UNCLASS;i V!u · 2011. 5. 13. · R(M) is the spectral responsivity of the detectDr in V W'1 m-I 1...

90
UNCLASS;i V!u UNLIMITED DISTRIBUTION CRDV RAPPORT 4233/81 DREV REPOR-T 4233/81 DOSSIER: 3633H-039 -FILE: 36331-039 SEPTEMBRE 1981 SEPTEMBER 1981 00 00 DETECTION RANGE PROBABILITIES OF P:\SSI E INFRARED SYSTEMS FOR TIHE NWIRTIT ATI.ANTIC A. Laflamme OEC 2 3 1981 " BUREAU - RECHERCHE ET DEVELOPPEMENT RESEARCH AND DEVELOPMENT BRANCH MINISTERE DE LA DEFENSE NATIONALE NON CLASSIFIEf DEPARTMENT OF NATIONAL DEFENCE CANADA DIFFUSION ILLIMITEE CANADA 81 12 23 110

Transcript of UNCLASS;i V!u · 2011. 5. 13. · R(M) is the spectral responsivity of the detectDr in V W'1 m-I 1...

  • UNCLASS;i V!u

    UNLIMITED DISTRIBUTION

    CRDV RAPPORT 4233/81 DREV REPOR-T 4233/81

    DOSSIER: 3633H-039 -FILE: 36331-039SEPTEMBRE 1981 SEPTEMBER 1981

    00

    00

    DETECTION RANGE PROBABILITIES OF

    P:\SSI E INFRARED SYSTEMS FOR TIHE NWIRTIT ATI.ANTIC

    A. Laflamme

    OEC 2 3 1981 "

    BUREAU - RECHERCHE ET DEVELOPPEMENT RESEARCH AND DEVELOPMENT BRANCHMINISTERE DE LA DEFENSE NATIONALE NON CLASSIFIEf DEPARTMENT OF NATIONAL DEFENCE

    CANADA DIFFUSION ILLIMITEE CANADA

    81 12 23 110

  • CRDV R-4233/81 UNCLASSIFIED DREV-R-4233/81DOSSIER: 3633H-039 FILE: 3633H-039

    DETECTION RANGE PROBABILITIES

    OF PASSIVE INFRARED SYSTEMS

    FOR THE NORTH ATLANTIC

    by

    A. Laflamme

    CENTRE DE RECHERCHES POUR LA DEFENSE

    DEFENCE RESEARCH ESTABLISHMENT

    VALCARTIER

    Tel: (418) 844-4271

    Qu6bec, Canada October/octobre 1981

    NON CLASSIFIE

  • [.-.

    UNCLASSIFIED

    RESUME

    En s'appuyant sur les probabilit6s d'extinction du rayonnement

    infrarouge dans l'atmosph~re, on pr6sente les probabilit6s de distance

    de d6tection de cibles par les syst~mes passifs de surveillance en

    infrarouge. La zone g6ographique d'int6rSt est l'Atlantique nord.

    On considbre les 2 principales fenStres atmosph6riques dans l'infra-

    rouge, les bandes de, 3 1 5 et de 8 1 12 micrombtres. Les r'&ultats

    permettent de pr6dire et de comparer rapidement la performance des

    systbmes de d6tection. (NC)

    ABSTRACT

    Bad-,on probabilities of extinction of infrared radiation in•,the atmosphere, range probabilities for target detection by passive

    invrared surveillance systems are presented. The geographic area

    covered is the North Atlantic. The two major atmospheric infrared

    windows, the 3 to S and the 8 to 12 micrometer bands, are considered. iiThe results allow to predict and compare readily the performance of

    detection systems. (U),/

    PC __ __ _

  • A UNCLASSIFIED

    TABLE OF CONTENTS

    REiSIJE/ABSTRALCT .. . . . . . . . . . . ... . . . . . . . . .

    1.0 INTRODUCTION..................................................1

    2.0 MATHEMATICAL FORMULATION ..................................... 1

    3.0 LIMITATIONS .................................................. 4

    4.0 DETECTION RANGE PROBABILITIES ................................. S5

    50CONCLUSION ................................................... 7

    60ACKNOWLEDGMENTS .............................................. 8

    7.'REFERENCES ................................................... 9

    TABLE I

    FIUE o7

  • UNCLASSIFIED1

    1.0 INTRODUCTION jA previous report proposed a simple model for the extinction

    of infrared radiation in the atmosphere (Ref. 1). This model was

    used in Ref. 2 with the probability data of the pertinent meteoro-

    logical variables as derived from measurements made by Ocean Weather

    Ships to compute probabilities of infrared radiation extinctions in

    the North Atlantic.

    In this report, these extinction probabilities are used to

    compute range probabilities for detection/tracking with passive systpms

    in both major atmospheric iR windows, the 3.4 to 5.0 micrometer and

    the 7.75 to 11.75 micrometer bands, hereafter called the 3 to 5 and

    the 8 to 12 micrometer bands.

    This work was performed at DREV between March and June 1981

    under PCN 33H39 Electro-Optical Fire-Control Tracking Study.

    2.0 MATHEMATICAL FORMULATION

    The signal voltage produced by a passive detection system can be

    described (Ref. 3) as:

    Vs f JC() T (X) T (X) R(X) dX [1]r X

    where V is the the peak signal voltage in V,

    A is the area of the entrance aperture of the optics in cm 2

    r is the range to the target in cm,

    J(X) is the spectral radiant intensity of the target in W sr pm

    T a() is the spectral transmittance of the path (dimensionless),

    iia

    Lr_--

  • [+, r"

    UNCLASSIFIED2

    T o() is the spectral transmittance of the system (dimensionless),

    R(M) is the spectral responsivity of the detectDr in V W'1 m-I

    1 and X2 are the limits of the spectral interval of the sensor

    in jim.

    t To simplify [1], it is customary to convext the wavelength-dependent terms into their integrated values over the bandpass of the

    sensor. Effecting this and dividing both sides of the equation by Vn,

    the rms noise from the sensor system, one obtains:

    Vs =[A Tn RI|JJT | IS -2n-I +

    where S is the signal to noise ratio.

    By definition, the Noise Equivalent Irradiance (NEI) is the

    irradiance at the entrance aperture which produces a peak signal equal

    to the rms noise, i.e. S = 1. Since the second bracketed term in [2]

    is the irradiance from the target, then for S = 1,

    VNEI = A T R [3]

    and [2] can be written

    TJ a

    NE-I" -2 [4]

    r-2

    in which NEI is the noise equivalent irradiance of the system in W cm

    J is the radiant intensity of the target in W sr ,

    S is the required signal to noise ratio.

    I.°.

