UndrainedShearStrength.pdf

download UndrainedShearStrength.pdf

of 6

Transcript of UndrainedShearStrength.pdf

  • 8/10/2019 UndrainedShearStrength.pdf

    1/6

    Evaluation ofUndrained Shear Strength

    from In-Situ Tests

    Paul W. Mayne

    Georgia Institute of Technology

    Mix & Match ofUndrained ShearStrengthsfrom differenttests

    Pentre, UK Site(Lambson, et al.1996, Large ScalePile Tests in Clay,Thomas Telford)

    Undrained StrengthAnisotropy and Effectsof Strain Rate, BoundaryConditions, and InitialStress State

    UndrainedShearStrength(c = cu = su)

    Classical Methods for su in Clays & Silts

    Undrained Shear Strength

    Classical interpretation from CPT in clays:

    undrained shear strength = cu = su

    kt

    votu

    N

    qs

    =

    Which su ?

    HC CIUC PSC CK0UC DSC DSS DS PSE CK0UC CIUE UU UC

    Nk = 15

    Undrained Shear Strength of Clays

    Theoretical formulation from critical-state soil

    mechanics for intact clays (Cambridge Univ.):

    where

    1 - Cs/Cc Experimental work by MIT with simple shear

    device:

    Low OCRs (assume = 28o): suDSS 0.2 p

    su/voDSS = sin'OCR

    su/voDSS = 0.23 OCR0 8

  • 8/10/2019 UndrainedShearStrength.pdf

    2/6

    NC Normalized DSS Undrained Strength

    0.0

    0.1

    0.2

    0.3

    0.4

    0.3 0.4 0.5 0.6 0.7 0.8

    sin'

    su

    /vo

    'NC

    (DSS)

    Bothkennar Mexico City

    Amherst AGS Plastic

    Hackensack Onsoy

    James Bay Rissa

    Porto Tolle Portsmouth

    Boston Blue San Francisco

    Silty Holocene Cowden

    Wroth (1984)

    su/vo'NC(DSS) = sin'

    Undrained Shear Strength from Stress History

    Intact Clays

    Independentlyobtained by

    experiments

    (SHANSEP)

    And theory

    (CSSM)

    Shear-Induced Porewater Pressures OC Normalized DSS Undrained Strength

    0.1

    1

    10

    1 10 100

    Overconsolidation Ratio, OCR

    DSSU

    ndrained

    Strength,su

    /vo

    ' DrammenPortsmouth

    Portland

    Maine

    Boston Blue

    Silty Holocene

    Haga

    Upper Chek Lok

    Lower Chek Lok

    Bangkok

    Atchafalaya

    Conn Valley

    Paria

    Hackensack

    McManus

    Cowden

    Brent Cross

    20

    30

    40

    Fissured 20

    ' = 40o

    20o

    30o

    su/vo' = sin'OCR

    Note: = 0.8

    Fissured

    Intact

    Strength Anisotropy Strength Anisotropy

  • 8/10/2019 UndrainedShearStrength.pdf

    3/6

    Undrained Strength Anisotropy

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    NCUndrainedShea

    rStrengthRatio

    15 20 25 30 35 40 45

    Effective Stress Friction Angle (deg)

    CIUC

    KoPSC

    CKoUC

    SS

    DSS

    KoPSE

    CKoUE

    Wroth Prevost Constitutive Model

    Undrained Strength Anisotropy

    (Jamiolkowski, et al. 1985; Ladd, 1991)

    Undrained Strength by SHANSEP

    (Ladd &

    Foott, 1974)

    (Ladd, 1991)

    Undrained Strength by SHANSEP

    (Koutsoftas

    and Ladd,

    1985)

    Troll Investigation, North Sea

    0

    5

    10

    15

    20

    25

    30

    0 500 1000 1500

    Piezocone Readings (kPa)

    Depth

    (meters)

    qt (tip stress)

    u2 (shoulder)

    uo (hydrostatic)

