Understanding the Properties of Chemical Freeze-Out

32

Click here to load reader

description

Understanding the Properties of Chemical Freeze-Out. NICA/JINR-FAIR Workshop “Matter at highest baryon densities in the laboratory and in space” April 2 – 4, 2012 FIAS. Christoph Blume University of Frankfurt. Outline. The QCD phase diagram Chemical freeze-out - PowerPoint PPT Presentation

Transcript of Understanding the Properties of Chemical Freeze-Out

Page 1: Understanding the Properties of Chemical Freeze-Out

Understanding the Properties of Chemical Freeze-Out

Christoph BlumeUniversity of Frankfurt

NICA/JINR-FAIR Workshop“Matter at highest baryon densities in the laboratory and in space”April 2 – 4, 2012FIAS

Page 2: Understanding the Properties of Chemical Freeze-Out

Outline

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt 2

The QCD phase diagram

Chemical freeze-out Results from statistical model fitsRole of phase boundariesDeconfinement phase transition (low μB)Quarkyonic phase transition (high μB)

System size dependenceFreeze-out parameters vs. Npart

Indications for long lived hadronic phase ?Current experimental situation

Early decouplingRare particles with low hadronic cross sectionsMeasurements at low energies

Page 3: Understanding the Properties of Chemical Freeze-Out

The QCD Phase Diagram

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

Broad experimental programPast: SPS (and AGS)Present: RHIC and SPSFuture: FAIR and NICA

What can be learned at low energies?

New exotic phases?Quarkyonic matter

Can phase boundaries be mapped by hadron yields ?

3

RHIC

SPSFAIR

NICA

Page 4: Understanding the Properties of Chemical Freeze-Out

The QCD Phase DiagramExperimental Access

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt 4

Control parameter: √sNN Allows to scan different regions of phase diagram

System freezes out at different positions along freeze-out curve

Trajectory might cross critical area

Variation of system sizeProgram ofNA61@SPS

H. Stöcker, E.L. Bratkovskaya, M. Bleicher, S. Soff, and X. Zhu, JPG31, S929 (2005)

3-fluid hydro

Y.B. Ivanov, V.N. Russkikh,V.D. Tonnev, PRC73, 044904 (2006)

Page 5: Understanding the Properties of Chemical Freeze-Out

Chemical Freeze-Out Statistical Model Fits

A. Andronic et al. Phys. Lett. B673, 142 (2009).

Assumption: Multiplicities are determined by statistical weights (chemical equilibrium)

Grand-canonical partition function:

Parameters:V, T, B, (s)

Allows in general excellent fits to measured multiplicities

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt 5

Page 6: Understanding the Properties of Chemical Freeze-Out

Chemical Freeze-OutEnergy Dependence

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt 6

L. Kumar, QM11

Page 7: Understanding the Properties of Chemical Freeze-Out

Chemical Freeze-OutWhere does Equilibration Happen?

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

Dynamical equilibration?QGP phase at high energies

How about lower energies?Hadron gas phase sufficient?

Other mechanisms?Phase space dominance?

Hadronization always leads to statistical equilibrium?

ExperimentAny evidences for long lived hadron gas phase after?

Systematic studies at low energies

7

U. Heinz, Nucl. Phys. A661, 140 (1999).R. Stock, Phys. Lett. B456, 277 (1999).M. Gazdzicki and M. Gorenstein, Acta Phys. Polon. B30, 2705 (1999). J. Hormuzdiar et al., Int. J. Mod. Phys. E12, 649 (2003).V. Koch, Nucl. Phys. A715, 108 (2003).F. Becattini, arXiv:0901.3643.

Page 8: Understanding the Properties of Chemical Freeze-Out

Dynamical decouplingShould happen over certain time span and temperature range

Theoretical approachesHydro + hadronic transport (e.g. UrQMD)

Hydro + extended freeze-out condition

System size dependenceInterplay mean free path and system size

⇒ decrease of T with increasing size (?)

