ultrasonic flow theory.pdf

7
Theory of Ultrasonic Flow Measurement -Gases Liquids Class 3175 Don Augens tein, Vice Pres ident Engineeri ng, Caldon Inc. 1070 Banksvil le Ave . Pittsburgh, PA 15216 Introduction Ultrasonic transit-time flow meter technology is now over 50 years old. Early versions of these meters were at times disappointing in accuracy and reliability. While the basic principle remains unchanged, the technology has evolved substantially. The major improvements have been in transducer design, signal processing and, even more importantly, in understanding the factors that influence the performance of these meters. Recent designs of multi-path transit time ultrasonic flow meters now routinely achieve an accuracy and reliability comparable to or better than older mechanical technologies (i.e., turbine, positive displacement meters and orifice plates). Ultrasonic flow meters (UFMs) are now beginning to displace those traditional flow meters in hydrocarbon measurement applications. This transition is being driven by a number of UFM attributes including: High Accuracy and turndown ratio Availability of large size meters Non-intrusiveness Low maintenance costs Excellent on-line diagnostics Unlike the mechanical technology, ultrasonic flow meters can provide information about flow characteristics within the pipe and the properties of the liquid (or gas). It is this information, along with the possibilities of low uncertainty, low maintenance, and extensive diagnostics, that make these meters attractive. These features have even extended the use of ultrasonic meters to fiscal/custody transfer applications. This paper's objective is to provide potential UFM users with the relevant information necessary to understand how UFMs operate and what should be considered in their application. This paper reviews the types of UFMs used in high accuracy applications and the UFM operation principles, reliability, accuracy 1 and repeatability (proving meters with provers). Discussion All UFMs being applied in high accuracy hydrocarbon applications are transit time (also called time-of-flight) systems, which are the subject of this paper. These systems calculate flow using the times of flight of ultrasonic energy pulses traveling with and against the direction of flow. Transit time meters can generally be classified into two groups: wetted meters and externally mounted meters. W etted Mete rs '%~/etted meters get their name from the fact that the transducers are built into the meter. These meters require that a meter body with multiple transducer wells (see Figures 1 and 4). These wells are similar to thermo wells used with RTDs except that they are angled with respect to the flow and house an ultrasonic transducer. In some wetted meters, the transducers operate from behind a window in the well allowing the transducers to be replaced during operation without special hardware. Transducers are arranged in pairs or sets that form acoustic paths. There are normally two or more acoustic paths in a wetted meter. The paths are spaced such that they can be used to numerically integrate the flow. Wetted meters are often called chordal meters because the acoustic paths are often arranged in parallel chords. Figure 1 Caldon 24 Chordal UFM It is noted hat the term accuracy as used n this paper refer s o the ability of the meter o meas ure low with imited error. 381

Transcript of ultrasonic flow theory.pdf

Page 1: ultrasonic flow theory.pdf

8/11/2019 ultrasonic flow theory.pdf

http://slidepdf.com/reader/full/ultrasonic-flow-theorypdf 1/7

Theory of Ul trasonic F low Measurem ent -Gas es Liquids

Class 3175

Don Augens tein, Vice Pres ident Engineering,

Caldon Inc. 1070 Banksville Ave . Pittsburgh, PA 15216

I n t r o d u c t i o n

Ul t rason ic trans i t -t ime f l ow m ete r techno logy is now

over 50 years o ld . Ea r l y ve rs ions o f these mete rs

were at t imes d isappoint ing in accuracy and re l iab i l i ty.

Wh i le the bas ic p r inc ip le rem a ins un changed , the

techno logy has evo lved substan t ia l ly . The ma jo r

improvem ents have been in t ransdu cer des ign , s igna l

processing and, even more important ly, in

unders tand ing the fac to rs tha t i n f l uence the

per fo rmanc e o f these mete rs . Recen t des igns o f

mu l t i-pa th t rans it t ime u l t rason ic f l ow m ete rs now

rou t ine ly ach ieve an acc u racy and re l iab i li ty

com parab le to o r be t te r than o lde r me chan ica l

technolog ies ( i .e . , turb ine, posi t ive d isp lacement

meters and or i f ice p la tes) .

U l t rason ic f l ow mete rs (U FM s) a re now beg inn ing to

d i sp lace those t rad i ti ona l f low mete rs i n hyd rocarbon

mea surem ent app l i ca ti ons. Th is t rans it ion i s be ing

dr iven by a num ber o f UFM a t t r ibu tes i nc lud ing :

• H igh Acc uracy and tu rndown ra ti o

• Ava i lab i l i ty o f large size me ters

• Non- in t rus i veness

• Low ma in tenanc e costs

• Exce l lent on- l ine d iagn ost ics

Un l i ke the mechan ica l techno logy, u l t rason ic f low

mete rs can p rov ide in fo rmat ion abo u t fl ow

character ist ics wi th in the p ipe and the proper t ies o f the

l iqu id (or gas) . I t is th is in format ion, a long wi th the

possib i l i t ies o f low uncer ta in ty, low maintenance, and

extens ive d iagnost ics , tha t make these mete rs

a t trac t ive . These fea tu res have even extended the use

o f u l t rason ic me te rs to f i sca l / custody t ransfe r

appl icat ions.

This paper 's ob ject ive is to provide potent ia l UFM

users w i th the re levan t i n fo rmat ion nec essary to

unders tand how UFMs opera te and wha t shou ld be

cons idered in the i r appl icat ion. Th is pape r reviews the

types o f UFMs used in h igh accu racy app l i ca ti ons and

the UFM operat ion pr incip les, re l iab i l ity, accu racy 1 and

repeatabi l i ty (proving meters wi th provers) .

