Unit 1- Polynomial Functions

76
Common Core Algebra II Unit 1- Polynomial Functions Lesson 1- The Multiplication of Polynomials 1 Lesson 2- The Division of Polynomials 5 Lesson 3- Long Division, Again? 9 Lesson 4- Operations with Polynomials 14 Lesson 5- Polynomial Identities 18 Lesson 6- GCF and The Difference of Squares 22 Lesson 7- Factoring Perfect Cubes 26 Lesson 8- Factoring Trinomial Review 30 Lesson 9- Seeing Structure: Grouping 33 Lesson 10- Seeing Structure: Advance Factoring 38 Lesson 11- The Special Role of Zero in Factoring 41 Lesson 12- Graphing Factored Polynomials 46 Lesson 13- End Behavior of Polynomials 51 Lesson 14- Even and Odd Functions 57 Lesson 15- Modeling with Polynomial Functions 61 Lesson 16- What If There is a Remainder? 64 Lesson 17- The Remainder Theorem 67 Lesson 18- Putting It All Together 71

Transcript of Unit 1- Polynomial Functions

Page 1: Unit 1- Polynomial Functions

Common Core Algebra II

Unit 1- Polynomial Functions

Lesson 1- The Multiplication of Polynomials

1

Lesson 2- The Division of Polynomials

5

Lesson 3- Long Division, Again?

9

Lesson 4- Operations with Polynomials

14

Lesson 5- Polynomial Identities 18

Lesson 6- GCF and The Difference of Squares

22

Lesson 7- Factoring Perfect Cubes 26

Lesson 8- Factoring Trinomial Review

30

Lesson 9- Seeing Structure: Grouping

33

Lesson 10- Seeing Structure: Advance Factoring

38

Lesson 11- The Special Role of Zero in Factoring

41

Lesson 12- Graphing Factored Polynomials

46

Lesson 13- End Behavior of Polynomials

51

Lesson 14- Even and Odd Functions

57

Lesson 15- Modeling with Polynomial Functions 61

Lesson 16- What If There is a Remainder?

64

Lesson 17- The Remainder Theorem

67

Lesson 18- Putting It All Together 71

Page 2: Unit 1- Polynomial Functions

Common Core Algebra II

Unit 1 Common Core State Standards β€’ A.SSE.A.2- Use the structure of an expression to identify ways to rewrite it. For

example, factor expressions involving GCF, difference of squares, perfect cubes, trinomials, and grouping.

β€’ A.APR.B.2- Know and apply the Remainder Theorem: For a polynomial 𝑝𝑝(π‘₯π‘₯) and a number π‘Žπ‘Ž, the remainder on division by π‘₯π‘₯ βˆ’ π‘Žπ‘Ž is 𝑝𝑝(π‘Žπ‘Ž), so 𝑝𝑝(π‘Žπ‘Ž) = 0 if and only if π‘₯π‘₯ βˆ’ π‘Žπ‘Ž is a factor of 𝑝𝑝(π‘₯π‘₯).

β€’ A.APR.B.3- Identify zeros of polynomials when suitable factorizations are

available, and use the zeros to construct a rough graph of the function defined by the polynomial.

β€’ A.APR.C.4- Prove polynomial identities and use them to describe numerical

relationships.

β€’ A.APR.D.6- Rewrite simple rational expressions in different forms; write π‘Žπ‘Ž(π‘₯π‘₯)/𝑏𝑏(π‘₯π‘₯) in the form π‘žπ‘ž(π‘₯π‘₯) + π‘Ÿπ‘Ÿ(π‘₯π‘₯)/𝑏𝑏(π‘₯π‘₯), where π‘Žπ‘Ž(π‘₯π‘₯), 𝑏𝑏(π‘₯π‘₯), π‘žπ‘ž(π‘₯π‘₯), and π‘Ÿπ‘Ÿ(π‘₯π‘₯) are polynomials with the degree of π‘Ÿπ‘Ÿ(π‘₯π‘₯) less than the degree of 𝑏𝑏(π‘₯π‘₯), using inspection or long division.

β€’ F.IF.C.7c- Graph polynomial functions, identifying zeros when suitable

factorizations are available, and showing end behavior.

β€’ F.BF.B.3- Recognizing even and odd functions from their graphs and algebraic expressions for them.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.

2. Reason abstractly and quantitatively.

3. Construct viable arguments and critique the reasoning of others.

4. Model with mathematics.

5. Use appropriate tools strategically.

6. Attend to precision.

7. Look for and make use of structure.

8. Look for and express regularity in repeated reasoning.

Page 3: Unit 1- Polynomial Functions

Name:__________________________________________________ Date:___________ Common Core Algebra II Lesson 1: The Multiplication of Polynomials

1

Opening Exercise

Show that 28 Γ— 27 = (20 + 8)(20 + 7) using an area model.

1. Use the tabular method to multiply (π‘₯π‘₯ + 8)(π‘₯π‘₯ + 7) and combine like terms. Explain how the result is related to 756 from the Opening Exercise.

How can we multiply these binomials without using a table?

Page 4: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 1: The Multiplication of Polynomials

2

2. Use the tabular method to multiply (π‘₯π‘₯2 + 3π‘₯π‘₯ + 1)(π‘₯π‘₯2 βˆ’ 5π‘₯π‘₯ + 2) and combine like terms.

3. Use the tabular method to multiply (π‘₯π‘₯2 + 3π‘₯π‘₯ + 1)(π‘₯π‘₯2 βˆ’ 2) and combine like terms.

4. Using the distributive property, express the product (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯2 + π‘₯π‘₯ + 1) in standard form.

Page 5: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 1: The Multiplication of Polynomials

3

5. Find the product (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯3 + π‘₯π‘₯2 + π‘₯π‘₯ + 1) using table.

6. Using exercises 3 & 4, generalize the pattern that emerges by writing an identity for (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯𝑛𝑛 + π‘₯π‘₯π‘›π‘›βˆ’1 + β‹―+ π‘₯π‘₯2 + π‘₯π‘₯ + 1) for positive integer 𝑛𝑛.

7. Create an equivalent expression to (π‘Žπ‘Ž + 𝑏𝑏 + 𝑐𝑐)2.

Page 6: Unit 1- Polynomial Functions

Name:__________________________________________________ Date:___________ Common Core Algebra II Lesson 1: The Multiplication of Polynomials

4

Homework Multiply the following polynomials and express your answer in standard form.

1. (π‘₯π‘₯2 βˆ’ 4π‘₯π‘₯ + 4)(π‘₯π‘₯ + 3) 2. (2π‘₯π‘₯ βˆ’ 3)(π‘₯π‘₯3 + π‘₯π‘₯2 + π‘₯π‘₯ + 1)

3. (π‘₯π‘₯2 βˆ’ 3π‘₯π‘₯ + 9)(π‘₯π‘₯2 + 3π‘₯π‘₯ + 9) 4. (𝑑𝑑 + 1)(𝑑𝑑 βˆ’ 1)(𝑑𝑑2 + 1)

5. If 𝑓𝑓(π‘₯π‘₯) = 2π‘₯π‘₯ + 1 and 𝑔𝑔(π‘₯π‘₯) = 2π‘₯π‘₯2 + 1, express 𝑓𝑓(π‘₯π‘₯) β‹… 𝑔𝑔(π‘₯π‘₯) in standard form.

Page 7: Unit 1- Polynomial Functions

Name:____________________________________________ Date:___________ Common Core Algebra II Lesson 2: The Division of Polynomials

5

Opening Exercise

Multiply these polynomials using the tabular method.

(2π‘₯π‘₯ + 5)(π‘₯π‘₯2 + 5π‘₯π‘₯ + 1)

How can you use your answer from above to quickly multiply 25 βˆ™ 151?

1. Show that 2π‘₯π‘₯3+15π‘₯π‘₯2+27π‘₯π‘₯+5

2π‘₯π‘₯+5 = π‘₯π‘₯2 + 5π‘₯π‘₯ + 1

Page 8: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 2: The Division of Polynomials

6

2. Reverse the tabular of multiplication to find the quotient 2π‘₯π‘₯2+π‘₯π‘₯βˆ’10

π‘₯π‘₯βˆ’2.

