UNIT-4 Final Ppt

download UNIT-4 Final Ppt

of 70

Transcript of UNIT-4 Final Ppt

  • 7/25/2019 UNIT-4 Final Ppt

    1/70

    Unit-4

    IIR & FIR Digital Filters

  • 7/25/2019 UNIT-4 Final Ppt

    2/70

    Filter Filteris a frequency selective network.

    Filtersgenerally do not add frequency components to a signal

    It oost or attenuate selected frequency regions!eneral types of filters are"

    #ractical c$aracteristics

  • 7/25/2019 UNIT-4 Final Ppt

    3/70

    %ypes of Filters

    %$ere are two types of filters.

    nalog Filters

    Digital Filters.

    nalog Filter uses passive elements suc$ as resistors' inductors an

    d (apacitors. %$ey descri)ed )y t$e Differential equations.

    Digital Filter *inear time invariant Discrete time system. Descri)ed

    )y t$e difference equations.

    +," IIR'FIR

  • 7/25/2019 UNIT-4 Final Ppt

    4/70

    (oncept of nalog *#F

    Here input signal is a 5v DC signal. Noise is a high frequency

    component. So it is suppressed here. DC Component is a low

    frequency component so it is passed here.

  • 7/25/2019 UNIT-4 Final Ppt

    5/70

    (oncept of Digital *#F

  • 7/25/2019 UNIT-4 Final Ppt

    6/70

    Implementation of Digital filters

    (an )e implemented in software like c or assem)ly language.

    Usually suc$ a languages are compiled and an e,ecuta)le code for

    processors is prepared.

    Digital filters are also implemented )y a dedicated $ardware contai

    ns flip flops' counters' s$ift registers' *U.

    ut digital filters wit$ dedicated $ardware can perform one type of

    filtering only $ence not possi)le to modify t$em.

  • 7/25/2019 UNIT-4 Final Ppt

    7/70

    (omparison )etween nalog & Digital Filters

    Analog Filter Digital FilterAnalog lters wors on analog signals !t operates on the digital samples of

    the signals!t is dened "y linear di#erential equations $hese inds of lters are dened

    using linear di#erence equations%hile implementing the analog lters in

    hardware or software simulation& electrical

    components lie resistors& capacitors andinductors are used.

    %hile implementing the digital lters

    in hardware or software(for

    simulation)& we need adders&su"tractors& delays& etc which are

    classied under digital logic

    components.$he frequency response is modied "y

    changing the components.

    $he frequency response is modied

    "y changing the lter coe*cients.+aplace transform is used for the analysis of

    analog lter.

    , transforms are used for the anaysis

    of digital lters-or sta"ility and causality& the poles should

    lie on the left half of splane.

    !n order to "e sta"le and causal& the

    poles of the transfer function should

    lie inside the unit circle in /plane.

    http://amitbiswal.blogspot.com/2012/02/reason-why-transformers-are-rated-in.htmlhttp://amitbiswal.blogspot.com/2011/08/most-popular-open-source-softwares-list.htmlhttp://amitbiswal.blogspot.com/2011/08/most-popular-open-source-softwares-list.htmlhttp://amitbiswal.blogspot.com/2012/02/reason-why-transformers-are-rated-in.html
  • 7/25/2019 UNIT-4 Final Ppt

    8/70

    dvantages of Digital Filters. Digital filter performance is not influenced )y component ageing' temperat

    ure & power supply variations.

    digital filter is $ig$ly immune to noise & possess considera)le parameter

    sta)ility.

    Digital filters afford a wide variety of s$apes for amplitude & p$ase respons

    es.

    /o pro)lems of i0p 'o0p impedance matc$ing.

    1perated over a wide range of frequencies.

    %$e coefficients of digital filters can )e c$anged at any time to o)tain desir

    ed response.

    2ultiple filtering is possi)le only in digital filters.

  • 7/25/2019 UNIT-4 Final Ppt

    9/70

    Disadvantages of Digital Filters.

    %$ere are few disadvantages also. 3uantiation error occurs due to finite word lengt$ in t$e represe

    ntation of signals and parameters.

    Digital filters also suffer from andwidt$ pro)lems.

  • 7/25/2019 UNIT-4 Final Ppt

    10/70

    Infinite Impulse Response5IIR6 Digital Filter

    In IIR Digital Filter' present o0p samples depends upon present i0p' past i0p also o

    n past o0p.

