Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50...

50
Zada et al. Advances in Difference Equations (2020) 2020:64 https://doi.org/10.1186/s13662-020-2534-1 RESEARCH Open Access Ulam–Hyers stability of impulsive integrodifferential equations with Riemann–Liouville boundary conditions Akbar Zada 1 , Jehad Alzabut 2* , Hira Waheed 1 and Ioan-Lucian Popa 3 * Correspondence: [email protected] 2 Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia Full list of author information is available at the end of the article Abstract This paper is concerned with a class of impulsive implicit fractional integrodifferential equations having the boundary value problem with mixed Riemann–Liouville fractional integral boundary conditions. We establish some existence and uniqueness results for the given problem by applying the tools of fixed point theory. Furthermore, we investigate different kinds of stability such as Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability, and generalized Ulam–Hyers–Rassias stability. Finally, we give two examples to demonstrate the validity of main results. MSC: 34A08; 34B37 Keywords: Caputo derivative; Riemann–Liouville integral; Impulse; Ulam–Hyers stability; Fixed point theory 1 Introduction During the last few decades, boundary value problems of fractional differential equations have been utilized in different problems of applied nature; for example, we can find it in analytical formulations of systems and processes. Due to a more accurate behavior of frac- tional differential equations, it got the interest of research community in various applied fields of sciences such as chemistry, engineering, mechanics, physics, and so on. For the readers’ convenience, we refer to the monographs [9, 11, 15, 23] and their references. Also, an experimental study was presented in [21]. For boundary value problems of fractional differential equations, the existence of solu- tions is an important and basic requirement. Furthermore, the uniqueness of solutions is the next important feature for more specific behavior of solutions. In the literature, many results are available about these two necessary properties of solutions; see, for example [2, 7, 8, 20, 22, 27]. Integral boundary conditions are very important in the solutions of many practical systems [1, 51]. The impulsive phenomena and their models are investigated and analyzed in different practical problems. The theory of impulsive mathematical models based on fractional dif- ferential equations has very significant applications in many applied problems in natural © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Transcript of Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50...

Page 1: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 https://doi.org/10.1186/s13662-020-2534-1

R E S E A R C H Open Access

Ulam–Hyers stability of impulsiveintegrodifferential equations withRiemann–Liouville boundary conditionsAkbar Zada1, Jehad Alzabut2* , Hira Waheed1 and Ioan-Lucian Popa3

*Correspondence:[email protected] of Mathematics andGeneral Sciences, Prince SultanUniversity, Riyadh, Saudi ArabiaFull list of author information isavailable at the end of the article

AbstractThis paper is concerned with a class of impulsive implicit fractional integrodifferentialequations having the boundary value problem with mixed Riemann–Liouvillefractional integral boundary conditions. We establish some existence and uniquenessresults for the given problem by applying the tools of fixed point theory. Furthermore,we investigate different kinds of stability such as Ulam–Hyers stability, generalizedUlam–Hyers stability, Ulam–Hyers–Rassias stability, and generalizedUlam–Hyers–Rassias stability. Finally, we give two examples to demonstrate thevalidity of main results.

MSC: 34A08; 34B37

Keywords: Caputo derivative; Riemann–Liouville integral; Impulse; Ulam–Hyersstability; Fixed point theory

1 IntroductionDuring the last few decades, boundary value problems of fractional differential equationshave been utilized in different problems of applied nature; for example, we can find it inanalytical formulations of systems and processes. Due to a more accurate behavior of frac-tional differential equations, it got the interest of research community in various appliedfields of sciences such as chemistry, engineering, mechanics, physics, and so on. For thereaders’ convenience, we refer to the monographs [9, 11, 15, 23] and their references. Also,an experimental study was presented in [21].

For boundary value problems of fractional differential equations, the existence of solu-tions is an important and basic requirement. Furthermore, the uniqueness of solutions isthe next important feature for more specific behavior of solutions. In the literature, manyresults are available about these two necessary properties of solutions; see, for example[2, 7, 8, 20, 22, 27]. Integral boundary conditions are very important in the solutions ofmany practical systems [1, 51].

The impulsive phenomena and their models are investigated and analyzed in differentpractical problems. The theory of impulsive mathematical models based on fractional dif-ferential equations has very significant applications in many applied problems in natural

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the originalauthor(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or otherthird party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit lineto the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted bystatutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view acopy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Page 2: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 2 of 50

sciences and engineering. Many evolutionary processes that possess abrupt changes atcertain moments can be described with the help of aforesaid models. The abrupt changesin evolutionary processes can be of two types. The first one, characterized by short-term perturbations with negligible duration in comparison with the duration of the wholeprocesses, is called instantaneous impulses. The second one is characterized by abruptchanges that remain active for a finite interval of time is called noninstantaneous impulses.Many evolutionary processes can be modeled using noninstantaneous impulses such asthe flow of drugs in blood streams (hemodynamic equilibrium of a person), decompen-sation, and many others. In this context, impulsive fractional differential equations arestudied in different aspects; see, for example [13, 14, 17, 24, 26, 30, 32, 34, 41, 49].

Stability analysis, which has been solely studied for differential equations of arbitraryorder and abundantly discussed by the researchers, is the theory related to the stability ofdifferential equations. In stability theory, the Ulam stability was first established by Ulam[35] in 1940 and then was extended by Hyers and Rassias [12, 25]. More recent results onthe so-called Hyers–Ulam stability have relaxed the stability conditions. Many mathemati-cians extended the Hyers results in different directions [4, 18, 19, 28–31, 33, 36, 37, 39, 41–45, 47–49]. The monographs [5, 6, 16, 38] treated fractional differential equations withinstantaneous impulses of the following form:

⎧⎨

cDrv(τ ) = u(τ , v(τ )), τ ∈ [0, T], T > 0, τ �= τk , k = 1, 2, . . . , m,

�v(τ ) = Υk(v(τ–k )), k = 1, 2, . . . , m,

where cDr is the Caputo fractional derivative of order r ∈ (n–1, n), n is any natural numberwith lower bound 0, u : [0, T]×R →R is continuous, Υk : R→ R is instantaneous impulse,and τk satisfies 0 = τ0 < τ1 < · · · < τm = T, v(τ+

k ) = limε→0 v(τk + ε) and v(τ–k ) = limε→0 v(τk +

ε) denotes the right and left limits of v(τ ) at τ = τk , respectively.Ahmad et al. [3] studied an implicit type of nonlinear impulsive fractional differential

equations given by

⎧⎪⎪⎨

⎪⎪⎩

cDry(τ ) = f (τ , y(τ ), cDry(τ )), τ ∈ [0, 1], τ �= τk , k = 1, 2, . . . , m,

�y(τ ) = Υk(y(τk)), �y′(τ ) = Υk(y(τk)), k = 1, 2, . . . , m,

y(0) = g(y), y(1) = h(y),

where cDr is Caputo fractional derivative of order 1 < r ≤ 2, f : [0, 1] × R × R → R andΥk , Υk : R→R are continuous functions, and

�y(τk) = y(τ+

k)

– y(τ–

k),

�y′(τk) = y′(τ+k)

– y′(τ–k),

where (τ+k ), y′(τ+

k ), y(τ–k ), y′(τ–

k ) are the respective left and right limits of y(τk) at τ = τk .Recently, Wang et al. [39] studied the existence, uniqueness, and different kinds of stabil-

ity in the sense of Ulam for the following nonlinear implicit fractional integrodifferential

Page 3: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 3 of 50

equation of the form

⎧⎪⎪⎨

⎪⎪⎩

cDpu(τ ) = α(τ , u(τ ), cDpu(τ )) + 1Γ (δ)

∫ τ

0 (τ – s)σ–1g(s, u(s), cDpu(s)) ds,

τ ∈ J ,

u(τ )|τ=0 = –u(τ )|τ=T , cDru(τ )|τ=0 = –cDru(τ )|τ=T,

(1.1)

where cDp and cDr is the Caputo fractional derivatives of orders 1 < p ≤ 2 and 0 ≤ r ≤ 2,J = [0, T] with T,σ , δ > 0, and the functions α, g : J ×R×R → R are continuous. Also,they performed the same analysis for the proposed implicit coupled system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDpu(τ ) – α(τ , y(τ ), cDpu(τ )) – 1Γ (δ)

∫ τ

0 (τ – s)σ–1g(s, y(s), cDpu(s)) ds = 0,

τ ∈ J ,cDqy(τ ) – χ (τ , u(τ ), cDqy(τ )) – 1

Γ (δ)∫ τ

0 (τ – s)σ–1f (s, u(s), cDpy(s)) ds = 0,

τ ∈ J ,

u(τ )|τ=0 = –u(τ )|τ=T, cDru(τ )|τ=0 = –cDru(τ )|τ=T,

y(τ )|τ=0 = –y(τ )|τ=T, cDωy(τ )|τ=0 = –cDωy(τ )|τ=T,

(1.2)

where cDp, cDr , cDq, and cDω are the Caputo fractional derivatives of orders 1 < p, q ≤ 2and 0 ≤ r, ω ≤ 2, σ , δ > 0, J = [0, T], T > 0, and the functions α, χ , g, f : J ×R×R → R

are continuous.In the present study, we extend models (1.1) and (1.2) to impulsive systems with

Riemann–Liouville boundary conditions instead of antiperiodic boundary condition.More precisely, we study the model

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDrω(τ ) = A(τ ,ω(τ ), cDrω(τ )) +∫ τ

0(τ–s)σ–1

Γ (δ) B(s,ω(s), cDrω(s)) ds,

where τ ∈ J , τ �= τi, i = 1, 2, . . . , m,

�ω(τi) = Υi(ω(τi)), �ω′(τi) = Υi(ω(τi)), i = 1, 2, . . . , m,

η1ω(0) + ξ1Irω(0) = ν1, η2ω(T) + ξ2Irω(T) = ν2,

(1.3)

where cDr is the Caputo fractional derivative with 1 < r ≤ 2,J = [0, T] with T > 0, andσ , δ > 0, the functions A,B : J × R

2 → R are continuous, and η1,η2, ξ1, ξ2 are positiveconstants.