Hadronic cross sectionRare particles (e.g. Ω) with low cross section earlier freeze-out⇒

Chemical Freeze-OutContinuous Freeze-Out

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

H. van Hecke, H. Sorge, N. Xu, PRL81, 5764 (1998).

J. Knoll, NPA821, 235 (2009)

S. Bass and A. Dumitru, PRC61, 064909 (2000).

H. Petersen et al., PRC78, 044901 (2008)

Hydro-phase

8

Page 9: Understanding the Properties of Chemical Freeze-Out

Chemical Freeze-OutRole of Phase Boundaries

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

A. Andronic et al., Nucl. Phys. A837, 65 (2010).

EquilibrationDriven by proximity of freeze-out to phase boundary

Deconfinement transition at low μB

How about high μB?

Quarkyonic matterProvides another phase boundary

Would determine position of chemical freeze-out points for higher μB

Consequence: no need for an extended hadronic phase

But: conjecture might be wrong ...

L. McLarren and R.D. Pisarski,Nucl. Phys. A796, 83 (2007).

9

P. Braun-Munzinger, J. Stachel, and C. Wetterich,PLB596, 61 (2004).

S. Floerchinger and C. WettericharXiv:1202.1671

Page 10: Understanding the Properties of Chemical Freeze-Out

System Size DependenceKinetic Freeze-Out

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

Tkin decreases withincreasing system sizeDynamical decoupling: interplay mean free path and size of system

Hydro reproduces trendFreeze-out condition:

U. Heinz and G. Kestin, PoS(CPOD2006), 038

STAR: PRC83, 034910 (2011)

10

Page 11: Understanding the Properties of Chemical Freeze-Out

System Size Dependence Chemical Freeze-Out at small μB

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

Different behaviour of Tkin and Tch

Tkin: clear centrality dependenceTch: no centrality dependence

Difficult to reconcile with hydro for normal HGRequires scattering rate proportional to Tn with n ≥ 20

At phase boundary: τΩ ∝ T-60P. Braun-Munzinger, J. Stachel, and C. Wetterich,PLB596, 61 (2004).

U. Heinz and G. Kestin, PoS(CPOD2006), 038

STAR: PRC83, 034910 (2011)

11

Page 12: Understanding the Properties of Chemical Freeze-Out

System Size Dependence Chemical Freeze-Out at higher μB (SPS)

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

Tch changes with system sizeCentral events of different A

μB independent on system size

Different freeze-out behaviourat different energies ? Careful systematic study needed

Geometric effects (“core-corona”) might be important

F. Becattini et al.,PRC73, 044905 (2005)

12

√sNN Tch(p+p) Tch(Au+Au/Pb+Pb)

17.3 GeV 181.5 MeV 157.5 MeV

200 GeV 170.1 MeV 168.5 MeV

F. Becattini et al., PRC73, 044905 (2006),EPJC66, 377 (2010).

Page 13: Understanding the Properties of Chemical Freeze-Out

System Size Dependence Geometrical Effects (“Core-Corona”)

Corona:Elementary N+N collisions

Core:Dense fireball

System size dependencies determined by ratio core/coronaf (NW) = fraction of nucleons that scatter more than once (Glauber model)

P. Bozek, Acta Phys. Polon. B36, 3071 (2005).F. Becattini and J. Manninen, J. Phys. G35, 104013 (2008)J. Aichelin and K. Werner, Phys. Rev. C79, 064907 (2009)

K. Werner

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

158A GeV

13

C.B. J.Phys.Conf.Ser. 230, 012003 (2010)

Page 14: Understanding the Properties of Chemical Freeze-Out

System Size Dependence Chemical Freeze-Out at higher μB (RHIC)

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

Recent STAR dataBeam Energy Scan program

Also significant system size dependence observed

BUT:Tch increases with system size!Opposite trend than observed by NA49

Contrary to naive expectation ? ⟶ Contribution by D. Blaschke

pp data?