3. Create your own table and use the π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘Ÿπ‘Ÿ π‘šπ‘šπ‘Ÿπ‘Ÿπ‘‘π‘‘β„Žπ‘œπ‘œπ‘œπ‘œ to find the quotient.

π‘₯π‘₯4 + 4π‘₯π‘₯3 + 3π‘₯π‘₯2 + 4π‘₯π‘₯ + 2π‘₯π‘₯2 + 1

Explain how we can use the previous quotient to factor π‘₯π‘₯4 + 4π‘₯π‘₯3 + 3π‘₯π‘₯2 + 4π‘₯π‘₯ + 2.

Page 9: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 2: The Division of Polynomials

7

4. Use the π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘Ÿπ‘Ÿ π‘šπ‘šπ‘Ÿπ‘Ÿπ‘‘π‘‘β„Žπ‘œπ‘œπ‘œπ‘œ to find the quotient.

3π‘₯π‘₯5 βˆ’ 2π‘₯π‘₯4 + 6π‘₯π‘₯3 βˆ’ 4π‘₯π‘₯2 βˆ’ 24π‘₯π‘₯ + 16π‘₯π‘₯2 + 4

OYO!

5. Find the following quotients:

4π‘₯π‘₯3βˆ’10π‘₯π‘₯2βˆ’22π‘₯π‘₯βˆ’82π‘₯π‘₯+1

π‘₯π‘₯4+3π‘₯π‘₯3βˆ’6π‘₯π‘₯2βˆ’6π‘₯π‘₯+8π‘₯π‘₯+4

Page 10: Unit 1- Polynomial Functions

Name:____________________________________________ Date:___________ Common Core Algebra II Lesson 2: The Division of Polynomials

8

Homework 1. Use the reverse tabular method to find the following quotients.

2π‘₯π‘₯3+π‘₯π‘₯2βˆ’16π‘₯π‘₯+152π‘₯π‘₯βˆ’3

π‘₯π‘₯3βˆ’8π‘₯π‘₯βˆ’2

3π‘₯π‘₯5+12π‘₯π‘₯4+11π‘₯π‘₯3+2π‘₯π‘₯2βˆ’4π‘₯π‘₯βˆ’23π‘₯π‘₯2βˆ’1

4π‘₯π‘₯2+8π‘₯π‘₯+32π‘₯π‘₯+1

2. First compute 3π‘₯π‘₯3+10π‘₯π‘₯2βˆ’14π‘₯π‘₯+4

3π‘₯π‘₯βˆ’2. Then express 3π‘₯π‘₯3 + 10π‘₯π‘₯2 βˆ’ 14π‘₯π‘₯ + 4 as the product of

two polynomials. Explain your reasoning.

Page 11: Unit 1- Polynomial Functions

Name:__________________________________________________ Date:___________ Common Core Algebra II Lesson 3: Long Division, Again?

9

Opening Exercise

Use the reverse tabular method to determine the quotient 2π‘₯π‘₯3+11π‘₯π‘₯2+7π‘₯π‘₯+10

π‘₯π‘₯+5.

Write the polynomial 2π‘₯π‘₯3 + 11π‘₯π‘₯2 + 7π‘₯π‘₯ + 10 in factored form.

1. Take a trip back to elementary school and use long division to evaluate 1573 Γ· 13.

Page 12: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 3: Long Division, Again?

10

2. Let’s return to back to Algebra 2. If we let π‘₯π‘₯ = 10, then we can represent the previous problem as

3753 23 ++++ xxxx

3. Use the long division algorithm for polynomials to evaluate 2π‘₯π‘₯3 βˆ’ 4π‘₯π‘₯2 + 2

2π‘₯π‘₯ βˆ’ 2.

Page 13: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 3: Long Division, Again?

11

4. Use the long division algorithm to determine the quotient. For each problem, check your work by using the reverse tabular method or using multiplication.

a. 7π‘₯π‘₯3βˆ’8π‘₯π‘₯2βˆ’13π‘₯π‘₯+2

7π‘₯π‘₯βˆ’1 b. π‘₯π‘₯

2+6π‘₯π‘₯+9π‘₯π‘₯+3

c. π‘₯π‘₯3βˆ’27π‘₯π‘₯βˆ’3

d. 2π‘₯π‘₯4+14π‘₯π‘₯3+π‘₯π‘₯2βˆ’21π‘₯π‘₯βˆ’6

2π‘₯π‘₯2βˆ’3

Page 14: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 3: Long Division, Again?

12

e. 5π‘₯π‘₯4βˆ’6π‘₯π‘₯2+1

π‘₯π‘₯2βˆ’1 f.

π‘₯π‘₯3+2π‘₯π‘₯2+4π‘₯π‘₯+8π‘₯π‘₯+2

g. 2π‘₯π‘₯7+π‘₯π‘₯5βˆ’4π‘₯π‘₯3+14π‘₯π‘₯2βˆ’2π‘₯π‘₯+7

2π‘₯π‘₯2+1 h.

π‘₯π‘₯6βˆ’64π‘₯π‘₯+2

Page 15: Unit 1- Polynomial Functions

Name:__________________________________________________ Date:___________ Common Core Algebra II Lesson 3: Long Division, Again?

13

Homework 1. Use the long division algorithm to determine the quotients.

2π‘₯π‘₯3βˆ’13π‘₯π‘₯2βˆ’π‘₯π‘₯+32π‘₯π‘₯+1

3π‘₯π‘₯3+4π‘₯π‘₯2+7π‘₯π‘₯+22

π‘₯π‘₯+2

2. Given 𝑓𝑓(π‘₯π‘₯) = 4π‘₯π‘₯3 + 5π‘₯π‘₯ + 21 and β„Ž(π‘₯π‘₯) = 2π‘₯π‘₯ + 3, express 𝑓𝑓(π‘₯π‘₯)β„Ž(π‘₯π‘₯)

in standard form by using

long division.

3. Given π‘žπ‘ž(π‘₯π‘₯) = 3π‘₯π‘₯3 βˆ’ 4π‘₯π‘₯2 + 5π‘₯π‘₯ + π‘˜π‘˜, determine the value of π‘˜π‘˜ so that 3π‘₯π‘₯ βˆ’ 7 is a factor of the polynomial π‘žπ‘ž. Explain your reasoning.

Page 16: Unit 1- Polynomial Functions

Name:__________________________________________________ Date:___________ Common Core Algebra II Lesson 4: Operations with Polynomials

14

Opening Exercise

Find the sum of 3π‘₯π‘₯2 βˆ’ 7π‘₯π‘₯ + 11 and 5π‘₯π‘₯3 βˆ’ 22π‘₯π‘₯2 + 9π‘₯π‘₯ βˆ’ 5.

Find the difference 3π‘₯π‘₯2 βˆ’ 7π‘₯π‘₯ + 11 βˆ’ (5π‘₯π‘₯3 βˆ’ 22π‘₯π‘₯2 + 9π‘₯π‘₯ βˆ’ 5).

1. We can combine operations together. Rewrite each polynomial in standard form by applying the operations in the appropriate order.

a. (π‘₯π‘₯2+5π‘₯π‘₯+20)+(π‘₯π‘₯2+6π‘₯π‘₯βˆ’6)

π‘₯π‘₯+2 b. (π‘₯π‘₯2 βˆ’ 4)(π‘₯π‘₯ + 2) βˆ’ 3(π‘₯π‘₯2 + 2π‘₯π‘₯ βˆ’ 5)

2. A manufacture has developed a cost model, 𝐢𝐢(π‘₯π‘₯) = 0.15π‘₯π‘₯3 + 0.01π‘₯π‘₯2 + 2π‘₯π‘₯ + 120, where π‘₯π‘₯ is the number of items sold, in thousands. The sales price can be modeled by 𝑆𝑆(π‘₯π‘₯) = 30 βˆ’ 0.01π‘₯π‘₯. Therefore, revenue is modeled by 𝑅𝑅(π‘₯π‘₯) = π‘₯π‘₯ β‹… 𝑆𝑆(π‘₯π‘₯).

Write a polynomial in standard form that can be used to model the company’s profits 𝑃𝑃(π‘₯π‘₯) = 𝑅𝑅(π‘₯π‘₯) βˆ’ 𝐢𝐢(π‘₯π‘₯).