The first results of this paper establish the existence and uniqueness of solution for thisproblem. Also, we investigate the following implicit coupled system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDrω(τ ) = A(τ , y(τ ), cDrω(τ )) +∫ τ

0(τ–s)σ–1

Γ (δ) B(s, y(s), cDrω(s)) ds,

where τ ∈ J , τ �= τi, i = 1, 2, . . . , m,cDpy(τ ) = A′(τ ,ω(τ ), cDpy(τ )) +

∫ τ

0(τ–s)σ–1

Γ (δ) B′(s,ω(s), cDpy(s)) ds,

where τ ∈ J , τ �= τj, j = 1, 2, . . . , n,

�ω(τi) = Υi(ω(τi)), �ω′(τi) = Υi(ω(τi)), i = 1, 2, . . . , m,

�y(τj) = Υj(y(τj)), �y′(τj) = Υj(y(τj)), j = 1, 2, . . . , n,

η1ω(0) + ξ1Irω(0) = ν1, η2ω(T) + ξ2Irω(T) = ν2,

η3y(0) + ξ3Ipy(0) = ν3, η4y(T) + ξ4Ipy(T) = ν4,

(1.4)

Page 4: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 4 of 50

where cDr and cDp are the Caputo fractional derivatives with 1 < r, p ≤ 2,J = [0, T]with T > 0, σ , δ > 0, the functions A,A′,B,B′ : J × R

2 → R are continuous, andη1,η2,η3,η4, ξ1, ξ2, ξ3, ξ4 are positive constants. Coupled systems of fractional integrod-ifferential equations have also been extensively studied due to their applications. Somerecent works dealing with coupled systems of Caputo fractional differential equations in-volving different kinds of integral boundary conditions can be found in [50].

The second main results are devoted to the study of stability results for both systems.There are two main classes of stability results considered here, Ulam–Hyers and Ulam–Hyers–Rassias stability, and their generalized equivalents. To be more specific, our aim isto build connections between stability results in both systems.

It is important to note that problem (1.3) and the coupled one (1.4) considered in thispaper extend the study of fractional integrodifferential systems, and from this point ofview, we believe that the obtained results will contribute to the existing literature on thetopic.

The rest of the paper is organized as follows: In Sect. 2, we first establish an equivalentintegral equation for the fractional integrodifferential equations with impulse, and we ob-tain existence results by using the Banach contraction principle, Schauder’s fixed pointtheorem, and Krasnoselskii’s fixed point theorem to the proposed problems (1.3) and (1.4),respectively. In Sect. 3, we consider four types of Ulam–Hyers stability concepts. Finally,in Sect. 4, we construct two examples to illustrate the obtained results. Fundamental def-initions, essential lemmas, and the proofs of the main theorems are given in Appendices1, 2, and 3.

Notation: We denote by M the space of all piecewise continuous functions PC(J ,R);J = J0 ∪ J1 ∪ J2 ∪ · · · ∪ Ji, where J0 = [0, τ1],J1 = (τ1, τ2],J2 = (τ2, τ3], . . . ,Ji =(τi, τi+1], i = 1, 2, . . . , m, and J ′ = J – {τ1, τ2, τ3, . . . , τi}.

We define M = {ω : J → R : ω ∈ C(Ji,R) and ω(τ+i ),ω(τ–

i ) exist such that �ω(τi) =ω(τ+

i ) – ω(τ–i ) for i = 1, 2, . . . , m}.

2 Existence and uniquenessThe aim of this section is giving conditions under which the fractional integrodifferentialequation (1.3) and coupled system (1.4) provide existence and uniqueness results.

2.1 Existence and uniqueness solution for system (1.3)Our first result is stated as follows.

Theorem 2.1 Let 1 < r ≤ 2, and let α ∈ M be a continuous function. Then a functionω ∈M is solution to the problem

⎧⎪⎪⎨

⎪⎪⎩

cDrω(τ ) = α(τ ), τ ∈ J , τ �= τi, i = 1, 2, . . . , m,

�ω(τi) = Υi(ω(τi)), �ω′(τi) = Υi(ω(τi)), i = 1, 2, . . . , m,

η1ω(0) + ξ1Irω(0) = ν1, η2ω(T) + ξ2Irω(T) = ν2,

(2.1)

where

α(τ ) = A(τ ,ω(τ ), cDrω(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω(s), cDrω(s)

)ds,

Page 5: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 5 of 50

if and only if ω satisfies

ω(τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1Γ (r)

∫ τ

0 (τ – s)r–1α(s) ds – τη2T

ξ2Γ (r)

∫ T0 (T – s)r–1ω(s) ds

+ ν1η1

– τν1Tη1

+ τν2Tη2

– τT [ 1

Γ (r)∫ Tτ1

(T – s)r–1α(s) ds + 1Γ (r)

∫ τ10 (τ1 – s)r–1α(s) ds

+ (T–τ1)Γ (r–1)

∫ τ10 (τ1 – s)r–2α(s) ds + (T – τ1)Υ1(ω(τ1)) + Υ1(ω(τ1))],

τ ∈ J0,1

Γ (r)∫ τ

0 (τ – s)r–1α(s) ds – τη2T

ξ2Γ (r)

∫ T0 (T – s)r–1ω(s) ds

+ ν1η1

– τν1Tη1

+ τν2Tη2

– τT

∑mi=1[ 1

Γ (r)∫ Tτi

(T – s)r–1α(s) ds + 1Γ (r)

∫ τiτi–1

(τi – s)r–1α(s) ds

+ (T–τi)Γ (r–1)

∫ τiτi–1

(τi – s)r–2α(s) ds + (T – τi)Υi(ω(τi)) + Υi(ω(τi))],

τ ∈ Ji, i = 1, 2, . . . , m.

(2.2)

Proof Applying Lemma A.3 (see Appendix 1) to (2.1) with a0, a1 ∈R, we have

ω(τ ) = Irα(τ ) – a0 – a1τ =1

Γ (r)

∫ τ

0(τ – s)r–1α(s) ds – a0 – a1τ , τ ∈ [0, τ1]. (2.3)

Furthermore, we obtain

ω′(τ ) = Ir–1α(τ ) – a1 =1

Γ (r – 1)

∫ τ

0(τ – s)r–2α(s) ds – a1, τ ∈ [0, τ1].

For τ ∈ (τ1, τ2], there are b0, b1 ∈R such that

⎧⎨

ω(τ ) = 1Γ (r)

∫ τ

τ1(τ – s)r–1α(s) ds – b0 – b1(τ – τ1),

ω′(τ ) = 1Γ (r–1)

∫ τ

τ1(τ – s)r–2α(s) ds – b1.

Hence it follows that

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ω(τ–1 ) = 1

Γ (r)∫ τ1

0 (τ1 – s)r–1α(s) ds – a0 – a1τ1,

ω(τ+1 ) = –b0,

ω′(τ–1 ) = 1

Γ (r–1)∫ τ1

0 (τ1 – s)r–2α(s) ds – a1,

ω′(τ+1 ) = –b1.

Using

⎧⎨

�ω(τ1) = ω(τ+1 ) – ω(τ–

1 ) = Υ1(ω(τ1)),

�ω′(τ1) = ω′(τ+1 ) – ω′(τ–

1 ) = Υ1(ω(τ1)),

we obtain⎧⎨

–b0 = 1Γ (r)

∫ τ10 (τ1 – s)r–1α(s) ds – a0 – a1τ1 + Υ1(ω(τ1)),

–b1 = 1Γ (r–1)

∫ τ10 (τ1 – s)r–2α(s) ds – a1 + Υ1(ω(τ1)).

Page 6: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 6 of 50

Thus

ω(τ ) =1

Γ (r)

∫ τ

τ1

(τ – s)r–1α(s) ds +1

Γ (r)

∫ τ1

0(τ1 – s)r–1α(s) ds

+τ – τ1

Γ (r – 1)

∫ τ1

0(τ1 – s)r–2α(s) ds

+ (τ – τ1)Υ1(ω(τ1)

)+ Υ1

(ω(τ1)

)– a0 – a1τ , τ ∈ (τ1, τ2].

Similarly, we have

ω(τ ) =m∑

i=1

[1

Γ (r)

∫ τ

τi

(τ – s)r–1α(s) ds +1

Γ (r)

∫ τi

τi–1

(τi – s)r–1α(s) ds

+τ – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2α(s) ds + (τ – τi)Υi(ω(τi)

)+ Υi

(ω(τi)

)]

– a0 – a1τ ,

τ ∈ (τi, τi+1], i = 1, 2, . . . , m. (2.4)

Finally, after applying η1ω(0) + ξ1Irω(0) = ν1 and η2ω(T) + ξ2Irω(T) = ν2 to (2.4) and cal-culating the values of a0 and a1, we obtain equation (2.2).

Conversely, if ω(τ ) is a solution of (2.2), then it is obvious that cDrω(τ ) = α(τ ) andη1ω(0) + ξ1Irω(0) = ν1,η2ω(T) + ξ2Irω(T) = ν2,�ω(τi) = Υi(ω(τi)),�ω′(τi) = Υi(ω(τi)), i =1, 2, . . . , m. �

Corollary 2.2 In light of Theorem 2.1, problem (1.3) has the solution

ω(τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1Γ (r)

∫ τ

0 (τ – s)r–1α(s) ds – τη2T

ξ2Γ (r)

∫ T0 (T – s)r–1ω(s) ds + ν1

η1– τν1

Tη1+ τν2

Tη2

– τT [ 1

Γ (r)∫ Tτ1

(T – s)r–1α(s) ds + 1Γ (r)

∫ τ10 (τ1 – s)r–1α(s) ds

+ (T–τ1)Γ (r–1)

∫ τ10 (τ1 – s)r–2α(s) ds + (T – τ1)Υ1(ω(τ1)) + Υ1(ω(τ1))], τ ∈ J0,

1Γ (r)

∫ τ

0 (τ – s)r–1α(s) ds – τη2T

ξ2Γ (r)

∫ T0 (T – s)r–1ω(s) ds + ν1

η1– τν1

Tη1+ τν2

Tη2

– τT

∑mi=1[ 1

Γ (r)∫ Tτi

(T – s)r–1α(s) ds + 1Γ (r)

∫ τiτi–1

(τi – s)r–1α(s) ds

+ (T–τi)Γ (r–1)

∫ τiτi–1

(τi – s)r–2α(s) ds + (T – τi)Υi(ω(τi)) + Υi(ω(τi))],

τ ∈ Ji, i = 1, 2, . . . , m,

where

α(τ ) = A(τ ,ω(τ ), cDrω(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω(s), cDrω(s)

)ds.

Let

v(τ ) = A(τ ,ω(τ ), cDrω(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω(s), cDrω(s)

)ds

= A(τ ,ω(τ ), v(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω(s), v(s)

)ds.

Page 7: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 7 of 50

Also, we consider M = PC(J ,R) endowed with the norm

‖ω‖M = max{∣∣ω(τ )

∣∣ : τ ∈ J

}.

We can easily see that M is a Banach space. Further, if ω is a solution of problem (1.3),then

ω(τ ) =1

Γ (r)

∫ τ

0(τ – s)r–1α(s) ds –

τ

η2Tξ2

Γ (r)

∫ T

0(T – s)r–1ω(s) ds +

ν1

η1–

τν1

Tη1+

τν2

Tη2

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1α(s) ds +1

Γ (r)

∫ τi

τi–1

(τi – s)r–1α(s) ds

+(T – τi)Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2α(s) ds + (T – τi)Υi(ω(τi)

)+ Υi

(ω(τi)

)]

,

τ ∈ Ji, i = 1, 2, . . . , m.

