Ultracold Bosonic and Fermionic Quantum Gases in Optical...

53
Ultracold Bosonic and Fermionic Quantum Gases in Optical Lattices Ulrich Schneider , Lucia Hackermüller, Sebastian Will, Thorsten Best, Simon Braun, Philipp Ronzheimer, KC Fong, Tim Rom Stefan Trotzky, Yuao Chen, Jeff Thompson, Ute Schnorrberger, Simon Fölling, Fabrice Gerbier, Artur Widera Stefan Kuhr, Jacob Sherson, Marc Cheneau, Christof Weitenberg, Manuel Endres, Rosa Glöckner, Ralf Labouvie Theory: Belén Paredes, Mariona Moreno I.B. Johannes Gutenberg-Universität, Mainz Max-Planck-Institut für Quantenoptik, Garching Ludwig-Maximilians Universität, München funding by DFG, European Union, $ AFOSR, DARPA (OLE) www.quantum.physik.uni-mainz.de Theory collaboration: Achim Rosch, Theo Costi, David Rasch, Rolf Helmes, T. Kitagawa, E. Demler, N. Prokof’ev, B. Svistunov, L.Pollet, M Troyer, F. Gerbier Tuesday, June 30, 2009

Transcript of Ultracold Bosonic and Fermionic Quantum Gases in Optical...

Page 1: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Ultracold Bosonic and FermionicQuantum Gases in Optical LatticesUlrich Schneider, Lucia Hackermüller,Sebastian Will, Thorsten Best, Simon Braun, Philipp Ronzheimer,KC Fong, Tim Rom

Stefan Trotzky, Yuao Chen, Jeff Thompson, Ute Schnorrberger, Simon Fölling, Fabrice Gerbier,Artur Widera

Stefan Kuhr, Jacob Sherson, Marc Cheneau, Christof Weitenberg, Manuel Endres, Rosa Glöckner, Ralf Labouvie

Theory: Belén Paredes, Mariona Moreno

I.B.

Johannes Gutenberg-Universität, MainzMax-Planck-Institut für Quantenoptik, GarchingLudwig-Maximilians Universität, München

funding by€ DFG, European Union,$ AFOSR, DARPA (OLE) www.quantum.physik.uni-mainz.de

Theory collaboration:Achim Rosch, Theo Costi, David Rasch, Rolf Helmes,

T. Kitagawa, E. Demler,

N. Prokof’ev, B. Svistunov, L.Pollet, M Troyer, F. Gerbier

Tuesday, June 30, 2009

Page 2: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Strongly Correlated Atoms in Optical Lattices

• Optical Lattices

Setup, Detection Techniques

• Strong Correlated Bosons

Bosonic Mott Insulators

Second Order Tunneling/Superexchange Interactions

• Strongly Correlated Fermions

Repulsive Interactions - Fermionic Mott

Attractive Interactions

Transport of Interacting Fermi Gases

• Bose-Fermi Mixtures

Multi Orbital Quantum Phase Diffusion

Bose-Fermi Mixtures in Optical Lattices

• Noise Correlations

• OutlookTuesday, June 30, 2009

Page 3: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Introduction

• Controlling Single Quantum Systems

• New challenges ahead: control, engineer and understand complex quantum system quantum computers, quantum simulators, novel (states of) quantum matter, advanced materials, multi-particle entanglement

R. P. Feynman‘s Vision

A Quantum Simulator to study the quantum dynamics

of another system.

Single Atoms and Ions Photons Quantum Dots

R.P. Feyman, Int. J. Theo. Phys. (1982)R.P. Feynman, Found. Phys (1986)

Tuesday, June 30, 2009

Page 4: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Our Starting Point – Ultracold Quantum Gases

Parameters: Densities: 1015 cm-3

Temperatures: Nano KelvinAtom Numbers 106

Bose-Einstein Condensates e.g. 87Rb

Degenerate Fermi Gasese.g. 40K

Ground States at T=0

Tuesday, June 30, 2009

Page 5: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Optical Lattice Potential – Perfect Artificial Crystals

λ/2= 425 nm

Laser Laser

optical standing wave

Periodic intensity pattern creates 1D,2D or 3D light crystals for atoms (Here shown for small polystyrol particles).