Page 17: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 4: Operations with Polynomials

15

Polynomial Pass

Use the next two pages to complete the exercise on the index cards. You will then pass your index card after two minutes and receive a new problem. The answer to the problem you just completed will be on the back of your new card. Make sure you pass the cards in order!

Page 18: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 4: Operations with Polynomials

16

More space to work!

Page 19: Unit 1- Polynomial Functions

Name:__________________________________________________ Date:___________ Common Core Algebra II Lesson 4: Operations with Polynomials

17

Homework 1. Perform the indicated operations to write each polynomial in standard form.

(2π‘₯π‘₯2 βˆ’ π‘₯π‘₯3 βˆ’ 9π‘₯π‘₯ + 1) βˆ’ 4(π‘₯π‘₯3 + 7π‘₯π‘₯ βˆ’ 3π‘₯π‘₯2 + 1) (π‘₯π‘₯ + 3)2 βˆ’ (π‘₯π‘₯ + 4)2

π‘₯π‘₯2βˆ’5π‘₯π‘₯+6π‘₯π‘₯βˆ’3

+π‘₯π‘₯2 + π‘₯π‘₯ + 1 (π‘₯π‘₯ + 3)(π‘₯π‘₯ βˆ’ 3) βˆ’ (π‘₯π‘₯ + 4)(π‘₯π‘₯ βˆ’ 4)

2. What is the area of the figure below? Assume there is a right angle at each vertex.

Page 20: Unit 1- Polynomial Functions

Name:__________________________________________________ Date:___________ Common Core Algebra II Lesson 5: Polynomial Identities

18

Opening Exercise

Show that the sum of three consecutive integers is the three times the middle integer.

1. Prove that if π‘₯π‘₯ > 1, then a triangle with side lengths π‘₯π‘₯2 βˆ’ 1, 2π‘₯π‘₯, and π‘₯π‘₯2 + 1 is a right triangle.

Pick a value of π‘₯π‘₯ to create a Pythagorean triple.

Explain why every Pythagorean triple must contain an even integer.

Page 21: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 5: Polynomial Identities

19

2. Prove that (π‘₯π‘₯ + π‘Žπ‘Ž)2 = π‘₯π‘₯2 + 2π‘Žπ‘Žπ‘₯π‘₯ + π‘Žπ‘Ž2 is an identity.

3. Use this identity to quickly compute the following expressions.

(π‘₯π‘₯ + 5)2 (3𝑦𝑦 βˆ’ 4)2 (5π‘₯π‘₯ + 2𝑦𝑦)2

4. Prove that the difference of the squares of any two consecutive integers is always odd.

Page 22: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 5: Polynomial Identities

20

5. Algebraically determine the values of π‘Žπ‘Ž and 𝑏𝑏 to correctly complete the identity stated below.

4π‘₯π‘₯3 + π‘Žπ‘Žπ‘₯π‘₯2 + 23π‘₯π‘₯ + 20 = (2π‘₯π‘₯ + 5)(2π‘₯π‘₯2 + 𝑏𝑏π‘₯π‘₯ + 4)

6. Prove the identity (π‘Žπ‘Ž2 + 𝑏𝑏2)(π‘₯π‘₯2 + 𝑦𝑦2) = (π‘Žπ‘Žπ‘₯π‘₯ βˆ’ 𝑏𝑏𝑦𝑦)2 + (𝑏𝑏π‘₯π‘₯ + π‘Žπ‘Žπ‘¦π‘¦)2.

Page 23: Unit 1- Polynomial Functions

Name:__________________________________________________ Date:___________ Common Core Algebra II Lesson 5: Polynomial Identities

21

Homework 1. Prove that (π‘₯π‘₯ + 𝑦𝑦)2 βˆ’ (π‘₯π‘₯ βˆ’ 𝑦𝑦)2 = 4π‘₯π‘₯𝑦𝑦 for all real numbers π‘₯π‘₯ and 𝑦𝑦.

2. Prove that (π‘šπ‘š + 𝑛𝑛)3 = π‘šπ‘š3 + 3π‘šπ‘š2𝑛𝑛 + 3π‘šπ‘šπ‘›π‘›2 + 𝑛𝑛3 is an identity.

3. The identity (π‘₯π‘₯2 + 𝑦𝑦2)2 = (π‘₯π‘₯2 βˆ’ 𝑦𝑦2)2 + (2π‘₯π‘₯𝑦𝑦)2 can be used to generate Pythagorean triples. Show that this statement is an identity.

Pick values for π‘₯π‘₯ and 𝑦𝑦, where π‘₯π‘₯ > 𝑦𝑦, to generate a Pythagorean triple.

Page 24: Unit 1- Polynomial Functions

Name:__________________________________________________ Date:___________ Common Core Algebra II Lesson 6: GCF and The Difference of Squares

22

Opening Exercise

Prove the polynomial identity π‘Žπ‘Ž2 βˆ’ 𝑏𝑏2 = (π‘Žπ‘Ž + 𝑏𝑏)(π‘Žπ‘Ž βˆ’ 𝑏𝑏).

Back in Algebra I, we factored expression by undoing the distributive property. This process is known as factoring out the greatest common factor (GCF).

1. Factor the following expression by factoring out the GCF.

6π‘₯π‘₯2 + 18π‘₯π‘₯ + 10 3π‘₯π‘₯3 + 18π‘₯π‘₯

2𝑑𝑑4 + 6𝑑𝑑3 βˆ’ 18𝑑𝑑2 βˆ’ 54𝑑𝑑 5π‘₯π‘₯3𝑦𝑦 βˆ’ 30π‘₯π‘₯2𝑦𝑦2 βˆ’ 3π‘₯π‘₯𝑦𝑦3

Sometimes the GCF can be more than just monomial!

2. Factor out the GCF from each of the following expression.

2π‘₯π‘₯(π‘₯π‘₯ + 5) βˆ’ 3(π‘₯π‘₯ + 5) π‘₯π‘₯2(3π‘₯π‘₯ + 5) + 16(3π‘₯π‘₯ + 5)

𝑑𝑑(𝑑𝑑2 + 5𝑑𝑑 + 6) βˆ’ 2(𝑑𝑑2 + 5𝑑𝑑 + 6) π‘˜π‘˜2(π‘˜π‘˜ + 4) + 8π‘˜π‘˜(π‘˜π‘˜ + 4) + 12(π‘˜π‘˜ + 4)

Page 25: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 6: GCF and The Difference of Squares

23

We also factored the difference of squares in Algebra I.

3. Factor the following expression completely.

π‘₯π‘₯2 βˆ’ 25 1 βˆ’ 9𝑦𝑦2 81𝑦𝑦4 βˆ’ 16π‘₯π‘₯4

What about the sum of perfect squares? It’s reasonable to think that π‘₯π‘₯ + π‘Žπ‘Ž or π‘₯π‘₯ βˆ’ π‘Žπ‘Ž could be a factor of π‘₯π‘₯2 + π‘Žπ‘Ž2.

4. Compute the quotients below if possible.

π‘₯π‘₯2 + 4π‘₯π‘₯ + 2

π‘₯π‘₯2 + 4π‘₯π‘₯ βˆ’ 2

5. Factor the expressions completely.

𝑦𝑦 βˆ’ 𝑦𝑦5 2π‘₯π‘₯3 βˆ’ 18π‘₯π‘₯ π‘₯π‘₯8 βˆ’ 1

Page 26: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 6: GCF and The Difference of Squares

24

6. The expression π‘₯π‘₯2(π‘₯π‘₯ βˆ’ 𝑦𝑦)3 βˆ’ 𝑦𝑦2(π‘₯π‘₯ βˆ’ 𝑦𝑦)3 can be rewritten as (π‘₯π‘₯ + 𝑦𝑦)(π‘₯π‘₯ βˆ’ 𝑦𝑦)π‘Žπ‘Ž. Determine and state the value of π‘Žπ‘Ž.

7. Factor the expression (π‘₯π‘₯ βˆ’ 1)2 βˆ’ 4 as the difference of perfect squares.

8. Factor the expression π‘Žπ‘Ž2(π‘₯π‘₯4 βˆ’ 𝑦𝑦4) βˆ’ 4(π‘₯π‘₯4 βˆ’ 𝑦𝑦4) completely.

Page 27: Unit 1- Polynomial Functions

Name:__________________________________________________ Date:___________ Common Core Algebra II Lesson 6: GCF and The Difference of Squares

25

Homework 1. Factor the expressions completely.

