Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional...

42
Unconventional Superconductivity – Topology, Symmetry, and Strong Correlation Congjun Wu University of California, San Diego Sept 10, 2018, IOP, CAS. +

Transcript of Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional...

Page 1: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Unconventional Superconductivity – Topology, Symmetry, and Strong Correlation

Congjun WuUniversity of California, San Diego

Sept 10, 2018, IOP, CAS.

𝒑 + 𝒊𝒔 𝒑 − 𝒊𝒔

Page 2: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Wang Yang (UCSD UBC)

Yi Li (UCSD Princeton Johns Hopkins)

Da Wang (UCSD Nanjing Univ.)

Tianxing Ma (Visiting scholar from Beijing Normal Univ. )

Tao Xiang (IOP, Chinese Academy of Sciences)

2

Collaborators:

Supported by NSF, AFOSR

Reference

1. Tianxing Ma, Da Wang, Congjun Wu, arXiv:1806.03652.

2. Wang Yang, Chao Xu, Congjun Wu, arXiv:1711.05241.

3. Wang Yang, Tao Xiang, and Congjun Wu, Phys. Rev. B 96, 144514 (2017).

4. Wang Yang, Yi Li, Congjun Wu, Phys. Rev. Lett. 117, 075301(2016).

Page 3: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Novel unconventional superconductivity

“Boundary of boundary” Majorana fermion without

spin-orbit coupling

Spin-3/2 half-Heusler SC – beyond triplet pairing

Extended s-wave SC by doping AFM (Mott)

insulators

𝒑 + 𝒊𝒔 𝒑 − 𝒊𝒔

Page 4: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Unconventional superconductivity

k

k

• Conventional: s-wave pairing symmetry.

)(k

s-wave

• Unconventional: high partial wave symmetries.

22 yxd

++

-

-

k

Δ(𝑘)

d-wave (singlet) : high Tc cupratesp-wave (triplet ) : superfluid 3He

𝐻𝑃 𝑘 = ∆ 𝑘 𝑃+ 𝑘 + ∆∗ 𝑘 𝑃 𝑘

𝑃+ 𝑘 = 𝑐↑+ 𝑘 𝑐↓

+ −𝑘

Hg, Pb, MgB2 …

Page 5: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Majorana boundary zero modes (spinless p-wave)

• Single-component fermion p-wave pairing – Kitaev 2001.

𝜟 𝒌𝒊𝒏 = −𝜟 𝒌𝒐𝒖𝒕𝛾 = 𝑑𝑥 𝑢0 𝑥 𝜓(𝑥) + 𝑣0 𝑥 𝜓+(𝑥)

𝑢0 𝑥 = 𝑣0∗ 𝑥

• Spin-orbit coupled supercond. wire under magnetic field.

L. P. Kouwenhouven, et al, Science 336 1003

(2012);

C. M. Marcus et al, PRB 87, 241401 (2013).

P. A. Lee, arxiv 0907.2681

Sau, Lutchyn, Das Sarma PRL 2010.

Liu, Potter, Law, Lee, PRL 109, 267002

(2011);

He, Ng, Lee, Law, PRL (2014).

X. J. Liu, A. Lobs, PRB (2013).

Page 6: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Topo-index (BDI): 1𝐷 spinless 𝑝-wave SC

• Anderson pseudo spin (Nambu Rep):

• Winding #: 𝑆1 → 𝑆1

𝑘+∞𝑘𝐹0−𝑘𝐹−∞

±∞

−𝑘𝐹 𝑘𝐹

0

ℎ 𝑘

𝜓 𝑘 =𝑐𝑘

𝑐−𝑘†

𝐻 𝑘 = ℎ 𝑘 ⋅ 𝜏 =𝜉𝑘 Δ(𝑘)

Δ∗(𝑘) −𝜉(−𝑘)

ℎ 𝑘 = (Δ 𝑘 , 0, 𝜉 𝑘 )

𝜉𝑘 =ℏ2𝑘2

2𝑚− 𝜖𝐹 ,

Δ 𝑘 =Δ𝑝

𝑘𝐹𝑘

Page 7: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

2D spinless 𝑝𝑥 + 𝑖𝑝𝑦 superconductivity

ℎ 𝑘 = (Δ𝑝

𝑘𝑥

𝑘𝐹, Δ𝑝

𝑘𝑦

𝑘𝐹, 𝜉𝑘 )Δ 𝑘𝑥, 𝑘𝑦 =

Δ𝑝

𝑘𝐹(𝑘𝑥+𝑖𝑘𝑦)