  • UNCLASIFIED

    3 -

    The transmittance of the path from the target to the sensor has

    the following form:

    Ta -0 tr [S]

    where at, the total extinction coefficient in km-, is the sum of 3

    components:

    t = a +a +a [6]

    in which a is the extinction due to aerosols, in km"-

    a is the extinction due to rain, in km-,

    am is the extinction due to molecular absorption, in km-

    Both aa and ar are relatively independent of A and their average

    values can be used readily. On the other hand, am varies rapidly with

    A and the use of a single average value would introduce appreciable

    errors in the calculation of Ta for different path lengths. Laflamme

    and Corriveau (Ref. 2) computed and average value for am at a fixed

    range of 10 km (amlO) and multiplied it by a function of range (FR) as

    a range correction factor. Thus

    FR x [a]am •mlO

    By-substituting [5], [6] and [7] in [4], we obtainj e-(a + a + FR x a )r

    1=__ __ _ e a r m(810= 2 181So NEI x 100r

    '1,

  • *: -" ..p .y. w. ' ... . - • .• o7 = - .. •. .. •.•- -- . * r .÷W.......•Y r

    UNCLASSIFIED

    in which the factor 100 has been introduced to express the range, r,

    in km rather than in cm. The next equation is easily derived from [8]

    K = loges.NEl O) a r FR x )r + 2 loger [9]SNIx 10lO =(a+a m

    K is a single number which characterizes the engagement, namely

    the target by its radiant intensity, J, the sensor by its noise equiva-

    lent irradiance, NEI, and by the signal to noise ratio, S, required to

    obtain a desired false alarm rate.

    The extinction probabilities computed in Ref. 2 were used to

    calculate the probabilities of detection ranges by solving [9] for

    the range, r, with K as a pprameter. The results can thus be applied

    to any passive system whose operatiu,.. zan be described by the above

    equations.

    3.0 LIMITATIONS

    In this previous discussion, the noise has been taken as system

    noise only and any extraneous noise signal generated by the background

    (clutter) has been neglected. Supplementary processing performed by

    the sensor system for the extraction of the target signal from clutter

    could possibly be assimilated to an increase in the signal to noise

    ratio, S, required and/or a delay in the target declaration. The detec-

    tion ranges calculated in this report are then maximum ranges, as ob-

    tained against a clutter-free background. The clutter-induced reduc-

    tion in detection ranges cannot be evaluated properly at this time

    because of the lack of statistical data on the clutter intensity and

    spatial distributions. Furthermore, this reduction will depend on

    the degree of sophistication of the sensor signal processing scheme.

    is __ _ _ _ _ _

  • I UNCLASSIFIEDA further restriction is that the model used provides extinction

    coefficients for horizontal paths near sea level. Since the extinction

    usually decreases with altitude while the signature of the target may

    become stronger due to an improved aspect angle, the calculated

    detection ranges should be even better for slant paths. On the other

    hand, the higher the target, the greater are the chances that the path

    between sensor and target will go through clouds, which would shorten

    ranges considerably. This last effect has not been evaluated, again

    because suitable statistics on cloud frequency, type, ceiling, etc.

    are not available presently.

    4.0 DETECTION RANGE PROBABILITIES

    The extinction probabilities presented in Ref. 2 were based

    on the measurements of meteorological parameters collected by Ocean

    Weather Ships. Table I lists the locations of the ships and the

    period of observation covered. Each location is identified by a

    letter and all are in the North Atlantic, except for N and P whichare in the Pacific. The extinction probabilities were used with

    equation (9] to compute detection range probabilities with K as

    a parameter, so that any engagement between a given sensor and a

    given target can be studied with the curves presented.J

    The detection range probabilities have been computed for both

    the 3 to S and the 8 to 12 micrometer bands and each figure presents

    2 sets of curves, each set applicable to one band in a corresponding

    location ane season.j

  • UNCIASSIFIED

    TABLE I

    Weather Ship Locations

    OWS Ident Period of Record Position Limits

    A 1964 - 1971 61.0-63.0 N, 31.0-35.0 W

    B 1965 - 1972 55.5-57.5 N, 49.5-52.5 W

    C 1965 - 1972 51.5-53.5 N, 34.0-37.0 W

    D 1965 - 1972 43.0-45.0 N, 40.0-42.0 W

    H 1970-present 35.0-37.0 N, 47.0-49.0 W

    I 1964 - 1971 59.0-61.0 N, 18.0-21.0 W

    J 1964 - 1971 52.3-54.3 N, 17.8-20.8 W

    K 1964 - 1971 44.0-46.0 N, 15.0-17.0 W

    M 1964 - 1971 65.0-67.0 N, 0.0 - 4.0 E

    N 1965 - 1972 28.5-31.5 N, 138.0-142.0 W

    P 1965 1971 48.5-51.5 N, 142.6-147.6 W

    Figures 1 to 44 show the detection range probabilities for each

    of the 11 locations and each season. Figures 45 to 55 refer to the

    same locations but present yearly averages.

    A

    The locations have also been grouped in 4 regions:

    - locations A, B, C, and M, North of the Gulf Stream;

    - locations D, H, J and K, in thL Gulf Stream;

    - all locations above, or the North Atlantic;

    - locations N and P, Pacific.

    S• "'' • '•" .. ... . . .... I.... - -' • . . ..- ' r W •

  • UNCLASSIFIED7

    Figures 56 to 71 show the detection range probabilities averaged

    for each region, season by season, while figures 72 to 75 present

    regional yearly averages.

    Each figure is properly identified and should be relatively

    easy to use. As an example, for a surveillance system having a NEI of

    10 W cm working against a target with a radiant intensity,

    J, of 3 x 32W sr- and requiring a signal to noise ratio, S. of 7,the value of K would be

    1 2K -log ~ 3= 09.06

    The detection range probabilitiy for a given location (or region)

    and season can then be read directly for K =9 on the appropriate

    figure.

    5.0 CONCLUSION

    By using IR radiation probabilities derived from meteorological

    measurements made by weather ships in the North Atlantic, detection

    range probabilities have been computed which are applicable to most

    passive IR systems in both the 3 to S and the 8 to 12 micrometer bands.

    Although the accuracy of the results is limited by some factors

    such as the adequacy of the extinction model, the presence of intervening

    clouds, and the effect of background clutter, the curves presented

    readily supply reasonable estimates of the expected performance of

    I IR surveillance systems and would be even more precise as a toolto establish the relative merits of various systems.j

  • UNCLASSIFIED8

    6.0 ACKNOWLEDGMENTS

    The author wishes to thank Mr. R. Corriveau for his enlighteningcomments during the preparation of this report.

    ii

    I

    4-

    t!