π‘₯π‘₯4 βˆ’ 81 9π‘˜π‘˜2 βˆ’ 49

2. Factor, over the integers, the expression 12𝑑𝑑8 βˆ’ 75𝑑𝑑4 completely.

3. Factor the expressions completely.

4π‘₯π‘₯2(π‘₯π‘₯ + 5) βˆ’ 9(π‘₯π‘₯ + 5) π‘₯π‘₯2(6π‘₯π‘₯ βˆ’ 5𝑦𝑦) βˆ’ 4𝑦𝑦2(6π‘₯π‘₯ βˆ’ 5𝑦𝑦)

4. Explain why the expression π‘₯π‘₯2 + 1 cannot be factored over the real numbers as (π‘₯π‘₯ + 1)(π‘₯π‘₯ βˆ’ 1).

Page 28: Unit 1- Polynomial Functions

Name:__________________________________________________ Date:___________ Common Core Algebra II Lesson 7: Perfect Cubes

26

Opening Exercise

Write out the list of perfect cubes from 1 to 6.

Explain why we call π‘₯π‘₯3 βˆ’ π‘Žπ‘Ž3 the difference of perfect cubes.

1. Find the quotient of π‘₯π‘₯3βˆ’π‘Žπ‘Ž3

π‘₯π‘₯βˆ’π‘Žπ‘Ž. Explain how you can use this to factor π‘₯π‘₯3 βˆ’ π‘Žπ‘Ž3.

2. Factor the expression completely.

π‘₯π‘₯3 βˆ’ 27 125𝑦𝑦3 βˆ’ 1 2𝑧𝑧4 βˆ’ 16𝑧𝑧

Page 29: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 7: Perfect Cubes

27

While we could not factor the sum of perfect squares (currently), maybe we will be more successful factoring the sum of perfect cubes.

3. Find the quotient of π‘₯π‘₯3+π‘Žπ‘Ž3

π‘₯π‘₯+π‘Žπ‘Ž. Explain how you can use this to factor π‘₯π‘₯3 + π‘Žπ‘Ž3.

4. Factor the following expressions completely.

𝑛𝑛3 + 216 2π‘₯π‘₯5 + 128π‘₯π‘₯2 27π‘₯π‘₯3 + 8𝑧𝑧3

5. Factor the expression π‘₯π‘₯6 βˆ’ 1 completely.

Page 30: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 7: Perfect Cubes

28

OYO

6. Factor each of the following expressions completely.

π‘₯π‘₯3 βˆ’ 125 π‘₯π‘₯3 βˆ’ 216𝑦𝑦3

8π‘₯π‘₯4 + π‘₯π‘₯ π‘₯π‘₯3(π‘₯π‘₯ + 4) + 64(π‘₯π‘₯ + 4)

π‘Žπ‘Ž3 βˆ’ 8𝑏𝑏3 128π‘₯π‘₯4 + 54π‘₯π‘₯𝑦𝑦3

Page 31: Unit 1- Polynomial Functions

Name:__________________________________________________ Date:___________ Common Core Algebra II Lesson 7: Perfect Cubes

29

Homework Factor the expressions completely.

π‘₯π‘₯3 + 8 1 βˆ’ π‘₯π‘₯3

792π‘₯π‘₯6 + 64𝑦𝑦6 π‘₯π‘₯3 βˆ’ π‘₯π‘₯

125𝑧𝑧3 + 1 π‘Žπ‘Ž4 βˆ’ 𝑏𝑏4

Page 32: Unit 1- Polynomial Functions

Name:__________________________________________________ Date:___________ Common Core Algebra II Lesson 8: Factoring Trinomial Review

30

Opening Exercise

Find the product of (π‘₯π‘₯ + 6)(π‘₯π‘₯ + 3).

Factor the following polynomials completely.

π‘₯π‘₯2 + 8π‘₯π‘₯ + 15 3π‘₯π‘₯2 + 12π‘₯π‘₯ βˆ’ 15 βˆ’π‘₯π‘₯3 + 12π‘₯π‘₯2 βˆ’ 20π‘₯π‘₯

The π‘Žπ‘Ž βˆ™ 𝑐𝑐 Method

Factor the trinomial 2π‘₯π‘₯2 + 11π‘₯π‘₯ + 12.

Page 33: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 7: Factoring Trinomial Review

31

Use the π‘Žπ‘Ž βˆ™ 𝑐𝑐 method to factor the trinomials below.

a. 3π‘₯π‘₯2 + 17π‘₯π‘₯ βˆ’ 6 b. 4π‘₯π‘₯2 + 4π‘₯π‘₯ βˆ’ 15

c. 6π‘₯π‘₯2 + 7π‘₯π‘₯ βˆ’ 20 d. βˆ’3π‘₯π‘₯2 βˆ’ 5π‘₯π‘₯ + 2

e. 6π‘₯π‘₯2 βˆ’ 11π‘₯π‘₯ + 3 f. 16π‘₯π‘₯2 βˆ’ 8π‘₯π‘₯ βˆ’ 3

Page 34: Unit 1- Polynomial Functions

Name:__________________________________________________ Date:___________ Common Core Algebra II Lesson 8: Factoring Trinomial Review

32

Homework Factoring the following polynomials completely.

6π‘₯π‘₯2 + 48π‘₯π‘₯ + 90 3π‘₯π‘₯2 + 4π‘₯π‘₯ βˆ’ 20

4𝑑𝑑2 + 25𝑑𝑑 + 25 5π‘₯π‘₯3 βˆ’ 41π‘₯π‘₯2 + 8π‘₯π‘₯

8π‘šπ‘š2 + 20π‘šπ‘š βˆ’ 12 9π‘₯π‘₯4 + 35π‘₯π‘₯2 βˆ’ 4

Page 35: Unit 1- Polynomial Functions

Name:_____________________________________________ Date:___________ Common Core Algebra II Lesson 9: Seeing Structure: Grouping

33

Opening Exercise

Factor the trinomial 8π‘₯π‘₯2 βˆ’ 10π‘₯π‘₯ + 3.

1. Factor the expression below completely by grouping the terms.

π‘₯π‘₯3 βˆ’ 5π‘₯π‘₯2 βˆ’ 4π‘₯π‘₯ + 20

2. Use grouping to factor the cubic polynomials below completely if it can be factored.

π‘₯π‘₯3 βˆ’ 8π‘₯π‘₯ + 2π‘₯π‘₯ βˆ’ 16 π‘₯π‘₯3 + 2π‘₯π‘₯2 βˆ’ π‘₯π‘₯ + 2 4π‘₯π‘₯3 + 2π‘₯π‘₯2 βˆ’ 36π‘₯π‘₯ βˆ’ 18

Page 36: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 9: Seeing Structure: Grouping

34

3. This polynomial isn’t cubic, but maybe we can still use grouping to factor it completely.

π‘₯π‘₯4 + 5π‘₯π‘₯3 + 8π‘₯π‘₯ + 40

4. The concept of β€œgrouping” can be used to factor some interesting expressions.

𝑝𝑝4 βˆ’ 4𝑝𝑝2 + 5𝑝𝑝3 βˆ’ 20𝑝𝑝 + 6𝑝𝑝2 βˆ’ 24

π‘₯π‘₯5 + 5π‘₯π‘₯4 + 4π‘₯π‘₯3 + π‘₯π‘₯2 + 5π‘₯π‘₯ + 4

Page 37: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 9: Seeing Structure: Grouping

35

5. Express 6π‘šπ‘š3βˆ’30π‘šπ‘š2+4π‘šπ‘š2βˆ’20π‘šπ‘šβˆ’2π‘šπ‘š+10

π‘šπ‘š+1 as the product of linear factors.

We have learned a variety of factoring strategies this in this unit. Let’s organize our techniques of factoring polynomials.

Page 38: Unit 1- Polynomial Functions

Name:_____________________________________________ Date:___________ Common Core Algebra II Lesson 9: Seeing Structure: Grouping

36

Homework 1. Factor the following polynomials completely.

