

Producción de energía de un aerogenerador de 1 KW de potencia nominal en Punta Arenas

Hora Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic 0 0,37805 0,31672 0,20305 0,30370 0,22326 0,15930 0,19139 0,28010 0,31777 0,34636 0,46940 0,30284 1 0,45049 0,31969 0,17420 0,24600 0,24516 0,19887 0,15293 0,28426 0,27828 0,33076 0,43969 0,32359 2 0,39887 0,35728 0,23579 0,27208 0,24057 0,18740 0,19385 0,24893 0,34095 0,32711 0,38155 0,37966 3 0,35678 0,40046 0,28829 0,28451 0,20189 0,20810 0,25162 0,29347 0,38652 0,37957 0,34732 0,44481 4 0,35620 0,38510 0,36671 0,28615 0,20278 0,24692 0,24464 0,40458 0,36000 0,36994 0,31062 0,54369 5 0,37884 0,37210 0,39260 0,29401 0,19397 0,21385 0,23846 0,37847 0,37481 0,33802 0,40156 0,51983 6 0,40838 0,40395 0,45041 0,35426 0,17990 0,19384 0,27495 0,42961 0,36392 0,33995 0,41862 0,58824 7 0,44376 0,41487 0,48035 0,33254 0,19706 0,21021 0,24470 0,43911 0,42489 0,47801 0,40576 0,56853 8 0,54605 0,41326 0,47081 0,35029 0,23660 0,25633 0,25342 0,33974 0,49757 0,47168 0,43885 0,56222 9 0,51302 0,45345 0,48375 0,41674 0,28534 0,29689 0,25993 0,38012 0,45033 0,48568 0,50346 0,61516 10 0,45564 0,42994 0,47941 0,35721 0,31177 0,36490 0,33438 0,38556 0,48079 0,56681 0,56276 0,55976 11 0,48913 0,44173 0,44046 0,34960 0,33730 0,30211 0,38211 0,39216 0,49169 0,55110 0,61280 0,52899 12 0,48075 0,40139 0,44614 0,40160 0,35799 0,30335 0,41421 0,32693 0,48023 0,53370 0,61367 0,55972 13 0,53190 0,51059 0,48265 0,37413 0,37129 0,34278 0,32050 0,35481 0,48026 0,50679 0,66926 0,60513 14 0,50819 0,51279 0,47616 0,37980 0,30724 0,39994 0,40447 0,41341 0,49491 0,51441 0,61602 0,55777 15 0,52859 0,46557 0,44475 0,53204 0,26078 0,39207 0,41132 0,49752 0,49526 0,50663 0,71818 0,47044 16 0,56114 0,46924 0,39593 0,48694 0,25855 0,35103 0,42079 0,42765 0,45957 0,53235 0,64474 0,49583 17 0,56774 0,40334 0,39955 0,44004 0,26075 0,27647 0,38272 0,40528 0,44547 0,48112 0,64882 0,46241 18 0,57147 0,44370 0,40920 0,45284 0,24421 0,26590 0,37743 0,37053 0,40097 0,49563 0,69362 0,51401 19 0,53534 0,33433 0,35145 0,36582 0,25067 0,27009 0,25642 0,35267 0,37322 0,50847 0,64449 0,43769 20 0,46380 0,32936 0,27182 0,35698 0,21323 0,21651 0,26470 0,30633 0,28439 0,49660 0,54904 0,32914 21 0,38712 0,33874 0,24365 0,36541 0,24070 0,20035 0,25865 0,31078 0,30777 0,46640 0,54059 0,27469 22 0,44783 0,33929 0,22801 0,36056 0,22246 0,17511 0,19140 0,27923 0,35077 0,50130 0,47581 0,34375 23 0,41511 0,33690 0,21990 0,32759 0,25894 0,15697 0,17358 0,25966 0,29257 0,40346 0,46015 0,29737

Tabla H.1. Potencia de salida en KW para el aerogenerador Bergey XL.1 a 20 m

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 202122 23

Hora

Pot

enci

a (K

W)