    F

    j "_-__ _-_-

  • VINTn

    UNCLASSIFIED9

    7.0 REFERENCES

    1. Corriveau, R. and Laflamme, t,., "A Simple Atmospheric ExtinctionModel for Infrared Radiation" (U), to be published.

    2. Laflamme, A. and Corriveau, R., "Probabilities of Extinction ofInfrared Radiation for the Northern Atlantic" (U), DREV R-4216/81,UNCLASSIFIED

    3. Hudson, Richard D. Jr., "Infrared System Engineering", John Wiley& Sons, Inc, New York, 1969.

    :4,

    iI

  • UNCLASSIFIED10

    PRO. O..O C. A

    .. 0 ____SPRING

    .8

    p;L2.2

    0I

    •.0 __ _ _ _ __ _ __"_ _ _ _

    .0 .1.0.0 20.0 30.0 4-.00 50.0

    3-5 I1ICRO11ETER RANGE (KIY>

    PRON. Loc. A

    .1.

    .6

    10 .10.0 20.0 30.0 4.0.0 50.0

    8-12 I1ICROJIIETER RANGE C K17

    FIGURE 1

  • UNCLASSIFIED

    1111

    INI

    .2.

    .04 K

    .a .L0 a20.0a 3.0a L4-0O a So

    6-.L t1ICROhETExR RAJVCE CK??)

    FJ~FIGUR --C A

  • UNCLASSIFIED12

    PROF. (-OC A

    .21

    20.0a a 3a:.o0 4-. a.0 so.C

    3-6 11!CRO/1CTER RANCE < K N >

    NI .80

    8-1.2 h1ICRO11ETER RANCE

  • UNCLASSIFIED13

    PRON. AOCc. A

    1.0 _______ rz N~E 7-_ Z___M

    La.

    22

    2 0 . 0 0 .So

    3.0c

    .0 10.0 20.0 30.0 W-.0 50.0

    3-12 TICROM1ETrm RANCE (Ct)

    FIGURE - 4

    PRP AC

    1. ___UNE

  • UNCLASSIFIED

    14

    PROF. AOC FSPýWR I V

    .8

    2

    a 10.• 2a . a 31 . 0 Ll- . 0l s . 0

    3--6 SolI CRO)Y•ET'ER RAN,;.E CKNfI>

    PR•OM . .OC .

    ..

    .2

    S\7 \. \•.0 .10.0 20.o0 30 . .0.0 0 .0

    3-12 NICROn1ETER RANGE CKH>

    FIGURE - 5

  • UNCLASSIFIED15

    .00..0 20.0 30.0 40.0 50.0

    3 - #m ICRON1ETri RANCE CK?1

    *PROF. 10C. F

    V ~1.0

    .L8

    .22

    '113

    .0 l0.0 20.0 so0.0 4l0.0 .50.0

    6-12 IIICROIIETER RANC~E

  • UNCLASSIFIED16

    PROD . •LOC . PFALL

    ..

    L2

    FALL

    .4.

    .2

    • 0 K-0-

    .0 10 .. 0 20.0 :0 0 wo .0 a 0.0

    6-12 IICROYE7TER RANrCc E C Kil >

    FIGURE -7

    PROD.- I • .... F

  • UNCLASSIFIED17

    PROP. .. Oc. ff

    1..0 __.0 20.0 30.0 w a___ 5 .

    •-.o17cmO~frTzR RANCE

  • UtIrCLASSIFIED18

    PROP. I-oc. C

    1.0

    4.L 2

    . 10.0 20.0 30.0 1+0.0 SO. 0

    3-6 "CROJ1ETER RANCE

    K PROF.Loc. CSPR 4gNG

    .2 1

    .0 .10L.0 20.0 30.0 a.0.0 SO.0

    8-12 IIicRoIEreR RANCE CK?1)

    * FIGURE -9

  • !UNCLASSIFIED

    19

    PROP. LOC. C

    .0

    . 0 .10 . 0 20 .0 30 .0 w a . a: 60. 0

    PROP. L-OC. c

    1..0

    .22

    .0 K_ _ _ _ _ _ _ _ _ _ _

    .0 10.0 20 .0 30.0 W0 .0 50.0

    6-PO• "ICROCCER RANCE CKM>

    FIGURE - 10

  • UNCLASSIFIED20

    PROP. LOC. CFALL

    .6

    S.4.

    .2L

    a.0 _-, __ L'_6 a a So.a.0o .2o.0. 20.0 o 0o. 4o.0 o 0. o

    3-6 J ICRC•$d2 rl' RANCE

  • UNCLASSIFIED21

    PROP. .. OC. CZr I NTER

    H 30.0 20.0 300 -

    PROP. I.OC .~ .0 _____ rINTEM.6 I- i•~•E £ •,NGE (I

    .8

    .0 1.0.0 20.0 30.0 0 0.0 60o.0

    6-12 I1CROMETER RANCE C KN )

    FIGURE - 12

    • -÷r . ... ... . .. ,--I

  • UNCLSSIFIED22

    PROP. LaOc p

    SPR Imer

    .66 _____ERRAC

  • UNCLASSIFIED23

    PROM. 4O. o P

    1.0

    .4.

    .0 c0.0 20.0 30.0 WC. 50so.0a

    3-s t1!cRob'erzR RANCE~

    PROM. .. Oc . p

    SOMMER

    • 0t I10.0I: 20 .0 30. 4) . a:: 60•(1 I. 0

    FIGURE -14

    .8 I I 5 to -•a . .

  • UNCLASSIFIED24

    PROP. LOC p

    a.0 , _ FALL., 20

    LS

    .2L

    .0 K0

    .0

    10.0 2 o .o

    3 0 .0 4 0 .o

    50.0

    3-1 2

    m IrcR o,

    E Tm

    R A N G E

    )i~.6

    ;., iFIGURE

    - 15

    ma"

  • -. .. ..... .. - . .. •'- -• " : •.... -. J - -- '- - -.. ... .... ... .. .

    UNCLASSIFIED25

    PROP. AOC. p

    .L.O ~ ~ E I____T NTER________

    .6

    L2l\'•0 a0 • V :•0• 30 0 •l a +C . a 60.•0

    ,'3-s mrcxooEr"E• RANCE 1.

    .0 10 ..0 20.0 30.0 w 0 .a 0.0

    3-2 I1ICRONET'ER RANCE CKN>

    FIGURE 16

  • PIP

    UNCLASSIFIED26

    PROM. I.. o N

    L4.

    L2

    . Q .0 .0 20.0 30.0 4.0. WOaS

    L 0.

    6-12 CRO1Er ER RANCE (XIX)

    FIUR 17

  • UNCLASSIFIED27

    .8L 2

    10.0 0 a 3a V 4.0 so.a

    1.0 ______f sit_

    .a 120.0 20.0 30.0 4-0.0 C%0.a0

    e-i2 oicitohErrit NANCE < KlY >

    PROF.R 18O.

  • S. .. . . .. . ,11-.-______________ -

    UNCLASSIFIED28

    PROP. L.OC. N

    a. FALL1.4.