π‘₯π‘₯3 βˆ’ 6π‘₯π‘₯2 βˆ’ 25π‘₯π‘₯ + 150 3π‘₯π‘₯3 βˆ’ 5π‘₯π‘₯2 βˆ’ 48π‘₯π‘₯ + 80

π‘₯π‘₯4 βˆ’ 4π‘₯π‘₯3 + 4π‘₯π‘₯2 βˆ’ 16π‘₯π‘₯ 4π‘₯π‘₯3 + 2π‘₯π‘₯2 βˆ’ 36π‘₯π‘₯ βˆ’ 18

2. Explain why π‘₯π‘₯3 + 3π‘₯π‘₯2 βˆ’ 2π‘₯π‘₯ + 6 cannot be factored using grouping.

Page 39: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 9: Seeing Structure: Grouping

37

3. Factor the expressions completely.

6π‘₯π‘₯3 βˆ’ 5π‘₯π‘₯2𝑦𝑦 βˆ’ 24π‘₯π‘₯𝑦𝑦2 + 20𝑦𝑦3

π‘₯π‘₯3 βˆ’ 3π‘₯π‘₯2 βˆ’ 6π‘₯π‘₯2 + 18π‘₯π‘₯ + 8π‘₯π‘₯ βˆ’ 24

2π‘₯π‘₯4 βˆ’ 7π‘₯π‘₯3 βˆ’ 15π‘₯π‘₯2 βˆ’ 8π‘₯π‘₯2 + 28π‘₯π‘₯ + 60

Page 40: Unit 1- Polynomial Functions

Name:____________________________________________ Date:___________ Common Core Algebra II Lesson 10: Seeing Structure: Advance Factoring

38

Opening Exercise

Factor the polynomial 4π‘₯π‘₯5 βˆ’ π‘₯π‘₯4 βˆ’ 4π‘₯π‘₯3 + π‘₯π‘₯2 completely.

Today’s main goal is to β€œLook for and make use of structure” in expressions. We will be factoring polynomials that may look frightening, but if we take a step back we will see the expression looks familiar.

1. Factor the expressions completely.

a. π‘₯π‘₯2 + 4π‘₯π‘₯ + 3 b. (2π‘₯π‘₯ + 1)2 + 4(2π‘₯π‘₯ + 1) + 3

c. π‘₯π‘₯2 βˆ’ 13π‘₯π‘₯ + 36 d. π‘₯π‘₯4 βˆ’ 13π‘₯π‘₯2 + 36

Page 41: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 10: Seeing Structure: Advance Factoring

39

e. π‘₯π‘₯2 + 5π‘₯π‘₯ βˆ’ 6 f. (π‘₯π‘₯3 + 2)2 + 5(π‘₯π‘₯3 + 2) βˆ’ 6

OYO!

As usual, factor completely.

(π‘₯π‘₯2 + 4π‘₯π‘₯)2 βˆ’ 16 𝑦𝑦6 βˆ’ 7𝑦𝑦3 βˆ’ 8

(3π‘₯π‘₯2 βˆ’ π‘₯π‘₯)2 βˆ’ 32(3π‘₯π‘₯2 βˆ’ π‘₯π‘₯) + 60

Page 42: Unit 1- Polynomial Functions

Name:____________________________________________ Date:___________ Common Core Algebra II Lesson 10: Seeing Structure: Advance Factoring

40

Homework Factor the following polynomials completely.

1. 𝑦𝑦4 βˆ’ 21𝑦𝑦2 βˆ’ 100 2. 𝑛𝑛6 βˆ’ 𝑛𝑛4 βˆ’ 16𝑛𝑛2 + 16

3. (2π‘₯π‘₯2 βˆ’ 7π‘₯π‘₯)2 βˆ’ (2π‘₯π‘₯2 βˆ’ 7π‘₯π‘₯) βˆ’ 12 4. 8π‘₯π‘₯6 + 7π‘₯π‘₯3 βˆ’ 1

Page 43: Unit 1- Polynomial Functions

Name:_____________________________________________ Date:___________ Common Core Algebra II Lesson 11: The Special Role of Zero in Factoring

41

Opening Exercise

For each equation, list some possible values of π‘₯π‘₯ and 𝑦𝑦.

π‘₯π‘₯𝑦𝑦 = 10 π‘₯π‘₯𝑦𝑦 = 1 π‘₯π‘₯𝑦𝑦 = βˆ’1 π‘₯π‘₯𝑦𝑦 = 0

Does one equation tell you more information than the others?

The Zero Product Property:

1. Find all solutions to the equation (π‘₯π‘₯2 + 5π‘₯π‘₯ + 6)(π‘₯π‘₯2 βˆ’ 3π‘₯π‘₯ βˆ’ 4) = 0.

2. Find all solutions to the equation (π‘₯π‘₯3 βˆ’ 9π‘₯π‘₯)(π‘₯π‘₯3 + π‘₯π‘₯2 βˆ’ π‘₯π‘₯ βˆ’ 1) = 0

Page 44: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 11: The Special Role of Zero in Factoring

42

3. Suppose we know that the polynomial equation 2π‘₯π‘₯3 + 9π‘₯π‘₯2 + π‘₯π‘₯ βˆ’ 12 = 0 has three real solutions and that one of the factors of 2π‘₯π‘₯3 + 9π‘₯π‘₯2 + π‘₯π‘₯ βˆ’ 12 is π‘₯π‘₯ βˆ’ 1. How can we find all three solutions to the given equation?

Let’s look at this the polynomial 𝑓𝑓(π‘₯π‘₯) = 2π‘₯π‘₯3 + 9π‘₯π‘₯2 + π‘₯π‘₯ βˆ’ 12 graphically.

Factor-Zero Theorem:

Page 45: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 11: The Special Role of Zero in Factoring

43

4. Consider the polynomial functions 𝑝𝑝(π‘₯π‘₯) = (π‘₯π‘₯ βˆ’ 2)(π‘₯π‘₯ + 3)2, π‘žπ‘ž(π‘₯π‘₯) = (π‘₯π‘₯ βˆ’ 2)2(π‘₯π‘₯ + 3)4, and π‘Ÿπ‘Ÿ(π‘₯π‘₯) = (π‘₯π‘₯ βˆ’ 2)4(π‘₯π‘₯ βˆ’ 3)5.

Quickly, find the zeros of all three functions.

5. Find the zeros of the following polynomial functions, with their multiplicities.

a. 𝑓𝑓(π‘₯π‘₯) = (π‘₯π‘₯ + 1)(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯2 + 1) b. 𝑔𝑔(π‘₯π‘₯) = (π‘₯π‘₯ βˆ’ 4)3(π‘₯π‘₯ βˆ’ 2)8

c. β„Ž(π‘₯π‘₯) = (2π‘₯π‘₯ βˆ’ 3)5 d. π‘˜π‘˜(π‘₯π‘₯) = (3π‘₯π‘₯ + 4)100(π‘₯π‘₯ βˆ’ 17)4

6. Find a polynomial function that has the following zeros and multiplicities. What is the degree of your polynomial? Is it the only one?

Page 46: Unit 1- Polynomial Functions

Name:_____________________________________________ Date:___________ Common Core Algebra II Lesson 11: The Special Role of Zero in Factoring

44

Homework

1. Find all real solutions to the given equations.

(π‘₯π‘₯ βˆ’ 5)(3π‘₯π‘₯ + 2)(π‘₯π‘₯ + 3) = 0 (4π‘₯π‘₯2 βˆ’ 9)(π‘₯π‘₯2 βˆ’ 16) = 0

6π‘₯π‘₯3 βˆ’ 27π‘₯π‘₯2 βˆ’ 15π‘₯π‘₯ = 0 π‘₯π‘₯3 + 3π‘₯π‘₯2 βˆ’ 4π‘₯π‘₯ = 12

Page 47: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 11: The Special Role of Zero in Factoring

45

2. Determine all real zeros and state their multiplicity for the function below.

𝑝𝑝(π‘₯π‘₯) = (π‘₯π‘₯2 βˆ’ 16)(π‘₯π‘₯3 + 4π‘₯π‘₯2 βˆ’ 16π‘₯π‘₯ βˆ’ 64)

3. Suppose we know that π‘₯π‘₯ + 2 is a factor of 𝑝𝑝(π‘₯π‘₯) = 4π‘₯π‘₯3 + 12π‘₯π‘₯2 + 5π‘₯π‘₯ βˆ’ 6. Find the other factors of 𝑝𝑝 and use them to determine when 𝑝𝑝(π‘₯π‘₯) = 0.