Ene Feb Mar

Figura H.1. Producción para Enero, Febrero y Marzo

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 1617 18 19 20 21 22 23

Hora

Pot

enci

a (K

W)

Abr May Jun

Figura H.2. Producción para Abril, Mayo y Junio

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 1617 18 19 20 21 22 23

Hora

Pot

enci

a (K

W)

Jul Ago Sep

Figura H.3. Producción para Julio, Agosto y Septiembre

0,00

0,100,20

0,300,40

0,50

0,60

0,70

0,80

0 1 2 3 4 5 6 7 8 9 10 1112 13141516 17 18 19 20 21 22 23

Hora

Pot

enci

a (K

W)

Oct Nov Dic

Figura H.4. Producción para Octubre, Noviembre y Diciembre

Page 322: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

310

Producción de energía de un arreglo FV de 1,2 KWp en Punta Arenas

Hora Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 4 0,040687 0 0 0 0 0 0 0 0 0 0,035782 0,009209 5 0,028583 0,015104 0 0 0 0 0 0 0 0,016445 0,035195 0,048962 6 0,088438 0,036667 0,022016 0 0 0 0 0 0,004387 0,048299 0,10834 0,124304 7 0,199755 0,151102 0,085596 0,060184 0 0 0 0,03637 0,125113 0,188099 0,256398 0,253935 8 0,342147 0,26342 0,221653 0,192739 0,091777 0,000093 0,000822 0,232675 0,246084 0,336421 0,40077 0,389116 9 0,446497 0,442977 0,338864 0,38768 0,220637 0,15886 0,230946 0,305877 0,375395 0,485675 0,525694 0,521908 10 0,569572 0,559695 0,46799 0,437526 0,282561 0,229247 0,291131 0,396292 0,490088 0,593617 0,600637 0,593383 11 0,672256 0,629181 0,584589 0,454363 0,320959 0,268675 0,376845 0,490643 0,594875 0,688668 0,628368 0,632216 12 0,737048 0,67197 0,59304 0,563444 0,234147 0,247563 0,468251 0,490719 0,628063 0,700416 0,715442 0,718108 13 0,68001 0,603881 0,502336 0,455842 0,251143 0,24841 0,372243 0,474113 0,605527 0,712383 0,684982 0,717827 14 0,604306 0,543178 0,515143 0,421408 0,21713 0,240596 0,266913 0,459367 0,49701 0,614455 0,594817 0,632993 15 0,486669 0,500238 0,431911 0,310217 0,188779 0,177869 0,253931 0,305877 0,397131 0,488085 0,488108 0,47588 16 0,400044 0,358755 0,307479 0,203045 0,291095 0,002306 0,268903 0,216323 0,261933 0,328373 0,351228 0,380801 17 0,27887 0,25523 0,143479 0,131575 0,000122 0 0,000003 0,116953 0,142086 0,168471 0,223544 0,25054 18 0,157583 0,120612 0,061302 0,000524 0 0 0 0 0,011675 0,036441 0,092719 0,144254 19 0,059754 0,032301 0,007637 0 0 0 0 0 0 0,037801 0,031449 0,060821 20 0,01754 0,046085 0 0 0 0 0 0 0 0 0,035643 0,017707 21 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0

Tabla H.2. Potencia de salida en KW para el arreglo FV de 1,2 KWp

00,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 19 20 2122 23

Hora

Pot

enci

a (K

W)

Ene Feb Mar

Figura H.5. Producción para Enero, Febrero y Marzo

0

0,1

0,2

0,3

0,4

0,5

0,6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23

Hora

Pot

enci

a (K

W)

Abr May Jun

Figura H.6. Producción para Abril, Mayo y Junio

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23

Hora

Pot

enci

a (K

W)

Jul Ago Sep

Figura H.7. Producción para Julio, Agosto y Septiembre

0

0,1

0,20,3

0,4

0,5

0,6

0,7

0,8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23

Hora

Pot

enci

a (K

W)

Oct Nov Dic

Figura H.8. Producción para Octubre, Noviembre y Diciembre

Page 323: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

311

GLOSARIO DE ENERGÍA FOTOVOLTAICA

AC : Corriente Alterna

Albedo : La proporción reflejada de la radiación solar incidente en la superficie de la tierra. El

albedo de nieve fresco es (0,9),mientras el asfalto oscuro tiene un albedo de (0,1).

