Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond...

34
_ _ _ _ + + + + _ + + _ + _ electron-elecron- scattering: T e-h >> T L electron-phonon scattering: T e-h ↓, T L phonon-phonon scattering T e-h T L time [s] 10 -15 10 -14 10 -13 10 -12 10 -11 10 -10 10 -9 non-thermal thermal heat conduction (thermal) melting ablation sample fs-laser pluse VB CB Ultrafast laser excitation of solids semiconductor

Transcript of Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond...

Page 1: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

_

_

__

+

+

++

_+ +

_+

_

electron-elecron-scattering:Te-h >> TL

electron-phononscattering:Te-h↓, TL↑

phonon-phononscattering

Te-h ≈ TL

time [s]

10-15

10-14

10-13

10-12

10-11

10-10

10-9

non-thermal

thermalheat conduction

(thermal) melting

ablation

sample

fs-laser pluse

VB

CB

Ultrafast laser excitation of solids

semiconductor

Page 2: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Characteristic time scales:

• Electronic excitation: τL• Thermalization: τR• Energy transport: τE• Mass transport: τM

τL << τR << τE < τM

• Spatial and temporal localization of energy deposition:

• Non-equilibrium• Impulsive heating at constant volume• High temperature and high pressure phases of matter:

„warm dense matter“

Ultrafast laser excitation of solids II

Page 3: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Ultrafast x-ray spectroscopy

Femtosecond time scale:

Changes of nuclear configuration• chemical reactions• vibrations• structural changes

x-ray radiation:

Spatial structure ofatomic configuration

• structure of matter

Ultrafast x-ray spectroscopy: atomic resolution - temporal and spatial

Δx

Δt

Page 4: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Sources for ultrafast x-ray pulses(how to realize ultrafast x-ray diffraction…)1. accelerator based sources:

slicing source, SPPS, LCLS, TESLA X-FEL, LUX, …

Page 5: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Laser: Ti:Sa, 120 fs, 150 mJ Target: moving Titanium wire

wire

wheel

plasma

2. fs-laser plasma: “femtosecond x-ray tube”

fs-laser: ~100fs, 10 … 100 mJΙ ≈ 1016 … 1018 W/cm2

Ti wire

Rousse et al., Phys. Rev. E 50, 2200 (1994)

Page 6: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Time-resolved x-ray diffraction (TXRD)

Page 7: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Diffraction and focussing of keV x-rax radiation

Si (111)

50 … 200 nmGe, Bi (111)

Ge Si

80μm

≈ 3 × 104 photons/pulse

Page 8: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

x-ray diffraction data

Ge Si

CCD camera imageIntegration

Rocking Curve

different lattice constants of Ge and Si

integratedreflectivity

Dispersion

Page 9: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

x-ray diffraction experiment…

Titanime wire

lead shielding

x-ray mirror sample onx-y-Θ manipulator

CCD

Debrie protection

fs pump pulse

fs pulsefor plasma

kα radiation

AG von der Linde, University Essen

Page 10: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Ultrafast non-thermal melting:

Laser

SampleSilicon

K. Sokolowski-Tinten et al., PRB 51, 14186 (1995), ibid. 58, R11805 (1998),

optical spectroscopyelectronic excitation

non-thermal melting

ablation

0.47 J/cm2

R(λ) of solid Si

liquid

Page 11: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Ultrafast non-thermal melting:

> 10 % of all valence electrons!