Perfect model systems for a fundamental understanding of quantum many body systems

Tuesday, June 30, 2009

Page 6: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

1D, 2D & 3D Lattices

2D LatticesArray of one-dimensional quantum systems

3D LatticesArray of quantum dots

Tuesday, June 30, 2009

Page 7: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

From Artificial Quantum Matter to Real Materials

e.g. High-Tc Superconductors (YBCO)

•Densities: 1024-1025/cm3

•Temperatures: mK – several hundred K

•Crystal Structures and Material Parameters given by Material(Tuning possible via e.g. external parameters like e.g. pressure, B-fields or via synthesis)

Real MaterialsUltracold Quantum Gases in Optical Lattices

•Densities: 1014/cm3

(100000 times thinner than air)

•Temperatures: few nK(100 millionen times lower than outer space)

•Crystal Structures and Material Parameters canbe changed dynamically and in-situ.

New tunable model systems for many body systems!

Tuesday, June 30, 2009

Page 8: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

From Artificial Quantum Matter to Real Materials

e.g. High-Tc Superconductors (YBCO)

•Densities: 1024-1025/cm3

•Temperatures: mK – several hundred K

•Crystal Structures and Material Parameters given by Material(Tuning possible via e.g. external parameters like e.g. pressure, B-fields or via synthesis)

Real MaterialsUltracold Quantum Gases in Optical Lattices

•Densities: 1014/cm3

(100000 times thinner than air)

•Temperatures: few nK(100 millionen times lower than outer space)

•Crystal Structures and Material Parameters canbe changed dynamically and in-situ.

New tunable model systems for many body systems!

Low densities require us to work at even lower

temperaturesbut

we gain the control & manipulations techniques of the atomic physics

toolbox

Tuesday, June 30, 2009

Page 9: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Bose-Hubbard Hamiltonian

Expanding the field operator in the Wannier basis of localized wave functions on each lattice site, yields :

Bose-Hubbard Hamiltonian

Tunnelmatrix element/Hopping element Onsite interaction matrix element

M.P.A. Fisher et al., PRB 40, 546 (1989); D. Jaksch et al., PRL 81, 3108 (1998)

Mott Insulators now at: Mainz, NIST, ETHZ, Texas, Innsbruck, MIT, Munich

Tuesday, June 30, 2009

Page 10: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Time of flight interference pattern

• Interference between all waves coherently

emitted from each lattice site

Tim

e of

flig

ht

Periodicityofthereciprocallattice

20 ms

Wannierenvelope

Grating-likeinterference

Tuesday, June 30, 2009

Page 11: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Momentum Distributions – 1D

Momentum distribution can be obtained by Fourier transformation of the macroscopic wave function.

!(x) =!

i

A(xj) · w(x! xj) · ei!(xj)

Tuesday, June 30, 2009

Page 12: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

!!j = (V !"/2) !t

!! = 0 !! = "

Preparing Arbitrary Phase Differences Between Neighbouring Lattice Sites

Phase difference between neighboring lattice sites

(cp. Bloch-Oscillations)

But: dephasing if gradient is left on for long times !

Tuesday, June 30, 2009

Page 13: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Mapping the Population of the Energy Bands onto the Brillouin Zones

Crystal momentum

Free particlemomentum

Population of nth band is mapped onto nth Brillouin zone !

Crystal momentum is conserved while lowering the lattice depth adiabatically !