Now, to study (1.3) by fixed point theory, let T : M→M be the operator defined as

(T ω(τ )

)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1Γ (r)

∫ τ

0 (τ – s)r–1v(s) ds – τη2T

ξ2Γ (r)

∫ T0 (T – s)r–1ω(s) ds

+ ν1η1

– τν1Tη1

+ τν2Tη2

– τT [ 1

Γ (r)∫ Tτ1

(T – s)r–1v(s) ds + 1Γ (r)

∫ τ10 (τ1 – s)r–1v(s) ds

+ (T–τ1)Γ (r–1)

∫ τ10 (τ1 – s)r–2v(s) ds + (T – τ1)Υ1(ω(τ1)) + Υ1(ω(τ1))],

τ ∈ J0,1

Γ (r)∫ τ

0 (τ – s)r–1v(s) ds – τη2T

ξ2Γ (r)

∫ T0 (T – s)r–1ω(s) ds

+ ν1η1

– τν1Tη1

+ τν2Tη2

– τT

∑mi=1[ 1

Γ (r)∫ Tτi

(T – s)r–1v(s) ds + 1Γ (r)

∫ τiτi–1

(τi – s)r–1v(s) ds

+ (T–τi)Γ (r–1)

∫ τiτi–1

(τi – s)r–2v(s) ds + (T – τi)Υi(ω(τi)) + Υi(ω(τi))],

τ ∈ Ji, i = 1, 2, . . . , m,

(2.5)

where

v(τ ) = A(τ ,ω(τ ), v(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω(s), v(s)

)ds.

Let us assume the following hypotheses:• [A1] There exist constants M1 > 0 and N1 ∈ (0, 1) such that, for all τ ∈ J , u, u ∈M,

and w, w ∈R,

∣∣A(τ , u, w) – A(τ , u, w)

∣∣ ≤ M1|u – u| + N1|w – w|.

Similarly, there exist constants M2 > 0 and N2 ∈ (0, 1) such that, for all τ ∈ J ,u, u ∈M, and w, w ∈R,

∣∣B(τ , u, w) – B(τ , u, w)

∣∣ ≤ M2|u – u| + N2|w – w|;

Page 8: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 8 of 50

• [A2] For any u, u ∈M, there exist constants A,B > 0 such that

∣∣Υi

(u(τi)

)– Υi

(u(τi)

)∣∣ ≤ A

∣∣u(τi) – u(τi)

∣∣,

∣∣Υi

(u(τi)

)– Υi

(u(τi)

)∣∣ ≤ B

∣∣u(τi) – u(τi)

∣∣, i = 1, 2, . . . , m;

• [A3] There exist bounded functions l1, m1, n1 ∈M such that

∣∣A

(τ , u(τ ), w(τ )

)∣∣ ≤ l1(τ ) + m1(τ )

∣∣u(τ )

∣∣ + n1(τ )

∣∣w(τ )

∣∣

with l∗1 = supτ∈J l1(τ ), m∗1 = supτ∈J m1(τ ) and n∗

1 = supτ∈J n1(τ ) < 1.Similarly, there exist bounded functions l2, m2, n2 ∈M such that

∣∣B

(τ , u(τ ), w(τ )

)∣∣ ≤ l2(τ ) + m2(τ )

∣∣u(τ )

∣∣ + n2(τ )

∣∣w(τ )

∣∣

with l∗2 = supτ∈J l2(τ ), m∗2 = supτ∈J m2(τ ), and

n∗2 = supτ∈J n2(τ ) < 1 with 1 – n∗

1 – n∗2

σΓ (δ) > 0;• [A4] The functions Υi : R →R, i = 1, 2, . . . , m, are continuous for each u ∈R. There

exist constants KΥi ,LΥi > 0 such that |Υi(u(τi))| ≤KΥi |u(τ )| + LΥi .Similarly, for each u ∈R, the functions Υi : R →R; i = 1, 2, . . . , m, are continuous,

and for constants K′Υi

,L′Υi

> 0, we have the inequality |Υi(u(τi))| ≤K′Υi

|u(τ )| + L′Υi

.The main results of this section are presented in the following theorems.

Theorem 2.3 If hypotheses [A1]–[A4] are satisfied, then problem (1.3) has at least onesolution.

Proof See Appendix 2. �

Theorem 2.4 If hypotheses [A1]–[A2] and the inequality

[(mTr

Γ (r + 1)+

mTr–1

Γ (r)

)(M1

1 – N1 – N2Tσ

σΓ (δ)+

M2Tσ

σΓ (δ)

1 – N1 – N2Tσ

σΓ (δ)

)

+ξ2Tr

η2Γ (r + 1)+ m(A + B)

]

< 1 with 1 – N1 – N2Tσ

σΓ (δ)> 0 (2.6)

are satisfied, then problem (1.3) has a unique solution.

Proof See Appendix 2. �

Our approach to prove the existence of the solution for problem (1.3) from Theorem 2.3is based on Theorem A.5 (see Appendix 1). Also, the proof of the uniqueness for prob-lem (1.3) treated in Theorem 2.4 is based on the arguments from Theorem A.6 (see Ap-pendix 1).

In Sect. 4, we will provide an example demonstrating how (2.6) can be computed in aspecific case.

Page 9: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 9 of 50

2.2 Existence and uniqueness solution for system (1.4)In this section, we consider the coupled system of nonlinear implicit fractional differentialequation with impulsive conditions from (1.4). First, we have the following:

Theorem 2.5 The system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDrω(τ ) = α(τ ), τ ∈ J ,cDpy(τ ) = β(τ ), τ ∈ J ,

�ω(τi) = Υi(ω(τi)), �ω′(τi) = Υi(ω(τi)), i = 1, 2, . . . , m,

�y(τj) = Υj(y(τj)), �y′(τj) = Υj(y(τj)), j = 1, 2, . . . , n,

η1ω(0) + ξ1Irω(0) = ν1, η2ω(T) + ξ2Irω(T) = ν2,

η3y(0) + ξ3Ipy(0) = ν3, η4y(T) + ξ4Ipy(T) = ν4

has a solution (ω, y) if and only if

ω(τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1Γ (r)

∫ τ

0 (τ – s)r–1α(s) ds + ν1η1

– τT [ ξ2

η2Γ (r)∫ T

0 (T – s)r–1ω(s) ds

+ 1Γ (r)

∫ Tτ1

(T – s)r–1α(s) ds

+ 1Γ (r)

∫ τ10 (τ1 – s)r–1α(s) ds + T–τ1

Γ (r–1)∫ τ1

0 (τ1 – s)r–2α(s) ds

+ (T – τ1)Υ1(ω(τ1)) + Υ1(ω(τ1)) + ν1η1

– ν2η2

], τ ∈ J0,1

Γ (r)∫ τ

0 (τ – s)r–1α(s) ds + ν1η1

– τT [ ξ2

η2Γ (r)∫ T

0 (T – s)r–1ω(s) ds + ν1η1

– ν2η2

]

– τT

∑mi=1[ 1

Γ (r)∫ Tτi

(T – s)r–1α(s) ds + 1Γ (r)

∫ τiτi–1

(τi – s)r–1α(s) ds

+ T–τiΓ (r–1)

∫ τiτi–1

(τi – s)r–2α(s) ds

+ (T – τi)Υi(ω(τi)) + Υi(ω(τi))], τ ∈ Ji,

and

y(τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1Γ (p)

∫ τ

0 (τ – s)p–1β(s) ds + ν3η3

– τT [ ξ4

η4Γ (p)∫ T

0 (T – s)p–1y(s) ds

+ 1Γ (p)

∫ Tτ1

(T – s)p–1β(s) ds

+ 1Γ (p)

∫ τ10 (τ1 – s)p–1β(s) ds + T–τ1

Γ (p–1)∫ τ1

0 (τ1 – s)p–2β(s) ds

+ (T – τ1)Υ1(y(τ1)) + Υ1(y(τ1)) + ν3η3

– ν4η4

], τ ∈ J0,1

Γ (p)∫ τ

0 (τ – s)p–1β(s) ds + ν3η3

– τT [ ξ4

η4Γ (p)∫ T

0 (T – s)p–1y(s) ds + ν3η3

– ν4η4

]

– τT

∑nj=1[ 1

Γ (p)∫ Tτj

(T – s)p–1β(s) ds + 1Γ (p)

∫ τjτj–1

(τj – s)p–1β(s) ds

+ T–τjΓ (p–1)

∫ τjτj–1

(τj – s)p–2β(s) ds

+ (T – τj)Υj(y(τj)) + Υj(y(τj))], τ ∈ Jj,

where

α(τ ) = A(τ , y(τ ), cDrω(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s, y(s), cDrω(s)

)ds

and

β(τ ) = A′(τ ,ω(τ ), cDpy(τ ))

+∫ τ

0

(τ – s)σ–1

Γ (δ)B′(s,ω(s), cDpy(s)

)ds.

Proof The proof is similar to that given in Theorem 2.1 and hence is not included here. �

Page 10: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 10 of 50

For τi ∈ J such that τ1 < τ2 < · · · < τm and J ′ = J – {τ1, τ2, . . . , τm}, we define the spaceX = {ω : J → R|ω ∈ C(J ′), right limit ω(τ+

i ) and left limit ω(τ–i ) exist, and �ω(τi) =

ω(τ–i ) – ω(τ+

i ), 1 < i ≤ m}. Clearly, (X ,‖ · ‖) is a Banach space endowed with the norm‖ω‖ = maxτ∈J |ω|.

Similarly, for τj ∈ J such that τ1 < τ2 < · · · < τn and J ′ = J – {τ1, τ2, . . . , τn}, we define thespace Y = {y : J → R|y ∈ C(J ′), right limit y(τ+

j ) and left limit y(τ–j ) exist, and �y(τi) =

y(τ–j ) – y(τ+

j ), 1 < j ≤ n}, which is a Banach space endowed with the norm ‖y‖ = maxτ∈J |y|.Consequently, the product space X × Y is a Banach space with the norm ‖(ω, y)‖ =

‖ω‖ + ‖y‖ or ‖(ω, y)‖ = max{‖ω‖,‖y‖}.