K. Sokolowski-Tinten et al., PRB 61, 2643 (2001)

Intense electronic excitation

P. Stampfli et al., PRB 49, 7299 (1994)

lattice instability

Use ultrafast melting as test case for time-resolved x-ray diffraction

Page 12: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Non-thermal und thermal melting and subsequent re-crystallization

≈ 300 fs

K.Sokolowski-Tinten et al., PRL 87, 225701 (2001)

170 nm Ge on Si; (111)-diffraction spot

800 m/s

X-ray diffraction: Ultrafast melting of Ge

Non-thermal meltingNon-thermal und thermal melting

Si (111)

170 nmGe, Bi (111)

Page 13: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Analysis of x-ray pulse duration

0.8

0.9

1.0

-0.4 0.0 0.4 0.8

X-ray diffraction

Delay Time [ps]

Ge 0.2 J/cm2

0.8

0.9

1.0

-0.4 0.0 0.4 0.8

X-ray diffraction"melting"

Delay Time [ps]

Ge 0.2 J/cm2

0.8

0.9

1.0

-0.4 0.0 0.4 0.8

X-ray diffraction"melting"250 fs

Delay Time [ps]

Ge 0.2 J/cm2

0.8

0.9

1.0

-0.4 0.0 0.4 0.8

X-ray diffraction"melting"250 fs350 fs

Delay Time [ps]

Ge 0.2 J/cm2

τX = (300 ± 50) fs

for analysis phase transition is assumed as “instantaneous”

Page 14: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

• Bi is a semimetal

• rhombohedral structure:- small displacement from fcc lattice- two atom basis

Lattice dynamics in Bismut

a

Bi-Bi distance a (0.468 × diagonal c)stabilized by Peierls-Jones mechanism

A1g-Phonon (V = const.)

• Bi is a semimetal

• rhombohedral structure:- small displacement from fcc lattice- two atom basis

• Excitation of coherent optical phonons(A1g-mode) with fs-laser pulses- Zeiger et al., PRB 45, 768 (1992)- DeCamp et al., PRB 64, 92301 (2001)- Hase et al., PRL 88, 67401 (2002)

Page 15: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Displacive Excitation of Coherent Phonons

Page 16: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

geometric structur factor of Bi

→ decrease & oscillationof (111)-diffraction spot

→ increase & oscillationog (222)-diffraction spot

⏐S(hkl)⏐2

a

initialequilibrium position a0

displacedquasi equilibrium position a0‘

a/c = 0.5

(222)

(111)

Page 17: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

A1g optical mode:νobs = 2.14 THz (470 fs)ν0 = 2.92 THz (342 fs)

Bi 50nm on Si, F ≈ 6 mJ/cm2

Coherent optical phonons

A1g optical mode:νobs = 2.14 THz (470 fs) softening & anharmonicity

Δa ~ 0,15 – 0,25 Å

DECP

K. Sokolowski-Tinten et al., Nature 422, 287 (2003)

⏐S(hkl)⏐2

a

(222)

(111)

a0‘a0

7%

Page 18: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

High excitation density: Bi (111) and (222)

aperiodic but coherentgowth Bi-Bi distance: 0.4 Å

followed bymelting

Page 19: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Coherent phonons ⇔ phase transitionChange of atomic vibrations: periodic ⇒ aperiodic ?

Bi (111): higher excitation density

≈ 1.1 ps

softening of phonons precursor for melting

Page 20: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Phonon dynamics

coher. optical phonons incoh. phonons:“heat”

coher. acoustic phonons: lattice expansion

Debey-Waller Eff.:

)/exp( 22234

hklduDW π−=

Page 21: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Summary II

BiTime-resolved probe of structural dynamics

Time-resolved x-ray diffraction

Femtosecond laser spectroscopy

Non-thermal melting and coherent phonon excitation

Time-resolved photoelectron spectroscopy

Questions ?

Application to femtochemistry

IntroductionWhy femtosecond laser pulses?