Ángulo de inclinación : Ángulo entre la superficie del módulo y el horizonte.

Superficie vertical = 90° , superficie horizontal =0° .

Amorfo : Condición de un sólido cuando los átomos no están agrupados de manera ordenada. Es

el estado opuesto a la cristalina.

Azimut (Azimuth) :Orientación del panel en plano horizontal norte 0 , este = 90 , sur = 180 y

oeste = 270

Balance del sistema : Los elementos y componentes del sistema excluyendo el conjunto de

módulos fotovoltaicos incluye llaves, controles, medidores, equipamiento de seguridad y control

de calidad de potencia, componentes de almacenamiento y estructura de apoyo.

Batería : Componente del sistema fotovoltaico para almacenar energía eléctrica (Ver también

Capacidad de batería, ciclo vida). Las baterías mas ut ilizadas son de Plomo ácido (Pbacid) y Ní

quel-cadmio (Ni-Cd).

Page 324: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

312

Cables : Los cables de conexión de los paneles deben contar con doble aislación eléctrica y

materiales resistentes a los rayos UV.

Capacidad Nominal: Es la máxima carga eléctrica que puede ext raerse de la batería. Depende de

la temperatura, la corriente de descarga y la tensión final. Se mide en Amperios-hora (Ah).

Conjunto de paneles : Grupos de paneles en una instalación fotovoltaica.

Conexión en paralelo : Método de interconexión de células o módulos donde los terminales

positivos de todos los elementos están conectados entre si y los terminales negativos también. En

este caso, se suma los corrientes de los elementos.

Conexión en serie : Método de interconexión de celdas solares o módulos donde el terminal

positivo de une elemento esta conectado al terminal negativo del próximo en la serie. En este

caso, se suma los voltajes de los elementos.

Celda Solar : Es el elemento semiconductor más pequeño en un módulo fotovoltaico donde se

produce energía eléctrica de la radiación solar incidente.

Ciclo vida : Número de ciclos de carga-descarga tolerada por una batería bajo condiciones

normalizadas hasta que el comportamiento no cumple con las especificaciones; por ejemplo,

hasta la capacidad disminuye a 80% de su capacidad nominal.

Condiciones STC : Condiciones normalizados para el ensayo de paneles: Radiación solar de 1000

W/m² , temperatura de la celda fotovoltaica 25° C, Valor espectral = 1,5 AM. Cabe

aclarar que la radiación es casi siempre inferior a 1000 W/m², la temperatura frecuentemente

excede los 25° C, mientras el valor espectral puede variar entre 0,7 (a gran altura sobre el nivel

del mar) e valores muy grandes (al atardecer).

Page 325: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

313

Conjunto de módulos : Los paneles o módulos fotovoltaico que generan electricidad en un

sistema fotovoltaico.

Corriente Alterna : Corriente eléctrica con cambio frecuente del sentido de flujo, típicamente 50 o

60 ciclos por segundo (50 Hz en Chile). La variación de la corriente es sinusoidal.

Corriente Continua : Corriente eléctrica constante en un sentido solamente.

Cristalino :Condición de un sólido cuando los átomos están agrupados de manera ordenada. El

estado opuesto es el amorfo.

Curvas I-V : Curva que indica el comportamiento de un módulo o panel fotovo ltaico y su punto

de potencia máxima bajo condiciones normalizadas de ensayo. Indica la relación entre corriente y

voltaje según el nivel de radiación incidente. El producto entre la corriente y el voltaje indica la

potencia.

DC :ver Corriente continua.

La Densidad de Flujo de Fotón Fotosintética (PPFD) es definida como la densidad de flujo del

fotón PAR, también mencionado como la Densidad de Flujo Cuántica. Esto es el número de

fotones en el ancho de banda incidente de 400-700 nm por unidad de tiempo sobre una superficie

unitaria. El sensor PPFD ideal responde igual a todos los fotones en el ancho de banda y tiene una

respuesta coseno. La unidad de medida es el Lux.