    IIR filter is a recursive filter.

    /t$ order Difference equation is given )y

    *et a7 8-7 and )9 8 a9 87 wit$ k87 wit$ remaining coefficients as eros' t$e a)ove eq

    uation )ecomes

    y5n68y5n-76:,5n6

  • 7/25/2019 UNIT-4 Final Ppt

    11/70

    pply ;-%ransform we get

    Its inverse ;-%ransform is $5n68u5n6

    It indicates t$at t$e impulse response of IIR filter is $aving infi

    nite duration.

    %$e %.F of IIR filter is

    Design of IIR filter for given specifications is to find t$e filter co

    efficients

  • 7/25/2019 UNIT-4 Final Ppt

    12/70

    Design of Digital filter from nalog Filter

  • 7/25/2019 UNIT-4 Final Ppt

    13/70

    nalog *#F into Digital *#F

  • 7/25/2019 UNIT-4 Final Ppt

    14/70

    & alog Filter Desig

    %$e most general form of a alog tra sfer fu ctio is

    . ($e)ys$ev filter &ppro,imatio

  • 7/25/2019 UNIT-4 Final Ppt

    15/70

    utterwort$ filter

    %$e utterwort$ filteris a type of signal processing filter designed

    to $ave as flat aAfreque cy respo seas possi)le i t$eApass)a d.

    It is also referred to as a ma,imally flat mag itude filter.

    It was first descri)ed in 7B?9 )y t$e ritis$ engineer and p$ysicist =t

    ep$e utterwort$in $is paper entitled C1 t$e %$eory of Filter

    &mplifiersC

  • 7/25/2019 UNIT-4 Final Ppt

    16/70

    & alog *ow pass5*#F6 utterwort$ filt

    er

    *owpass utterwort$ filters are all-pole filters c$aracteried )y

    t$e magnitude response given )y

    or

    ...........

    576

    N

    p

    N

    c

    jH2

    2

    2

    2

    1

    1

    1

    1|)(|

    +

    =

    +

    =

    N

    c

    jH2

    1

    1|)(|

    +

    =

    passbandallowablespecifyingparameter

    frequencyPassbandp

    frequencycutofforfrequencydB

    frequency

    filtertheoforderN

    c

    =

    ===

    ==

    3

    ,....3,2,1

  • 7/25/2019 UNIT-4 Final Ppt

    17/70

    & alog *ow pass5*#F6 utterwo rt$ f i l ter

    %$is mag itude respo se is mo oto ically decreasi g fu ctio

    w$ere ma,imum respo se is unity at 89 as s$own in )elow

  • 7/25/2019 UNIT-4 Final Ppt

    18/70

    & alog *ow pass5*#F6 utterwo rt$ f i l ter

    %$e response )ecomes ideal as t$e order / is increases.

    %$e 2agnitude response equation576 )ecomes

    #ut in a)ove equation 5>6 we get

    int3707.0;

    )(;

    1)(;

    podBaiswhichthroughpassediscurvethe

    rapidlydecreasesjH

    jHfor

    c

    c

    c

    =

    >

    =

  • 7/25/2019 UNIT-4 Final Ppt

    19/70

    & alog *ow pass5*#F6 utterwo rt$ f i l ter

    ( )( )

    ......(3)1

    1

    2

    2

    Ns

    jH+

    =

    ( ) )4.(..........01 2 =+ Ns

    0quating denominator equal to /ero in equation(1) we get

    roots

    Nkes

    areequationofrootsthenow

    es

    becomesequationthenoddisNfor

    Nkj

    k

    kjN

    2,...3,2,1;

    )4(

    1

    )4(

    2/2

    22

    ==

    ==

  • 7/25/2019 UNIT-4 Final Ppt

    20/70

    & alog *ow pass5*#F6 utterwo rt$ f i l ter

    Nkes

    areequationthisofrootsthenow

    es

    becomesequationthenevenisNfor

    Nkj

    k

    kjN

    2,...3,2,1;

    1

    )4(

    2/)12(

    )12(2

    ==

    ==

    !f N21 we get the following roots

  • 7/25/2019 UNIT-4 Final Ppt

    21/70

    & alog *ow pass5*#F6 utterwo rt$ f i l ter

    3oles on left half of splane gives sta"ility. 3oles which are

    left in splane are

  • 7/25/2019 UNIT-4 Final Ppt

    22/70

    & alog *ow pass5*#F6 utterwo rt$ f i l ter

    %$erefore /8? rd order utterwort$ *owpass filte %ransfer functio

    n at

    is given )y

    $his is the denominator polynomial of $ransfer function H(s)

    sec/1radc=

  • 7/25/2019 UNIT-4 Final Ppt

    23/70

    & alog *ow pass5*#F6 utterwo rt$ f i l ter

    %$e poles w$ic$ are present only in left $alf of s-plane can )e calc

    ulated using.