D i s c u s s i o n

Al l UFMs be ing app l i ed i n h igh accu racy hyd rocarbon

appl icat ions are t ransi t t ime (a lso ca l led t ime-of - f l ight )

sys tem s, wh ich a re the sub jec t o f th is paper . Thes e

system s ca lcu la te f l ow us ing the t imes o f fl igh t o f

u l t rason ic energy pu lses t rave l i ng w i th and a ga ins t the

d i rec t ion o f f low. T rans i t t ime mete rs can genera l l y be

classi f ied in to two groups: wet ted me ters and

exte rna l l y moun ted mete rs .

W e t t e d M e t e r s '%~/etted m eters ge t the i r nam e f rom

the fact that the t ransducers are bu i l t in to the meter .

Thes e m ete rs requ i re tha t a me te r body w i th m u l t ip le

t ransduc er we l ls (see F igu res 1 and 4) . Thes e we l l s

a re s imi la r to the rmo we l l s used w i th RTD s ex cep t tha t

they a re ang led w i th respect to the f low and house an

u l t rason ic t ransducer . In som e we t ted mete rs , the

t ransduce rs opera te f rom beh ind a w indow in the we ll

a l l ow ing the t ransducers to be rep laced du r ing

opera t i on w i thou t spec ial ha rdware .

T rans duce rs a re a r ranged in pa i rs o r se ts tha t fo rm

acoust i c pa ths . There a re no rma l l y two o r more

acoust i c pa ths i n a we t ted mete r . The pa ths a re

spaced such tha t they can be used to numer i ca l l y

in tegrate the f low. Wet ted m eters are of ten ca l led

chorda l me te rs because the acoust i c pa ths a re o ften

arranged in para l le l chords.

F i g u r e 1 C a l d o n 2 4 C h o r d a l U F M

It is noted hat the term accuracyas used n this paper refers o the

ability of the meter o measure low with imited error.

3 8 1

Page 2: ultrasonic flow theory.pdf

8/11/2019 ultrasonic flow theory.pdf

http://slidepdf.com/reader/full/ultrasonic-flow-theorypdf 2/7

E x t e r n a l M e t e rs Ex te rna l l y moun ted me te rs a re f i xed

to the ou ts ide o f the p ipe and a re comp le te ly non -

in t rus ive and non - invas ive . Ex te rna l me te r

t ransduce rs a re no rma l l y a r ranged in pa i rs as we l l .

Howeve r , p rac t i ca l acous t i c pa th a r rangemen ts a re

m u c h m o r e l i m i t ed t h a n w e t t e d m e t e r s b e c a u s e t h e

phys ics o f t ransmi t t ing th rough the p ipe wa l l requ i res

tha t acous t i c pa ths t rave l th rough the cen te r o f the

p ipe (d iame t ra l ) .

Ex te rna l me te rs tha t have two pa ths a re no t gene ra l l y

re fe r red to as mu l t i -pa th because the i r pa ths a re

d iame t ra l . In th is pape r , the te rm mu l t i -pa th me te rs

re fe rs to UFMs w i th two o r more pa ths tha t t rave l

th rough d i f fe ren t cho rds o f the p ipe c ross sec t ion (e .g . ,

we t ted me te rs ) .

Va r ia t ions o f ex te rna l me te rs do ex is t . Fo r exam p le ,

some ex te rna l me te rs inc lude a p ipe sec t ion to reduce

d imens iona l unce r ta in t ies .

Gene ra l l y , mu l t i -pa th we t ted me te rs ach ieve much

h ighe r accu rac ies than ex te rna l me te rs because they

measu re a g rea te r f rac t ion o f the p ipe c ross sec t ion

than ex te rna l me te rs .

U l t r a s o u n d B a s i c s

There a re seve ra l gene ra l p r inc ip les o f sound

p ropaga t ion tha t a re use fu l i n unde rs tand ing the

ope ra t ion o f UFMs .

S o u n d V e lo c i t y A ma te r ia l ' s sound ve loc i ty i s the

ra te a t wh ich sound t rave ls th rough i t. Sound

ve loc i t ies enco un te red in typ ica l hyd roca rbon

app l i ca t ions va ry f rom as low o f 0 .4 km/sec fo r na tu ra l

gas to 1 .6 km/sec fo r some c rude o i l s . No t on ly does

sound ve loc i ty va ry s ign i f i can t l y be tween ma te r ia ls , bu t

i t a lso var ies s ign i f icant ly in any g iven l iqu id due to

temp era tu re and p ressu re changes . Th is i s

pa r t i cu la r l y t rue fo r gases .

A c o u s t i c Im p e d a n c e A ma te r ia l ' s acous t i c

impedance i s the p roduc t o f i t s sound ve loc i ty and i t s

d e n s it y . A c o u s t i c i m p e d a n c e i s i m p o r t a n t w h e n s o u n d

t r a ve l s fr o m o n e m e d i u m t o a n o t h e r. T r a n s m i s s i o n

e f f i c iency i s a func t ion o f the acous t i c im pedan ce o f

the two med ia ; the g rea te r the d i f fe rence , the wo rse

the e f f i ciency . The mo s t no tab le compar ison o f

acous t i c impedances i s be tween o i l and na tu ra l gas .

The acous t i c impedance o f o i l i s ove r 3000 t imes

g rea te r than na tu ra l gas .