    •.0 __" __ ___ __ __ _____ _

    tALL

    .0 .10.0 20.0 s0.0 +0 .0a 60.0

    3-6 "7IcR01E7rr RANCE (XII>

    PROP. LOC. a

    .1. __ ___FALL

    1.8

    L4

    .4 N-

    I,

    • 0 .1.0 .0 20.0 30.0 -o . 0 50.0

    8-J.2 fIJCROfIWTER RANCE

  • UNCLASSIFIED29

    PROP. LOC. x

    ,.0 ____ ra N.ER_ _

    L3

    L2

    .4

    ..

    .0

    .0 10.0 20.0 30.0 4o.00 s0.

    6-2 i1CRONETER RANCE CKN>

    F1. .R0 - 20"_

    .8

    1i...

    • 2..0 .10. 200 . 3:0 .0D 4-.0. 50.0

    86-12 ii!CR011 JE'•R RANGEt (KY)

  • UNCLASSIFIEiD30

    PROP. LaOC. ISpfrNG

    4.

    [&.. 2 ,"•Q,.o. 1

    .22

    .0 .L0.0 20.0 30.0 40.0 50.0

    9-6 "IS CROmeTER RANGE

    PROP. LOC. IJ.. oSPRINVG

    . 0 .10 .0 "20 .0 U . 0 'O. 0 50.•0

    6-1.2 1'1CRoMT'I2ER NANCE CKO'I>

    FIGURE.- 21

    II.

    .6i

  • *~~~~~I WWI",'. ~ " f - - -

    UNCLASSIFIED- I -31

    PROF £.OC. !

    J.

    ic4.

    .4

    .2

    .0 _ _ _ _ _ _ _ _ _ _ _

    .10.C0 20.0 30).0a 4.0.0 SO.o

    6-1. 01CRON1ETER MANGE

    PFIGU. L22 .

  • UNCLASSIFIED32

    PROP. I.OC. I

    a .POAL L

    .L

    •0 K"

    I.0 0.•0 20 0 30.0 9+ 0a 6..0

    :3-6L; "'ICROO'RT"ER RANIGE

  • UNCIASSIFIED33

    PROF. 4.0c I

    .22

    :9-5 !!CRO1YETER RANCE

    PROP. 10C. I

    ,1.0

    .22

    .67

    1.0 2004.. 3 O

    .- 1 _____EMRNC ~f

    FIGURE -24

  • UNCLASSIFIED34

    PROP. £.OC JSPRING

    S.6

    K.4.

    .0 1 a a 20.0 30 a 4.30 s0 . o

    •. • -6 I/ZCRO'•I•E,'•RANC.E

    PRP 1.c.22

    .2

    • 0 K-- 0

    .0 10.0 20.0 30.0 4-0.0 60.0-- 12 0ICROI11TR RANGE C KI1>

    I FIGURE- 25

  • UNCLASSIFIED35

    P'R0. .LOC. .

    .6•.&

    a •4 a a 20.0 .0.0 4.0 a .0

    ; 3-6 "IcROIE"ars RANGE

    N2

    9 .2 •LO ..

    .0 .10.0 20.0 30.0 4.0.0 60.0

    6-12 MICROMEITr RANGE CKH>

    FIGURE - 26

    PROF. .OMid

  • UNCLASSIFIED36

    PROP. £-OC. .. L

    .L6

    , S6 M~ie•E~aERRANCE

    PROP. L.OC . ,J

    • .2

    .00 .0 20c.0 S.0 w a .. 0 60.• 0

    6-12 I0ICROMETEM MAE

    FIGURE - 27

  • UNCLASSIFIED37

    PROP. L.OC. .rrr.N78ER

    .8

    SS

    .2

    •a .10.0 20.0 30.0 1-0.0 50.0

    3-6 "ICROI"ETre RANGE

    • iPROF ,.LOC . ..L i o ______rNTER____1.0 Zrl.1X

    .0 10.0 2,0.0 30.0 Wa.00 50.0

    8-12 tIICROMEETMR RANCE CKJ>

    FIGURE- 28

    iI

  • UNCLASSIFIED38

    PROp. I-OC. K

    SPA' INC

    .0 .1.0 .0 20 .0 30 .0 4-0.o 0 $0l. 0S-6 "Icome'"x RANCE

    : . 2

    . ,0 .0 20.0 30.0 4. 0 0 60.0

    6-0 "IICROORTER RANCE (

    FIGURE 29

  • UNCLASSIFIED39

    PR'OP. I..- . K

    1.0

    .4.

    H .0 _ _ _ _ _ _ _ _ _ _ _ _.a ... 0 a ea0.0 30.0 '-0.0 50 .0

    3-6 "ICRO"ETER RANGE

    PROP. LOC. K

    SU..ERii

    '9. 2

    1.0

    .0 ±0.0 20.0 :90.a 4-0.0 50.0

    8-l2 IIICRoffETRs RANCE CKNI)

    FIGURE -30

  • UNCLASSIFIED40

    PRO. L-OC. K• FAl..

    LS.4.

    .0 .0.0 20.a 30.0 4o . a 50.0

    O -6 .IICROITE"R RANCE

    Pio&. . £OC. K

    I'q.

    41.

    .0 . a 20.0

    6-12 .1ICROIoEo RANCE

  • UNCLASSIFIED* 41

    PRO&. 4LOC. K- , Er NTXR_

    .6

    L 4-

    .8L h

    L2n.2

    .0 .L0.0 20.0 300 '1.0 L+a 5 0.0

    3-6 "hCRO1ETER RANGE CKN>

    PROF. I.OC . K

    1.0 ___.rA'T-w

    IL2.8.

    .2

    .0 10.0 20.0 7.0 . a 0.00 60.0

    6-12 ffICMO01Y7rE RANGE (Kif)

    FIGURE - 32

    mI

  • UNCLASSIFIED42

    1 .0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

    .2

    .6. 2002.0W.

    *1.0

    .2

    2\.2.

    .00 0. 310.0 Wo0. 60.0

    PROF. lflCOC.7&J ACEC

    1.0IUR 33__SRN

  • ----------- . . .

    UNCLASSIFIED43

    PROF . £. OC. .V J..L0 o- ___ _ _ _ _ __

    4.0

    .L2

    I L_.0 .1.0.0 20 .0 30.0 94.0 5 0.0

    3-5 IIICROIIWTER RANCE PROF . £O.0 .f

    Lroc ff

    . 0 10.O.0 2c) a 00. 0 L'O a a GO a

    6-.1.2 fI'/cnOrc."Em RANCGE CKNMl

    FIGURE - 34

  • UNCLASSIFIED44

    P'ROP. Lac.FrAL L

    .o 1o.0 2o.o SO .o a o o •PROP. 1-.OC. /I

    L

    .0 10.0 20.0 30.0 40.0 50.0

    Z-12 fITCROMETIE;, RANCE 3

    3-1.2III~iFIGUER RE -K?3)

  • UNCLASSIFIED45

    PROP. 4OC. if

    ZrINTWRJ

    4.L 2

    . .00 20.0 30.0 w . aso50.0V

    3-5 1CO6S~ HiANGEri

    PRtOF. SOC . jy

    1.0o ____INTEN

    .602~ 00w c

    6.26 CT)ETitRNECN

    FIGUR -3

  • UNCIASSIFIED46

    PROP. LOC. N.L €)SPRIJG

    L2

    .0 10.0 20.0 30.0 W a0 50.0

    :3 - SIoCROM10N TE~R iANCE < Ki>

    PRO&. LOC. N

    1.0 SP R N

    .