    %$e poles given )y a)ove equation5E6 are /ormalied poles )ecau

    se t$ey are calculated at

    =o unnormalied poles are given )y %$e transfer function of suc$ a u ormali4ed utterwort$ filter

    can )e o)tained )y su)stituting

    NkN

    k

    where

    es

    k

    j

    kk

    ,...3,2,1;2

    )12(

    2

    )5.........(

    =

    +=

    =

    sec/1radc=

    kck ss .| =

    c

    ss

    =

  • 7/25/2019 UNIT-4 Final Ppt

    24/70

    1rder of t$e utterwort$ filter

    5/6

    ss

    pp

    frequencystopbandatnattenuatiostopbandthebelet

    frequencypassbandatnattenuatiopassbandthebelet

    .max

    .max

  • 7/25/2019 UNIT-4 Final Ppt

    25/70

    1rder of t$e utterwort$ filter5/6Consider )1.........(

    1

    1|)(|

    2

    2

    2

    N

    p

    jH

    +

    =

    +

    =N

    p

    jH

    getweeqnofsidesbothonarithmtake

    2

    2

    2

    1

    1log10|)(|log10

    )1(log

    )1log(10)1log(10|)(|log20

    2

    2

    N

    p

    jH

    +=

    )2)........(1log(10|)(|log20

    2

    2

    N

    p

    jH

    +=

    .|)(|log20 nattenuatiocalledisjHhere

  • 7/25/2019 UNIT-4 Final Ppt

    26/70

    1rder of t$e utterwort$ filter5/6

    )3...(..........)110(

    110

    10)1(

    1.0)1log(

    )1log(10

    )1log(10

    )1log(10|)(|log20

    )2(

    2/11.0

    1.02

    1.02

    2

    2

    2

    2

    2

    2

    =

    ==+

    =+

    =+

    =

    +

    =

    +=

    =

    p

    p

    p

    p

    p

    p

    N

    p

    p

    p

    N

    p

    p

    pp

    jH

    becomeseqnwhen

  • 7/25/2019 UNIT-4 Final Ppt

    27/70

    1rder of t$e utterwort$ filter5/6

    110

    110110

    110

    10)1(

    1.0)1log(

    )1log(10

    )1log(10

    )1log(10|)(|log20

    )2(

    1.0

    1.0

    2

    1.02

    1.0

    2

    2

    1.0

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    =

    =

    =

    =

    +

    =

    +

    =

    +

    =

    +

    =

    +=

    =

    p

    ss

    s

    s

    N

    p

    s

    N

    p

    s

    N

    p

    s

    s

    N

    p

    s

    s

    N

    p

    s

    s

    N

    p

    s

    s

    N

    p

    s

    ss

    jH

    becomeseqnwhen

    N

  • 7/25/2019 UNIT-4 Final Ppt

    28/70

    1rder of t$e utterwort$ filter5/6

    =

    =

    =

    =

    p

    s

    p

    s

    p

    s

    N

    p

    s

    N

    p

    s

    p

    s

    p

    s

    p

    s

    p

    s

    p

    s

    N

    aswrittenbecaneqnthereforeegerresultsnotdoesequationThis

    filtertheofordertheisthisN

    N

    eqntosidesbothonarithmtake

    log

    110

    110log

    )5(int

    )5...(....................

    log

    110

    110log

    110

    110loglog

    110110loglog

    )4(log

    )4......(..........110

    110

    1.0

    1.0

    1.0

    1.0

    1.0

    1.0

    1.0

    1.0

    1.0

    1.0

  • 7/25/2019 UNIT-4 Final Ppt

    29/70

    1rder of t$e utterwort$ filter5/6

    110,110

    log

    log

    log

    110

    110log

    1.01.0

    1.0

    1.0

    ==

    ps

    p

    s

    whereN

    or

    NisfilterhButterworttheoforderso

    p

    s

    p

    s

    ( )

    =

    ==

    A

    bygivenisandparameteraisAratiotransitioncallediskwhere

    k

    AN

    aswrittenbealsocanrder

    s

    p,

    1log

    log

  • 7/25/2019 UNIT-4 Final Ppt

    30/70

    ( ) ( )1 1

    0.1 0.12 210 110 1p s

    p sc

    N N

    = =

    3rove that

    3roof4

    ( )

    ( ) )1..(..........