Sound t ransmiss ion e f f i c iency i s impo r tan t because

poo r s igna l s t reng th i s a common cause o f

deg rada t ion o f UFM pe r fo rmance , pa r t i cu la r l y in gas

UFM s . Con s ide r sound t rave l ing f rom s tee l in to o i l. In

th is case , 5% o f the ene rgy ac tua l l y i s t ransmi t ted in to

the o il becau se o f the d i ffe rence in acous t i c

imped ances . Wh i le th is i s no t g rea t e f f i c iency , on ly

0 .001% o f the ene rg y i s t ransmi t ted f rom s tee l in to

na tu ra l gas . Beca use o f acous t ic impedanc e , un t i l j us t

recen t l y , the re we re no ex te rna l gas UFMs on the

marke t as these losses made the i r ope ra t ion

unre l iab le .

U l t r a s o n i c B e a m W i d t h T r a n s d u c e r s a r e d e s i g n e d

so tha t the acous t i c beam is fa i r ly focused . L ike a

f lash l igh t beam, the acous t i c beam has a f in i te w id th .

Ob jec ts w i th in the beam a re i l l um ina ted by acous t i c

ene rgy and those ou ts ide a re no t . The beam w id th i s

impo r tan t when the beam i tse l f ge ts swep t

downs t ream by h igh ve loc i ty f l ow .

Ultrasonic signal attenuat ion S o u n d e n e r g y g e t s

a t tenua ted by d is tance (p ropo r t iona l to d is tance

squa red ) , v i scos i ty (p ropo r t iona l to the f requency

squa red ) , sca t te r ing (due suspens ions ) and tu rbu lence

( fo r examp le , tu rbu lence o r cav i ta t ion ) .

Princ ip les o f

O p e r a t i o n

Us ing the p rev ious u l t rason ic bas ics , we can now

d iscuss the p r inc ip les o f ope ra t ion fo r ex te rna l and

we t ted t rans i t t ime UFM s . A t rans i t t ime UFM sys tem

t r a n s m i t s a c o u s t i c e n e r g y a l o n g o n e o r m o r e p a t h s

th rough the p ipe in wh ich f low i s to be measu red (see

Figure 2) . In the f igure , a pa i r o f t ransducers is

moun ted to fo rm a d iagona l pa th th rough f low ing

l iqu id . W hi le th is figure is typ ica l o f ex terna l m eters ,

the p r inc ip les desc r ibed in the fo l low ing pa rag raphs

app ly to we t ted me te rs as we l l .

F i g u re T r a n s i t T i m e A c o u s t i c P a t h G e o m e t r y

TRANSDUCER A '~'~ ,. I. ~ ~

k ' TE RN I I ', \ I I / ~ ~ &

O____J___J_:l . . . . . . .

1 ~ TRANSDUCER B

= PATH ANGLE

Wh en the up s t ream t ransduc e r A is exc i ted by a bu rs t

o f e lec t ri ca l ene rgy , i t w i l l t ransmi t a packe t o r p u lse o f

acous t i c ene rgy . The t ransduce r i s usua l l y des igned to

be d i rec t iona l , and the re fo re , the acous t i c ene rgy w i l l

t rave l in a s t ra igh t l i ne from t ransduce r A to t ransduce r

B , whe re i t w i l l p roduce e lec t r ica l en e rgy wh ich i s used

to s top a t imer. In th is manner the e lapsed t ime tAB,

f rom the t ime o f t ransm iss ion to the t ime o f de tec t ion ,

i s measu red .

3 8 2

Page 3: ultrasonic flow theory.pdf

8/11/2019 ultrasonic flow theory.pdf

http://slidepdf.com/reader/full/ultrasonic-flow-theorypdf 3/7

W h e n d o w n s t r e a m o r t r a n s d u c e r B i s e x c it e d a n d t h e

a r r i va l o f acous t i c ene rgy a t t ransduce r A i s de tec ted ,

the t rans i t t ime tBA is s im i la r l y m easu red . The

measu red t imes a re re la ted to the d imens ions ,

p rope r t ies and ve loc i ty o f the f lu id as fo l lows :

1

t A B - - [ L p a t h / ( C p a t h - I- V p a t h ) 4 - ~ n o n f lu i d d e l a y

2 ) t B A --- - [ L p a t h / ( C p a t h - V p a t h ) ] - I- [ 'n o n lu i d d e l a y ,

W h e r e

L p a t h is aco ust ic path leng th in the f lu id ,

p a t h i s the sound ve loc i ty a long the acous t i c pa th

wi th f lu id a t res t ,

V p a t h i s the f lu id ve loc i ty p ro jec ted on to the a cous t i c

pa th , and

[ 'non f lu id de lay i s to ta l e lec t ron ic and ac ous t i c de lays

exter io r to the f lu id .

T ime in f lu id , t fA B and t feA, can be ca lc u la ted as fo l lows:

3 A ) tfAB = tAB - Xnon luiddelay

3B ) tfBA = t B A - [ 'n o n l u id d e l a y

For a g iven app l i ca t ion , non - f lu id de lay , Tnon f lu id de lay,

may be ca lcu la ted o r measu red (o r bo th ) .