Theorem 2.6 Let A,B,A′,B′ be continuous functions. Then (ω, y) ∈ X × Y is a solutionof problem (1.4) if and only if (ω, y) is a solution of

ω(τ ) =1

Γ (r)

∫ τ

0(τ – s)r–1α(s) ds +

ν1

η1–

τ

T

[ξ2

η2Γ (r)

∫ T

0(T – s)r–1ω(s) ds

+ν1

η1–

ν2

η2

]

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1α(s) ds +1

Γ (r)

∫ τi

τi–1

(τi – s)r–1α(s) ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2α(s) ds + (T – τi)Υi(ω(τi)

)+ Υi

(ω(τi)

)]

,

τ ∈ Ji, (2.7)

and

y(τ ) =1

Γ (p)

∫ τ

0(τ – s)p–1β(s) ds +

ν3

η3–

τ

T

[ξ4

η4Γ (p)

∫ T

0(T – s)p–1y(s) ds

+ν3

η3–

ν4

η4

]

–τ

T

n∑

j=1

[1

Γ (p)

∫ T

τj

(T – s)p–1β(s) ds +1

Γ (p)

∫ τj

τj–1

(τj – s)p–1β(s) ds

+T – τj

Γ (p – 1)

∫ τj

τj–1

(τj – s)p–2β(s) ds + (T – τj)Υj(y(τj)

)+ Υj

(y(τj)

)]

, τ ∈ Jj.

Proof If (ω, y) is a solution of system (1.4), then it is a solution of (2.7). Conversely, if (ω, y)is a solution of (2.7), then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDrω(τ ) = A(τ , y(τ ), cDrω(τ )) +∫ τ

0(τ–s)σ–1

Γ (δ) B(s, y(s), cDrω(s)) ds

where τ ∈ J , τ �= τi for i = 1, 2, . . . , m,cDpy(τ ) = A′(τ ,ω(τ ), cDpy(τ )) +

∫ τ

0(τ–s)σ–1

Γ (δ) B′(s,ω(s), cDpy(s)) ds

where τ ∈ J , τ �= τj for j = 1, 2, . . . , n,

�ω(τi) = Υi(ω(τi)), �ω′(τi) = Υi(ω(τi)), i = 1, 2, . . . , m,

�y(τj) = Υj(y(τj)), �y′(τj) = Υj(y(τj)), j = 1, 2, . . . , n,

η1ω(0) + ξ1Irω(0) = ν1, η2ω(T) + ξ2Irω(T) = ν2,

η3y(0) + ξ3Ipy(0) = ν3, η4y(T) + ξ4Ipy(T) = ν4.

Thus (ω, y) is a solution of (1.4). �

Page 11: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 11 of 50

For convenience, we use the following notations:

v(τ ) = A(τ , y(τ ), cDrω(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s, y(s), cDrω(s)

)ds

= A(τ , y(τ ), v(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s, y(s), v(s)

)ds,

z(τ ) = A′(τ ,ω(τ ), cDpy(τ ))

+∫ τ

0

(τ – s)σ–1

Γ (δ)B′(s,ω(s), cDpy(s)

)ds

= A′(τ ,ω(τ ), z(τ ))

+∫ τ

0

(τ – s)σ–1

Γ (δ)B′(s,ω(s), z(s)

)ds.

System (1.4) can be transformed into a fixed point problem.Define the operators Tr ,Tp : X ×Y →X ×Y by

Tr(ω, y)(τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1Γ (r)

∫ τ

0 (τ – s)r–1v(s) ds + ν1η1

– τT [ ξ2

η2Γ (r)∫ T

0 (T – s)r–1ω(s) ds

+ 1Γ (r)

∫ Tτ1

(T – s)r–1v(s) ds

+ 1Γ (r)

∫ τ10 (τ1 – s)r–1v(s) ds + T–τ1

Γ (r–1)∫ τ1

0 (τ1 – s)r–2v(s) ds

+ (T – τ1)Υ1(ω(τ1)) + Υ1(ω(τ1)) + ν1η1

– ν2η2

], τ ∈ J0,1

Γ (r)∫ τ

0 (τ – s)r–1v(s) ds + ν1η1

– τT [ ξ2

η2Γ (r)∫ T

0 (T – s)r–1ω(s) ds + ν1η1

– ν2η2

]

– τT

∑mi=1[ 1

Γ (r)∫ Tτi

(T – s)r–1v(s) ds + 1Γ (r)

∫ τiτi–1

(τi – s)r–1v(s) ds

+ T–τiΓ (r–1)

∫ τiτi–1

(τi – s)r–2v(s) ds

+ (T – τi)Υi(ω(τi)) + Υi(ω(τi))], τ ∈ Ji,

and

Tp(ω, y)(τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1Γ (p)

∫ τ

0 (τ – s)p–1z(s) ds + ν3η3

– τT [ ξ4

η4Γ (p)∫ T

0 (T – s)p–1y(s) ds

+ 1Γ (p)

∫ Tτ1

(T – s)p–1z(s) ds

+ 1Γ (p)

∫ τ10 (τ1 – s)p–1z(s) ds + T–τ1

Γ (p–1)∫ τ1

0 (τ1 – s)p–2z(s) ds

+ (T – τ1)Υ1(y(τ1)) + Υ1(y(τ1)) + ν3η3

– ν4η4

], τ ∈ J0,1

Γ (p)∫ τ

0 (τ – s)p–1z(s) ds + ν3η3

– τT [ ξ4

η4Γ (p)∫ T

0 (T – s)p–1y(s) ds + ν3η3

– ν4η4

]

– τT

∑nj=1[ 1

Γ (p)∫ Tτj

(T – s)p–1z(s) ds + 1Γ (p)

∫ τjτj–1

(τj – s)p–1z(s) ds

+ T–τjΓ (p–1)

∫ τjτj–1

(τj – s)p–2z(s) ds

+ (T – τj)Υj(y(τj)) + Υj(y(τj))], τ ∈ Jj,

with T (ω, y)(τ ) = (Tr(ω, y)(τ ),Tp(ω, y)(τ )).We further need the following hypotheses:• [A1] there exist constants M1 > 0 and N1 ∈ (0, 1) such that, for all τ ∈ J , u, u ∈X , and

w, w ∈R, we have

∣∣A(τ , u, w) – A(τ , u, w)

∣∣ ≤ M1|u – u| + N1|w – w|.

Page 12: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 12 of 50

Similarly, there exist constants M2 > 0 and N2 ∈ (0, 1) such that, for all τ ∈ J ,u, u ∈X , and w, w ∈R, we have

∣∣B(τ , u, w) – B(τ , u, w)

∣∣ ≤ M2|u – u| + N2|w – w|;

• [A2] there exist constants M′1 > 0 and N′

1 ∈ (0, 1) such that, for all τ ∈ J , u, u ∈ Y , andw, w ∈R, we have

∣∣A′(τ , u, w) – A′(τ , u, w)

∣∣ ≤ M′

1|u – u| + N′1|w – w|.

Similarly, there exist constants M′2 > 0 and N′

2 ∈ (0, 1) such that, for all τ ∈ J ,u, u ∈ Y , and w, w ∈ R, we have

∣∣B′(τ , u, w) – B′(τ , u, w)

∣∣ ≤ M′

2|u – u| + N′2|w – w|;

• [A3] for any w, w ∈X ×Y , there exist constants AΥi , AΥi> 0 such that

∣∣Υi

(w(τi)

)– Υi

(w(τi)

)∣∣ ≤ AΥi

∣∣w(τi) – w(τi)

∣∣;

∣∣Υi

(w(τi)

)– Υi

(w(τi)

)∣∣ ≤ AΥi

∣∣w(τi) – w(τi)

∣∣, i = 1, 2, . . . , m.

Similarly, for any y, y ∈X ×Y , there exist constants AΥj , AΥj> 0 such that

∣∣Υj

(w(τj)

)– Υj

(w(τj)

)∣∣ ≤ AΥj

∣∣w(τj) – w(τj)

∣∣;

∣∣Υj

(w(τj)

)– Υj

(w(τj)

)∣∣ ≤ AΥj

∣∣w(τj) – w(τj)

∣∣, j = 1, 2, . . . , n;

• [A4] there exist a1, b1, c1 ∈X such that

∣∣A

(τ , u(τ ), w(τ )

)∣∣ ≤ a1(τ ) + b1(τ )

∣∣u(τ )

∣∣ + c1(τ )

∣∣w(τ )

∣∣

with a∗1 = supτ∈J a1(τ ), b∗

1 = supτ∈J b1(τ ), c∗1 = supτ∈J c1(τ ) < 1.

Similarly, there exist a2, b2, c2 ∈X such that

∣∣B

(τ , u(τ ), w(τ )

)∣∣ ≤ a2(τ ) + b2(τ )

∣∣u(τ )

∣∣ + c2(τ )

∣∣w(τ )

∣∣

with a∗2 = supτ∈J a2(τ ), b∗

2 = supτ∈J b2(τ ), c∗2 = supτ∈J c2(τ ) < 1 with 1 – c∗

1 – c∗2

σΓ (δ) ;• [A5] there exist l1, m1, n1 ∈ Y such that

∣∣A′(τ , u(τ ), w(τ )

)∣∣ ≤ l1(τ ) + m1(τ )

∣∣u(τ )

∣∣ + n1(τ )

∣∣w(τ )

∣∣

with l∗1 = supτ∈J l1(τ ), m∗1 = supτ∈J m1(τ ), n∗

1 = supτ∈J n1(τ ) < 1.Similarly, there exist l2, m2, n2 ∈ Y such that

∣∣B′(τ , u(τ ), w(τ )

)∣∣ ≤ l2(τ ) + m2(τ )

∣∣u(τ )

∣∣ + n2(τ )

∣∣w(τ )

∣∣

with l∗2 = supτ∈J l2(τ ), m∗2 = supτ∈J m2(τ ), n∗

2 = supτ∈J n2(τ ) < 1 with1 – n∗

1 – n∗2

σΓ (δ) > 0;

Page 13: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 13 of 50

• [A6] The functions Υi : R →R; i = 1, 2, . . . , m, are continuous for each u ∈R. Thereexist constants KΥi ,LΥi > 0 such that |Υi(u(τi))| ≤KΥi |u(τ )| + LΥi .

Similarly, the functions Υi : R →R; i = 1, 2, . . . , m, are continuous for each u ∈R.There exist constants constants K′

Υi,L′

Υi> 0 such that |Υi(u(τi))| ≤K′

Υi|u(τ )| + L′

Υi;

• [A7] The functions Υj : R →R; j = 1, 2, . . . , n, are continuous for each u ∈R. Thereexist constants KΥj ,LΥj > 0 such that |Υj(u(τj))| ≤KΥj |u(τ )| + LΥj .