𝑘𝑓

𝑘𝑦

𝑘𝑥

ℎ 𝑘𝑥, 𝑘𝑦 winding #: 𝑆2 → 𝑆2

• chiral Majorana edge modes• vortex core zero Majoranamode

Page 8: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

A. J. Leggett, Rev. Mod. Phys 47, 331 (1975)

L=1, S=1, J=L+S=0

• Topological: DIII class (time-reversal invariant)

𝑑

𝑆 𝑑 ∙ 𝑆 = 0 B

)(ˆ kd

Δ

• Unconventional but isotropic spin-orbit coupled gap function

• Is 3He-B alone?

New opportunities in multi-component

fermion systems!

The distinction of the 3He-B phase

𝑑 𝑘 = 𝑘

Page 9: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Time-reversal invariant topo-SC (DIII class)

• Topo-pairing (𝑇2 = −1, 𝐶2 = 1).

𝑁𝑤 =1

4𝜋 𝑆

𝑑𝑘2 𝑑 ∙ 𝜕𝜇 𝑑 × 𝜕𝜈

𝑑 = ±1

• Topo index from the d-vector

• Quaternionic pseudospin 3D

skyrmion (SU(2))

(𝜖 𝑘 − 𝜇) + Δ(𝑖𝑑𝑥(𝑘) + 𝑗𝑑𝑦(𝑘) + 𝑘𝑑𝑧 𝑘 )

• Surface modes: Majorana-Dirac cone

B

Δ

𝑑(𝑘)

winding #: 𝑆3 → 𝑆3

winding #: 𝑆2 → 𝑆2

Page 10: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

10

High 𝑇𝑐 superconductivity

• Intrinsically strong coupling problem -- complicated structures.

• Many competing phases: d-wave superconductivity by doping the parent AFM Mott insulating state

Page 11: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Novel topologicalsuperconductivity

Extended s-wave SC by doping AFM (Mott)

insulators

“boundary of boundary” Majorana fermion without

spin-orbit coupling

Spin-3/2 half-HeuslerSC – beyond triplet

pairing

e

e

e

o

o

o

𝟏

𝟑

Page 12: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

• Cold atom: alkali/alkaline-earth fermions

4-component fermion systems: beyond triplet

Kim, Hyunsoo, et al., Science Advances Vol. 4, eaao4513 (2018).

• Hole-doped semiconductors:

C. Wu, J. P. Hu, and S. C. Zhang. PRL 91 186402 (2003).C. Wu, Mod. Phys. Lett, (2006).C. Wu, J. P. Hu, and S. C. Zhang. Int. J. Mod. Phys. B 24 311 (2010)Wang Yang, Yi Li, C. Wu, PRL 117, 075301 (2016).

• Spin 𝟑

𝟐: Quintet and Septet pairings

beyond singlet and triplet.

septet

Wang Yang, Yi Li, C. Wu, PRL 117, 075301 (2016).W. Yang, Tao Xiang, and C. Wu, PRB 96, 144514 (2017).

• Experiment: nodal superconductivity in half-Heusler compound YPtBi.

Page 13: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

S-wave quintet pairing – Non-Abeliean statistics

C. Wu, Mod. Phys. Lett. (2006)

C. Wu, J. P. Hu, and S. C. Zhang. Int. J. Mod. Phys. B 24 311 (2010)

• Half-quantum vortex (HQV) loop carrying spin – the SO(4) Cheshire charge.

• Non-Abeliean phase: particle penetrating HQV loop.

|3/2

| 0

|1

|1/2 |−1/2

|2

| 𝑆𝑧

Page 14: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Isotropic pairings beyond singlet and triplet

d-vector d-tensor

Spherical harmonics

• Isotropic pairings:

s-wave + singlet

p-wave + triplet

d-wave + quintet

f-wave + septet

𝐽 = 𝐿 + 𝑆 = 0

Spin tensors (spin, quadrupole, octupole)

• Pairing Hamiltonian.