Def in ing, the d i f fe re nce in the t im es o f f l igh t , At , as :

4 ) A t = tBA- tAB

- - [ L p a t h / ( C p a t h V p a t h ) ] - [ L p a t h / ( C p a t h + V p a t h ) ]

and so lv ing fo r

V p a t h L p a t h

y ie lds

5 ) V p a t h L p a t h =

[At

L p a t h 2 1 ( 2 t fA B t f B A ) ]

Th is re la t ionsh ip i s fundamen ta l to the ope ra t ion t rans i t

t ime UFMs . I t says tha t the p roduc t o f pa th leng th and

mean ve loc i ty a long tha t pa th can be de te rm ined by

t r a n s it t im e m e a s u r e m e n t s w i t h a n a b s o l u te a c c u r a c y

l imi ted on ly by :

• T h e a c c u r a c y o f t r a n si t t i m e m e a s u r e m e n t s

• T h e a c c u r a c y o f m e a s u r e m e n t ( o r c a l c u la t i on ) o f

the non - f lu id t ime de lay , and

• T h e a c c u r a c y o f p a t h l e n g th m e a s u r e m e n t

I t i s f rom th is bas ic equa t ion tha t t rans i t t ime UFM s

ca lcu la te ve loc i t ies a long the i r pa ths . Pa th ve loc it i es

a re used to ca lcu la te the vo lum e t r i c f low ra te . Fo r

ex te rna l UFMs , the vo lume t r i c f l ow equa t ion i s2 :

6) Q = [~ ID2/4] (PFE)

A t C F 2 / ( 2

ID tan ~F )

W h e r e :

ID - p ipe ins ide d iame te r

P F E - e x t e rn a l U F M p r o fi le f a c to r

~ F - ang le the acous t i c pa th takes in the f luid

2 H . E s t r a d a , T h e o r y o f U l t r a s o n ic F l o w M e a s u r e m e n t - G a s e s a n d

L i q u i d s ,

ISHM Class 3175

F e b r u a r y 2 0 0 1 .

A t - pa th t ime d i f fe ren t ia l , see Equa t ion 4

The ex te rna l m e te r p ro f i l e fac to r , PFE, re la tes the p ipe

cen te r l i ne ve loc i ty measu re d by the ex te rna l UFM to

the ave rage ve loc i ty ove r the p ipe c ross sec t ion and

can range f rom 0 .90 to ove r 1 .00 (as low as 0 .75 fo r

lam ina r f l ow) . (I)F s a func t ion o f the speeds o f sound

and d im ens ions o f al l ma te r ia ls in the acous t i c pa th . In

an ex te rna l me te r the re a re usua l l y a t leas t th ree

m a t e r ia l s : t h e t r a n s d u c e r w a v e g u i d e o r w e d g e , t h e

p ipe wal l a nd th e f lu id . In order to ca lcu la te ( l)F, the

sound ve loc i t i es and d imen s ions o f these ma te r ia ls

mu s t be known p rec ise ly . Th is can be cha l leng ing i f

the tempera tu re o f the p ipe va r ies s ign i fi can t ly . As a

prac t ica l ma tter , (l)F s phy s ica l ly l imi ted to less than 20 °

in mos t app l i ca t ions ( lower sound ve loc i t i es have

sma l le r va lues ) .

The we t ted UFM vo lume t r i c f l ow equa t ion i s :

ID ~ WiLpa~_i ti

7 ) Q = P F w - ~ - i l t a n ~ i ) t f ~ t ~ A

Where the va r iab les a re as de f ined above and :

i - p a th n u m b e r

w - n u m e r i c i n te g r a ti o n w e i g h t in g f a ct o r

P F w - w e t t e d U F M p r o f i l e f a c t o r

The we t ted p ro f i le fac to r , PFw, co r rec ts fo r l im i ta t ions

in the accu racy o f the numer ic in teg ra t ion o f the

hyd rau l i c p ro fi le . Fo r Ca ldon mu l t i -pa th we t ted me te rs ,

th is w i l l range f rom 0 .995 to 1 .005 ove r a b road range

o f hyd rau l i c geom e t r ies . Th is i s a + / -0 .5 range as

com pared w i th the + / -5 range fo r ex te rna l UFM s ( fo r

typ ica l app l i ca t ions bu t may va ry by as much as + / -

10 fo r a l l cond i t ions inc lud ing lam ina r cond it ions ) .

Compar ing th is co r rec t ion fac to r o f less than +0 .005 o f

un i ty , re f lec ts the d i f fe rence be tween we t ted UFM

ve loc i ty p ro f i l e in teg ra t ion and the ex te rna l me te r

d i a m e t r a l m e a s u r e m e n t . T h e a c tu a l p e r fo r m a n c e o f

t h e w e t t e d U F M c l o s e l y r e s e m b l e s t h e p e r f o r m a n c e

pred ic ted by s im ple phys ica l p r inc ip les , w i th l it t le

co r rec t ion .

(I) fo r we t ted UFM s is typ ica l l y a rou nd 45 ° to ma x im ize

the A t wh i le l im i t ing the leng th o f the spoo l and can be

d i rec t l y me asu re d (no te : manu fac tu re rs ma y va ry th is

ang le ) . The resu l t i s tha t the A t is usua l l y la rge r fo r a

we t ted me te r than an ex te rna l me te r fo r a g iven p ipe

d iam e te r and me te r leng th . Th is leads to sma l le r

t im ing e r ro rs because , the la rge r the A t , the sma l le r

the t im ing e r ro rs .

Bo th ex te rna l and we t ted UFMs d i rec t l y measu re a

va r iab le , A t , tha t has a l i nea r dependence on f low

ve loc i ty . Th is resu l ts in the w ide range o f accu ra te

p e r f o r m a n c e ( t u r n- d o w n r a t io ) o f U F M s a s c o m p a r e d

3 8 3

Page 4: ultrasonic flow theory.pdf

8/11/2019 ultrasonic flow theory.pdf

http://slidepdf.com/reader/full/ultrasonic-flow-theorypdf 4/7

wi th d i f fe ren t ia l p roduce rs tha t d i rec t l y measu re

p ressu res tha t inc rease w i th the squa re o f the f low

ve loc i ty .