Densidad energética de la batería: La relación entre la energía disponible en una batería y

su volumen (Wh/l) o masa (Wh/kg).

Page 326: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

314

Densidad de potencia La relación entre la potencia disponible de una batería y su volumen (W/l)

o masa (W/kg.).

Diodo de bloqueo : Dispositivo eléctrico conectado a una serie de fotovoltaico en serie con el fin

de evitar flujos inversos que pueden provocar la destrucción térmica de las celdas.

Diodo de desvío :Dispositivo eléctrico en los paneles que evita daños con sombras parciales.

Encapsulación : Proceso de montar y proteger las células fotovoltaicas en un panel. Normalmente

con material plástico o de vidrio transparente exterior y una placa metálica o de vidrio laminado

atrás.

Eficiencia de conversión : La relación entre la energía eléctrica producida por una celda o módulo

y la energía de la radiación solar inc idente, normalmente bajo condiciones normalizadas de

ensayo.

Eficiencia de sistema : La relación entre la energía eléctrica útil producida por un sistema

fotovoltaico, con todos sus componentes y la energía de la radiación solar incidente, bajo

condiciones normalizadas de ensayo (eficiencia teórica) o bajo condiciones reales de uso

(eficiencia en uso). Ver Rendimiento

Envolvente edilicio : Los elementos exteriores de un edificio, incluyendo el techo, que forman la

'piel' que ofrece protección del clima exterior.

Estado de carga : SOC : es la relación entre la carga almacenada en una batería y su capacidad

nominal. Varía entre 0 < SOC <1.

Page 327: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

315

Capacidad disponible de una batería expresada como porcentaje de su capacidad nominal (rated

capacity).

Estructura de montaje : Elemento de apoyo de los paneles fotovoltaicos, con estructura resistente

a las cargas de viento, movimiento térmico, etc. con sistema de fijación y colocación de cables.

Puede ser montaje integral o montaje independiente

Factor de Forma : Proporción entre la salida a máxima potencia de una célula o módulo (bajo

condiciones normalizados de ensayo) y el producto de la corriente de corte circuito y voltaje de

circuito abierto en las mismas condiciones.

Generador auxiliar : Fuente suplementaria de energía eléctrica que asegura una disponibilidad

constante a precios económicos.

Inclinación : Ángulo de inclinación del panel, desde 0 horizontal a 90, vertical.

Inversor : Un inversor es un componente de un sistema fotovoltaico que transforma un voltaje y

corriente DC a corriente alterna AC, monofásico o trifásico. En sistemas pequeños, la corriente

producida por un inversor es normalmente DC monofásico.

Irradiancia Es la potencia incidente por unidad de superficie, medida en W/m2 (valor medio en

una hora)

Irradiancia global : La intensidad de la radiación solar total recibida por una superficie (directa,

difusa y reflejada).

Page 328: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

316

Irradiancia solar : Es el flujo de energía radiante recibido sobre una superficie por unidad de área

y de tiempo.

Irradianc ia solar directa : Es la irradiancia solar sin dispersión atmosférica. Su unidad es (W/m2).

Irradiancia solar difusa Irradiancia solar difusa (radiación del cielo) es la irradiación proveniente

de todo el cielo, exceptuando el ángulo sólido del disco solar.

(W/m2).

Irradiancia solar extraterrestre : es la cantidad de energía solar que recibe perpendicularmente una

superficie horizontal en el tope superior de la atmósfera y que se encuentra a la distancia media

sol-tierra (150 millones de km).

Irradiación: Es la energía incidente por unidad de superficie en un determinado período de tiempo

y se mide en J/m2. (aunque la irradiáncia y la Irradiación son magnitudes físicas distintas,

coinciden numéricamente cuando la unidad de tiempo es la hora. La irradiación puede medirse po

ejemplo en J/m2 año).

Kilowatt : Unidad de potencia, equivale 1000 Watts.