Page 48: Unit 1- Polynomial Functions

Name:_____________________________________________ Date:___________ Common Core Algebra II Lesson 12: Graphing Factored Polynomials

46

Opening Exercise

Find algebraically the zeros of 𝑝𝑝(π‘₯π‘₯) = π‘₯π‘₯3 βˆ’ π‘₯π‘₯2 βˆ’ 4π‘₯π‘₯ + 4.

On the set of axes below, graph 𝑦𝑦 = 𝑝𝑝(π‘₯π‘₯).

Explain what the zeros represent on the graph of 𝑦𝑦 = 𝑝𝑝(π‘₯π‘₯).

Page 49: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 12: Graphing Factored Polynomials

47

1. Consider the cubic polynomial function 𝑓𝑓(π‘₯π‘₯) = π‘₯π‘₯3 βˆ’ π‘₯π‘₯2 βˆ’ 12π‘₯π‘₯. Algebraically determine the zeros of this function. Then sketch a graph of this function.

Label the relative maximum and relative minimums of this function

2. Sketch a graph of a cubic polynomial with zeros at π‘₯π‘₯ = 2, π‘₯π‘₯ = 1, and π‘₯π‘₯ βˆ’ 3 on the set of axes below.

Write three different equations of polynomials with the zeros described above.

Page 50: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 12: Graphing Factored Polynomials

48

3. Write the equation of the polynomial function graphed below.

4. Explain how the multiplicity of the zeros effect the graph of the polynomial.

5. Which graph represents 𝑓𝑓(π‘₯π‘₯) = (π‘₯π‘₯2 βˆ’ 2π‘Žπ‘Žπ‘₯π‘₯ + π‘Žπ‘Ž2)(π‘₯π‘₯ + 𝑏𝑏) where both π‘Žπ‘Ž > 0 and 𝑏𝑏 > 0?

Page 51: Unit 1- Polynomial Functions

Name:_____________________________________________ Date:___________ Common Core Algebra II Lesson 12: Graphing Factored Polynomials

49

Homework 1. State the zeros of the function given by 𝑓𝑓(π‘₯π‘₯) = (π‘₯π‘₯ + 3)(π‘₯π‘₯ + 1)(π‘₯π‘₯ βˆ’ 2). Graph 𝑦𝑦 = 𝑓𝑓(π‘₯π‘₯) below.

2.Algebraically determine the zeros of the function 𝑓𝑓(π‘₯π‘₯) = π‘₯π‘₯3 βˆ’ 2π‘₯π‘₯2 βˆ’ π‘₯π‘₯ + 2. Sketch this function on the set of axes below.

Page 52: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 12: Graphing Factored Polynomials

50

3. Let 𝑓𝑓(π‘₯π‘₯) = π‘₯π‘₯4(π‘₯π‘₯ + 1)7(π‘₯π‘₯ βˆ’ 1)2. State the zeros of 𝑓𝑓 and their multiplicity. Determine if 𝑓𝑓 passes through the π‘₯π‘₯-axis or is tangent to the π‘₯π‘₯-axis at each zero.

4. Create the equation of the cubic polynomial that has π‘₯π‘₯-intercepts of 4,βˆ’3, and 2 that has a 𝑦𝑦-intercept of βˆ’18.

5. Sketch a graph of 𝑝𝑝(π‘₯π‘₯) = (π‘₯π‘₯ + π‘Žπ‘Ž)(π‘₯π‘₯ βˆ’ 𝑏𝑏)(π‘₯π‘₯ βˆ’ 𝑐𝑐) if 𝑏𝑏 > 𝑐𝑐 on a set of axes below. Assume at π‘Žπ‘Ž, 𝑏𝑏, and 𝑐𝑐 are positive.

Page 53: Unit 1- Polynomial Functions

Name:____________________________________________ Date:___________ Common Core Algebra II Lesson 13: End Behavior of Polynomials

51

Opening Exercise

A degree four polynomial with a leading coefficient of 1 is graphed below.

Write an equation for this polynomial, 𝑝𝑝(π‘₯π‘₯), in factored form.

1. The graphs of three polynomial functions are shown below. Describe the similarities in the graphs and equations of these functions.

𝑓𝑓(π‘₯π‘₯) = π‘₯π‘₯2 βˆ’ 4π‘₯π‘₯ + 1 𝑔𝑔(π‘₯π‘₯) = 2π‘₯π‘₯4 + π‘₯π‘₯3 βˆ’ 7π‘₯π‘₯2 βˆ’ π‘₯π‘₯ + 6 β„Ž(π‘₯π‘₯) =12π‘₯π‘₯6 βˆ’ 14π‘₯π‘₯4 + 49π‘₯π‘₯2 βˆ’ 36

Page 54: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 13: End Behavior of Polynomials

52

2. The graphs of three polynomial functions are shown below. Describe the similarities in the graphs and equations of these functions.

3. Describe the end behavior of the polynomial function defined by the equation 𝑝𝑝(π‘₯π‘₯) = 3π‘₯π‘₯4 βˆ’ 10π‘₯π‘₯3 + π‘₯π‘₯2 βˆ’ π‘₯π‘₯ + 1.

4. Describe the end behavior of the polynomial function defined below. Is the leading coefficient positive or negative?

𝑓𝑓(π‘₯π‘₯) = βˆ’π‘₯π‘₯2 + 4π‘₯π‘₯ βˆ’ 1 𝑔𝑔(π‘₯π‘₯) = βˆ’2π‘₯π‘₯4 βˆ’ π‘₯π‘₯3 + 7π‘₯π‘₯2 + π‘₯π‘₯ βˆ’ 6 β„Ž(π‘₯π‘₯) = βˆ’12π‘₯π‘₯6 + 14π‘₯π‘₯4 βˆ’ 49π‘₯π‘₯2 + 36

Page 55: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 13: End Behavior of Polynomials

53

5. The graphs of three polynomial functions are shown below. Describe the similarities in the graphs and equations of these functions.

6. The graphs of three polynomial functions are shown below. Describe the similarities in the graphs and equations of these functions.

𝑓𝑓(π‘₯π‘₯) = π‘₯π‘₯3 + 4π‘₯π‘₯2 βˆ’ π‘₯π‘₯ βˆ’ 4 𝑔𝑔(π‘₯π‘₯) = 2π‘₯π‘₯5 βˆ’ π‘₯π‘₯4 βˆ’ 7π‘₯π‘₯3 + 7π‘₯π‘₯2 + 16π‘₯π‘₯ + 16 β„Ž(π‘₯π‘₯) =12π‘₯π‘₯7 + 4π‘₯π‘₯6 βˆ’ π‘₯π‘₯4 βˆ’ π‘₯π‘₯ + 4

𝑓𝑓(π‘₯π‘₯) = βˆ’π‘₯π‘₯3 + 4π‘₯π‘₯2 + π‘₯π‘₯ βˆ’ 4 𝑔𝑔(π‘₯π‘₯) = βˆ’2π‘₯π‘₯5 βˆ’ π‘₯π‘₯4 + 7π‘₯π‘₯3 + 7π‘₯π‘₯2 βˆ’ 16π‘₯π‘₯ + 16 β„Ž(π‘₯π‘₯) = βˆ’12π‘₯π‘₯7 + 4π‘₯π‘₯6 βˆ’ π‘₯π‘₯4 + π‘₯π‘₯ + 4

Page 56: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 13: End Behavior of Polynomials

54

7. Let 𝑝𝑝(π‘₯π‘₯) = βˆ’3(π‘₯π‘₯ + 1)(π‘₯π‘₯ βˆ’ 2)2(π‘₯π‘₯ + 4)5(π‘₯π‘₯ βˆ’ 7)3.

What is the degree and leading coefficient of the 𝑝𝑝?

Describe the end behavior of 𝑝𝑝.

State the zeros of 𝑝𝑝 and their multiplicities. Use all this information to sketch 𝑝𝑝.

Page 57: Unit 1- Polynomial Functions

Name:____________________________________________ Date:___________ Common Core Algebra II Lesson 13: End Behavior of Polynomials

55

Homework 1. State the end behavior of the following functions without using a graphing calculator.