T h e p r i m a r y d i f f e re n c e s b e t w e e n e x t e r n a l a n d w e t t e d

U F M s a r e :

1 Ex te rna l UFMs a re sens i t i ve to more va r iab les

t h a n w e t te d U F M s b e c a u s e t h e a co u s t ic p a t h

t r a ve l s t h r o u g h m o r e m e d i a w h o s e p r o p e r ti e s

mus t be p rec ise ly known and i t s pa th i s no t

s t ra igh t (see F igu res 3 and 4 fo r ex te rna l and

we t ted UFMs respec t i ve ly ) .

2 . E x t e r n a l U F M s n e e d p r e c i s e f i e l d m e a s u r e m e n t s

o f d imens ions , pa r t i cu la r l y wa l l th i ckness and

d iame te r .

3 . M u l t i- p a t h w e t t e d U F M s m e a s u r e t h e ve l o c i t y o v e r

a g rea te r f rac t ion o f the p ipe .

4 .The A ts fo r ex te rna l me te rs a re gene ra l l y sma l le r

than fo r we t ted me te rs because the i r pa th ang les ,

( I D F ,

a re sha l lower , lead ing to h ighe r unce r ta in ty .

The resu l t o f these d i f fe rences i s tha t we t ted UFMs

gene ra l l y have much be t te r accu racy and repea tab i l i t y

than ex te rna l UFM s in the sam e app l ica t ion . Typ ica l l y

ex te rna l UFMs have abso lu te accu rac ies o f

a p p r o x i m a t e l y 1 - 5 w h i l e w e t t e d U F M s h a v e

abso lu te accu rac ies f rom 0 .25 -0 .5 (assum ing no in

se rv ice ca l ib ra t ion ) .

F i g u re 3 E x t e r n a ll y M o u n t e d U F M A c o u s t i c P a t h

A N S 0 U C E . A

7 , ,

TRANSDUCER B

~F= FLUID PATH ANGLE

~p= PIPE ANGLE

~ ~ = WEDGEANGLE

F i g u re 4 W e t te d U F M A c o u s t i c P a t h

F L o ~

• , . . : , - . : , . - ~ - . . , . - . ~, , - - :, - - . .~ . - . -~. - - - , .- . . . . r ; , - . - 7 - , ~ , , , , ~ . ; . . . . . . . ~ : ~ - z

. . . . . . . . .. . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . .. . . . . . . . . .. . . . . . . ~ :~ ;7~ T . . . . . . . . . . . . . . . . . . . . . . . . . . .

' ~ & ~

~ , ~

F a c to r s A f f e c t in g U F M P e r f o r m a n c e

T h r e e a s p e c t s o f U F M p e r f o r m a n c e m e r i t d i sc u s s io n :

re l iab i li t y, accu rac y and repea tab i li t y . Thes e fac to rs

a re in te r re la ted in tha t acous t i c deg rada t ion can lead

to deg rada t ion in accu racy and repea tab i l i t y .

R e l i a b il it y A c o u s t i c P e r f o r m a n c e

One o f the p r imary bene f i t s tha t can be ach ieved w i th

the app l i ca t ion o f UFMs is reduced ma in tenance cos ts .

UFMs have no mov ing pa r ts and a re no t p rone to f low

induced wea r . Fu r the r , they do no t requ i re f reque n t

ca l ib ra t ion . Th e re l iab i l ity o f the e lec tron ics is

comparab le to tha t o f o the r me te rs .

Q u e s t io n : S o w h a t d o e s g o w r o n g ( a s id e f r o m

e lec t ron ics )? Mos t comm on ly i t 's a poo r app l ica t ion

where the acous t i c ene rgy i s too weak (due to s igna l

a t tenua t ion ) . The a t tenua t ion o f acous t i c ene rgy in

f lu ids encoun te red in typ ica l hyd roca rbon UFM

appl ica t ions is a func t ion o f the f lu id v iscos i ty , f lu id

type and flu id homo gene i ty . The g rea te r the

at tenuat ion , the lower the s igna l to no ise ra t io wi l l be

and th is resu l ts in g rea te r da ta sca t te r and e r ro rs in

t iming.

Viscosi ty At tenuat ion

The a t tenua t ion in a g iven

f lu id inc reases w i th v iscos i ty . Gene ra l l y , fo r v i scos i t ies

less than 5cS , v i scous losses a re no t s ign i fi can t .

Howeve r , h ighe r v i scos i t ies a t tenua te s ign i f i can t l y

h ighe r (by o rde rs o f mag n i tude ) . I t i s the re fo re

impor tan t tha t the range o f v i scos i ties be p rov ided to

t h e U F M v e n d o r t o a s s u r e t h e b e s t p e r f o r m a n c e o f th e

me te r . UFM s can be des igned to ope ra te in f l u ids w i th

v iscos i t ies ove r 1000cS .

G a s A t t e n u a t io n :

In gases , the a t tenua t ion o f the

acous t i c ene rgy i s a func t ion o f mo lecu la r abso rp t ion

and re laxat ion , as we l l as v iscos i ty . As a resu l t , the

acous t i c losses in gases a re usua l l y much h ighe r than

in l iqu ids and, un l ike l iqu ids , the acoust ic losses are a

s t rong func t ion o f the f lu id tem pera tu re and p ressu re .