    .2

    .0

    .0 10 .0 20.0 30.0 * 0. 5 S0 . 0

    8-12 IICROIETER NANCE < K"7>

    FIGURE - 37

  • UNCLASSIFIED47

    PROP. L.OC. N

    2

    .2 !

    .0 _ _- _ _ _ _ _ _0 .1._ _

    .0( .1.0.•01 20 .0 30.•0 4q-0 . 5 O•0.0

    3--s "ICROff8NTER RANGE < KI>1t

    PROP. £.OC. N

    .8..

    Li\

    .2

    .0 10.0 20.0 30.0 W.o0.0 c0.0

    6-1.2 "ICROI"TESR RANGE CKH>

    FIGURE - 38

  • I _ - _ _ _... .. . -h UNCLASSIFIED

    48

    PROP. LOC. N

    1.0 FALL

    .0

    t2

    .0 o0.0 20.0 .0 a 41.0° 0o.0

    3-5 I1ICROI1ETER RANGE < Kl >

    PROP. LOC. N

    1.0 PAL L

    4.

    LS

    ,.\L

    .0 1,0.0 20 0 S0 a 1.0 . a 60.0

    6-12 0I'CROIETER RANGE NICI1,

    FIGURE - 39

  • UNCLASSIFIED49

    PRO&. .Oc. Ni

    ZINTER

    1.0

    .6

    .2

    .0 .1•0.0 20.0 30.0a •.0 560.0

    9-- iiICROI1ETER RANGE CKH>

    PROF . LOC. N

    1.0 ZINT.XR

    .4

    .6

    \1 2

    .0 .10.0 20.0 30.0 1+0.0 60.0

    6-12 JllCROffX7*XM RANCE CK0N>

    FIGURE- 40

    ______

  • UNCLASSIFIEDso

    5O5

    PRf'OPn. LOC. P

    .8

    IL .4S. NG ,1' .2 _____

    .2-

    1.0 _ _ _ _ 0_ _. _ _

    .0 .1.0.0 20.0 30.0 4. .0 50.0

    3-6 IIICRO/IETER RANCE

    PROP. LOC. P

    ...

    .\0

    .0 .10.0 20.0 90.0 4•0.0 50.0

    6-2.2 oJicRmflSTem RANCE CKJ>

    FIGURE = 41

    ILJ

  • UNCLASSIFIED51

    PROP. LOC. P

    1.0 S0flYIIXR

    •.L

    .2 3

    .0 .1.0 0 20.0 So.0 4.0 0 50.0

    3-5 I1ICROffETRR RANCE 1

    PROF. LOC. P

    1.0 E___SJlfR

    .6L 2

    .22

    FIGURE - 42

    .1!.

    II

  • UNCLASSIFIED52

    PROP. LOC. P

    0FALLL

    .6

    lo a L 20 .o 30 . a w0. 0 0 . 0

    '- 3-6 "ICRO"ETER NANC.E

    SPROP. I..Oc . P

    .6 :!

    .4.

    3

    .0

    .0 .10.0 20.0 30.0 o.0. 50 s.0

    6-12 01CROI1~TER NANCE CKNI>FIGU. - 43i

    .6 .1.

    . 0 .1.0.•0 20 .0 30 .0 40. 0 50 . 0

    8-.L2 I1ICRO11E2"ER RANGE CKN)

    FIGURE - 43

    I __.__

  • UNCLASSIFIED53

    PRO&. L.OC. P

    1 07B~

    .LS

    .0 .2.a.0 20.0 30.0 '40.0 60.0

    S-6 "hICRONETE.R RANCE

    PROP. 49GC. PLr I NTAR

    .0 3.0.0 20.0 :90.0 '40.0 50.0

    6-2.2 "1!cso"E1sTA XANGE CKM>

    FIGURE -44

  • UNCLASSIFIED

    P~roD. L.OC. A

    1. ____SPRIN4 5&/flER FAL.L t~rI N7*ER

    .LS

    L2

    .2

    a0 10.0 20.0 30.0 V 0. 50.0

    3-6 nICRO1E~TER RANCE

    PiRODr. LOC . A

    1.0 NPM dM4 srJIjlERm FA.LL UINT1EM

    14.0

    .2

    .0

    .0 10.0 20.0 30.0 4.0.0 50.0

    6-12 "IICROJIETER RANCE ICKH)

    FIGURE - 45

  • UNCLASSIFIED55

    PROD. LO. o USPNItJG SOONEfR FrALL I- vTER~

    1.6

    L4

    .62

    .22

    .0 .10 .0 20.0 so.0 4.0.0 50.0

    3-S Lo ftCO fE RJ4 K~

    1. ____SPRING SOONIER FALL UrINTER

    .6D

    .0 1 .0 0.0 0.0 40.0 50.

    01RM.' RNECN

    FIGURE 4

  • UNCLASSIFIED56

    PROF. LOC. C

    1. 0 SPRING s.UJflER FALL ErINTER

    J.. __ _ _ _ _ _ _ _ _ _ _

    .2

    .0 _ _ _ _ _ ._ _ _ . _ _ _

    a0 10.0 20.0 30.0 4+0.0 a 50.0

    9-s oICROffeTeR RANGE CKit>

    PROP . LOC . C1. 0 SPRING SfJINJER FALL WINTER

    .8 __,___

    .4*4

    .0 .10.0 20.0 30.0 40.0 60.0

    8-1.2 fficRofIfTER RANCEK -4>

    FIGURE - 47

    _~~ 7-. z__

  • UNCLASSIFIED57

    PROP. LOC . p

    1.0 SPRING SOONER FALL E ZrINTER

    J..

    .0 .1.0. 20.0 So . a 0 . a 50.0

    9.-6 "£cso"E£rs RANCE •

    PROP. LOC . vSPRINCG SOJONE1R FAL-L. ErJNrctR

    12

    k.44

    . 0 ____ __ _ __ __ _ 0.0 .1.0.0 20.0 30.0 40.0 so. 0

    6-,.2 if1cRov"ETR RANGE CKff>

    FIGURE - 48

    L .., ..