Δ𝐿,𝛼𝛽 𝑘 = Δ𝐿 𝜈=−𝐿𝐿 − 𝜈𝑌𝐿,−𝜈

𝑘 𝑆𝐿𝜈𝑅

Wang Yang, Yi Li, C. Wu, PRL 117, 075301 (2016).

• Odd-parity pairing

states are topo. nontrivial.

Page 15: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Pictorial Rep.– spin structure of the gap function

tripletseptet

|𝑆𝑆𝑧 = |30 → Δ3

2

− Δ1

2

+ Δ−

1

2

− Δ−

3

2

• Helical basis: 𝜎 ⋅ 𝑘|𝑘𝛼⟩ = 𝛼|𝑘𝛼⟩

Δ𝛼 𝑘 : ⟨𝛼+ 𝑘 𝛼+(−𝑘) ⟩

|10 → Δ3

2

+ Δ1

2

− Δ−

1

2

− Δ−

3

2

• Intra-helical FS pairings (different phase patterns):

• Applicable to solid state spin-orbit coupled systems.

(𝛼 = ±3

2, ±

1

2)

Topo. index

# =3-1=2

High topo.

index # =3+1=4,

distinct from 3He-B

Page 16: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Boundary Majorana modes (f-wave septet)

Bulk Vacuum

• Zero modes (𝑘2𝐷 = 0) as chiral eigenstates.

𝑪𝒄𝒉 is a symmetry only for zero modes

Chiral operator 𝑪𝒄𝒉 = 𝒊𝑪𝒑𝑪𝑻;

𝜈 = +, −, +, −, for 𝛼 =3

2,1

2, −

1

2, −

3

2.

• k.p theory: linear Majorana-Dirac cones.

032, +

012, −

0−

12, +

0−

32, −

𝐶𝑐ℎ 𝑘𝛼2𝐷 = 0𝛼 , 𝜈 = 𝜈 |0𝛼 , 𝜈 ⟩

States with opposite chiral indices couple

Page 17: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

• A linear and a cubic Majorana-Dirac

cones.

p-wave boundary Andreev-Majorana modes

𝐻𝑚𝑖𝑑𝑝

(𝑘||) =∆𝑝

𝑘𝐹

00

00

𝑐𝑘+2

𝑂(𝑘+3)

𝑖𝑘+

𝑐𝑘+2

𝑐𝑘−2

−𝑖𝑘−

𝑂(𝑘−3)

𝑐𝑘−2

00

00

1st order 𝑘 ⋅ 𝑝 theory

𝑘2𝐷 = 032, +

012, +

0−

12, −

0−

32, −

• Zero modes (𝑘2𝐷 = 0) with chiral indices

Page 18: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

• Band inversion

𝑠1/2, 𝒑𝟑/𝟐

Spin-3/2 systems: YPtBi half-Huesler semi-metal

• Low carrier density → semimetal

h. h. l. h.

𝑛 ≈ 2 × 1018𝑐𝑚−3, 𝑘𝐹~1

10

1

𝑎

non-degenerate FS

SO coupling

Inversion symmetry broken

𝒑𝟑/𝟐

𝒔𝟏/𝟐

• Non-centrosymmetric: 𝑇𝑑 symmetry

• Linear 𝑇-dependence of penetration depth → Nodal lines

Kim, Hyunsoo, et al., Science Advances Vol. 4, eaao4513 (2018).

Page 19: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

𝐻𝐿 𝑘 = λ1 +5

2λ2 𝑘2 − 2λ2 𝑘 ∙ 𝑆

2

𝐴 𝑘 = kx𝑇𝑥 + ky𝑇𝑦 + kz𝑇𝑧

Band Hamiltonian of YPtBi

• Luttinger-Kohn for the hole band (Γ8: 𝑝3/2)

• Non-centrosymmetric 𝑇𝑑 invariant

𝑇𝑥 = SySxSy − SzSxSz

𝑇𝑦 = SzSySz − SxSyS𝑥

𝑇𝑧 = SxSzSx − SySzSy

𝑘𝑥

𝑘𝑦

𝑘𝑧

𝑇2 rep. of 𝑇𝑑

Inversion ✖Time reversal ✔𝑇𝑑 group ✔

• Non-degenerate FS

𝐻𝑏𝑎𝑛𝑑 𝑘 = 𝐻𝐿 𝑘 + 𝐴 𝑘

‡ P. M. R. Brydon, L. Wang, W. Weinert, D. F. Agterberg, Phys. Rev. Lett. 116 177001 (2016)

