Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS...

37
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center

Transcript of Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS...

  • Slide 1
  • Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center
  • Slide 2
  • Outline Laser cooling, magnetic trapping and BEC Optical dipole traps, fermions Optical lattices: Superfluid to Mott insulator transition Magnetic microtraps: Atom chips and 1D physics
  • Slide 3
  • Outline Feshbach resonances: taming the interaction The BEC-BCS transition Single atom detection
  • Slide 4
  • Lab impressions from all over the world Tbingen Munich Austin Osaka
  • Slide 5
  • Magneto-optical trap (MOT) MOT: 3s, 1 x 10 9 atoms
  • Slide 6
  • MOT: Limits and extensions Temperature: 50 150 K for alkalis Atom number: 1 10 9 Narrow transitions: below 1K (e.g. Strontium) Single atom MOT (strong quadrupole field) Huge loading rate (Zeeman slower, 2D-MOT)
  • Slide 7
  • The beauty of magneto-optical traps sodium lithium strontium ytterbiumerbiumdysprosium
  • Slide 8
  • Magnetic trapping Working principle: Magnetic field minimum provides trapping potential Evaporative cooling with radio frequency induced spin flips Technical issues: heat production in the coils, control of field minimum Pros: robust, large atom number Cons: long cooling cycle (20 s 60 s), limited optical access
  • Slide 9
  • Magnetic traps for neutral atoms Ioffe- Pritchard trap 4 cm Clover leaf trap
  • Slide 10
  • Imaging an ultracold quantum gas Time of flight technique Credits: Immanuel Bloch
  • Slide 11
  • Standard Bose-Einstein condensation classical gas coherent matter wave T c ~ 1K Bose-Einstein condensation
  • Slide 12
  • The first BEC 1995: Cornell and Wieman, Boulder
  • Slide 13
  • The early phase: 1995 - 1999 expansion: MIT Boulder Duke condensate fraction speed of sound
  • Slide 14
  • The early phase: 1995 - 1999 Interference between two condensates (MIT) MIT
  • Slide 15
  • The early phase: 1995 - 1999 Vortices Boulder
  • Slide 16
  • Optical dipole traps Working principle: exploit AC Stark shift single beam dipole trapcrossed dipole trap 1 mm
  • Slide 17
  • Optical dipole traps Requirements for a good dipole trap: a lot of laser power: 100 W @ 1064 nm available Pro: independent of magnetic sub-level, magnetic field becomes free parameter Con: high power laser, stabilization, limited trap depth -> smaller atom number Arbitrary trapping potentials possible
  • Slide 18
  • Ultracold Fermi gases The challenge: 1.Identical fermions do not collide at ultralow temperatures 2.Fermions are more subtle than bosons -> everything is more difficult The solution: Take tow different spin-states or admix bosons Duke university
  • Slide 19
  • Ultracold Fermi gases Bose-Fermi mixtures Bosons (rubidium) Fermions (potassium) After release from the trap Florence
  • Slide 20
  • Optical lattices Band structure Laser configuration 2D lattice (makes 1D tubes) 3D lattice
  • Slide 21
  • Optical lattices Expansion of a superfluid: interference pattern visible Expansion without coherence Munich
  • Slide 22
  • Optical lattices Superfluidity: tunneling dominates Mott insulator: Interaction energy Dominates (no interference)
  • Slide 23
  • Atoms meet solids: atom chips Working principle: make miniaturized magnetic traps with minaturized electric wires: Magnetic field of a wire Homogeneous Offest-field Trapping potential for the atoms along the wire => one-dimensional geometry
  • Slide 24
  • Atom chips Todayss setup: Basel
  • Slide 25
  • Atom chips: 1D physics Radial confinement leads to stronger interaction Lieb-Liniger interaction parameter: Induced antibunching: Tonks-Girardeau gas Penn state
  • Slide 26
  • Newtons cradle with atoms Penn State
  • Slide 27
  • Feshbach resonances Microscopic innteraction mechanisms between the ultacold atoms: s-wave scattering, and (more and more often) dipole-dipole interaction Change the s-wave scattering length via magnetic field: Working principle:
  • Slide 28
  • Generic properties of a Feshbach resonance The situation for fermionic 6 Li: Attractive interaction Repulsive interaction Unitary regime
  • Slide 29
  • Making ultracold molecules Evaporative cooling in a dipole trap a = + 3500 a 0 a = - 3500 a 0 Maximum possible number of trapped non-interacting fermions Innsbruck
  • Slide 30
  • Molecules form Bose-Einstein condensates Result: bimodal distribution of molecular density distribution Condensate fraction Boulder Two fermionic atoms form a bosonic molecule
  • Slide 31
  • Controlling the interaction between fermions a>0: weak repulsive interaction, BEC of molecules a