  • UNCLASSIFIED58

    PRO&. LOC. 8

    1. a sPRmNG. SoifflER FALL XrXNKER

    J..O

    .22

    .0 _K'_ L

    1 . .0.0 20.0 30.0 0+0.0 50.0

    3-5 I1ICROff8'TE•R RANGE

    FIGURE - 49

  • UNCLASSIFIED59

    PROP. LOC. I

    *0SPRING SOONEI~R FALL..r TIIN 79R

    .0 10 0 2 . 0 0 W .a 5 .

    1.0 SRN ONRPILtI7s

    .0 .10.0 20.0 30.0 4+0.0a 50.0

    6-12 fICROM~Erc RANGE~ (XII

    FIGURE 5

  • UNCLASSIFIED60

    PhROF. £OC. J

    SPRING SUrMNER FA" 4 rINTWR

    .,61 0

    1.0

    4 .0 10.0 20.0 30.0 4o0.0 50.0

    K-12 #ICRONE1TER RANCGE CKt3>

    FIGURE - 51

    PRF LO..

  • UNCLASSIFIED61

    PROD. LOC. K

    - • 0 SPRING SYIMMER rA.L - TrINT"ER

    NL2

    .0 .10.0 20. 0 0.03 a 0 0 a 0.0

    S-S2 tICROffETER RANGE

    4 -~PROP. LOC. K

    1.0______SPRr114 SOONE IIR PA44 A INTrX

    FIGURE - 52

    141.6!

  • IUNCLASSIFIED62

    PROP. LOC . )v

    SPRtN4 SCIIIISP FALL. WIrNtKR

    1.0I!

    .2

    .1.0 .1.0.0 20.0 S0 . 0 L0•. 0 so . 0

    6--2 "ICROIffETER RANCE CKN>

    .FROG. LocE. -5i,• ~3?RIzN• StJNNR FALL. r•r!NER

    i " I

    .0O .t.0.0 20. 0 30. 0 4O. 0 50. 0

    i FIGURE - 53

  • UNCLASSIFIED63

    PROP. A.OC. NSPRING Su/il ER FALL tIJ'NTXR

    AS

    .4 \L2.2.

    a X-

    .0 .10.0 20.0 30.0 4.0.0 60 . 0

    :9-6 IIICROIerTEm RANCE (KNM

    PtROp. LOC. NSPRING SImNER FALL UriJNTER

    •L 1II L

    -1

    0 ,10.0 20.0 30.0 40.0 50.0

    8-.2 IIJCROIIETER RANCE C•HC>

    FIGURE -54

    I -

  • - - J

    UNCLASSIFIED64

    PROD. t.OC. P

    1.0 SPRING SOONEIR FALJL. ,rrUItR

    S1-6 _JCOErrm RANCE

  • w

    UNCLASSIFIED65

    PROP. LOC. ADCIII* $PRINC

    S£4.

    3

    * �.. 2

    .2

    .2.

    .0

    .0 .1.0.0 20.0 30.0 4.0.0 50.0

    3-� J1ICROI1�TE�k RAN�r (Kil>

    PROF. L�C. AFC 111

    SPRf�

    .0 1.2.

    I

    4.0 .0 .1.0.0 20.0 30.0 40.0 50.0

    6-1.2 PIt CROP! UT UK RA�U (Kif)

    FIGURE - 56

    'I . -a-.. -

  • UNCLASSIFIED66

    PROP. £OC. ANC I I

    1.0

    10 . 200 20.o 90.0 w0.0 50.0

    S-~ 1IC~ffT~RRANCE

    PROP. £.Oc. AOd?!

    1.6

    .4 a2

    .022 . 3 . f a a S .

    6-12 NICROM.e."RANCE CKM

  • UNCLASSI FIED67

    PROS. ILOC. ANC II

    1.0

    ~~~0.0 30.0 2o o o 40 .0 o.o

    3-5 NCROI~T~RRANCE~

    PROS. £OC . APCIII

    * ____ _ PALl

    .0020 0. o0s.

    6-12iyicojyjrxx ANCECK1.

    .IUR6-5

  • UNCLASSIFIED68

    PROS. LOC. ADC I

    . 0 _ _ _ rINT ER

    ti

    i.4. 2

    .2

    10.0

    •.0 .0 .0 2 .0 3:0 . 0 4.0.0 51:3.0

    3-,i.6 ,•hICROI.&TEJ RANGE£ CKNI>

    PROP. Loc. AFIN

    1. ____WIN7rc

    .2_

    .0 3.0.0 20.0~ 30.0 +0 . a 50.0

    a-.le NICROIIETER RANGE (XII)

    FIGURE - 59

  • UNCLASSIFIED69

    PROF. 4OC. DRJX

    INPR'N

    L S

    .I..

    .2

    .0 10.0 20.0 30.0F 0.E0 -0.0

    6-12 01CRONF.T&S RANCE CKit)

    PROFGUR 60C P4

  • UNCLASSIFIED70

    PROD. .. OC. D*JK1. . It/U•IER

    L.6

    .84..6

    .1+

    .L2

    .0 1.0.0 20o.0 so . 0 4+0.0 •0.0

    3-6 miICRONETER RANGE CKN>

    PROP. • OC. DNJK

    .4.

    0 . 0 . 0 20.0 30.0 wa. a 0.0

    6-1.2 I01CROIIETER RANGE CXK>

    FIGURE - 61

  • UNCLASSIFIED71

    PROP. LOC. PJXFALL

    .2

    •.0 .10.0 20.0 30.0 Wo0.0 50.0

    3-• I/ICROI1W2EWR RANGE CKIF>

    PROP. LOC. DRrxK

    1.0 FALL

    .14.1

    .01

    .0 ,.10.0 20.0 30.0 o . 0 50.0

    6-J.2 fICROITE"'£R RANCE CKff>

    FIGURE - 62

    Li __

  • UNCLASSIFIED72

    PROP. L.OC. psix

    VINITER _ _ __ _ _1.0

    .22

    .0

    .0 10.0 20 .0 30.0 '.0 50.0

    3-6 MICRONfT£R RANCE CKff>

    PRON. LOC. NJKX

    .90

    .0 __ _ _ __ _ _ _ __ _ _ _ __ _ _ _

    .0 10.0 20.0 30.0 4'0.0 50.0

    6-12 .IICROVETBR RANGE CKN>

    FIGURE - 63

  • aI

    UNCLASSIFIED73

    PROP. L.OC. ACIIMDMJK1.0. ____SPR J"NG ___ ___

    .8L 6

    .4-

    .22

    .• 0 ____ _ __ _ _0 \_ .1.t •.0 a1.0 20.0 30.0 4-0.0 50.0

    3-6 M1ICROlYETER RANGE CKV >

    PROM. LOC. ANCIMDRK

    1. SPRIN4G

    .6 ±

    0

    .0 10 0 20 .0 30.0 '4.0 0 50.0

    6-12 hINCROmrETER RANCE K•(?>

    FIGURE -64

    F' • •*•

    I I I I I i' I-

  • UNCLASSIFIED

    .22

    .0 0.0 20.0 30.0 '40.0 50.0

    3-6 HIICRO11ETER RANC~E

    PROP. LOC. AffclmvDHJK

    .6L 2

    .2

    .0 ±0.0 2 0. 0 s0.0) 9+0.0a 50.0

    8-12 "IICRC'IETER RANCE CKit)

    FIGURE -65

  • UNCLASSIFIED75

    PRON. LOC. AsC.iIDRJKFALL _

    1.0.