Page 20: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Pairing symmetries in speculations

Nodal rings in gap function for ∆𝑠

∆𝑝= 0.3 and 0.7

• One possibility: 𝑠-wave singlet + 𝑝-wave septet

𝛼,𝛽

𝑐𝑘𝛼† [(∆𝒔 + ∆𝒑𝑨 𝒌 )𝑅]𝛼𝛽𝑐−𝑘𝛽

Pairing within the same spin-split Fermi surface

Nodal rings around 001 , etc

‡ P. M. R. Brydon, L. Wang, W. Weinert, D. F. Agterberg,Phys Rev Lett 116 177001 (2016)

𝐴 𝑘 = 𝑘𝑥𝑇𝑥 + 𝑘𝑦𝑇𝑦 + 𝑘𝑧𝑇𝑧

D. Agterberg, P. A. Lee, Liang Fu, Chaoxing Liu, I. Herbut, …….

• Phase sensitive test?

Page 21: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Previous example (YBCO): zero-energy boundary modes

[11] boundary:𝜟 𝒌𝒊𝒏 = −𝜟 𝒌𝒐𝒖𝒕

++−

[10] boundary:𝜟 𝒌𝒊𝒏 = 𝜟 𝒌𝒐𝒖𝒕

C.-R. Hu, Phys. Rev. Lett. 72, 1526 (1994)

L. H. Greene, et al, PRL 89, 177001 (2002)

𝑘𝑖𝑛

𝑘𝑜𝑢𝑡

𝑘𝑖𝑛

𝑘𝑜𝑢𝑡

++−

Page 22: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

• Surface Brilliouin zone:

Topo-index distribution in

[111]-surface for ∆𝑠

∆𝑝= 0.3

A. P. Schnyder, P. M. R. Brydon, and C. Timm. PRB 85.2 (2012): 024522.

(𝑘𝑥2𝐷, 𝑘𝑦

2𝐷) inside a loop non-trivial topo index ±1

• Loops: projection of the gap nodal rings.

Topo-index for nodal-ring superconductors

Each (𝑘𝑥2𝐷, 𝑘𝑦

2𝐷) a 1D superconductor

Page 23: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Majorana flat bands on the 111 -surface

e

e

e

o

o

o

𝟎

𝟐e

e

e

o

o

o

𝟏

𝟑

• Chiral index (𝐶𝑐ℎ = 𝑖𝑇𝑃𝐻) for Majorana surface modes

a symmetry for zero modes (even, odd)

Non-magnetic impurity: odd under 𝐶𝑐ℎ 1,3 ✔; 0,2 ✖

Magnetic impurity: even under 𝐶𝑐ℎ 1,3 ✖; 0,2 ✔

• Selection rules:

Bright regions: Majorana zero modes

Page 24: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

STM: quasi-particle interference (QPI) pattern

Δ𝜌𝑠𝑓 𝜔, 𝑟

• Joint density of states of impurity scattering

Δ𝜌𝑠𝑓 𝜔, 𝑞Fourier transform

• Non-magnetic impurity on (111)-surface:

𝟏

𝟑

𝟏

𝟑

𝑹𝒆(∆𝝆𝒔𝒇 𝝎 = 𝟎, 𝒒∥ ) 𝑰𝒎(∆𝝆𝒔𝒇 𝝎 = 𝟎, 𝒒∥ )

Page 25: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Novel topologicalsuperconductivity

“boundary of boundary” Majorana fermion without

spin-orbit coupling

Spin-3/2 half-HeuslerSC – beyond triplet

pairing

𝒑 + 𝒊𝒔 𝒑 − 𝒊𝒔

Extended s-wave SC by doping AFM (Mott)

insulators

Page 26: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Majorana modes on surfaces of 𝒑 ± 𝒊𝒔 SC

“Boundary of boundary” method,

Surfaces spontaneously magnetized

• Strategy one:

1) Single out one Fermi surface in the normal state by spin-orbit coupling.