Consequen t l y , i t i s even more impo r tan t fo r gas

app l i ca t ions to in fo rm U FM m anu fac tu re rs o f the range

o f tempera tu res and p ressu res fo r an app l i ca t ion .

N o n h o m o g e n o u s F lu id s ~ G as e s :

Signa l a t tenua t ion

w i l l occu r whe n re f lec tions o f f d iscon t inu i t ies / re f lec to rs

ex is ts in the f lu id (e .g . , scat ter ing ). Th e mor e

sca t te r ing tha t occu rs ( fo r examp le , due to gas

bubb les in the l iqu id or l iqu id in the gas), the greater

the losses w i l l be . A pa r t i cu la r l y bad comb ina t ion i s

en t ra ined gas in l iqu id sys tem s . Even a few pe rcen t

b y v o lu m e o f e nt r a in e d g a s c a n r e n d e r m o s t U F M s

inope rab le . The re fo re , i t i s c r i ti ca l tha t UFM vendo rs

know i f the re i s go ing to be en t ra ined g as in an

app l ica t ion .

3 8 4

Page 5: ultrasonic flow theory.pdf

8/11/2019 ultrasonic flow theory.pdf

http://slidepdf.com/reader/full/ultrasonic-flow-theorypdf 5/7

Wax i n g A n o t h e r c a s e i s t h e a c c u m u l a t io n o f w a x e s

a long the p ipe wa l l and in the t ransduce rs we l l s o f

w e t t e d U F M s . O n c e a g a i n , th e U F M v e n d o r sh o u l d b e

a le r ted to the po ten t ia l fo r s ign i f ican t w ax bu i ldup as

des ign pa rame te rs can be op t im ized to m in im ize the

e f fec t o f these acc um u la t ions (e .g ., hea t t rac ing ) .

C o u p l i n g : For the mos t pa r t , t ransduce rs a re ve ry

re l iab le , howeve r , the coup l ing o f the t ransduce r to the

p ipe and f lu id has been a common fa i lu re mode fo r

som e ea r ly sys tem s . The so u rce o f th is p rob lem is the

ma te r ia l used to coup le the t ransduce r . Greases ,

r u b b e r s a n d o t h e r m a t e r i a ls a r e c o m m o n l y u s e d .

Fa i lu res have occu r red due to the ins tab i li t y o f these

coup lan ts ove r t ime a t the ins ta l la t ion cond i t ions . H igh

t e m p e r a t u r e a p p l i c a t io n s g e n e r a l l y h a v e m o r e

p rob lems w i th loss o f coup l ing than low tempera tu re

app l i ca t ions , and ex te rna l sys tems gene ra l l y have

more p rob lems w i th loss o f coup l ing because they

gene ra l l y have less s igna l s t reng th marg in and a more

d i f fi cu lt geom e t ry .

A c c u r a c y P r o fi le F a c t o r

The fo l low ing rev iews the b igges t fac to r a f fec t ing

UFM 's accu racy ; p ro f i le fac to r . O the r impo r tan t fac to rs

such as p ipe d imens ions (pa r t i cu la r l y fo r ex te rna l

me te rs ) and t rans i t t ime /A t measu remen t , wh i le no t

d iscussed , a re impo r tan t 3 .

The s ing le mos t s ign i f ican t sou rce o f e r ro r is the p ro f i l e

fac tor . As d iscussed , the pro f i le fac tor is used to

c o r r e c t t h e a v e r a g e v e l o c i t y m e a s u r e m e n t m a d e b y

the UFM to a t rue spa t ia l ly ave rag ed ve loc i ty . Th is

co r rec t ion mus t be made because f low ve loc i t i es va ry

in bo th magn i tude and d i rec t ion ove r the p ipe c ross

sect ion .

The ve loc i ty p ro f i le w i th in a p ipe i s a func t ion o f two

sets o f fo rces : inert ia l fo rces a nd v iscous/ f r ic t ion

fo rces . Fo r examp le , a t the ou t le t o f a bend , tee o r

s im i la r p ip ing componen t tha t changes the d i rec t ion o f

the f low, the inert ia l fo rces dominate o f ten resu l t ing in

g ross ly d is to r ted ve loc i ty p ro f i le . The v iscous / f r ic t ion

f o r c e s t he n b e c o m e m o r e d o m i n a n t a s th e d i s ta n c e

f rom the e lbow/d is tu rbance inc reases . I t i s the

v iscous / f r ic t ion fo rce s a long the p ipe wa l l tha t d iss ipa te

the d is to r tion cau sed by the ine r t ia l fo rces . I f the p ipe

is long enough, the e f fec ts o f the inert ia l fo rces are

com p le te ly e l im ina ted and a fu l ly deve loped cond i t ion

is reached whe re the f low p ro f i l e does no t change .

Un fo r tuna te ly , i n p rac t i ce i t can take 50 d iam e te rs o r

mo re fo r the p ro fi l e to s top deve lop ing . Fu r the r , the

shape o f the p ro f il e whe n fu l l y deve loped i s a

3s. Corey, H. Estrada, Theory and Ap plication of U ltrasonic Flow

Meters,

ISHM Class 3175

2002

func t ion o f the v iscos ity and roug hness o f the p ipe

wa l l . In mo s t app l ica t ions , the v iscos i ty i s no t we l l

known and the e f fec t i ve roughness o f the p ipe wa l l i s

a lmo s t neve r known . As a resu l t, the ex te rna l UFM

pro f i le fac to r in fu l ly deve loped f low can range ove r

+ / -10% depend ing on the f lu id v iscos i ty and wa l l

rough ness ( f rom lamina r f l ow reg ime s up to tu rbu len t

f low reg imes ) . Co r rec t ing th is change in p ro f i le fac to r

then i s an im po r tan t task fo r the ex te rna l me te r .