Similarly, the functions Υj : R →R; j = 1, 2, . . . , n, are continuous for each u ∈R.There exist constants K′

Υi,L′

Υi> 0 such that |Υj(u(τj))| ≤K′

Υi|u(τ )| + L′

Υi;

• [A8] Denote

�1 =[(

mTr

Γ (r + 1)+

mTr–1

Γ (r)

)(M1

1 – N1 – N2Tσ

σΓ (δ)+

M2Tσ

σΓ (δ)

1 – N1 – N2Tσ

σΓ (δ)

)

+ξ2Tr

η2Γ (r + 1)+ m(AΥi

+ AΥi )]

< 1 with 1 – N1 – N2Tσ

σΓ (δ)> 0

and

�2 =[(

nTp

Γ (p + 1)+

nTp–1

Γ (p)

)(M′

1

1 – N′1 – N′

2Tσ

σΓ (δ)+

M′2

σΓ (δ)

1 – N′1 – N′

2Tσ

σΓ (δ)

)

+ξ4Tp

η4Γ (p + 1)+ n(AΥj

+ AΥj )]

< 1 with 1 – N′1 – N′

2Tσ

σΓ (δ)> 0.

Now, we are in position to state the main results of this section.

Theorem 2.7 If hypotheses [A1]–[A4] are satisfied, then problem (1.4) has at least onesolution.

Proof See Appendix 2. �

Theorem 2.8 If � = max(�1,�2) < 1, then under hypotheses [A1]–[A7], system (1.4) hasa unique solution.

Proof See Appendix 2. �

3 Hyers–Ulam stabilityIn this section, we provide novel characterizations of the Hyers–Ulam stability for systems(1.3) and (1.4). We rely on stability notions from [21]; for various concepts of Hyers–Ulamstability, see, for example [37, 43, 46, 47].

3.1 Hyers–Ulam stability concepts for system (1.3)For ω ∈ M, εr > 0,φr ≥ 0, and a nondecreasing function ψr ∈ C(J ,R+), the following setof inequalities are satisfied:

⎧⎪⎪⎨

⎪⎪⎩

|cDrω(τ ) – A(τ ,ω(τ ), cDrω(τ )) –∫ τ

0(τ–s)σ–1

Γ (δ) B(s,ω(s), cDrω(s)) ds| ≤ εr ,

τ ∈ Ji, i = 1, 2, . . . , m,

|�ω(τi) – Υi(ω(τi))| ≤ εr , i = 1, 2, . . . , m,

(3.1)

Page 14: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 14 of 50

⎧⎪⎪⎨

⎪⎪⎩

|cDrω(τ ) – A(τ ,ω(τ ), cDrω(τ )) –∫ τ

0(τ–s)σ–1

Γ (δ) B(s,ω(s), cDrω(s)) ds| ≤ ψr(τ ),

τ ∈ Ji, i = 1, 2, . . . , m,

|�ω(τi) – Υi(ω(τi))| ≤ φr , i = 1, 2, . . . , m,

(3.2)

and

⎧⎪⎪⎨

⎪⎪⎩

|cDrω(τ ) – A(τ ,ω(τ ), cDrω(τ )) –∫ τ

0(τ–s)σ–1

Γ (δ) B(s,ω(s), cDrω(s)) ds|≤ εrψr(τ ), τ ∈ Ji, i = 1, 2, . . . , m,

|�ω(τi) – Υi(ω(τi))| ≤ εrφr , i = 1, 2, . . . , m.

(3.3)

Recall the definitions of stability concepts from [21].

Definition 3.1 Problem (1.3) is said to be Hyers–Ulam stable if there exists CA,B > 0 suchthat, for each εr > 0 and any solution ω ∈ M of inequality (3.1), there exists a uniquesolution ω∗ ∈M of problem (1.3) such that

∥∥ω(τ ) – ω∗(τ )

∥∥M ≤ CA,Bεr for all τ ∈ J .

Definition 3.2 Problem (1.3) is said to be generalized Hyers–Ulam stable if there exists afunction ϑ ∈ C(R+,R+) with ϑ(0) = 0 such that, for each εr > 0 and any solution ω ∈M ofinequality (3.1), there exists a unique solution ω∗ ∈M of problem (1.3) such that

∥∥ω(τ ) – ω∗(τ )

∥∥M ≤ CA,Bϑ(εr) for all τ ∈ J .

Definition 3.3 Problem (1.3) is said to be Hyers–Ulam–Rassias stable with respect to(φr ,ψr) if there exists CA,B > 0 such that, for each εr > 0 and any solution ω ∈ M of in-equality (3.3), there exists a unique solution ω∗ ∈M of problem (1.3) such that

∥∥ω(τ ) – ω∗(τ )

∥∥M ≤ CA,Bεr

(φr + ψr(τ )

)for all τ ∈ J .

Definition 3.4 Problem (1.3) is said to be generalized Hyers–Ulam–Rassias stable withrespect to (φr ,ψr) if there exists CA,B > 0 such that, for each εr > 0 and any solution ω ∈Mof inequality (3.2), there exists a unique solution ω∗ ∈M of problem (1.3) such that

∥∥ω(τ ) – ω∗(τ )

∥∥M ≤ CA,B

(φr + ψr(τ )

)for all τ ∈ J .

Some remarks are in order.

Remark 3.5 Definition 3.1 implies Definition 3.2, and Definition 3.3 implies Definition 3.4.

Remark 3.6 A function ω ∈ M is a solution of inequality (3.1) if there exist a functionΦ ∈M and a sequence Φi (which depends on ω) such that

(i) |Φ(τ )| ≤ εr and |Φi| ≤ εr for all τ ∈ J , i = 1, 2, . . . , m;(ii) cDrω(τ ) = A(τ ,ω(τ ), cDrω(τ )) +

∫ τ

0(τ–s)σ–1

Γ (δ) B(s,ω(s), cDrω(s)) ds + Φ(τ ) for allτ ∈ J ;and

(iii) �ω(τi) = Υi(ω(τi)) + Φi for all τ ∈ J , i = 1, 2, . . . , m.

Page 15: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 15 of 50

Remark 3.7 A function ω ∈ M is a solution of inequality (3.2) if there exist a functionΦ ∈M and a sequence Φi (which depends on ω) such that

(i) |Φ(τ )| ≤ ψr(τ ) and |Φi| ≤ φr for all τ ∈ J , i = 1, 2, . . . , m;(ii) cDrω(τ ) = A(τ ,ω(τ ), cDrω(τ )) +

∫ τ

0(τ–s)σ–1

Γ (δ) B(s,ω(s), cDrω(s)) ds + Φ(τ ) for allτ ∈ J ; and

(iii) �ω(τi) = Υi(ω(τi)) + Φi for all τ ∈ J , i = 1, 2, . . . , m.

Remark 3.8 A function ω ∈ M is a solution of inequality (3.3) if there exist a functionΦ ∈M and a sequence Φi (which depends on ω) such that

(i) |Φ(τ )| ≤ ψr(τ ) and |Φi| ≤ εrφr for all τ ∈ J , i = 1, 2, . . . , m;(ii) cDrω(τ ) = A(τ ,ω(τ ), cDrω(τ )) +

∫ τ

0(τ–s)σ–1

Γ (δ) B(s,ω(s), cDrω(s)) ds + Φ(τ ) for allτ ∈ J ; and

(iii) �ω(τi) = Υi(ω(τi)) + Φi for all τ ∈ J , i = 1, 2, . . . , m.

Definition 3.9 A function ω ∈M that satisfies (1.3) and its conditions on J is a solutionof problem (1.3).

Theorem 3.10 If ω ∈ M is a solution of inequality (3.1), then ω is a solution of the in-equality

∣∣ω(τ ) – q(τ )

∣∣ ≤

(τ r

Γ (r + 1)–

mτ r+1

TΓ (r + 1)–

τmT

)

εr .

Proof Let ω be a solution of inequality (3.1). Then by Remark 3.6 ω is also a solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDrω(τ ) = A(τ ,ω(τ ), cDrω(τ ))

+∫ τ

0(τ–s)σ–1

Γ (δ) B(s,ω(s), cDrω(s)) ds + Φ(τ ),

τ ∈ J , τ �= τi, i = 1, 2, . . . , m,

�ω(τi) = Υi(ω(τi)), �ω′(τi) = Υi(ω(τi)), i = 1, 2, . . . , m,

η1ω(0) + ξ1Irω(0) = ν1, η2ω(T) + ξ2Irω(T) = ν2,

(3.4)

that is,

ω(τ ) =1

Γ (r)

∫ τ

0(τ – s)r–1v(s) ds

+1

Γ (r)

∫ τ

0(τ – s)r–1Φ(s) ds +

ν1

η1–

τ

T

[ν1

η1–

ν2

η2

+ξ2

η2Γ (r)

∫ T

0(T – s)r–1ω(s) ds

]

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1v(s) ds

+1

Γ (r)

∫ τi

τi–1

(τi – s)r–1Φ(s) ds +1

Γ (r)

∫ τi

τi–1

(τi – s)r–1v(s) ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2v(s) ds + (T – τi)Υi(ω(τi)

)+ Υi

(ω(τi)

)+ Φi

]

. (3.5)

Page 16: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 16 of 50

For simplicity, let q(τ ) denote the terms of ω(τ ) that are free from Φ(τ ), that is,

q(τ ) =1

Γ (r)

∫ τ

0(τ – s)r–1v(s) ds +

ν1

η1

–τ

T

[ν1

η1–

ν2

η2+

ξ2

η2Γ (r)

∫ T

0(T – s)r–1ω(s) ds

]

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1v(s) ds +1

Γ (r)

∫ τi

τi–1

(τi – s)r–1v(s) ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2v(s) ds + (T – τi)Υi(ω(τi)

)+ Υi

(ω(τi)

)]

.

Thus (3.5) can be written as

∣∣ω(τ ) – q(τ )

∣∣

≤ 1Γ (r)

∫ τ

0(τ – s)r–1∣∣Φ(s)

∣∣ds –

τ

T

m∑

i=1

[1

Γ (r)

∫ τi

τi–1

(τi – s)r–1∣∣Φ(s)∣∣ds + |Φi|

]

.

Using (i) from Remark 3.6, we get

∣∣ω(τ ) – q(τ )

∣∣ ≤

(τ r

Γ (r + 1)–

mτ r+1

TΓ (r + 1)–

τmT

)

εr . �

Theorem 3.11 If hypothesis [A1] holds and

[(mTr

Γ (r + 1)+

mTr–1

Γ (r)

)(M1

1 – N1 – N2Tσ

σΓ (δ)+

M2Tσ

σΓ (δ)

1 – N1 – N2Tσ

σΓ (δ)

)

+ξ2Tr

η2Γ (r + 1)+ m(A + B)

]

< 1, (3.6)

then problem (1.3) is Ulam–Hyers and generalized Ulam–Hyers stable.

Proof See Appendix 3. �

Assume that• [A5] there exist a nondecreasing function ψr ∈M and a constant �ψr > 0 such that,

for each τ ∈ J , we have

I�ψr(τ ) ≤ �ψr ψr(τ ).

From Theorem 3.11 and [A5] we obtain the following theorem.