A. Kastberg et al. PRL 74, 1542 (1995)M. Greiner et al. PRL 87, 160405 (2001)

Tuesday, June 30, 2009

Page 14: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Experimental Results

Piet

Mon

dria

n

Brillouin Zones in 2DMomentum distribution of a dephased condensate after turning off the lattice potential adiabtically

2D

Tuesday, June 30, 2009

Page 15: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Experimental Results

Piet

Mon

dria

n

Brillouin Zones in 2DMomentum distribution of a dephased condensate after turning off the lattice potential adiabtically

2D

Tuesday, June 30, 2009

Page 16: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Experimental Results

Piet

Mon

dria

n

Brillouin Zones in 2DMomentum distribution of a dephased condensate after turning off the lattice potential adiabtically

2D

3D

Tuesday, June 30, 2009

Page 17: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Populating Higher Energy Bands

Stimulated Raman transitions between vibrational levels are used to populate higher energy bands.

Single lattice site Energy bands

Measured Momentum Distribution !

Tuesday, June 30, 2009

Page 18: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

From a Conductor to a Band Insulator

Fermi Surfaces become directly visible!

M. Köhl et al. PRL (2005)

Tuesday, June 30, 2009

Page 19: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Entering the Strongly Interacting Regime

Tuesday, June 30, 2009

Page 20: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Entering the Strongly Interacting Regime

Use Feshbach resonances toincrease U

Tuesday, June 30, 2009

Page 21: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Entering the Strongly Interacting Regime

Use Feshbach resonances toincrease U

Increase lattice depth anddecrease J

Tuesday, June 30, 2009

Page 22: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Superfluid to Mott Insulator Transition

H = !J !"i, j#

a†i a j +!

i!ini +

12

U !i

ni(ni !1)

M.P.A. Fisher et al., PRB 40, 546 (1989); D. Jaksch et al., PRL 81, 3108 (1998)Bosonic Mott Insulators now at: Munich,Mainz, NIST, ETHZ, MIT, Innsbruck, Florence, Garching...

Coherence

Number statisticsIn trap density distribution“shell structure”

Particle hole admixture

Criticalmomentum

Tuesday, June 30, 2009

Page 23: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Bose-Hubbard Hamiltonian

Expanding the field operator in the Wannier basis of localized wave functions on each lattice site, yields :

Bose-Hubbard Hamiltonian

Tunnelmatrix element/Hopping element Onsite interaction matrix element

M.P.A. Fisher et al., PRB 40, 546 (1989); D. Jaksch et al., PRL 81, 3108 (1998)Mott Insulators now at: NIST, ETHZ, MIT, Innsbruck, Florence, Garching...

J = !!

d3xw(x! xi)"! !2

2m! + Vlat(x)

#w(x! xj) U =

4!!2a

m

!d3x|w(x)|4

H = !J !"i, j#

a†i a j +!

i!ini +

12

U !i

ni(ni !1)

Tuesday, June 30, 2009

Page 24: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Superfluid Limit

Atoms are delocalized over the entire lattice !Macroscopic wave function describes this state very well.

Poissonian atom number distribution per lattice site

n=1

Atom number distribution after a measurement

!ai"i #= 0|!SF !U=0 =

!M"

i=1

a†i

#N

|0!

Tuesday, June 30, 2009

Page 25: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

“Atomic Limit“ of a Mott-Insulator

n=1

Atoms are completely localized to lattice sites !

Fock states with a vanishing atom number fluctuation are formed.

|!Mott!J=0 =M!

i=1

"a†i

#n|0! !ai"i = 0

Tuesday, June 30, 2009

Page 26: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

“Atomic Limit“ of a Mott-Insulator

n=1

Atoms are completely localized to lattice sites !

Fock states with a vanishing atom number fluctuation are formed.

Atom number distribution after a measurement

|!Mott!J=0 =M!

i=1

"a†i

#n|0! !ai"i = 0

Tuesday, June 30, 2009

Page 27: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Quantum Phase Transition (QPT) from a Superfluid to a Mott-Insulator

At the critical point gc the system will undergo a phase transition from a superfluid to an insulator !