14

L. Kumar, CPOD11

Page 15: Understanding the Properties of Chemical Freeze-Out

Early Decoupling Rare Particles

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

A. Andronic et al. Phys. Lett. B673, 142 (2009).

-/

= 1.5 (+ + -)

NA49: PRL94, 192301 (2005).

Particles with low hadronic cross sectionE.g. multi-strange baryons (Ω)

Might decouple earlier if there was a long lived hadronic phase

Deviations from statistical model fits?

No evidence seen at RHIC and SPSMore precise data on multi-strange particles (low energies) will be helpful

15

Page 16: Understanding the Properties of Chemical Freeze-Out

Early DecouplingStrange Baryon to Pion Ratios

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt 16

X. Zhu, SQM11

Good agreement between SPS and RHICClose to statistical model curve

Low energy data scarce FAIR and NICA⟶

Λ/π

Λ/π_

Ξ-/π

Ξ+/π_

Page 17: Understanding the Properties of Chemical Freeze-Out

Early Decoupling Statistical Model Fits at Low √sNN

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt 17

HADES data: Ar+KCl at √sNN = 2.61 GeVGood agreement with statistical model fit

Except: Ξ-! Off by factor 25Sub-threshold production

Also deviations for η (TAPS)

Freeze-out parameter fit into known systematics

How about system size dependence?

M. Lorenz, CPOD11

Page 18: Understanding the Properties of Chemical Freeze-Out

Early Decoupling Hydro + Cascade Predictions

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

No real effect for ΩsNo effect expected if Ω enters hadronic phase with equilibrium yield

Strong effect on antibaryonsCascade removes p, Ξ+

⇒ Reduction from chemical equilibrium

Caveat: multi-meson fusion processes not included

First implementation in transport: HSD(anti-protons)

_ _

R. Rapp and E. Shuyak, PRL86, 2980 (2001).

S. Bass and A. Dumitru,PRC61, 064909 (2000).

18

Page 19: Understanding the Properties of Chemical Freeze-Out

Early Decoupling Antibaryons

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

Effect on statistical model fitsFits with and w/o antibaryonsStudies ongoing

System size dependence of pTends to decrease towards central

Indication for absorption in hadronic phase or just evolution of baryon number transfer ?

Right now inconclusiveHigh precision data required

R. Stock et al., arXiv:0911.5705

STAR: PRC83, 034910 (2011)

NA49: PRC83, 014901 (2011)

_

19

Page 20: Understanding the Properties of Chemical Freeze-Out

Early Decoupling Antibaryons

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

Antibaryons removed by hadron gas phase ?Simulation with hydro model + hadronic afterburner (UrQMD)

Afterburner removes antibaryons (p, Λ, Ξ) Reduction from chemical ⇒equilibrium value

Caveat: multi-meson fusion processes not simulated

No final conclusion from data yetHigh precision data needed

R. Stock et al.,arXiv:0911.5705

H. Petersen et al., PRC78, 044901 (2008)

20

Page 21: Understanding the Properties of Chemical Freeze-Out

Early Decoupling Particle Ratios at LHC

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

M. Floris, QM11

K-/π- M. Floris, QM11

p/π- and K-/π- ratiosp/π-(LHC) = K-/π-(BRAHMS+PHENIX) (STAR: not feed down corrected!)

K-/π-(LHC) = K-/π-(RHIC)

_p/π-_

_

Statistical model predictions

Note: fit to larger set of particles (π, K, p, Λ, Ξ, Ω) results in expected Tch, problem only with p, p

_

21

Page 22: Understanding the Properties of Chemical Freeze-Out

Conclusions

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

Freeze-out properties at low energiesIndications for presence of phase boundary to quarkyonic matter?

⟶ drives particle yields to equilibrium

If yes, no need for extended hadron gas phase

Indicators:No system size dependence of freeze-out parameterNo modification of rare particle yields (Ω, antiprotons)

Experimental situation unclearNo system size dependence at low μB

Results at high μB not in agreement (NA49, STAR)Data on rare particles scarce at low energies

Many opportunities for experiments at NICA and FAIR !