𝑓𝑓(π‘₯π‘₯) = βˆ’3π‘₯π‘₯4 + 5π‘₯π‘₯3 βˆ’ 7π‘₯π‘₯2 + π‘₯π‘₯ βˆ’ 9 𝑔𝑔(π‘₯π‘₯) = 12π‘₯π‘₯5 + 3π‘₯π‘₯4 βˆ’ 9π‘₯π‘₯2 βˆ’ 3π‘₯π‘₯ + 1

2. Sketch a graph of the function 𝑓𝑓(π‘₯π‘₯) = 2(π‘₯π‘₯ + 1)(π‘₯π‘₯ βˆ’ 3)(π‘₯π‘₯ + 5)2 by examining end behavior, the leading coefficient, and the zeros of the function.

Page 58: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 13: End Behavior of Polynomials

56

3. The following scatter plot represents the data from a study produced by the Center for Transportation Analysis. The study observed a car’s speed, in miles per hour, and also recorded the car’s fuel economy, in miles per gallon.

Determine if the polynomial function that models the data would have an even or odd degree. Is the leading coefficient of the polynomial that can be used to model this data positive or negative? Explain your reasoning.

4. Describe the end behavior of the graph of 𝑦𝑦 = 𝑓𝑓(π‘₯π‘₯) shown below. If 𝑓𝑓 is a polynomial, determine if the leading coefficient is positive or negative, and if the degree is even or odd?

5. Can you sketch a graph of an odd degree polynomial with no π‘₯π‘₯-intercepts? Explain your reasoning.

Page 59: Unit 1- Polynomial Functions

Name:___________________________________________ Date:___________ Common Core Algebra II Lesson 14: Even and Odd Functions

57

Opening Exercise

The function 𝑓𝑓(π‘₯π‘₯) is graphed below. Reflect 𝑓𝑓(π‘₯π‘₯) across the 𝑦𝑦-axis.

The function 𝑓𝑓(π‘₯π‘₯) is shown below. Rotate the function 180Β° about the origin.

1. If a function has symmetry across the 𝑦𝑦-axis, we call the function even.

If a function has symmetry across the origin, we call the function odd.

Page 60: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 14: Even and Odd Functions

58

2. Consider the function 𝑓𝑓(π‘₯π‘₯) = π‘₯π‘₯2 + 4.

Find 𝑓𝑓(2) and 𝑓𝑓(βˆ’2). Find 𝑓𝑓(1) and 𝑓𝑓(βˆ’1).

Find 𝑓𝑓(βˆ’π‘₯π‘₯).

What do you notice? What does this tell us about 𝑓𝑓? Let’s look at the graph of 𝑓𝑓.

3. Consider the function 𝑔𝑔(π‘₯π‘₯) = 2π‘₯π‘₯3 βˆ’ 5π‘₯π‘₯.

Find 𝑔𝑔(2) and 𝑔𝑔(βˆ’2). Find 𝑔𝑔(1) and 𝑔𝑔(βˆ’1).

Find 𝑓𝑓(βˆ’π‘₯π‘₯)

What do you notice? What does this tell us about 𝑓𝑓? Let’s look at the graph of 𝑓𝑓.

Page 61: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 14: Even and Odd Functions

59

4. Are all functions either even or odd? Consider the function 𝑓𝑓(π‘₯π‘₯) = π‘₯π‘₯2 βˆ’ 4π‘₯π‘₯ + 1.

Find 𝑓𝑓(2) and 𝑓𝑓(βˆ’2). Find 𝑓𝑓(βˆ’π‘₯π‘₯).

What can we conclude about 𝑓𝑓?

5. For each graph shown, determine if the function is even, odd, or neither.

6. Describe the difference between the degree of a polynomial in terms of end behavior and even/odd functions.

Page 62: Unit 1- Polynomial Functions

Name:___________________________________________ Date:___________ Common Core Algebra II Lesson 14: Even and Odd Functions

60

Homework 1. Half of the graph of 𝑓𝑓(π‘₯π‘₯) is shown below. Sketch the other half based on the function type.

2. Algebraically determine if 𝑓𝑓(π‘₯π‘₯) = 3π‘₯π‘₯4 βˆ’ 7π‘₯π‘₯2 + 5 is even, odd, or neither.

3. Describe each function as either even, odd, or neither.

Page 63: Unit 1- Polynomial Functions

Name:___________________________________________ Date:___________ Common Core Algebra II Lesson 15: Modeling with Polynomial Functions

61

1. Your group will create a box from a piece of construction paper. Each group will record its box’s measurements and use said measurement values to calculate and record the volume of its box. Each group will contribute to the following class table on the board.

Using the given construction paper, cut out congruent squares from each corner, and fold the sides in order to create an open-topped box as shown on the figure.

Group Height (cm) Length Width Volume 1 2 3 4 5 6

What is the length and width of a box with a height of π‘₯π‘₯?

Write a function 𝑉𝑉(π‘₯π‘₯) that represents the volume of a box with a height of π‘₯π‘₯. Graph this function and determine an appropriate domain for this function.

What are the dimensions of the square that should be cut out to create the box with the largest volume?

Page 64: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 15: Modeling with Polynomial Functions

62

2. For a fundraiser, members of the math club decide to make and sell β€œPythagoras may have been Fermat’s first problem but not his last!” t-shirts. They are trying to decide how many t-shirts to make and sell at a fixed price. They surveyed the level of interest of students around school and made a scatterplot of the number of t-shirts sold versus profit shown below.

a. Identify the 𝑦𝑦-intercept. Interpret its meaning within the context of this problem.

b. If we model this data with a function, what point on the graph of that function represents the number of t-shirts they need to sell in order to break even? Why?

c. What is the smallest number of t-shirts they can sell and still make a profit?

d. How many t-shirts should they sell in order to maximize the profit? What is the maximum profit?

e. Based on the scatterplot, would a quadratic or a cubic function be more appropriate to model this function? Explain your reasoning.

Page 65: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 15: Modeling with Polynomial Functions

63

Mr. Cerbino wants to find a function to model their data, so he drew cubic function through the data.

f. The function that models the profit in terms of the number of t-shirts made has the form 𝑃𝑃(π‘₯π‘₯) = 𝑐𝑐(π‘₯π‘₯3 βˆ’ 53π‘₯π‘₯2 βˆ’ 236π‘₯π‘₯ + 9828). Use the point labeled on the graph to find the value of the leading coefficient, 𝑐𝑐.

g. Find 𝑃𝑃(30) and interpret its meaning in the context of the problem?

h. Why do you think the function decreases?

Page 66: Unit 1- Polynomial Functions

Name:_____________________________________________ Date:___________ Common Core Algebra II Lesson 16: What If There is a Remainder?

64

Opening Exercise

Compute 1355 Γ· 4 using long division.

1. Find each quotient by inspection.

π‘₯π‘₯+4π‘₯π‘₯+1

π‘₯π‘₯2+4π‘₯π‘₯2+6

2π‘₯π‘₯βˆ’7π‘₯π‘₯βˆ’3

2. Find the following quotient using both reverse tabular method and long division.

π‘₯π‘₯3 + 2π‘₯π‘₯2 + 8π‘₯π‘₯ + 1π‘₯π‘₯ + 5

Page 67: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 16: What If There is a Remainder?

65

3. Find the following quotients using the method of your choice.

π‘₯π‘₯3βˆ’π‘₯π‘₯2+3π‘₯π‘₯βˆ’1π‘₯π‘₯+3

π‘₯π‘₯2+4π‘₯π‘₯+10π‘₯π‘₯βˆ’8

4π‘₯π‘₯3+5π‘₯π‘₯βˆ’82π‘₯π‘₯βˆ’5

2π‘₯π‘₯3βˆ’4π‘₯π‘₯2βˆ’7π‘₯π‘₯βˆ’10π‘₯π‘₯βˆ’5

4π‘₯π‘₯2βˆ’5π‘₯π‘₯2βˆ’1

π‘₯π‘₯4βˆ’8π‘₯π‘₯2+12π‘₯π‘₯+2

Page 68: Unit 1- Polynomial Functions

Name:_____________________________________________ Date:___________ Common Core Algebra II Lesson 16: What If There is a Remainder?

66

Homework 1. Create equivalent expression in the form of π‘žπ‘ž(π‘₯π‘₯) + π‘Ÿπ‘Ÿ(π‘₯π‘₯)

𝑏𝑏(π‘₯π‘₯) for each quotient.