This phase transition occurs even at T=0 and is driven by quantum fluctuations !

U/J = z 5.8

Critical ratio for:

see Subir Sachdev, Quantum Phase Transitions, Cambridge University Press

Tuesday, June 30, 2009

Page 28: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Quantum Phase Transition (QPT) from a Superfluid to a Mott-Insulator

At the critical point gc the system will undergo a phase transition from a superfluid to an insulator !

This phase transition occurs even at T=0 and is driven by quantum fluctuations !

U/J = z 5.8

Critical ratio for:

see Subir Sachdev, Quantum Phase Transitions, Cambridge University Press

Tuesday, June 30, 2009

Page 29: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Quantum Phase Transition (QPT) from a Superfluid to a Mott-Insulator

At the critical point gc the system will undergo a phase transition from a superfluid to an insulator !

This phase transition occurs even at T=0 and is driven by quantum fluctuations !

Characteristic for a QPT

•Excitation spectrum is dramatically modified at the critical point.

•U/J < gc (Superfluid regime) Excitation spectrum is gapless

•U/J > gc (Mott-Insulator regime) Excitation spectrum is gapped U/J = z 5.8

Critical ratio for:

see Subir Sachdev, Quantum Phase Transitions, Cambridge University Press

Tuesday, June 30, 2009

Page 30: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Superfluid – Mott-Insulator Phase Diagram

Tuesday, June 30, 2009

Page 31: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Superfluid – Mott-Insulator Phase Diagram

For an inhomogeneous system an effective local chemical potential can be introduced

Jaksch et al. PRL 81, 3108 (1998)

Tuesday, June 30, 2009

Page 32: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Ground State of an Inhomogeneous System

From Jaksch et al. PRL 81, 3108 (1998)

From M. Niemeyer and H. Monien (private communication)

Tuesday, June 30, 2009

Page 33: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Momentum Distribution for Different Potential Depths0 Erecoil

22 Erecoil

Tuesday, June 30, 2009

Page 34: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

a = ! +!a

a†i a j = !a†

i "!a j"+ !a†i "!a j +!a†

i !a j"= !a†

i "a j + a†i !a j"#!a†

i "!a j"

!ai" =#

ni = !

H = !J !"i, j#

a†i a j +

12

U !i

ni(ni !1)!µ !i

ni

Describing the Phase Transition (1)

Usual Bogoliubov replacement does NOT capture SF-MI transition!(However can describe Quantum Depletion due to interactions)

Self consistent mean field approximation (decoupling approx.)

K. Sheshadri et al., EPL 22, 257 (1993)D. van Oosten, P. van der Straten & H. Stoof, PRA 63, 053601 (2001)

Tuesday, June 30, 2009

Page 35: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

H =!zJ! !i

!a†

i + ai

"+ zt!2Ns +

12 ! ni(ni!1)!µ !

ini

Hi =12

U ni(ni!1)! µ ni!!!

a†i + ai

"+!2 U = U/zJ

µ = µ/zJ

H = H(0) +!V

H(0) =12

U n(n!1)! µ n+!2

V =!(a† + a)

Describing the Phase Transition (2)

Is diagonal in site index i, so we can use an effective on-site Hamiltonian

Can diagonalize Hamiltonian in occupation number basis!or use perturbation theory with tunnelling term to find phase diagram analytically....

D. van Oosten, P. van der Straten & H. Stoof, PRA 63, 053601 (2001)

Tuesday, June 30, 2009

Page 36: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

E(2)n =

nU(n!1)! µ

+n+1

µ!Un

E(2)n = !2 !

n! "=n

|#n|V |n!$|2

E(0)n %E(0)

n!