Theorem 3.12 Under hypotheses [A1]–[A5] and condition (3.6), problem (1.3) is Ulam–Hyers–Rassias and generalized Ulam–Hyers–Rassias stable.

Page 17: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 17 of 50

3.2 Hyers–Ulam stability concepts for system (1.4)Let εr , εp > 0,A,B,A′,B′ be continuous functions, and ψr ,ψp : J →R

+ be nondecreasingfunctions. Consider the following inequalities:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|cDrω(τ ) – A(τ , y(τ ), cDrω(τ ))

–∫ τ

0(τ–s)σ–1

Γ (δ) B(s, y(s), cDrω(s)) ds| ≤ εr , τ ∈ J ,

|cDpy(τ ) – A′(τ ,ω(τ ), cDpy(τ ))

–∫ τ

0(τ–s)σ–1

Γ (δ) B′(s,ω(s), cDpy(s)) ds| ≤ εp, τ ∈ J ,

|�ω(τi) – Υi(ω(τi))| ≤ εr , i = 1, 2, . . . , m,

|�y(τj) – Υj(y(τj))| ≤ εp, j = 1, 2, . . . , n,

(3.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|cDrω(τ ) – A(τ , y(τ ), cDrω(τ ))

–∫ τ

0(τ–s)σ–1

Γ (δ) B(s, y(s), cDrω(s)) ds| ≤ ψr , τ ∈ J ,

|cDpy(τ ) – A′(τ ,ω(τ ), cDpy(τ ))

–∫ τ

0(τ–s)σ–1

Γ (δ) B′(s,ω(s), cDpy(s)) ds| ≤ ψp, τ ∈ J ,

|�ω(τi) – Υi(ω(τi))| ≤ φr , i = 1, 2, . . . , m,

|�y(τj) – Υj(y(τj))| ≤ φp, j = 1, 2, . . . , n,

(3.8)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|cDrω(τ ) – A(τ , y(τ ), cDrω(τ ))

–∫ τ

0(τ–s)σ–1

Γ (δ) B(s, y(s), cDrω(s)) ds| ≤ εrψr , τ ∈ J ,

|cDpy(τ ) – A′(τ ,ω(τ ), cDpy(τ ))

–∫ τ

0(τ–s)σ–1

Γ (δ) B′(s,ω(s), cDpy(s)) ds| ≤ εpψp, τ ∈ J ,

|�ω(τi) – Υi(ω(τi))| ≤ εrφr ,

i = 1, 2, . . . , m,

|�y(τj) – Υj(y(τj))| ≤ εpφp, j = 1, 2, . . . , n.

(3.9)

Recall the appropriate definitions of stability concepts from [21].

Definition 3.13 Problem (1.4) is said to be Hyers–Ulam stable if there exists Cr,p =max(Cr ,Cp) > 0 for some ε = (εr , εp) and for each solution (ω, y) ∈ X × Y of (3.7), thereexists a solution (ω∗, y∗) ∈X ×Y of (1.4) with

∥∥(ω, y)(τ ) –

(ω∗, y∗)(τ )

∥∥X×Y ≤ Cr,pε for all τ ∈ J .

Definition 3.14 Problem (1.4) is said to be generalized Hyers–Ulam stable if there existsa function Θ ∈ C(J ,R) with Θ(0) = 0 such that for each solution (ω, y) ∈ X ×Y of (3.7),there exists a solution (ω∗, y∗) ∈X ×Y of (1.4) with

∥∥(ω, y)(τ ) –

(ω∗, y∗)(τ )

∥∥X×Y ≤ Θ(ε) for all τ ∈ J .

Page 18: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 18 of 50

Definition 3.15 Problem (1.4) is said to be Hyers–Ulam–Rassias stable with respect toψr,p = (ψr ,ψp) ∈ C1(J ,R) if there exists a constant Cψr ,ψp = max(Cψr ,Cψp ) such that, forsome ε = (εr , εp) > 0 and for each solution (ω, y) ∈ X × Y of (3.8), there exists a solution(ω∗, y∗) ∈X ×Y of (1.4) with

∥∥(ω, y)(τ ) –

(ω∗, y∗)(τ )

∥∥X×Y ≤ Cψr ,ψpε for all τ ∈ J .

Definition 3.16 Problem (1.4) is said to be generalized Hyers–Ulam–Rassias stable withrespect to ψr,p = (ψr ,ψp) ∈ C1(J ,R) if there exists a constant Cψr ,ψp = max(Cψr ,Cψp ) > 0such that, for each solution (ω, y) ∈X ×Y of (3.9), there exists a solution (ω∗, y∗) ∈X ×Yof (1.4) with

∥∥(ω, y)(τ ) –

(ω∗, y∗)(τ )

∥∥X×Y ≤ Cψr ,ψpψr,p for all τ ∈ J .

We have two remarks.

Remark 3.17 Definition 3.13 implies Definition 3.14, and Definition 3.15 implies Defini-tion 3.16.

Remark 3.18 We say that (ω, y) ∈ X × Y is a solution of (3.7) if there exist the functionsμA,B , ΛA′ ,B′ ∈X ×Y , depending upon ω, y, respectively, such that

(i) |μA,B(τ )| ≤ εr , |ΛA′ ,B′ (τ )| ≤ εp for all τ ∈ J ;(ii)

cDrω(τ ) = A(τ , y(τ ), cDrω(τ )

)

+∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s, y(s), cDrω(s)

)ds + μA,B(τ ),

τ ∈ Ji,

and

cDpy(τ ) = A(τ ,ω(τ ), cDpy(τ )

)

+∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω(s), cDry(s)

)ds + ΛA′ ,B′ (τ ),

τ ∈ Jj;

(iii) �ω(τi) = Υi(ω(τi)) + μi, τ ∈ Ji, i = 1, 2, . . . , m, and �y(τj) = Υj(y(τj)) + Λj, τ ∈ Jj,j = 1, 2, . . . , n.

Theorem 3.19 Let (ω, y) ∈X ×Y be a solution of inequality (3.7). Then we have

⎧⎨

|ω(τ ) – q(τ )| ≤ ( τ r

Γ (r+1) – mτ r+1

TΓ (r+1) – τmT )εr , τ ∈ J ,

|y(τ ) – q′(τ )| ≤ ( τp

Γ (p+1) – nτp+1

TΓ (p+1) – τnT )εp, τ ∈ J .

Page 19: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 19 of 50

Proof Let (ω, y) be a solution of inequality (3.7). Then by Remark 3.18 (ω, y) is also a solu-tion of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDrω(τ ) = A(τ , y(τ ), cDrω(τ )) +∫ τ

0(τ–s)σ–1

Γ (δ) B(s, y(s), cDrω(s)) ds + μA,B

where τ ∈ J , τ �= τi for i = 1, 2, . . . , m,cDpy(τ ) = A′(τ ,ω(τ ), cDpy(τ )) +

∫ τ

0(τ–s)σ–1

Γ (δ) B′(s,ω(s), cDpy(s)) ds + ΛA′ ,B′

where τ ∈ J , τ �= τj, j = 1, 2, . . . , n,

�ω(τi) = Υi(ω(τi)), �ω′(τi) = Υi(ω(τi)), i = 1, 2, . . . , m,

�y(τj) = Υj(y(τj)), �y′(τj) = Υj(y(τj)), j = 1, 2, . . . , n,

η1ω(0) + ξ1Irω(0) = ν1, η2ω(T) + ξ2Irω(T) = ν2,

η3y(0) + ξ3Ipy(0) = ν3, η4y(T) + ξ4Ipy(T) = ν4,

(3.10)

that is,

ω(τ ) =1

Γ (r)

∫ τ

0(τ – s)r–1α(s) ds +

1Γ (r)

∫ τ

0(τ – s)r–1μ(s) ds +

ν1

η1–

τ

T

[ν1

η1–

ν2

η2

+ξ2

η2Γ (r)

∫ T

0(T – s)r–1ω(s) ds

]

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1α(s) ds

+1

Γ (r)

∫ τi

τi–1

(τi – s)r–1μ(s) ds +1

Γ (r)

∫ τi

τi–1

(τi – s)r–1α(s) ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2α(s) ds + (T – τi)Υi(ω(τi)

)+ Υi

(ω(τi)

)+ μi

]

(3.11a)

and

y(τ ) =1

Γ (p)

∫ τ

0(τ – s)p–1β(s) ds +

1Γ (p)

∫ τ

0(τ – s)p–1λ(s) ds +

ν3

η3–

τ

T

[ν3

η3–

ν4

η4

+ξ4

η4Γ (p)

∫ T

0(T – s)p–1y(s) ds

]

–τ

T

n∑

j=1

[1

Γ (p)

∫ T

τj

(T – s)p–1β(s) ds

+1

Γ (p)

∫ τj

τj–1

(τj – s)p–1λ(s) ds +1

Γ (p)

∫ τj

τj–1

(τj – s)p–1β(s) ds

+T – τj

Γ (p – 1)

∫ τj

τj–1

(τj – s)p–2β(s) ds + (T – τj)Υj(y(τj)

)+ Υj

(y(τj)

)+ λj

]

, (3.11b)

where

α(τ ) = A(τ , y(τ ), cDrω(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s, y(s), cDrω(s)

)ds

and

β(τ ) = A′(τ ,ω(τ ), cDpy(τ ))

+∫ τ

0

(τ – s)σ–1

Γ (δ)B′(s,ω(s), cDpy(s)

)ds.

Page 20: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 20 of 50

From (3.11a) we have

ω(τ ) =1

Γ (r)

∫ τ

0(τ – s)r–1α(s) ds +

1Γ (r)

∫ τ

0(τ – s)r–1μ(s) ds +

ν1

η1–

τ

T

[ν1

η1–

ν2

η2

+ξ2

η2Γ (r)

∫ T

0(T – s)r–1ω(s) ds

]

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1α(s) ds

+1

Γ (r)

∫ τi

τi–1

(τi – s)r–1μ(s) ds +1

Γ (r)

∫ τi

τi–1

(τi – s)r–1α(s) ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2α(s) ds + (T – τi)Υi(ω(τi)

)+ Υi

(ω(τi)

)+ μi

]

. (3.12)

Thus (3.12) becomes

∣∣ω(τ )–q(τ )

∣∣ ≤ 1

Γ (r)

∫ τ

0(τ –s)r–1∣∣μ(s)

∣∣ds–

τ

T

m∑

i=1

[1

Γ (r)

∫ τi

τi–1

(τi –s)r–1∣∣μ(s)∣∣ds+ |μi|

]

,

where

q(τ ) =1

Γ (r)

∫ τ

0(τ – s)r–1α(s) ds +

ν1

η1–

τ

T

[ν1

η1–

ν2

η2+

ξ2

η2Γ (r)

∫ T

0(T – s)r–1ω(s) ds

]

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1α(s) ds +1

Γ (r)

∫ τi

τi–1

(τi – s)r–1α(s) ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2α(s) ds + (T – τi)Υi(ω(τi)

)+ Υi

(ω(τi)

)]

.