2) Majorana fermion appears at boundary, or topo-defect (e.g. vortex core)

• New strategy -- two-component Fermi surfaces without spin-orbit coupling

Mixed singlet-triplet pairing 𝒑 + 𝒊𝒔 𝒑 − 𝒊𝒔

Page 27: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Spontaneous time-reversal symmetry breaking

• Ginzburg-Landau analysis:

• Pairing breaking time-reversal symmetry!

C. Wu and J. E. Hirsch, PRB 81, 20508 (2010).

27

𝐹 = 𝛼 ∆𝑡2 − 𝛽 ∆𝑠

2 + 𝛾1 ∆𝑡2 ∆𝑠

2 + 𝛾2(Δ𝑡∗ ∆𝑡

∗∆𝑠∆𝑠 + 𝑐. 𝑐. )

𝛾2>0 𝜑𝑠 − 𝜑𝑡= ±𝜋

2

∆𝑡 + 𝑖∆𝑠 (∆𝑡 + 𝑖∆𝑠)| 𝑘↑, −𝑘↓ + (∆𝑡 − 𝑖∆𝑠) 𝑘↓, − 𝑘↑

Equal in magnitude, opposite in phase.

Invariant under combined parity-time reversal (PT) transf.

∆𝐹 = 2𝛾2 Δ𝑠2 Δ𝑝

2cos 2(𝜑𝑠 − 𝜑𝑡)

Page 28: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Gapped edge modes of 1D 𝑝𝑧 ± 𝑖 𝑠

𝐻1𝐷 = (−ℏ2𝜕𝑧

2

2𝑚−𝜇(𝑧))I⨂𝜏𝑧 −

Δ𝑝

𝑘𝐹𝑖

𝑑

𝑑𝑧𝜎𝑧(𝑖𝜎𝑦)⨂𝜏𝑥 − Δ𝑠𝜎𝑦⨂𝜏𝑥

• 𝑠-wave pairing: ∆𝑠𝐶𝑐ℎ.

Zero modes ±Δ𝑠 remain eigenstates

• Magnetized edges reduced

degrees of freedom

• Opposite edges are magnetized

oppositely related by PT symmetry.

𝒑𝒛𝝈𝒛 + 𝒊𝒔

𝐶=-1

Page 29: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Majorana zero mode at the magnetic domain

• Chiral operator 𝐶𝑐ℎ = −𝜎𝑧⨂𝜏𝑥

𝐻2𝐷 = −ℏ2 𝜕𝑦

2+𝜕𝑧

2

2𝑚− 𝜇 𝑧 I⨂𝜏𝑧 −

Δ𝑝

𝑘𝐹𝑖(𝑖𝜕𝑦𝐼⨂𝜏𝑦 − 𝜕𝑧𝜎𝑥⨂𝜏𝑥) −Δ𝑠 𝑦 𝜎𝑦⨂𝜏𝑥

𝐶𝑐ℎ , 𝐻 = 0

• Symmetry: reflection + gauge

𝑅𝑦 = 𝐺𝑀𝑦

𝑀𝑦: 𝑦 → −𝑦, 𝑖𝜎𝑦⨂𝜏0,

• Majorana-mode at the magnetic domain: 𝐶𝑐ℎ and 𝑅𝑦 common

eigenstates. 𝑦

𝑧

𝐺: 𝑖𝜎0⨂𝜏𝑧

𝒑𝒚𝝈𝒚 + 𝒑𝒛𝝈𝒛 − 𝒊𝒔𝒑𝒚𝝈𝒚 + 𝒑𝒛𝝈𝒛 + 𝒊𝒔

Page 30: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

𝒑 ⋅ 𝝈 + 𝒊 𝒔

Ψ↓

Ψ↑ = Ψ↓+

• Zero mode: chiral and spin locking: 𝐶 = 𝜎𝑦⨂𝜏𝑥 , 𝑆𝑧: 𝜎𝑧 ⨂𝜏𝑧.

• 3𝐻𝑒-B: TR invariant: gapless Majorana-Dirac cone.