Example: photochemistry of vision

Generation of femtosecond laser pulses

Page 22: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

+-

fs-laser pulse

metal surface

Electron thermalization dynamics in metals and the Two-Temperature Model

Electron dynamics in metals following optical excitation

Page 23: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

time-resolved photoemission spectroscopy

probe: 6 eV, 90 fs

E-EF = Ekin + Φ - hνprobe

pump: 1.5 eV, 55 fs

probe:6 eV, 90 fs

probe pulse polarization

p-polarized bulk + surface

probe pulse polarization

s-polarized bulk

Gd/W(110) film preparationAspelmeier et al.,

JMMM 132, 22 (1994)

dz2

Page 24: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

electronic structure of the Gd(0001) surface

T=80 K

Kurz et al., J. Phys. Cond. Mat. 14, 6353 (2002)

surface plane

[000

1]

LDOS

charge densitydifference plot

5dz2

Page 25: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

time-resolved photoemission of Gd(0001) bulk

Δt >100 fs: thermalized electron distribution function in Gd bulk

normal emission

T=100 K

s-polarized probe pulse

thermalizationin ~100 fs

non-thermal e-

unoccupied

occupied DOS

Page 26: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

electron thermalization and cooling in Gd(0001)

characteristic times transient changes of electron and phonon

temperature

• excitation: < 50 fs• relaxation: ≈ 1 ps

+∇(κph∇Tl)

Two Temperature Model (2TM):

)TlTe(Ht

Tl)Tl(Cl

)t,z(S)TlTe(H)Te(t

Te)T(Ce

,

,el

=∂

+-∇κ∇=∂

H(Te,Tl ): thermalized electron distributionPhonons: Debye Model

transport e-ph coupl. opt. exc.

Anisimov et.al., Sov. Phys. JETP 39, 375 (1974)

good agreement withtwo-temperature model

Page 27: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

TRPE of the Gd(0001) surface: p-pol. probe

time evolution of surface state binding energy

M. Lisowski et al., Phys. Rev. Lett. 95, 137402 (2005)

T=100 K

normal emission

p-polarized probe pulse

occupiedsurface state

Page 28: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

time-resolved binding energy of S

Transient binding energy of Gd(0001) surface state

3 THz

LO phonon frequency

Page 29: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

origin of the coherent mode at the surface ?

LO phonon derived mode:Surface vibrates with respectto underlying bulk layers

Köhler et al., PRL 24, 16 (1970)Rao and Menon, J. Phys. Chem. Solids 35, 425 (1974)

observedfrequency

Page 30: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Estimation of phonon amplitude

LO phonon derived mode:Surface vibrates with respectto underlying bulk layers

estimated phonon amplitude

ΔEB ≈ 1 meV ⇔ Δd12 ≈ 0.2% · d12

(equilibrium value d12 = 2.8 Å)

DFT calculations of S↑ binding energyas function of interplane spacing d12

Page 31: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

Se

Ta

Charge density wave (CDW) in TaS2 or TaSe2

rearrangement of electronic structure:

UCO(upper cluster orbitals)6

6

1

b

c

a

quasi 2D crystal

strong e-ph coupling CDW at 300 K

1T-TaSe2

Colonna et al., Phys. Rev. Lett. 94, 036405 (2005)

~e/2 + -charge transfer

TaSe2: hexagonal layered structure

Page 32: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

metal-insulator transition in bulk TaS2

6

0.01

2

46

0.1

2

4

T e / W

1.81.61.41.21.0U/W

insulator

metal

Crossover

Mott transition controlled by CDW (overlap ⇔ bandwidth)

Perfetti et al., Phys. Rev. Lett. 90, 166401 (2003)Phys. Rev. B 71, 153101 (2005)

hν=6 eV

photoemission spectra

phase diagram

Page 33: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

time-resolved ARPES: T = 30 K

T=30 Khνpump=1.5 eVhνprobe=6.0 eV

normal emission

PE intensity

delay (ps)

pump-probe delay (ps)

UC

O p

eak

shift

(meV

)

2.82.52.2Frequency (THz)

bulksurface

see Demsar et al., PRB 66, R041101

beating between two modes

Page 34: Ultrafast laser excitation of solidswolf/femtoweb/... · Ultrafast x-ray spectroscopy Femtosecond time scale: Changes of nuclear configuration • chemical reactions • vibrations

+ - • In phase “breathing” of the metal clusters • Large coupling and low dampingExcitation of Mott Phase

Coherent CDW excitation

Nuclear coordinate X

Raman-like excitation