    Troll, North Sea

    Amundsen et al (1985)

    Troll Investigation, North Sea

    0

    5

    10

    15

    20

    25

    30

    0 5 10 15

    Nm= Q (a' = 0)

    Depth

    (meters)

    0

    5

    10

    15

    20

    25

    30

    0.0 0.2 0.4 0.6 0.8 1.0

    Bq

    0

    5

    10

    15

    20

    25

    30

    20 25 30 35 40 45

    ' (deg)

    Lab TX

    CPTu

  • 8/10/2019 UndrainedShearStrength.pdf

    4/6

    Troll Investigation, North Sea

    Troll, North Sea

    0

    5

    10

    15

    20

    25

    30

    0 1 2 3 4 5

    Overconsolidation Ratio, OCR

    Depth

    (meters)

    CPTu2Oed.1985Oed.1989

    Amundsen et al. (1985)

    ' = 29o

    = 0.85

    Troll Site, North Sea (NGI, 1989)

    0

    5

    10

    15

    20

    25

    0 100 200 300 400 500

    Preconsolidation Stress,p' (kPa)

    Depth

    (meters)

    qtnetOed.1985

    Oed.1989svo'

    0

    5

    10

    15

    20

    25

    0 100 200 300 400 500

    Preconsolidation Stress, p' (kPa)

    Delta u2Oed.1985Oed.1989svo'

    Troll Site, North Sea (NGI, 1989)

    0

    5

    10

    15

    20

    25

    0 100 200 300 400 500

    Preconsolidation Stress,p' (kPa)

    Depth

    (meters)

    SCE-CSSMOed.1985Oed.1989svo'

    Triaxial CKoUC -Troll, North Sea

    Troll, North Sea

    0

    5

    10

    15

    20

    25

    30

    0 10 20 30 40 50 60 70 80

    Undrained Shear Strength, su(kPa)

    Depth

    (meters)

    CPTu2

    TC 1984

    TC 1987TC 1988

    TC 1989

    NGI (1989)

    DSS Strengths - Troll, North Sea

    Troll, North Sea

    0

    5

    10

    15

    20

    25

    30

    0 10 20 30 40 50 60 70 80Undrained Shear Strength, su(kPa)

    Depth

    (meters)

    CPTu2

    DSS 1984

    DSS 1987

    DSS 1988

    DSS 1989

    NGI (1989)

    Triaxial CKoUE -Troll, North Sea

    Troll, North Sea

    0

    5

    10

    15

    20

    25

    30

    0 10 20 30 40 50 60 70 80Undrained Shear Strength, su(kPa)

    Depth

    (meters)

    CPTu2

    TE 1984

    TE 1987

    TE 1988

    TE 1989

    NGI (1989)

  • 8/10/2019 UndrainedShearStrength.pdf

    5/6

    Troll Investigation, North Sea

    (Jamiolkowski, et al. 1985, ICSMFE)

    (Ladd, 1991, Terzaghi Lecture, JGE)

    Anchorage, Alaska

    Summary POA Undrained Shear StrengthsCIUC Triaxial and DSS Tests

    Triaxial: su/vo' = 0.33 OCR0.77

    Simple Shear: su/vo' = 0.23 OCR0.70

    0.1

    1

    10

    1 10 100

    Overconsolidation Ratio, OCR

    StrengthRatio,su

    /vo

    '

    POA Summary: Triaxial Effective Stress Paths

    POA Triaxial Summary

    0

    100

    200

    300

    400

    0 100 200 300 400 500 600

    Effective Stress, p' = (1'+3')/2 kPa

    ShearStress,q=

    (1-

    3)/2

    kPa

    OC Envelope

    TB 9 (138 ft)

    TP11 (155 ft)

    TB15 (109 ft)

    TB15 (124 ft)

    TB15 (149 ft)

    TB25 (69 ft)

    TB25 (90 ft)

    TB25 (190 ft)

    TB28 (95 ft)