Using (i) from Remark 3.18, we obtain

∣∣ω(τ ) – q(τ )

∣∣ ≤

(τ r

Γ (r + 1)–

mτ r+1

TΓ (r + 1)–

τmT

)

εr .

Repeating a similar procedure for (3.11b) together with (i) from Remark 3.18, we have

∣∣y(τ ) – q′(τ )

∣∣ ≤

(τ p

Γ (p + 1)–

nτ p+1

TΓ (p + 1)–

τnT

)

εp,

where

q′(τ ) =1

Γ (p)

∫ τ

0(τ – s)p–1β(s) ds +

ν3

η3–

τ

T

[ν3

η3–

ν4

η4+

ξ4

η4Γ (p)

∫ T

0(T – s)p–1y(s) ds

]

–τ

T

n∑

j=1

[1

Γ (p)

∫ T

τj

(T – s)p–1β(s) ds +1

Γ (p)

∫ τj

τj–1

(τj – s)p–1β(s) ds

+T – τj

Γ (p – 1)

∫ τj

τj–1

(τj – s)p–2β(s) ds + (T – τj)Υj(y(τj)

)+ Υj

(y(τj)

)]

.

Thus the proof is complete. �

Page 21: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 21 of 50

Theorem 3.20 If hypotheses [A1]–[A3] hold with

� = 1 – QrQp > 0, (3.13)

then system (1.4) is stable, in the sense of Ulam–Hyers.

Proof See Appendix 3. �

In the next section, we provide an example demonstrating how (3.13) can be computedin a specific case. We conclude this section with two remarks.

Remark 3.21 We set Θ(ε) = Cr,pε, Θ(0) = 0 in (C.10). By Definition 3.14 the proposedsystem (1.4) is generalized Ulam–Hyers stable.

To obtain the connections between the Ulam–Hyers–Rassias stability concepts, we in-troduce the following hypothesis.

• [A9] Let Ωr ,Ωp ∈ C(J ,R+) be an increasing functions. Then there exist ΛΩr ,ΛΩp > 0such that, for each τ ∈ J ,

IrΩr(τ ) ≤ ΛΩr Ωr(τ ) and Ir–1Ωr(τ ) ≤ ΛΩr Ωr(τ )

and

IpΩp(τ ) ≤ ΛΩpΩp(τ ) and Ip–1Ωp(τ ) ≤ ΛΩpΩp(τ ).

Remark 3.22 Under hypotheses [A1]–[A9], by (3.13) and Theorems 3.19 and 3.20 system(1.4) is Ulam–Hyers–Rassias and generalized Ulam–Hyers–Rassias stable.

4 Illustrative examplesWe present two examples to demonstrate the existence and stability of our obtained re-sults.

Example 4.1 Consider

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

cD 32 ω(τ ) = |ω(τ )|+cos |cD 3

2 ω(τ )|90eτ+2(1+|ω(τ )|+|cD 3

2 ω(τ )|)+ 1

Γ ( 52 )

∫ 10 (τ – s) 3

2 |ω(s)|+sin |cD 32 ω(s)|

101eτ+2(1+|ω(s)|+|cD 32 ω(s)|)

, τ �= 13 ,

ω(0) + I 32 ω(0) = 1

2 , ω(1) + I 32 ω(1) = 1

2 ,

�ω( 13 ) = Υ (ω( 1

3 )), �ω′( 13 ) = Υ (ω( 1

3 )),

(4.1)

where r = 32 , J0 = [0, 1

3 ], J1 = ( 13 , 1].

Set

A(τ ,ω, y) =|ω(τ )| + cos |cD 3

2 ω(τ )|90eτ+2(1 + |ω(τ )| + |cD 3

2 ω(τ )|),

B(τ ,ω, y) =|ω(τ )| + sin |cD 3

2 ω(τ )|101eτ+2(1 + |ω(τ )| + |cD 3

2 ω(τ )|).

Page 22: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 22 of 50

Obviously, A and B are jointly continuous functions. Now, for all ω,ω ∈M, y, y ∈ R, andτ ∈ [0, 1], we have

∣∣A(τ ,ω, y) – A(t,ω, y)

∣∣ ≤ 1

90e2

(|ω – ω| + |y – y|)

and

∣∣B(τ ,ω, y) – B(τ ,ω, y)

∣∣ ≤ 1

101e2

(|ω – ω| + |y – y|).

These satisfy condition [A1] with M1 = N1 = 190e2 and M2 = N2 = 1

101e2 .Set

Υ1

(

ω

(13

))

=|ω( 1

3 )|40 + |ω( 1

3 )| for ω ∈M

and

Υ1

(

ω

(13

))

=|ω( 1

3 )|20 + |ω( 1

3 )| for ω ∈M.

Then we have∣∣∣∣Υ1

(

ω

(13

))

– Υ1

(

ω

(13

))∣∣∣∣ ≤ 1

35|ω – ω|

and∣∣∣∣Υ1

(

ω

(13

))

– Υ1

(

ω

(13

))∣∣∣∣ ≤ 1

20|ω – ω|,

respectively. Hence A = 135 and B = 1

20 . Thus condition [A2] is satisfied.Also,

[(mTr

Γ (r + 1)+

mTr–1

Γ (r)

)(M1

1 – N1 – N2Tσ

σΓ (δ)+

M2Tσ

σΓ (δ)

1 – N1 – N2Tσ

σΓ (δ)

)

+ξ2Tr

η2Γ (r + 1)+ m(A + B)

]

≈ 0.83374 < 1

with m = 1, T = 1, ξ2 = η2 = 1,σ = δ = 52 , r = 3

2 , M1 = N1 = 190e2 , M2 = N2 = 1

101e2 ,A = 135 ,B =

120 . Therefore by Theorem 2.4 problem (4.1) has a unique solution. Also, letting ψ(τ ) =|τ |, τ ∈ [0, 1], we have

I12 ψ(τ ) =

1Γ ( 1

2 )

∫ τ

0(τ – s)( 1

2 –1)|s|ds =4 3

2

3√

π≤ 2τ√

π.

Hence [A5] is satisfied with Lψ = 2√π

. Therefore by Theorem 3.12 the given problem isUlam–Hyers–Rassias stable and consequently generalized Ulam–Hyers–Rassias stable.

Page 23: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 23 of 50

Example 4.2 Consider

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cD 12 ω(τ ) = 1+|y(τ )|+cos |cD 1

2 ω(τ )|104eτ+5(1+|y(τ )|+|cD 1

2 ω(τ )|)

+∫ 1

0(τ–s)

32

Γ ( 52 )

1+|y(s)|+sin |cD 12 ω(s)|

104es+5(1+|y(s)|+|cD 12 ω(s)|)

ds, τ ∈ [0, 1], τ �= 13 ,

cD 12 y(τ ) = 2+|ω(τ )|+cos |cD 1

2 y(τ )|70eτ+2(1+|ω(τ )|+|cD 1

2 y(τ )|)

+∫ 1

0(τ–s)

32

Γ ( 52 )

|ω(s)|+cos |cD 12 y(s)|

70es+2(1+|ω(s)|+|cD 12 y(s)|)

ds, τ ∈ [0, 1], τ �= 14 ,

ω(0) + I 12 ω(0) = 3

2 , ω(1) + I 12 ω(1) = 3

2 ,

y(0) + I 12 y(0) = 3

2 , y(1) + I 12 y(1) = 3

2 ,

�ω( 13 ) = Υ (ω( 1

3 )), �ω′( 13 ) = Υ (ω( 1

3 )),

�y( 14 ) = Υ (y( 1

4 )), �y′( 14 ) = Υ (y( 1

4 )),

(4.2)

τi = 13 for i = 1, 2, 3, . . . , 60, and τj = 1

4 for j = 1, 2, 3, . . . , 100.For any ω,ω, y, y ∈R and τ ∈ [0, 1], we obtain

∣∣A(τ ,ω, y) – A(τ ,ω, y)

∣∣ ≤ 1

104e5

(|ω – ω| + |y – y|)

and

∣∣B(τ ,ω, y) – B(τ ,ω, y)

∣∣ ≤ 1

104e5

(|ω – ω| + |y – y|).

Similarly, for any ω,ω, y, y ∈ R, and τ ∈ [0, 1], we obtain

∣∣A′(τ ,ω, y) – A′(τ ,ω, y)

∣∣ ≤ 1

70e2

(|ω – ω| + |y – y|)

and

∣∣B′(τ ,ω, y) – B′(τ ,ω, y)

∣∣ ≤ 1

70e2

(|ω – ω| + |y – y|).

These satisfy condition [A1] with M1 = M2 = N1 = N2 = 1104e5 , M′

1 = M′2 = N′

1 = N′2 = 1

70e2 .Set

Υi

(

ω

(13

))

=|ω( 1

3 )|40 + |ω( 1

3 )| for ω ∈X

and

Υ1

(

ω

(13

))

=|ω( 1

3 )|20 + |ω( 1

3 )| for ω ∈X .

Then for ω,ω ∈X , we have

∣∣∣∣Υi

(

ω

(13

))

– Υi

(

ω

(13

))∣∣∣∣ =

∣∣∣∣

|ω( 13 )|

40 + |ω( 13 )| –

|ω( 13 )|

40 + |ω( 13 )|

∣∣∣∣

Page 24: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 24 of 50

≤ 135

|ω – ω|

and∣∣∣∣Υ1

(

ω

(13

))

– Υ1

(

ω

(13

))∣∣∣∣ ≤ 1

20|ω – ω|,

respectively. Hence AΥi = 135 and AΥi

= 120 . Thus condition [A2] is satisfied. Similarly, if

Υj

(

y(

14

))

=|y( 1

4 )|50 + |y( 1

4 )| for y ∈ Y ,

then for y, y ∈ Y , we have

∣∣∣∣Υj

(

y(

14

))

– Υj

(

y(

14

))∣∣∣∣ =

∣∣∣∣

|y( 14 )|

50 + |y( 14 )| –

|y( 14 )|

50 + |y( 14 )

∣∣∣∣

≤ 150

|y – y|,

and if

Υj

(

y(

14

))

=|y( 1

4 )|101 + |y( 1

4 )| for y ∈ Y ,

then for y, y ∈ Y , we have

∣∣∣∣Υj

(

y(

14

))

– Υj

(

y(

14

))∣∣∣∣ =

∣∣∣∣

|y( 14 )|

101 + |y( 14 )| –

|y( 14 )|

101 + |y( 14 )

∣∣∣∣

≤ 1101

|y – y|.