In p rac ti ce , the lowes t unce r ta in ty in the p ro f i l e fac to r

fo r an ex te rna l me te r i s usua l l y ach ieved be tween 10

a n d 2 0 d i a m e t e r s d o w n s t r e a m o f t h e d i s tu r b a n c e

where the ine r t ia l fo rces a re s t i l l dominan t bu t the

pro f i le is not as d is tor ted. Even in th is range, the

abso lu te accu racy o f the p ro f i l e fac to r fo r an ex te rna l

me te r i s l im i ted to app rox ima te ly 1% and in mos t

cases i s c lose r to 2% un less i t i s based on app l i ca t ion -

spec i f i c hyd rau l i c tes t ing tha t mode ls the p ip ing

geomet ry and f lu id v iscos i ty .

The accu ra cy o f a mu l t i -pa th we t ted m e te r p ro f i le

fac to r can be subs tan t ia l l y be t te r because they samp le

a g rea te r f rac t ion o f the f low p ro f il e . Typ ica l l y p ro f i l e

fac to r accu rac ies o f + / -0 .25% o r be t te r can be

ach ieved .

UFMs a re a lso sens i t i ve to ve loc i ty p ro f i l es whe re

the re i s a la rge ro ta t iona l com pon en t (sw i r l) . Sw i r l is

n o r m a l l y g e n e r a t e d b y tw o o r m o r e o u t o f p l a n e

changes in f l ow d i rec t ion (e .g . one e lbow/ tee tha t goes

f rom ve r t i ca l to ho r i zon ta l fo l lowed by an e lbow/ tee

tha t chang es the d i rec tion o f f l ow in the ho r i zon ta l

p lane ) . Sw i r l is p resen t to som e deg ree in a lmos t

eve ry app l i ca t ion . Sw i r l can gene ra te s ign i f i can t

t ransve rse ve loc i ty compo nen ts and i t takes a long

d i s t a n c e t o d i s s i p a t e .

On an ind iv idua l pa th bas is , a UFM canno t reso lve

t ransve rse ve loc i ty componen ts f rom ax ia l ve loc i ty

com pone n ts . I t i s no rma l l y assum ed tha t the ve loc ity

is pure ly ax ia l. How ever, i f the cente r o f swir l ro ta t ion

is the cen te r o f the p ipe , i t w i l l no t a f fec t U FM s

bec aus e i t is se l f cance l ing . Ho we ver, i f the swir l is

no t cen te red , i t can cause s ign i f ican t e r ro rs . In

app l i ca t ions whe re s ign i f i can t sw i r l may be p resen t ,

th is p rob lem can be e l im ina ted by ins ta l l i ng f low

cond i t ione rs tha t la rge ly e l im ina te sw i r l ups t ream o f

the UFM . Ano th e r so lu tion i s to use a UFM tha t

d i rec t l y measu res the sw i r l and can remove i t s e f fec t .

F o r e x a m p l e , C a l d o n ' s s y m m e t r i c 8 p a th m e t e r s

measu re the ax ia l and t ransve rse ve loc i t i es a t each

cho rd loca t ion a l low ing the e f fec t o f t ransve rse f lows to

b e r e m o v e d .

L ike o the r m e te rs , the p ro f il e fac to rs o f bo th ex te rna l

and we t ted UFMs a re sens i t i ve to changes in the

3 8 5

Page 6: ultrasonic flow theory.pdf

8/11/2019 ultrasonic flow theory.pdf

http://slidepdf.com/reader/full/ultrasonic-flow-theorypdf 6/7

ups t ream cond i t ions wh i le in se rv ice . Fo r exam p le , i f

o n e o f m u l t i p le f e e d s t o a h e a d e r u p s t r e a m o f a U F M

is i so la ted , the p ro f i le fac to r fo r the me te r ma y change .

Ex te rna l me te rs a re much more sens i t i ve to these

changes than mu l t i -pa th we t ted UFMs due to the fac t

tha t mu l t i -pa th we t ted me te rs samp le a g rea te r f rac t ion

o f the p ipe .

UF Ms a re no t un ique in th is sens i t iv i t y . Gene ra l l y ,

changes in ve loc i ty p ro f i le w i l l cause comparab le

e r ro rs in compe t ing ins t rumen ts . Howeve r , un l i ke

c o m p e t i n g i n s tr u m e n t s , m u l t i - p a th U F M s a r e c a p a b l e

o f de tec t ing these changes .

S ign i f i cance :

1 . Pro f i le fac tors are a la rge potent ia l e rror source .

2 . UFM vend o rs shou ld be awa re o f the ins ta lla t ion

s i te hyd rau l i c cond i t ions .

3 . Mu l t i -pa th UFMs have muc h lower p ro f i le fac to r

e r ro rs and can be ve ry insens i t i ve to changes in

ve loc i ty pro f i les .

4 . Mu l t i -pa th UFM s have the capab i l i t y o f de tec t ing

change s in ve loc i ty p ro f i les .