π‘₯π‘₯3+7π‘₯π‘₯2+14π‘₯π‘₯+3π‘₯π‘₯+2

2π‘₯π‘₯2βˆ’13π‘₯π‘₯βˆ’10

2π‘₯π‘₯+3

π‘₯π‘₯βˆ’2π‘₯π‘₯+1

9π‘₯π‘₯3βˆ’12π‘₯π‘₯2+4

π‘₯π‘₯βˆ’2

2. Let 𝑃𝑃(π‘₯π‘₯) = π‘₯π‘₯3 + 2π‘₯π‘₯2 + 2π‘₯π‘₯ βˆ’ 5. Divide 𝑃𝑃 by π‘₯π‘₯ βˆ’ 1. Then find 𝑃𝑃(1). Explain what you observe.

Page 69: Unit 1- Polynomial Functions

Name:_____________________________________________ Date:___________ Common Core Algebra II Lesson 17: The Remainder Theorem

67

Opening Exploration

Consider the polynomial function 𝑓𝑓(π‘₯π‘₯) = 3π‘₯π‘₯2 + 8π‘₯π‘₯ βˆ’ 4.

a. Divide 𝑓𝑓 by π‘₯π‘₯ βˆ’ 2. b. Find 𝑓𝑓(2).

Consider the polynomial function 𝑔𝑔(π‘₯π‘₯) = π‘₯π‘₯3 βˆ’ 3π‘₯π‘₯2 + 6π‘₯π‘₯ + 8.

a. Divide 𝑔𝑔 by π‘₯π‘₯ + 1. b. Find 𝑔𝑔(βˆ’1).

Consider the polynomial β„Ž(π‘₯π‘₯) = π‘₯π‘₯3 + 2π‘₯π‘₯ βˆ’ 3.

a. Divide β„Ž by π‘₯π‘₯ βˆ’ 3. b. Find β„Ž(3).

Page 70: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 17: The Remainder Theorem

68

The Remainder Theorem:

1. Determine if π‘₯π‘₯ βˆ’ 4 is a factor of the function 𝑓𝑓(π‘₯π‘₯) = 2π‘₯π‘₯3 βˆ’ 5π‘₯π‘₯2 βˆ’ 11π‘₯π‘₯ βˆ’ 4 using two different methods.

2. Determine if π‘₯π‘₯ + 2 is a factor of the function 𝑝𝑝(π‘₯π‘₯) = π‘₯π‘₯3 + π‘₯π‘₯2 βˆ’ 27π‘₯π‘₯ βˆ’ 15 using two different methods.

Page 71: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 17: The Remainder Theorem

69

3. Consider the polynomial 𝑃𝑃(π‘₯π‘₯) + π‘₯π‘₯3 + π‘˜π‘˜π‘₯π‘₯2 + π‘₯π‘₯ + 6. Find the value of π‘˜π‘˜ so that π‘₯π‘₯ + 1 is a factor of 𝑃𝑃.

4. Find 𝑔𝑔(βˆ’1) if 𝑔𝑔(π‘₯π‘₯) = 2π‘₯π‘₯3 βˆ’ 3π‘₯π‘₯2 βˆ’ 17π‘₯π‘₯ βˆ’ 12 and explain what your answer tells you about π‘₯π‘₯ + 1 as a factor of 𝑔𝑔.

5. Let 𝑦𝑦 = 𝑝𝑝(π‘₯π‘₯) be the graph shown below. Find the remainder when 𝑝𝑝 is divided by π‘₯π‘₯ βˆ’ 1. Explain your reasoning.

Page 72: Unit 1- Polynomial Functions

Name:_____________________________________________ Date:___________ Common Core Algebra II Lesson 17: The Remainder Theorem

70

Homework 1. Let 𝑓𝑓(π‘₯π‘₯) = π‘₯π‘₯3 βˆ’ 6π‘₯π‘₯2 βˆ’ 7π‘₯π‘₯ + 9. Divide 𝑓𝑓 by π‘₯π‘₯ βˆ’ 3. Check your work by finding 𝑓𝑓(3).

2. Is π‘₯π‘₯ + 1 a factor of 2π‘₯π‘₯5 βˆ’ 4π‘₯π‘₯4 + 9π‘₯π‘₯3 βˆ’ π‘₯π‘₯ + 13? Explain your reasoning.

3. Which of the following binomials is a factor of π‘₯π‘₯3 + 3π‘₯π‘₯2 βˆ’ 10π‘₯π‘₯ βˆ’ 24.

(1) π‘₯π‘₯ βˆ’ 1 (3) π‘₯π‘₯ βˆ’ 3

(2) π‘₯π‘₯ βˆ’ 2 (4) π‘₯π‘₯ βˆ’ 4

4. The function 𝑓𝑓 is defined by a polynomial. Some values of π‘₯π‘₯ and 𝑓𝑓(π‘₯π‘₯) are shown in the table below. What is the remainder when 𝑓𝑓 is divide by π‘₯π‘₯ + 2? Explain your reasoning.

π‘₯π‘₯ 𝑓𝑓(π‘₯π‘₯) βˆ’3 βˆ’100 βˆ’2 βˆ’42 βˆ’1 βˆ’9 0 5 1 6 2 0 3 βˆ’7 4 βˆ’9

Page 73: Unit 1- Polynomial Functions

Name:_____________________________________________ Date:___________ Common Core Algebra II Lesson 18: Putting It All Together

71

Opening Exploration

Verify that π‘₯π‘₯ + 1 is a factor of 𝑃𝑃(π‘₯π‘₯) = 2π‘₯π‘₯3 + 3π‘₯π‘₯2 βˆ’ 2π‘₯π‘₯ βˆ’ 3. Explain your reasoning.

1. Knowing that π‘₯π‘₯ + 1 is factor of 𝑃𝑃, write 𝑃𝑃(π‘₯π‘₯) as the product of three linear factors.

State the zeros of 𝑃𝑃.

Sketch a graph of 𝑦𝑦 = 𝑃𝑃(π‘₯π‘₯).

Page 74: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 18: Putting It All Together

72

2. The polynomial function 𝑝𝑝(π‘₯π‘₯) = 2π‘₯π‘₯4 βˆ’ 3π‘₯π‘₯3 βˆ’ 15π‘₯π‘₯2 + 31π‘₯π‘₯ βˆ’ 15 has a zero at π‘₯π‘₯ = 1 of multiplicity of 2.

Find all real zeros of 𝑝𝑝.

Describe the end behavior of 𝑝𝑝.

Sketch a graph of 𝑝𝑝 showing the end behavior and zeros of 𝑝𝑝.

Page 75: Unit 1- Polynomial Functions

Common Core Algebra II Lesson 18: Putting It All Together

73

3. Given 𝑧𝑧(π‘₯π‘₯) = 6π‘₯π‘₯3 + 𝑏𝑏π‘₯π‘₯2 βˆ’ 52π‘₯π‘₯ + 15, 𝑧𝑧(2) = 35, and 𝑧𝑧(βˆ’5) = 0, algebraically determine the zeros of 𝑧𝑧(π‘₯π‘₯).

4. Consider the polynomial 𝑃𝑃(π‘₯π‘₯) = π‘₯π‘₯3 + π‘˜π‘˜π‘₯π‘₯2 βˆ’ 10π‘₯π‘₯ + 24. Find the value of π‘˜π‘˜ so that π‘₯π‘₯ βˆ’ 4 is a factor of 𝑃𝑃.

Express 𝑃𝑃 as the product of three linear factors.

Page 76: Unit 1- Polynomial Functions

Name:_____________________________________________ Date:___________ Common Core Algebra II Lesson 18: Putting It All Together

74

Homework 1. Let 𝑝𝑝(π‘₯π‘₯) = 2π‘₯π‘₯4 + 11π‘₯π‘₯3 βˆ’ 3π‘₯π‘₯2 βˆ’ 44π‘₯π‘₯ βˆ’ 20.

Explain why π‘₯π‘₯ + 5 is a factor of 𝑝𝑝.

Knowing π‘₯π‘₯ + 5 is a factor, factor 𝑝𝑝 completely.

State the solutions to 𝑝𝑝(π‘₯π‘₯) = 0.

Describe the end behavior of 𝑝𝑝 and sketch graph.