• Mass by mixing Δ𝑠 𝐻𝑠 = 𝜎𝑦⨂𝜏𝑥 = 𝐶Δ𝑠

𝐶=1, 𝑆𝑧=↑ 𝐶=-1, 𝑆𝑧= ↓

Ψ↓ =

0

𝑒−𝑖𝜋4

𝑒𝑖𝜋4

0

𝑢0(𝑧)Ψ↑ =

𝑒−𝑖𝜋4

00

𝑒𝑖𝜋4

𝑢0(𝑧)

Surface states of 3𝐻𝑒-B phase and 𝑝 ⋅ 𝜎 + 𝑖𝑠

𝐻𝑝±𝑖𝑠 =Δ𝑡

𝑘𝑓𝑘𝑥𝜎𝑦 − 𝑘𝑦𝜎𝑥 ± Δ𝑠𝜎𝑧

• Massive Dirac cone and surface magnetization:

3𝐻𝑒-B

𝑘𝑥

𝑘𝑦

𝑘2𝐷 = 0

Page 31: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Chiral Majorana modes along the 𝑝 ⋅ 𝜎 ± 𝑖𝑠 boundary

• Mass (surface) changes sign across the domain.

• Propagating 1D chiral Majorana mode.

• Chiral operator 𝐶′: 𝐶′ = 𝐺𝑅𝑥𝑇𝑃ℎ ⇒ 𝐶′, 𝐻 = 0,

𝑅𝑥 is reflection: 𝑖𝜎𝑥⨂𝜏𝑧, 𝑥 → −𝑥 ,

G is transformation 𝑐† → 𝑖𝑐†.

Ψ(𝑘𝑥 = 0) =

1−𝑖1𝑖

𝑢0(𝑧, 𝑦) 𝐶′ = −1,𝑅𝑦 = −1

Ψ(𝑘𝑥 = 0) =

𝑖1−𝑖1

𝑢0(𝑧, 𝑦)𝐶′ = 1,

𝑅𝑦 = −1

• Symmetry: 𝑅𝑦

𝒑 ∙ 𝝈 + 𝒊𝒔

m>0m<0

𝒑 ∙ 𝝈 − 𝒊𝒔

𝜎

Page 32: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Drag and control by magnetic field

𝒑 ∙ 𝝈 − 𝒊𝒔 𝒑 ∙ 𝝈 + 𝒊𝒔

Page 33: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Novel topologicalsuperconductivity

“boundary of boundary” Majorana fermion without

spin-orbit coupling

Spin-3/2 half-HeuslerSC – beyond triplet

pairing

Extended s-wave SC by doping AFM (Mott)

insulators

Page 34: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

QuantumMonte Carlo

“Poll”Importance Sampling

Numerical “exactness”

Beautiful mathematical structure

QMC: Tame the large Hilbert space stochastically

Dimension of Hilbert Space

~ 𝒆#𝑵

• QMC: scalable, sufficient accuracy at 𝐷 ≥ 2.

Page 35: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

35

Hubbard-Stratonovich(HS)

path integral over space-time HS fields

𝑍 = Tr𝑒−𝛽𝐻 = lim𝑀⟶∞

𝑃

𝜌𝑃

𝜌𝑃 = Tr

𝑘=1

𝑀

𝑒−Δ𝜏𝐻0 𝑒−Δ𝜏𝐻𝐼(𝜏𝑘) = det(I +

𝑘=1

𝑀

𝑒−Δ𝜏ℎ0𝑒−Δ𝜏ℎ𝐼(𝜏𝑘))

J. E. Hirsch, PRB 28, 4059 (1983)

Auxiliary Field QMC – Path IntegralBlankenbecler, Scalapino, and Sugar. PRD 24, 2278 (1981)

Fermions Grassmann variables probability

• Integrate out fermions and the resulting fermion functional determinants work as statistical weights.

• Sign problem: 𝜌𝑃 is not positive definite – statistical errors grow exponentially with sample size.

Page 36: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Kramers positivity for Dirac fermion

• Theorem 1: For any HS field config., if there exists an anti-unitary T,

)()(,,1 10

10

2 II hTThhTThT

𝐵 =

𝑘=1

𝑀

𝑒−Δ𝜏ℎ0𝑒−Δ𝜏ℎ𝐼(𝜏𝑘)then 𝜌𝑃 = det(I + 𝐵) ≥ 0, where

• Eigenvalues complex-conjugate pairwised (l, l*).