    110

    110

    110

    11

    11

    1

    1

    1

    1|)(|

    2/11.0

    2/11.0

    1.02

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    cNp

    N

    c

    p

    N

    c

    p

    N

    c

    p

    N

    p

    N

    c

    N

    p

    N

    c

    N

    p

    N

    c

    N

    p

    N

    c

    p

    p

    p

    getwecomparingbyjHconsider

    =

    =

    ==

    =

    =

    =

    +=

    +

    +

    =

    +

    =

  • 7/25/2019 UNIT-4 Final Ppt

    31/70

    ( )

    ( )

    ( )writecanweandfrom

    !onsider

    s

    p

    s

    p

    p

    s

    p

    s

    p

    p

    s

    p

    s

    sc

    NN

    cs

    N

    ps

    NN

    c

    N

    ps

    N

    p

    s

    )2()1(

    )2........(..........110

    110

    110110

    110

    110

    110110110

    110110

    110

    110

    2/11.0

    2/1

    1.0

    1.02/11.0

    2/1

    1.0

    1.0

    2/1

    1.0

    1.02/1

    1.0

    2/1

    1.0

    1.0

    1.0

    1.02

    =

    =

    =

    = =

    =

    ( ) ( )1 1

    0.1 0.12 210 110 1p s

    p sc

    N N

    = =

  • 7/25/2019 UNIT-4 Final Ppt

    32/70

    FIR Filter Design ased on 2:7 w$ose D%F%

    appro,imates t$e desired D%F% In s

    ome sense.one commonly used appro,imation criterion is to mini

    mie t$e integral-squared error.

    )(eh j

    d

    { }][nht)(eH

    j

    t

  • 7/25/2019 UNIT-4 Final Ppt

    33/70

    FIR Filter Design ased on

  • 7/25/2019 UNIT-4 Final Ppt

    34/70

    FIR Filter Design ased on

  • 7/25/2019 UNIT-4 Final Ppt

    35/70

    FIR Filter Design ased on

  • 7/25/2019 UNIT-4 Final Ppt

    36/70

    FIR Filter Design ased on

  • 7/25/2019 UNIT-4 Final Ppt

    37/70

    FIR Filter Design ased on

  • 7/25/2019 UNIT-4 Final Ppt

    38/70

    FIR Filter Design ased on

  • 7/25/2019 UNIT-4 Final Ppt

    39/70

    FIR Filter Design ased on 6t$e rectangular window $as an a)rupt transit

    ion to ero.

    =otherwise

    "nn

    $,0

    0,1][

  • 7/25/2019 UNIT-4 Final Ppt

    40/70

    FIR Filter Design ased on 6providing a smoot$ transition from t$e pass)and to t$e stop)and.

  • 7/25/2019 UNIT-4 Final Ppt

    41/70

    FIR Filter Design ased on

  • 7/25/2019 UNIT-4 Final Ppt

    42/70

    FIR Filter Design ased on

  • 7/25/2019 UNIT-4 Final Ppt

    43/70

    FIR Filter Design ased on 6get

    5?6determine t$e cutoff frequency )y setting"

    5462 is estimated using 't$e value of t$e constant c is o)tain fromta)le given.

    [ ] ][][ nwnnh hd =

    2/)( spc +=

    "

    c

  • 7/25/2019 UNIT-4 Final Ppt

    44/70

    FIR Filter Design ased on

  • 7/25/2019 UNIT-4 Final Ppt

    45/70

    FIR Filter Design ased on

  • 7/25/2019 UNIT-4 Final Ppt

    46/70

    (omputer-ided Design of Digital Filter

    %wo specific design approac$es )ased in iterative potimiation tec$niques.