    .4IL 2

    0 1.0. 0 20.0 30.0 W4. a 50.0

    3-- nICROMIETER RANGE 'Kff>

    PRO&. LOC. ANCIMIPH-JI

    1.0 _FALL

    .4 . _L

    .0

    .0 10.0 20.0 30.0 40.0 50.0

    6-1.2 IoxCROITEn"R RANGE CKM>

    "FIGURE - 66

  • -77-

    UNCLASSIFIED76

    P*ROP. Z.~N~ORC. ANCIIIDNJK

    1.0

    L2

    .0 3~10.0 20.0 30.0 WO~.0 5.

    9-s ROIE iycm#sft RANCE 'CKH>

    PRO&. LOC. ANCIIIDmJx

    1 .0 _ _ _ _ __ __ ___ __ __ __

    .2

    K.0 10.0 20.0 30.0 40.0 6.

    8-12 I7!CROZIErER RANCE ICKM)

    FIGURE -67

  • -- "" NE-W-

    UNCLASSIFIED77

    PROP. LOC. PN

    1.0

    .2 2

    .0 .0.0 20.0 $0.0 .0.0 50.0

    3-6 MIICROMIETER RANGE CKV>

    PROP. LOC. PN.11. OSPf'RI/NG.

    ., I \ \, I

    II

    .0 .0.0 20.0 $0.0 40.0 50.0

    6-.2 MJICROMErTER RANGE CKI>

    FIGURE - 68

    * . 1 .. ... . . ... -••,

  • UNCLASSIFIED78

    PROP. .OC. PN

    3.0 __ _ _SViIIIIER

    .2L

    .0 300 20.0 30.0 4.0.0 a 50.0

    6-12 IICROIIETEM RANC~E CKf>

    PROIGUR -C 69

  • UNCLASSIFIED79

    PRO&. LOC. PNFALL.

    4S°9

    .0 .10.0 20.0 3. 4 .0o. 0 S.0

    3-6 H1!CROiETER RANGE CK1.>

    PROP. LOC. PN

    10 FALL

    .L

    . 10.0 20.0 30.0 40.0 60.08-1.2 /YlCROIIETER RANGE (Kff >

    FIGURE - 70

  • UNCLASSIFIED80

    PROP. LOC. PN1.0 _____KINTWR

    L 6 9f

    .8 39

    L2

    • .0 .0..0 20.•0 0.a 500 .0

    3-6 oiCRO"ETER RANGE

    PROM. LOC. PN

    ".a ____ xNrc

    .o .__ __ _., __

    .0 10.0 20.0 30.0 4•0.0 60.0

    6-12 01ZCROI1ETER RANOR CKX>

    FIGURE - 71

  • - . 2 - -- -_-

    UNCLASSIFIED81

    PROP L.OC .Apc IN

    PROP. LOC. ANCIII

    SPR.NG. $O•/4sa R FALl. TrrINTER

    J..2

    .0 .1.0.0 20.0 30.0 1+0.0 60.0

    3-2 rf ICROMIETER RANGE

    P'RO . t GOCE. A 7CIj.o___SPRIrNG $•JfI1YE, FA£l.- 1'INTEr',

    •.8

    S3\I

    .0 .1.0 .0 2 0 .0 30.•0 4 0. 0 50 .•0

    FIGURE - 72

  • .. .t =77...

    UNCLASSIFIED82

    PROB. 4OC. DHJKSPRING SCJIIIER FAL1 TIrINr"ER

    I.8

    4.

    2 I N2

    .0 _ _ __"_ _ _ _ _-_ _ _ _

    .a 10.0 20.0 30 .0 040. a s 0

    3-6 II"CRO.IETER RANCE CK?1>

    PRON. LOC . DN..KSPRING saIIYIER FALL ITUI NTSER

    .6 -, 2

    .2 ±

    0 0.0" 20.0 :3,0 0 •. 60. 0

    8-12 IfICRO'IETER RANGE CKN>

    FIGURE - 73

  • UNCLASSIFIED83

    PRQD. £OC. ANCIJIDSJK

    1.0 SPpRNo SaJI1I1 FALL UJIN7'XR

    .4L2

    .0 .20.0 20.0 SO.0 a 0. LF 50.0

    3-6 01JCROI1ETEM RANCE CKif>I

    PRiOp. 40C ABC IIIDJK

    t. a _ _ _ SPRIN G StJIWER FALL. VXrZN~ r I

    .2

    .0 10.0 20.0 SO5. 0 8410.0 50.0

    8-12 PIICNO1IETr~i RANGE CKI> I

    FIGURE - 74

  • UNCLASSIFIED84

    PROP. 40C. PM

    1.0 SPRING SOOINIIER FALl. r I NTXR

    .. 2

    L2

    .0 10.0 20.0 30.0 4•0.0 so.0

    3S-6 MICROME2TER RANGCE CKM>

    ROF. .LOC. PN

    1.0 SPRrNG4 SOONJIER FPALL,.- ?rhrNtr".

    .2 L I

    .0 __ __

    .0 10.0 20.0 30.0 9+0.0 50.0

    8-12 MIICROMIETE.R RANCE CKtJ)

    FIGURE - 75

    SIIS• I 1' .: -. - • ..

  • 444 4444 444 k44 1444-4 r_ 4) Q0*.4 . 4 4) 04

    U) ~ 4) (4 IA-4 0. 1 . lu 4.