Eg(!) = a0 +a2!2 +O(!4)

a2 > 0! ! = 0a2 < 0! ! "= 0

Describing the Phase Transition (3)

D. van Oosten, P. van der Straten & H. Stoof, PRA 63, 053601 (2001)

For our initial state (with fixed particle number), only second order perturbation gives a first correction.

a2 = 0 U/zJ ! n"5.83Phase transition for

Tuesday, June 30, 2009

Page 37: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Phase coherence of a Mott insulator

Does a Mott insulator produce an interference pattern ?

F. Gerbier et al., PRL (2005)

Theory : V. N. Kashurnikov et al., PRA 66, 031601 (2002). R. Roth & K. Burnett, PRA 67, 031602 (2003).

Tuesday, June 30, 2009

Page 38: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Quantitative Analysis of Interference Pattern

Visibilitymeasures coherence

Tuesday, June 30, 2009

Page 39: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Quantitative Analysis of Interference Pattern

Visibilitymeasures coherence

nmax

Tuesday, June 30, 2009

Page 40: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Quantitative Analysis of Interference Pattern

Visibilitymeasures coherence

nmin

Tuesday, June 30, 2009

Page 41: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Quantitative Analysis of Interference Pattern

Visibilitymeasures coherence

nmin

Visibility decaysslowly withincreasing

latticedepth!

Tuesday, June 30, 2009

Page 42: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Excitations in the zero tunneling limit

Perfect Mott insulator ground state

• Low energy excitations :

• Particle/hole pairs couples to the ground state :

Energy E0

Energy E0+U, separated from the ground state by an interaction gap U

n0: filling factorHere n0=1

Tuesday, June 30, 2009

Page 43: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Ground state for J=0 :

``perfect´´ Mott insulator

Ground state for finite J<<U :

treat the hopping term Hhop in 1st order perturbation

=

Coherent admixture of particle/holes at finite J/U

Deviations from the perfect Mott Insulator

JU

Tuesday, June 30, 2009

Page 44: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Predictions for the visibility

Perfect MI

MI with

particle/hole pairs

Perturbation approach predicts a finite visibility, scaling as (U/J)-1

Tuesday, June 30, 2009

Page 45: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Comparison with experiments

Average slope measured to be -0.97(7)

Tuesday, June 30, 2009

Page 46: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Tuesday, June 30, 2009

Page 47: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Dissecting a Mott Insulator

S. Fölling, PRL 97, 060403 (2006)

Tuesday, June 30, 2009

Page 48: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Dissecting a Mott Insulator

High spatial resolution of up to 1 µm can be achieved!

S. Fölling, PRL 97, 060403 (2006)

Tuesday, June 30, 2009

Page 49: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Dissecting a Mott Insulator

High spatial resolution of up to 1 µm can be achieved!

S. Fölling, PRL 97, 060403 (2006)

Tuesday, June 30, 2009

Page 50: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Dissecting a Mott Insulator

High spatial resolution of up to 1 µm can be achieved!

S. Fölling, PRL 97, 060403 (2006)

Tuesday, June 30, 2009

Page 51: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Imaging a 2D Mott Insulator

N. Gemelke, X. Zhang, C.-L. Hung, and C. Chin, arXiv:0904.1532

Creating a single 2D lattice plane with Cs(C. Chin, Univ. of Chicago)

Tuesday, June 30, 2009

Page 52: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Imaging a 2D Mott Insulator

N. Gemelke, X. Zhang, C.-L. Hung, and C. Chin, arXiv:0904.1532

Creating a single 2D lattice plane with Cs(C. Chin, Univ. of Chicago)

Tuesday, June 30, 2009

Page 53: Ultracold Bosonic and Fermionic Quantum Gases in Optical Latticesstatic.sif.it/.../public/files/va2009/bloch_0629.pdf · 2009-07-01 · From Artificial Quantum Matter to Real Materials

Imaging a 2D Mott Insulator

N. Gemelke, X. Zhang, C.-L. Hung, and C. Chin, arXiv:0904.1532

Creating a single 2D lattice plane with Cs(C. Chin, Univ. of Chicago)

Tuesday, June 30, 2009