    %$e aim is to determine iteratively t$e coefficients of t$e digital transfer function so t$at t$e difference )etween and

    for all value of over closed su

    )intervals of is minimied 'andusually t$e difference is specified as a weig$ted error function given )y"

    )(ej

    H

    )(ej

    &

    0

    )([ ])()()()( eee

    jjj&H'

    =

    ( t id d D i f Di it

  • 7/25/2019 UNIT-4 Final Ppt

    47/70

    (omputer-ided Design of Digital Filter

    ($e)ys$ev criterion

    --to minimie t$e peak a)solute value of t$eweig$ted error

    *east-p criterion

    --to minimie t$e integral of pt$ power of t$e weig$ted error function

    )(

    )(max $=

    )(

    { } =

    =(

    i

    p

    e&e' ijij

    1

    )()(

    ( t id d D i f Di it

  • 7/25/2019 UNIT-4 Final Ppt

    48/70

    (omputer-ided Design of Digital Filter

    Design of +quiripple *inear-#$ase FIR Filter

    %$e frequency response of a linear-p$ase FIR filter is"

    %$e weig$ted error function in t$is case involves t$e amplitude response and is given)y

    )()( 2/

    = HHeee

    jjNj

    =

    )()()()( &H'

    ( t id d D i f Di it

  • 7/25/2019 UNIT-4 Final Ppt

    49/70

    (omputer-ided Design of Digital Filter

    %ype 7 linear-p$ase FIR filter

    %$e amplitude response is "

    It can )e rewrite using t$e notation

    in t$e form

  • 7/25/2019 UNIT-4 Final Ppt

    50/70

    (omputer-ided Design of Digital Filter

    %ype > linear-p$ase FIR filter

    %$e amplitude response is "

    It can )e rewrite in t$e form"

  • 7/25/2019 UNIT-4 Final Ppt

    51/70

    (omputer-ided Design of Digital Filter

    %ype ? linear-p$ase FIR filter

    %$e amplitude response is "

    It can )e rewrite in t$e form"

    )sin(22)(

    2/

    1 nn

    N

    hH

    N

    n =

    =

    )cos()(sin

    )sin(][)(

    1

    0

    0

    kkc

    kkcH

    "

    k

    "

    k

    =

    =

    =

    =

    ( t id d D i f Di it

  • 7/25/2019 UNIT-4 Final Ppt

    52/70

    (omputer-ided Design of Digital Filter

    %ype 4 linear-p$ase FIR filter

    %$e amplitude response is "

    It can )e rewrite in t$e form"

    ))2

    1(sin(]

    2

    1[2)(

    2/)1(

    1

    +

    = +

    =

    nnNhH

    N

    n

    )cos(][)2

    sin(

    )2

    1(sin][)(

    2/)12(

    0

    2/)12(

    1

    kkd

    kkdH

    "

    k

    "

    k

    =

    +

    =

    =

    =

    (omp ter ided Design of Digit

  • 7/25/2019 UNIT-4 Final Ppt

    53/70

    (omputer-ided Design of Digital Filter

    %$e amplitude response for all four typesof linear-p$ase FIR filters can )e e,pressed in t$e form

    %$en t$e we modify t$e form of t$e weig$t appro,imation function as"

    )()()( A)H =

    [ ]

    =

    =

    )()()()()(

    )()()()()(

    w)&A)'

    &A)'

    (omputer ided Design of Digit

  • 7/25/2019 UNIT-4 Final Ppt

    54/70

    (omputer-ided Design of Digital Filter

    Using t$e notions and

    we can rewrite it as"

    %$en we determine t$e coefficientsto minimie t$e peak a)solute value of t$e weig$ted appro,imation error over t$e specified frequency )ands

    )()()( )'' =

    )(/)()( )&& =

    =

    )()()()( &A'

    ][ka

    $

    (omputer ided Design of Digit

  • 7/25/2019 UNIT-4 Final Ppt

    55/70

    (omputer-ided Design of Digital Filter

    lternation %$eorem

    %$e amplitude function is t$e )est unique apro,imation of t$e desired amplitud

    e response o)tained )y minimiing t$e peak a)solute valu

    of if and only if t$ere e,ist at least

    e,tremal angular frequencies''in a closed su)set R of t$e frequency ran

    ge

    )(A

    )( 2+# 110 ,, + #

    0 110 +

  • 7/25/2019 UNIT-4 Final Ppt

    56/70

    Digital Filter Design Using 2atla)

    IIR Digital Filter Design Using 2atla)

    =teps"576determine t$e filter order / and t$e frequency scaling factor

  • 7/25/2019 UNIT-4 Final Ppt

    57/70

    Digital Filter Design Using 2atla)

    5>6determine t$e coefficients of t$e transfer function.