Kilowatt hora La potencia de mil watts aplicada durante una hora (o una potencia equivalente). 1

kWhr es una unidad de energía - 1 kWhr = 3600 Joules.

Masa de aire : La distancia que atraviesa la radiación solar en la atmósfera, expresada como

proporción de la masa de aire con radiación vertical a nivel del mar. En el espacio AM= 0, en la

Ecuador al mediodí a AM = 1, mientras en latitud 45° al mediodí a AM = 1,5 (valor medio). Este

es el valor utilizado en ensayos normalizados (ver Condiciones Normalizadas de Ensayos).

Page 329: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

317

Módulo Fotovoltaico : ver panel fotovoltaico.

PMAX : Punto de potencia máxima.

MMPT : ver seguidor del punto de máxima potencia.

Montaje integral : Los paneles fotovoltaicos forman parte de la envolvente del edificio. El

aspecto es mejor que el montaje independiente, pero los cables son de más difícil acceso y la

ventilación de los paneles es mas complicada. El montaje integral puede reducir costos en

edificios nuevos o refacciones de fachadas.

Montaje independiente : Los paneles están colocados en una estructura independiente. La

estructura típicamente montada sobre un techo permite fácil acceso a los cables y cajas de

conexión y favorece la ventilación. Esta alternativa es apta para colocar paneles fotovoltaicos en

edificios existentes.

Nivel de descarga : es inverso al Estado de carga (100% - SOC).

Orientación : La dirección una línea perpendicular al panel proyectado en el plano horizontal

expresado como ángulo de azimut.

Panel fotovoltaico : Panel con una serie de celdas o superficies fotovoltaicas, normalmente con

marco y placa de montaje, preparado en fábrica.

Profundidad de descarga, PD: es la relación entre la carga extraída de una batería y su capacidad

nominal.

Page 330: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

318

Protección eléctrica : Las medidas de protección eléctrica incluyen: diodos de desvío para evitar

puntos calientes, diodos de bloqueo para evitar contraflujos en los paneles, fusibles

de doble aislación de los cables, protección contra rayos y sobrevoltaje, colocados en cajas de

conexión.

Punto de potencia máxima : Punto en una curva corriente - voltaje correspondiente a la potencia

máxima. En una célula tí pica de silicio es aproximadamente 0,45 V.

Puntos calientes : Calentamiento local de los paneles fotovoltaicos debido a la sombra parcial.

Radiación PAR La Radiación Fotosintéticamente Activa (PAR) se define como la radiación en el

ancho de banda de los 400 a 700 nm. La Radiación Fotosintéticamente Activa (PAR) es el

término general de radiación el cual cubre ambos términos tanto de fotón como de energía. Su

unidad de medida es mol s-1 m-2

Radiación solar : La intensidad de la radiación solar depende de los siguientes factores: Altura

solar (latitud, fecha, y hora del día), ubicación del panel (azimut e inclinación), condición

atmosférica (humedad, nubosidad y polución) y altura sobre el nivel del mar. La intensidad de la

radiación solar incidente (o global) es la suma de la radiación solar directa, difusa y reflejada.

Radiación solar difusa : Radiación solar esparcida por partículas en la atmósfera que proviene de

la bóveda celeste.

Radiación solar directa : Radiación solar que proviene directamente del sol (y la zona circunsolar

muy cerca al sol).

Radiación solar global : Suma de la radiación solar directa, difusa y reflejada.

Page 331: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

319

Radiación solar reflejada : Radiación solar reflejada por la superficie de la tierra y superficie de

edificios, etc. La radiación reflejada depende del albedo.

Red : Nombre convencional del sistema de distribución de energía eléctrica.

Régimen de Carga (o Descarga): Es la relación entre la capacidad nominal y el valor de la

corriente a la que se realiza una carga (o descarga).

Regulador de carga de la batería: Dispositivo eléctrico que evita el flujo de corriente desde la

batería al panel fotovoltaico a la noche o en días nublados, con el fin de reducir la descarga de la

batería y aumentar su vida útil.