• Real l double degeneracy.

0)())(()det( **

22

*

11 nnBI llllll

• T needs not be the physical time reversal (TR)-operator.

• I+B may not be diagonalizable.

C. Wu and S. C. Zhang, PRB 2005; S. Hands, et al, Eur. Phys. J. C 17, 285 (2000).

Proof:

Page 37: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

37

The bi-layer Scalapino-Zhang-Hanke ModelD. Scalapino, S. C. Zhang, and W. Hanke, PRB 58, 443 (1998)

)1()1()())((

)(}.{}.{

,,2

1

,,2

1

,,

//

di

i

cicii

ciij

idic

i

ji

i

jij

ij

i

nnVdcnnUSSJ

inchdctchddcctH

//t

t V J

U c

d

• Intra-rung interactions: U, V, J.

Page 38: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

38.

T-invariant decoupling (Time-reversal*flip two layers)

JVUgJ

VUgJVUg

ingingining

inintchddcctH

c

i i

cAF

i

curtbond

ii

bondjij

ij

iSZH

4

334,

44,

4

34

)2)(()()}()({

)()(}.{

2222

//

• When g, g’, gc>0, T-invariant H-S decoupling absence of

the sign problem.

• T=Time reversal × layer flip

𝑛𝐴𝐹𝑀(𝑖) =𝑖

2(𝑐𝑖

+ 𝜎𝑐𝑖 − 𝑑𝑖+ 𝜎𝑑𝑖 )

𝑛𝑏𝑑(𝑖) =1

2(𝑐𝑖,𝜎

+ 𝑑𝑖,𝜎 + 𝑑𝑖,𝜎+ 𝑐𝑖,𝜎 )

𝑐

𝑑

T-even operators

𝑛𝑐𝑢𝑟(𝑖) =𝑖

2(𝑐𝑖,𝜎

+ 𝑑𝑖,𝜎 − 𝑑𝑖,𝜎+ 𝑐𝑖,𝜎)

S. Capponi, C. Wu and S. C. Zhang, PRB 70, 220505 (R) (2004).

Page 39: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

AFM and SC

𝑉 = 𝑡⊥ = 0, 𝑈 =5

8, 𝐽⊥ = 1/4, 𝐽𝑧 = 2.

• AFM ordering with Isinganisotropy appear at half-filling, and is weakened by hole-doping.

• Intra-rung singlet pairing appear as doping.

• Extended-s-wave: sign switching in the bonding and anti-bonding band bases.

Δ𝑠 = 𝑐𝑖↑+𝑑𝑖↓

+ − 𝑐𝑖↓+𝑑𝑖↑

+

Page 40: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Superconductivity by doping Mott insulators

• Coexistence between SC and AFM at 0 < 𝑥 < 𝑥𝑐 = 0.11

• Triplet pair density wave appears in the coexistence region.

• The 3D Ising class of the magnetic transition.

𝜂 ≈ 0.036, 𝑧 = 1

Δ𝑧 𝑄 = − 𝑖(𝑐𝑖↑+𝑑𝑖↓

+ + 𝑐𝑖↓+𝑑𝑖↑

+)

Page 41: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Staggered inter-layer current phase

• High Tc, heavy fermion……

i) 𝑡⊥ = 0.5 ii) 𝑈 = 𝑉 = 0.3, 𝐽 = 1.6

iii) 1/8-doping

Long-range staggered current order:

𝑡⊥ = 0.1, 𝑈 = 0, 𝑉 = 0.5, 𝐽 = 2.suppression of order

S. Capponi, C. Wu and S. C. Zhang, PRB 70, 220505 (R) (2004).

Page 42: Unconventional Superconductivity Topology, Symmetry, and … · 2018. 10. 21. · Unconventional Superconductivity –Topology, Symmetry, and Strong Correlation Congjun Wu University

Summary

• Doping AFM Mott insulator

extended s-wave superconductivity

• Beyond triplet

Septet topo-SC from multi-component electrons (half-heusler)

• “Boundary of boundary”

Majorana zero/chiral modes without spin-orbit coupling

𝒑 ∙ 𝝈 + 𝒊𝒔

m>0 m<0

𝒑 ∙ 𝝈 − 𝒊𝒔