R e p e a t a b i l i t y M e t e r P r o v i n q

Ul t rason ic f low me te rs a re samp led sys tems . Tha t i s ,

the t rans i t t ime measu red fo r a s ing le pu lse t rave l ing in

one d i rec t ion a long an acous t i c pa th samp les the f lu id

ve loc i ty and sound ve loc i ty a long tha t pa th . These

va r iab les va ry in t ime bec ause o f tu rbu lence , f low

con t ro l ope ra t ions and o the r fac to rs . A s ing le samp le

does no t es tab l i sh the mean ve loc i ty .

Mu l t ip le samp les a re necessa ry to reduce the

m e a s u r e m e n t u n c e r ta i n ty . T h e s a m p l in g c h a r a c t e r i s ti c

o f u l t rason ic f low me te rs i s fundamen ta l l y d i f fe ren t

than tha t o f tu rb ines and pos i t i ve d isp lacem en t m e te rs ,

wh ich in teg ra te the f low f ie ld mechan ica l l y and tend to

smoo th t ime-w ise f low va r ia t ions by the i r ro ta t iona l

inert ia.

Fac to rs a f fec t ing the re pea tab i l i t y o f u l t rason ic flow

mete rs a re :

• Tu rbu lence In tens i ty : Typ ica l l y , the rms va lue fo r

loca l tu rbu lence w i l l li e in the ran ge o f 3 to 7% o f the

mea n ax ia l ve loc i ty 4. The ma gn i tude w i l l depend on

u p s t r e a m h y d r a u li c s . T h e m e a n v e l o c it y m e a s u r e d

a long a pa th w i l l be be low the 3 to 7% f igu re

because o f spa t ia l ave rag ing a long the pa th

( typ ica l ly rang ing 2 to 4%) .

• Sam p le Ra te : A p rov ing run takes p lace ove r a f in ite

t ime pe r iodm fo r a ba l l p rove r , 10 to 20 seconds i s

typ ica l . The more f requen t ly an u l t rason ic f low me te r

samp les the f low du r ing the run pe r iod , the more

4 Reference Boundary Layer Theory Seventh Edi t ion ,

Sc h l i ch t ing C ha p te r X V II I ) , Mc G ra w -H i l l

p r e c i s e t h e m e a s u r e m e n t o f th e c a l ib r a ti o n

coe f f i c ien t . Th is i s pa r t i cu la r l y t rue when a compac t

p rove r i s used and f low t rans ien ts ex is t .

Assuming , tha t the p rove r i s pe r fec t o r has a neg l ig ib le

con t r ibu t ion to unce r ta in ty and repea tab i l i t y then , the

repea tab i l i t y o f a U FM w i ll be a func tion o f ce r ta in

meter and app l ica t ion charac ter is t ics . In part icu lar , i t

w i l l depend on 1 ) me te r pa th con f igu ra t ion , 2 ) samp le

ra te , 3 ) p rove r vo lume , and 4 ) tu rbu lence .

C h a r a c t e r i s t i c S t a t i s t i c s : For pu lse ou tpu t me te rs ,

the number o f pu lses requ i red to ob ta in repea tab i l i t y

com mo n ly used in p rove r ca lib ra t ions , 0 .05% f rom f i ve

runs , i s dependan t upon the pu lse - to -pu lse regu la r i t y s .

The worse the regu la r i t y , the more pu lses a re requ i red

to ob ta in a g iven repea tab i l i t y . Cons ide r the d i f fe ren t

me te rs ( tu rb ine , vo r tex and UFM) shown in F igu re 5 .

F i g u r e 5 P r e d i c t e d R e p e a t a b i li t y v s . N u m b e r o f

P u l s e s / S a m p l e s f o r V a r y i n g S t a n d a r d D e v i a t i o n s

O .7O

0.60

~ o . , t r / o

L ~ / o •

o . ~ %

o . l o % '

o . ~ %

~ mezm-(le-ls%)

10,000 IOQ

N o . o f Pul~m/SampI¢=

A good tu rb ine me te r has a pu lse - to -pu lse s tanda rd

dev ia t ion o f be t te r than 1 -2%. The tu rb ine me te r mee ts

the repea tab i l i t y requ i remen ts w i th a re la t i ve ly sma l l

number o f pu lses . Fu r the r w i th a compac t p rove r ,

pu lse in te rpo la t ion i s a va lid concep t b ecause o f it s

p red ic t i ve na tu re (e .g . , good regu la r i ty o f pu lse ou tpu t ) .

A v o r t e x m e t e r a t t h e o t h e r e x t r e m e h a s a s o m e w h a t

inde te rm ina te regu la r i ty , bu t from the au tho rs '

expe r ience has a pu lse - to -pu lse regu la r i t y s tanda rd

dev ia t ion be tween 10 -15%. I t can be seen tha t many

more pu lses a re requ i red to ob ta in good repea tab i l i t y .

Inc luded in F igu re 5 i s a s ta t is t i ca l pe r fo rm ance

typ i fy ing a UFM ( in th is case an Ca ldon LEF M 2 40C) . 6

s The Predict ions of Cal ibration Repeatabi l ity Using Com pact

Provers and Pulse Interpolat ion R. Paton

6The value assum es hat the LEFM produces one pulse per flow

measurement samp le, and that there s no pulse nterpolation

(sample rate 60-7 0 Hz). The pulse/sample output rom an ultrasonic

meter s derived rom converting each sampled low measurement

into pulses. The jitter or standard deviation s due to turbulence

and hydraulic variability h at n tum produce variability n the pulse

output.

8 6

Page 7: ultrasonic flow theory.pdf

8/11/2019 ultrasonic flow theory.pdf

http://slidepdf.com/reader/full/ultrasonic-flow-theorypdf 7/7