    J)'aK8)utter5/'5/'Rs'

  • 7/25/2019 UNIT-4 Final Ppt

    58/70

    Digital Filter Design Using 2atla)

    FIR Digital Filter Design Using 2atla)

    =teps576.estimate t$e filter order from t$egiven specification.

    reme4ord'kaiserord

    5>6determine t$e coefficient of t$e transfer function using t$e estimated order and t$e filter specification.

    reme

    Digital Filter Design Using 2atla

  • 7/25/2019 UNIT-4 Final Ppt

    59/70

    Digital Filter Design Using 2atla)

    FIR Digital Filter 1rder +stimation Using

    2atla)

    J/'fpts'mag'wtK8remeord5fedge'mval'dev6

    J/'fpts'mag'wtK8remeord5fedge'mval'dev'F%6

    For FIR filter design using t$e aiser window't$e window order s$ould )e estimatedusing kaiserord

    J/'

  • 7/25/2019 UNIT-4 Final Ppt

    60/70

    Digital Filter Design Using 2atla)

    +quiripple *inear-p$ase FIR Design Using2atla)

    --emplying t$e #arks-2c(lellan algorit$m.

    )8reme5/'fpts'mag6

    )8reme5/'fpts'mag'wt6

    )8reme5/'fpts'mag'ftype6

    )8reme5/'fpts'mag'wt'ftype6

    Digital Filter Design Using 2atla

  • 7/25/2019 UNIT-4 Final Ppt

    61/70

    Digital Filter Design Using 2atla)

    FIR equiripple lowpass filter of +,ample L.>L for /8>M

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    -200

    -150

    -100

    -50

    0

    50

    \omega/pi\

    Gain,dB

    Digital Filter Design Using 2atla

  • 7/25/2019 UNIT-4 Final Ppt

    62/70

    Digital Filter Design Using 2atla)

    !ain response of t$e FIR equiripple )andpass filter of +,ample L.>M.

    Digital Filter Design Using 2atla

  • 7/25/2019 UNIT-4 Final Ppt

    63/70

    Digital Filter Design Using 2atla)

  • 7/25/2019 UNIT-4 Final Ppt

    64/70

    Digital Filter Design Using 2atla)

  • 7/25/2019 UNIT-4 Final Ppt

    65/70

    Digital Filter Design Using 2atla)

    Filter Designfir7 is used to design conventional lowpass'$ig$pass' )andpass')andstop and multi)and FIR filter.

    )8fir75/'

  • 7/25/2019 UNIT-4 Final Ppt

    66/70

    Digital Filter Design Using 2atla)

    e,ample of a conventional lowpass FIR filter

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    -300

    -250

    -200

    -150

    -100

    -50

    0

    50

    \omega/pi\

    Gain,dB

    Digital Filter Design Using 2atla

  • 7/25/2019 UNIT-4 Final Ppt

    67/70

    Digital Filter Design Using 2atla)

    Filter Design

    fir>is employed to design FIR filters wit$ ar)itarily s$aped magnitude response.

    )8fir>5/'f'm6

    )8fir>5/'f'm'window6

    )8fir>5/'f'm'npt6

    )8fir>5/'f'm'npt'window6

    )8fir>5/'f'm'npt'lap'window6

    Digital Filter Design Using 2atla

  • 7/25/2019 UNIT-4 Final Ppt

    68/70

    Digital Filter Design Using 2atla)

    +,amples of multilevel filter

    --2agnitude response of t$e multilevel filter designed wit$ fir>

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    /pi

    magnitude

    Digital Filter Design Using 2atla

  • 7/25/2019 UNIT-4 Final Ppt

    69/70

    Digital Filter Design Using 2atla)

    *east-squares +rror FIR Filter Design Using 2atla)

    firlsto design any type of multi)and linea

    r-p$ase FIR filter )ased on t$e least-squares met$od

    )8firls5/'fpts'mag6

    )8firls5/'fpts'mag'wt6

    )8firls5/'fpts'mag'ftype6

    )8firls5/'fpts'mag'wt'ftype6

    Digital Filter Design Using 2atla

  • 7/25/2019 UNIT-4 Final Ppt

    70/70

    Digital Filter Design Using 2atla)

    e,ample of t$e linear-p$ase FIR lowpass filter

    --!ain response of t$e linear-p$ase FIR low

    pass filter

    -160

    -140

    -120

    -100

    -80

    -60

    -40

    -20

    0

    20

    gain,dB