    44) -q4 a. on 14 to.J44.4 4) + ) 0.2 V) :jNO 4

    U) O0).I CL)(4 (4J W J'0

    41 0 4 -4* e c4'A1. 1 04 -4) U) -44 W 0.0 (4 7-.440 0) 04 4Ue

    0 . 7)-0 k 4I&A r 144U4 04 NO 4-b).440~4. (.1 UI 4.A 41 (4 1(I4NX 4.4 -4 M c 14 0 4.4

    1111 -0 -U In4)4) u CIS(414low 01 .0 4 .4 W4) 4-- .4' to7 .0_44J6A 4 )'A (4) . 1 1 404 -HtoT 4.41 44.U -C0

    4)4 40 .0 6 1,414 PA 4)44 '4) r- 4) )4 (1NO01 4 0 k 0 0(4) '4. 4)U.4U) 10 40 0. 71

    L~ 4) 0 1. 4-1 :-4) Q .'' "o A -41 .0 (W 4.4 4.4 $4 M). vi ( C )( a*. 0k . U4.4.-4

    NZ N 0). 4)4.4 >4411 0 0 ~z 4.4 k. An4 c)1 (4( kV NO 0 .04~. 4)0% -1)4140aLt.-00.c0&A09 44 .0 V r s 44

    ul ) 0. 0 0. .4) -j W4 (4 m, #A -4 0 'aU 0. 0~. =) Q) 4') 41 0 44. U0) &W.4-1 ULL. 0 -43- I 4. 44.4-44).410 ZL 4) ~ 4;4 -. 4 -.44)4)14Q 44 )- 0V t '~ o 0 1- 7 n-M 1. c.0 (o 7.4) u

    Q 4)L) 0 41 -1 0( 4.0 z 1Z)4 1 -1 14.4f' k74.'I -NO -4 > ) 4) U)1c

    a4 a 04 NO))447.. 140 04) to -1 2%A No a 4.

    41k 4 0 $4 ( 4 -' -' c0 .4J k0 III (4 v Q0 0 -4 4.4 4) 0-4 4) C60k 4) 0 ~ - U) ~4) Q 4))

    -M 0.040 ~ (4 '0. 4J 4)0 ' 0. -40( (4044o4X) 7r_ (Q t4( 0 0 ) NO44) ed Li -M( 0N "o 4.44

    IA An u 14 14 InN

    1 $4)( 0D 10 04 .I )c D1 .+U 0 -0. M.~*~ . -4 = N )a 0. m*-470 4 14 g:: N

    4) 4)0 I ).01 )u00 N )444). 4. 4.40W 1 4

    a.~~~(( 4J4- II:5 44 P4 0 M L4 4 J4 r4(A: .4 :, ( 44 0 HzI I

    ~7 4) 0.4 0. -4 0 44 .-$4 0 .( 4 - 4 4) IA1 -U11) -0( -4 4) I

    41 1. 4)( 0) 1) >- 4J 4 C )

    k. 1, 4 '0U)4k 4 0. .4 r_ It4k) 44). -4 -. 4( U)(4

    46:.) ~ 0 z Cc to4-'7 0 0

    4.) %A '4) -V 44 0e04( 4

    U) 4 O.,4 k .4J "0

    0*

    0 -

    CIS cd o 44)rn vi k as4)

    ICU.

    >1 41 c v 4.14)4< t

    (1)) I.. 4)x 4V)0 S =w414 4.4 4) 10. 1 0

    C40 704 0.. )(4) IA0 4. Cd "o--o x 44In 4. )4) ) E 0 In 4 4)1 1 0 )

    U) 0+1 a 4 ) k.b. ~ U 0~ In4)I0 Cl. ~ ~ ( 111. (0 7 .) (4otn4 E u

    W00M--.-44to

    0 1 )13 I 4.44 w ~41 (0 LI

    C 4, S. M IA 00 s. r 41 n3 cm, n = IO

  • .4l -.1 w 4

    -.4u4.4 ' 10N 4 U

    .1 4W I A $44)"1. qCA C

    a444.8 0 t4J p. 444 4 C 4-4-4 CO

    44 .4 16 44 0 k4 t44. v..toI4)0.~4 00) $I

    00 u~,~ aO04.4)~~4 be~JJU 0 4

    $34~ 4$4 4J44. U$44)OS 41 r1. 44)OUNm

    4. 41 44 +J~4

    44444. 4k 00 q34 4 0 4)-' $.0

    r_ to 0C 4A o -

    411. 41 04j 1

    > 44C CO S.0 0 1 r_ 1.,1 044 0 .. u M0 u S

    4 ) ~ tO k -0 iA 0t -4 t- r0 .0 J 0'Z . Ot4Ih4 -40 . $411

    in -. 4 4 0 )4 e4 4IJ~~Q)441..

    00 t..4 0 uOA$>

    044- 0WV44 44 OCO 4 _A0CACF J

    C0 0 0- 44 -40 ol . 0 +j .4.1 "O 0

    41 0 -4 *-d' I .0 410 t

    4444go04) AO -4) 4441414*A $ 1 P $41. k) 4)> +j~.' 44).

    4)

    -1 0. In 4b- ý 0 41 '0

    .,1 44) 41 )44 (A a"qCLu 41 44A .0C 4 R= 4) Q 4 K C

    o u = o 0 .0 t)14 U 400 kc 4j 4j4 4 .. 0 r_4)1 kn +

    0. 91 66 NO -. Cl w. IA $ C 4

    $4o CO . 00 k CO o CO 0. 4 ACwoo '-4 ' o4 >O 00Wz 4tic be:4

    .4 $CA 440. w06CA0 CL- k > co

    OD 04 .0444 1 $4 0U4

    4) C OC -41 )7 c 4, ) -0 CO~

    Vo. v .0 4441 4n 4), tA 4J 4J'O4IA 4 .4~4 -4 CA el -0O4) to

    AA is40.14 to an1)40.A$4 1 2 in CA rj I44 0. Q. 41 0 41 0 : *. 041 V 4) 1., 4) 44)> 9 +ul.40.4.> $4 .14. 4..0t

    i2 I-C CO 6 L 0 -4

    41 u -4 t 1.- 0 $4 Z.0 4 m $x4-.4

    CO4 004-> O- 0 >40.C*0 0.40 4 4 to -4

    41~ 0C4.0 CO 0 u

    ""4 04 UN N %v U 4 1 -I -U4 O U10. t 100. )'44 rt 41=C44 v 0 ý4C.) r_40

    Q. 04 $4 0 U 0) 4

    ~ 1J.4CC - 4 * O'.'44 U) co C4-b w w+j 10

    1.0 to .4 ul0 -4) Cp,

    40 41 .0 = 0 . >1 CO . 10 J' .~M4 CO4)4 CO a- " .0 to 4) CO- 4

    .04)-. 0* vi 00 .0 *0 =

    00 1. O04) LC- 0 a to4'4w -4 -4 4 4414 00 1.4 -14COCO1

    w~ 4) .. Z>80 414 +).444) 44 0 0- $4 44) "0 od 0 -*4 V "ato -4 04> : COC j 0otor CO4 to 0 COS

    0 tCO I)0 toAC 0 04 4)0 14CI

    to (3 ~ 4 >OC +j 1.4 0 co'~- COC > 41 9 4-4 u k 0 0 UI U 4 0 .U $

    CO (n 3:. -AON C of t- - 4. $44) 31 '4 )toQ4)44> IA -)4- 4) 4) 41 a)+

    z 0L . p. 0 0(?02 ý f 4 C

    0 . ý4. 0 *E.0 0 40> $004 .4

    Z.0 0 .. to 41

    1 ed 4_____4_