Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo...

22
Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2 , Yair Weiss 1,3 , Fredo Durand 1 , Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute, 3 Hebrew University, 4 Adobe
  • date post

    15-Jan-2016
  • Category

    Documents

  • view

    217
  • download

    0

Transcript of Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo...

Page 1: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

Understanding and evaluating blind

deconvolution algorithms

Anat Levin1,2, Yair Weiss1,3, Fredo Durand1, Bill

Freeman1,4

1MIT CSAIL, 2Weizmann Institute, 3Hebrew University,

4Adobe

Page 2: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

Blind deconvolution

??Rich literature, no perfect solution

Fergus et al. 06, Levin 06, Jia 07, Joshi et al. 08, Shan et al. 08

In this talk:

• No new algorithm

• What makes blind deconvolution hard?

• Quantitatively evaluate recent algorithms on the same dataset

kernelblurred image sharp image

Page 3: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

blur kernel

Blind deconvolution

nxky blurred image

sharp image

noise

Input (known)

Unknown, need to estimate

?

?

Page 4: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

Natural image priors

Derivative histogram from a natural image

Parametric models

1 ,)(log

i ixxp

Derivative distributions in natural images are sparse:

Lo

g p

rob

xx

Gaussian:

-x2

Laplacian:

-|x|-|x|0.5

-|x|0.25

Page 5: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

Sparse priors in image processing

• Denoising

Simoncelli et al., Roth&Black

• Inpainting

Sapiro et al., Levin et al.

• Super resolution

Tappen et al.

• Transparency

Levin et al.

• Demosaicing

Tappen et al., Hel-Or et al.

• Non blind deconvolution

Levin et al.

Page 6: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

Naïve MAPx,k estimation

1 ,||1

)|,(log 22

i ixyxkykxp

Find a kernel k and latent image x minimizing:

Should favor sharper x explanations

Convolution constraint

Sparse prior

Page 7: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

The MAPx,k paradox

P( , )>P( , )Claim 1:

Let be an arbitrarily large image sampled from a sparse prior , and

Then the delta explanation is favored

)(xpx

nxky *

)kernel,im()deltakernel,im( *kxPyP

Latent imagekernel

Latent imagekernel

Page 8: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

?

The MAPx,k failure sharp blurred

i

i

Page 9: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

The MAPx,k failure

Red windows = [ p(sharp x) >p(blurred x) ]

15x15 windows 25x25 windows 45x45 windows

simple derivatives

[-1,1],[-1;1]

FoE filters

(Roth&Black)

Page 10: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

1|| d5.0|| 1 d

5.0|| 2 d

P(blurred step edge)

sum of derivatives:cheaper

11 5.0 41.15.05.0 5.05.0

The MAPx,k failure - intuition

P(blurred impulse) P(impulse)

5.01 d 5.02 d11 d 12 d

211 5.05.0 41.15.05.0 5.05.0 sum of derivatives:

cheaper

>P(step edge)

<

k=[0.5,0.5]

Page 11: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

P(blurred real image)

Blur reduces derivative contrast

Real image row: Noise and texture behave as impulses - total derivative contrast reduced by blur

<P(sharp real image)

cheaper8.5

5.0i ix 5.4

5.0i ix

Page 12: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

Why does MAPx,k fail?

• Too few measurements? Fails even with infinitely large image

• Wrong prior? Fails even for signals sampled from the prior

• Choice of estimator

Page 13: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

argmax P( , | )

= P( , | )dx

argmax P( | )

MAPk estimation

MAPx,k- estimate x,k simultaneously

x

MAPk- estimate k alone, marginalize x

yk

x yk

y k

Page 14: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

Results in this paper:

Let be an arbitrarily large image sampled from a sparse prior , and

Then

Claim 1- MAPx,k estimator fails:

The delta explanation is favored

Claim 2- MAPk estimator succeeds:

is maximized by the true kernel )|( ykp *kk

)(xpx

nxky *

)kernel,im()deltakernel,im( *kxpyp

Page 15: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

Intuition: dimensionality asymmetry

MAPx,k– Estimation unreliable. Number of measurements always lower than number of unknowns: #y<#x+#k

MAPk – Estimation reliable. Many measurements for large images: #y>>#k

Large, ~105 unknowns Small, ~102 unknowns

blurred image ykernel k

sharp image x

~105 measurements

Page 16: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

Approximate MAPk strategies

Marginalization on x is challenging to compute

Approximation strategies:

- Independence assumption in derivatives space:

Levin NIPS06

- Variational approximation:

Miskin and Mackay 00, Fergus et al. SIGGRAPH06

- Laplace approximation:

Brainard and Freeman 97, Bronstein et al. 05

dxykxpykp )|,()|(

Page 17: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

Evaluation on 1D signals

MAPk, variational approximation (Fergus et al.)

Exact MAPk MAPx,kFavors delta solution

MAPk, Gaussian prior

Favor correct solution despite

wrong prior!

Page 18: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

Ground truth data acquisition

4 images x 8 kernels = 32 test images

Data available online: http://www.wisdom.weizmann.ac.il/~levina/

Page 19: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

Fergus et al. SIGGRAPH06 MAPk, variational approx.

Comparison

Shan et al. SIGGRAPH08 adjusted MAPx,k

MAPx,k

MAPk, Gaussian prior

Ground truth

Page 20: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

Evaluation

Cumulative histogram of deconvolution successes :

bin r = #{ deconv error < r }

Su

cces

ses

per

cen

t MAPk, Gaussian prior

Shan et al. SIGGRAPH08Fergus, variational MAPk

MAPx,k sparse prior

100

80

60

40

20

Page 21: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

Problem: uniform blur assumption is unrealistic

Variation of dot traces at 4 corners

Note: opposite conclusion by Fergus et al., 2006

Page 22: Understanding and evaluating blind deconvolution algorithms Anat Levin 1,2, Yair Weiss 1,3, Fredo Durand 1, Bill Freeman 1,4 1 MIT CSAIL, 2 Weizmann Institute,

Summary

• Good estimator is more important than correct prior:

- MAPk approach can do deconvolution even with Gaussian prior

- MAPx,k approach fails even with sparse prior

• Spatially uniform blur assumption is invalid

• Compare blind deconvolution algorithms on the same dataset, Fergus et al. 06 significantly outperforms all alternatives

Ground truth data available online