22

Page 23: Understanding the Properties of Chemical Freeze-Out

Backup

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt 23

Page 24: Understanding the Properties of Chemical Freeze-Out

Chemical Freeze-Out System Size Dependence: Data

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

LHCALICE: Pb—Pb at √sNN = 2.76 TeV

RHICSTAR: beam energy scan

SPSNA61, NA49

L. Kumar, QM11

p/π-_ K-/π-

M. Floris, QM11

24

Page 25: Understanding the Properties of Chemical Freeze-Out

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt 25

X. Zhu, SQM11

Page 26: Understanding the Properties of Chemical Freeze-Out

IntroductionThe QCD Phase Diagram

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

Variation of √sNN → Different regions of phase diagram

→ Map of chemical and kinetic freeze-out points

Limit μB → 0:RHIC experiments

New: ALICE (LHC)

High μB:SPS + AGS

New: STAR Beam Energy Scan (BES) NA61 (SPS)

Future: CBM (FAIR) + MPD (NICA)

26

Page 27: Understanding the Properties of Chemical Freeze-Out

Kinetic Freeze-OutEarly Decoupling

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

STAR: PRL92, 182301 (2004).

Particles with low hadronic cross sectionE.g. multi-strange baryons (Ξ, Ω)

Should decouple earlier

Less affected by transverse expansion of hadronic phase

Effect visible in BW fits at RHIC and LHCHigher Tkin and lower 〈 βT 〉 for Ξ and Ω than for lighter hadrons (π, K, p)

NA49: PRL94, 192301 (2005).

(A) Tkin = 90 MeV 〈 βT 〉 = 0.5(B) Tkin = 170 MeV 〈 βT 〉 = 0.2

N. Xu and M. Kaneta, NPA698, 306 (2002).

27

Page 28: Understanding the Properties of Chemical Freeze-Out

28

Energy Dependence/π- and /π-Ratios

NA49 dataPhys. Rev. C78, 034918 (2008) Transport models

OK for

Too low for Statistical models

Generally good description at allenergies

|y| < 0.4

|y| < 0.5

SHM(B): A. Andronic et al. Nucl. Phys. A 772, 167 (2006).UrQMD: M. Bleicher et al., J. Phys. G 25, 1856 (1999) and private communicationHSD: E. Bratkovskaya et al., Phys. Rev. C69, 054907 (2004)

/

/−

-/ +/− = 1.5 (+ + -)

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

Page 29: Understanding the Properties of Chemical Freeze-Out

Energy Dependenceϕ Meson: Total Yields

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt 29

At SPS yields not fullydescribed by models

UrQMD1.3 underestimates ϕ/π-ratiobut good description of ϕ yieldat lower energies

Statistical model (γs = 1) above ϕ/π-ratioHGM: P. Braun-Munzinger et al., Nucl. Phys. A 687, 902 (2002).

NA49 dataPhys. Rev. C78, 044907 (2008)

Page 30: Understanding the Properties of Chemical Freeze-Out

Chemical Freeze-OutLimit μB → 0 and LHC Expectation

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

Freeze-out points coincide with phase boundary at RHIC and top SPS energiesChiral phase transition from LQCD

P. Braun-Munzinger and J. Stachel,arXiv:1101.3167

O. Kaczmarek et al., PRD83, 014504 (2011)

30

Page 31: Understanding the Properties of Chemical Freeze-Out

Chemical Freeze-Out Energy Dependence of Freeze-Out Parameters

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt

A. Andronic et al. Phys. Lett. B673, 142 (2009).

Parameterizations of Tch and μB as function of √sNN

Freeze-out curveJ. Cleymans et al., PRC73, 034905 (2006)

31

Page 32: Understanding the Properties of Chemical Freeze-Out

Christoph Blume NICA/JINR-FAIR Workshop, FIAS Frankfurt 32