    TB31 (126 ft)

    TB31 (126 ft)

    TB31 (126 ft)

    TB39 (115 ft)

    TB39 (160 ft)

    TB47 (120 ft)

    TB49 (100 ft)

    TB49 (115 ft)

    TB56 (115 ft)

    Overconsolidated

    Effective Strength Envelope

    ' = 27o

    c' = 20 kPa

    POA Summary: Triaxial Effective Stress Paths

    POA Triaxial Summary

    0

    100

    200

    300

    400

    0 100 200 300 400 500 600

    Effective Stress, p' = (1'+3')/2 kPa

    ShearStress,q=

    (1-

    3)/2

    kPa

    OC Envelope

    TB 9 (138 ft)

    TP11 (155 ft)

    TB15 (109 ft)

    TB15 (124 ft)

    TB15 (149 ft)

    TB25 (69 ft)

    TB25 (90 ft)

    TB25 (190 ft)

    TB28 (95 ft)

    TB31 (126 ft)

    TB31 (126 ft)

    TB31 (126 ft)

    TB39 (115 ft)

    TB39 (160 ft)

    TB47 (120 ft)

    TB49 (100 ft)

    TB49 (115 ft)

    TB56 (115 ft)

    Normally-Consolidated

    Effective Strength Envelope

    ' = 27o

    c' = 0

    Summary POA Undrained Shear StrengthsCIUC Triaxial and DSS Tests

    0.1

    1

    10

    1 10 100

    Overconsolidation Ratio, OCR

    StrengthRatio,su

    /vo

    '

    DSS Data

    CIUC Data

    MCC Pred CIUC

    MCC Pred DSS

    Critical State Soil Mechanics

    (Modified Cam Clay)

    ' = 27o

    = 0.75

  • 8/10/2019 UndrainedShearStrength.pdf

    6/6

    Undrained Shear Strength Anisotropy

    Stability Analyses on Clays

    Deterministic Solution

    Using Limit Plasticity

    Trial & Error Solution

    Using Limit Equilibrium

    TC

    DSS

    TE PSC DSSPSE

    Undrained Strength Anisotropy

    Wroth-Prevost Constitutive Soil Model

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    20 25 30 35 40 45

    Effective Stress Friction Angle, ' (deg)

    NCStrengthRati

    o,su/vo'

    CIUC

    KoPSC

    CKoUC

    SS

    DSS

    KoPSE

    CKoUE

    POA Bootlegger

    Cove Clay

    Undrained Strength Anisotropy

    (Jamiolkowski, et al., ICSMFE, 1985)

    POA In-Situ and Lab Undrained Strengths

    Mudline

    10

    15

    20

    25

    30

    35

    40

    45

    0 20 40 60 80 100 120 140 160 180 200

    Undrained Shear Strength, su(kPa)

    Elevation

    (meters)

    Lab DSS Data

    Lab Triaxial Data

    Vane Shear

    TC from CPTu

    DSS from CPTu

    Upper

    Bootlegger

    Cove Clay

    Lower

    BootleggerCove Clay

    Soft

    Silt

    Piezocone Sounding C-28 (TB-33A)

    Port of Anchorage SCPT

    10

    15

    20

    25

    30

    35

    40

    45

    0 1 2 3 4

    Tip Stress, qt(MPa)

    Depth

    (meters)

    0 50 100 150

    Friction, fs(kPa)

    0 1 2 3

    Porewater, ub(MPa)

    1 10 100

    Dissipation,t50(min)

    0 100 200 300 400 500

    Shear Wave, Vs(m/s)

    Mudline

    Undrained Shear Strength of Clays

    Theoretical formulation from critical-state soil

    mechanics for intact clays (Cambridge Univ.):

    where

    1 - Cs/Cc Experimental work by MIT with simple shear

    device:

    Low OCRs (assume = 28o): suDSS 0.2 p

    su/voDSS = sin'OCR

    su/voDSS = 0.23 OCR0 8