Rendimiento Farádico : Es la relación entre la cantidad de corriente (Ah) extraída durante un

proceso de descarga y la cantidad de corriente necesaria para restablecer el estado de carga

previo.

Rendimiento del sistema : Energía útil producida por el sistema fotovoltaico expresado como

proporción de potencia nominal del conjunto de paneles (kWh/dí a por kWp).

Seguidor de potencia máxima : Componente del sistema fotovoltaico que automáticamente

mantiene el punto de potencia máxima bajo todas las condiciones.

Seguridad : Las medidas de seguridad contra descarga eléctrica son importantes, ya que no se

puede “ apagar” un panel fotovoltaico expuesto al sol. El reglamento IEC TC 82 "Reglamento de

Seguridad para Sistemas Residenciales de Generación por sistemas fotovoltaicos, conectado a la

Red" (Safety Regulations for Residential Grid connected PV-Power Generating Systems). Los

sistemas fotovoltaicos también requieren protección

Page 332: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

320

Semiconductor : Material con propiedades conductoras intermedias entre un conductor y un

aislante. La luz y la temperatura pueden disminuir su resistencia eléctrica produciendo el efecto

fotovoltaico o termovoltaico respectivamente.

Sistemas aislados : Sistemas fotovoltaicos sin conexión a la red eléctrica convencional,

normalmente en á reas rurales aisladas.

Sistemas conectadas a la red: Sistemas fotovoltaicos conectados a la red eléctrica. Estos sistemas

pueden 'exportar' la producción excedente en períodos de buena radiación solar e 'importar'

electricidad a la noche o en períodos nublados cuando la demanda excede la producción de los

sistemas fotovoltaicos.

Sistemas híbridos : Sistemas fotovoltaicos con sistemas complementarios o auxiliares de

generación eléctrica tales como aerogeneradores o generadores diesel.

Sistema Fotovoltaico : Componentes del sistema que trasforman la energía solar en energía

eléctrica través de la tecnología fotovoltaica incluyendo los paneles y los componentes que

conforman el balance del sistema.

Silicio amorfo : Color negro, o marrón oscuro uniforme. Bajo costo, pero con menor eficiencia

(entre 5-7%), independiente de la temperatura.

Silicio : Monocristalina Color azul oscuro, levemente translucido. Alto costo, pero con mayor

eficiencia (supera13%) con valores menores cuando la temperatura supera 25 C.

Page 333: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

321

Silicio policristalino : Color normalmente azul oscuro veteado, levemente translucido: también

disponible en marrón o gris veteado, etc. Precio menor que monocristalina con menor eficiencia

(11%) con valores menores cuando la temperatura supera 25 C.

Sistema autónomo : Sistema independiente de la red - ver Sistema aislado.

SOC ver Estado de carga.

Sombra parcial : Sombra sobre una proporción de un módulo, panel o serie de paneles conectados

en un circuito. Esta sombra parcial puede anular la producción eléctrica de todo un panel o serie,

y producir daños localizados por calentamiento. Los diodos de desvío serán utilizados en los

paneles para evitar este problema.

Tasa de descarga : Es la tasa de extracción de corriente eléctrica de una batería.

Unidad de condicionamiento de potencia: Componente (o componentes) que transforma la salida

eléctrica de un sistema de módulos fotovoltaicos al formato requerido.

VDC : Voltaje con corriente continua. Los módulos fotovoltaicos genera corriente DC.

VAC: Voltaje con corriente alterna. Las instalaciones eléctricas convencionales utilizan corriente

AC.

Volt (V) : Unidad de fuerza en un circuito eléctrico .Un volt produce un ampere de corriente en

un circuito con una resistencia de un ohm.

Page 334: UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE … · 2006-05-03 · Anexo D. Promedios mensuales de densidad de potencia eólica para la región de Magallanes

322

Watt (W): Unidad de potencia eléctrica o cantidad de trabajo en unidad de tiempo

(Joule/segundo). Una corriente de un ampere con una potencia de un volt produce un Watt de

potencia.

Watt pico (Wp): Cantidad de potencia producida por una célula o módulo bajo las condiciones

nominales de irradiación (STC)