Thus AΥj = 150 and AΥj

= 1101 satisfy our requirement from [A3].

The condition

�1 =[(

mTr

Γ (r + 1)+

mTr–1

Γ (r)

)(M1

1 – N1 – N2Tσ

σΓ (δ)+

M2Tσ

σΓ (δ)

1 – N1 – N2Tσ

σΓ (δ)

)

+ξ2Tr

η2Γ (r + 1)+ m(AΥi

+ AΥi )]

≈ 0.83097 < 1

is valid with m = 1, T = 1, ξ2 = η2 = 1,σ = δ = 52 , r = 1

2 , M1 = N1 = M2 = N2 = 1104e5 ,AΥi =

135 ,AΥi

= 120 .

Also,

�2 =[(

nTp

Γ (p + 1)+

nTp–1

Γ (p)

)(M′

1

1 – N′1 – N′

2Tσ

σΓ (δ)+

M′2

σΓ (δ)

1 – N′1 – N′

2Tσ

σΓ (δ)

)

+ξ4Tp

η4Γ (p + 1)+ n(AΥj

+ AΥj )]

≈ 0.78689 < 1

Page 25: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 25 of 50

with n = 1, T = 1, ξ4 = η4 = 1,σ = δ = 52 , p = 1

2 , M′1 = N′

1 = M′2 = N′

2 = 170e2 ,AΥj = 1

50 ,AΥj=

1101 . Hence � = max(�1,�2) < 1 is also true.

It is easy to check that

1 – QrQp ≈ 1.00000 > 0

and condition (3.13) is verified. We conclude that problem (4.2) is Ulam–Hyers stable, gen-eralized Ulam–Hyers stable, Ulam–Hyers–Rassias stable, and generalized Ulam–Hyers–Rassias stable.

Appendix 1: Supplementary resultsThe following definitions are adopted from [15].

Definition A.1 The integral of a function u ∈ L1(J ,R) of order r ∈R+ is defined by

Iru(τ ) =1

Γ (r)

∫ τ

0(τ – s)r–1u(s) ds,

provided that the integral exists.

Definition A.2 The Caputo derivative of a function u ∈ C(ρ)((0,∞),R) of arbitrary orderr is defined by

cDru(τ ) =1

Γ (ρ – r)

∫ τ

0(τ – s)ρ–r–1u(ρ)(s) ds,

where ρ = [r] + 1 in which [r] is the integer part of r.

Lemma A.3 For r > 0, the solution of the Caputo fractional differential equationcDr

0,τ u(τ ) = 0 is

u(τ ) = z0 + z1τ + z2τ2 + · · · + zρ–1τ

ρ–1,

where zi ∈R, i = 0, 1, . . . ,ρ – 1, and ρ = [r] + 1.

Lemma A.4 For r > 0, the solution of cDru(τ ) = β(τ ) is given by

u(τ ) = Irβ(τ ) +n–1∑

ρ=0

u(ρ)(0)ρ!

τρ ,

where ρ = [r] + 1.

Theorem A.5 ([10]) Let M be a Banach space, let T : M→M be a completely continu-ous operator, and let the set Ω = {ω ∈ M : ω = ℵT (ω), 0 < ℵ < 1} be bounded. Then T hasat least one fixed point in M.

Theorem A.6 ([10]) Let T : S → S be a contraction on a nonempty closed subset of aBanach space M. Then T has a unique fixed point.

Page 26: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 26 of 50

Theorem A.7 ([40]) Let H be a convex, closed, and nonempty subset of Banach spaceX ×Y , and let F ,G be the operators such that

(i) Fω + Gy ∈H whenever ω, y ∈H.(ii) F is compact and continuous, and G is a contraction mapping.

Then there exists z ∈H such that z = Fz + Gz, where z = (ω, y) ∈X ×Y .

Appendix 2

Proof of Theorem 2.3 Consider the operator T defined in (2.5). We have to show thatproblem (1.3) has at least one solution.

We show the operator T is continuous. Consider the sequence {ωn} such that ωn → ω ∈M, τ ∈ J . Then

∣∣(T ωn)(τ ) – (T ω)(τ )

∣∣

≤ 1Γ (r)

∫ τ

0(τ – s)r–1∣∣vn(s) – v(s)

∣∣ds –

τ

Tξ2

η2Γ (r)

∫ T

0(T – s)r–1∣∣ωn(s) – ω(s)

∣∣ds

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1∣∣vn(s) – v(s)∣∣ds +

1Γ (r)

∫ τi

τi–1

(τi – s)r–1∣∣vn(s) – v(s)∣∣ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2∣∣vn(s) – v(s)∣∣ds + (T – τi)

∣∣Υi

(ωn(τi)

)– Υi

(ω(τi)

)∣∣

+∣∣Υi

(ωn(τi)

)– Υi

(ω(τi)

)∣∣

]

, (B.1)

where vn, v ∈M are given by

vn(τ ) = A(τ ,ωn(τ ), vn(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ωn(s), vn(s)

)ds

and

v(τ ) = A(τ ,ω(τ ), v(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω(s), v(s)

)ds,

respectively. Using hypothesis [A1], we have

∣∣vn(τ ) – v(τ )

∣∣

=∣∣∣∣A

(τ ,ωn(τ ), vn(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ωn(s), vn(s)

)ds

– A(τ ,ω(τ ), v(τ )

)–

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω(s), v(s)

)ds

∣∣∣∣

≤ ∣∣A

(τ ,ωn(τ ), vn(τ )

)– A

(τ ,ω(τ ), v(τ )

)∣∣

+∫ τ

0

(τ – s)σ–1

Γ (δ)∣∣B

(s,ωn(s), vn(s)

)– B

(s,ω(s), v(s)

)∣∣ds

≤ M1∣∣ωn(τ ) – ω(τ )

∣∣ + N1

∣∣vn(τ ) – v(τ )

∣∣

Page 27: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 27 of 50

+τσ

σΓ (δ)(M2

∣∣ωn(τ ) – ω(τ )

∣∣ + N2

∣∣vn(τ ) – v(τ )

∣∣).

Then

∣∣vn(τ ) – v(τ )

∣∣ ≤

(M1

1 – N1 – N2τσ

σΓ (δ)+

M2τσ

σΓ (δ)

1 – N1 – N2τσ

σΓ (δ)

)∣∣ωn(τ ) – ω(τ )

∣∣. (B.2)

Hypotheses [A1], [A2] and inequalities (B.1) and (B.2) lead to

∣∣(T ωn)(τ ) – (T ω)(τ )

∣∣

≤[(

τ r

Γ (r + 1)–

mτTr–1

Γ (r + 1)–

mτ r+1

TΓ (r + 1)–

mτ r

TΓ (r)

)

×(

M1

1 – N1 – N2τσ

σΓ (δ)+

M2τσ

σΓ (δ)

1 – N1 – N2τσ

σΓ (δ)

)

–ξ2τTr–1

η2Γ (r + 1)–

τ

Tm(A + B)

]

× ∣∣ωn(τ ) – ω(τ )

∣∣.

For each τ ∈ J , the sequence ωn → ω as n → ∞, and hence by the Lebesgue dominatedconvergence theorem inequality (B.1) implies that

∣∣(T ωn)(τ ) – (T ω)(τ )

∣∣ → 0 as n → ∞

and

‖T ωn – T ω‖M → 0 as n → ∞.

Hence T is continuous on J .Now we have to show that T is bounded in M. For any ℘ > 0, there is RE > 0 such that

E ={ω ∈M : ‖ω‖M ≤ ℘

},

which leads to

‖T ω‖M ≤ RE.

For τ ∈ Ji, we obtain

∣∣(T ω)(τ )

∣∣

≤ 1Γ (r)

∫ τ

0(τ – s)r–1∣∣v(s)

∣∣ds +

ν1

η1–

τ

T

[ξ2

η2Γ (r)

∫ T

0(T – s)r–1∣∣ω(s)

∣∣ds

+ν1

η1–

ν2

η2

]

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1∣∣v(s)∣∣ds +

1Γ (r)

∫ τi

τi–1

(τi – s)r–1∣∣v(s)∣∣ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2∣∣v(s)∣∣ds + (T – τi)

∣∣Υi

(ω(τi)

)∣∣ +

∣∣Υi

(ω(τi)

)∣∣

]

. (B.3)

Page 28: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 28 of 50

Further, using hypothesis [A3], we have

∣∣v(τ )

∣∣ ≤ ∣

∣A(τ ,ω(τ ), v(τ )

)∣∣ +

∫ τ

0

(τ – s)σ–1

Γ (δ)∣∣B

(s,ω(s), v(s)

)∣∣ds

≤ l1(τ ) + m1(τ )∣∣ω(τ )

∣∣ + n1(τ )

∣∣v(τ )

∣∣ +

τσ

σΓ (δ)(l2(τ ) + m2(τ )

∣∣ω(τ )

∣∣ + n2(τ )

∣∣v(τ )

∣∣)

≤ l∗1 + m∗1‖ω‖M + n∗

1‖v‖M +Tσ

σΓ (δ)(l∗2 + m∗

2‖ω‖M + n∗2‖v‖M

).

Therefore we get

∣∣v(τ )

∣∣ ≤ ‖v‖M ≤ l∗1 + m∗

1‖ω‖M1 – n∗

1 – n∗2

σΓ (δ)+

σΓ (δ)l∗2 + m∗

2‖ω‖M1 – n∗

1 – n∗2

σΓ (δ)= �. (B.4)

Now by (B.4) and [A4] relation (B.3) becomes

∣∣T ω(τ )

∣∣ ≤ �τ r

Γ (r + 1)+

ν1

η1

–τ

T

[ξ2Tr

η2Γ (r + 1)+

ν1

η1–

ν2

η2+

m�Tr

Γ (r + 1)+

m�τ r

Γ (r + 1)+

m�τ r–1

Γ (r)

+ m(K′

Υi+ KΥi

)∣∣ω(τ )

∣∣ + m

(L′

Υi+ LΥi

)]

= C.

Thus

‖T ω‖M ≤ C.

Similarly for τ ∈ J0, we can verify that

‖T ω‖M ≤ C.

Now we have to show that the operator T is equicontinuous in E. Let τ1, τ2 ∈ Ji be suchthat 0 < τ1 < τ2 < T, and let ω ∈ E. Then

∣∣T ω(τ2) – T ω(τ1)

∣∣

≤ 1Γ (r)

∫ τ2

0(τ2 – s)r–1∣∣v(s)

∣∣ds +

1Γ (r)

∫ τ1

0(τ1 – s)r–1∣∣v(s)

∣∣ds

–τ

T∑

0<τi<τ2–τ1

[1

Γ (r)

∫ T

τi

(T – s)r–1∣∣v(s)∣∣ds +

(τi–1 – τi)Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2∣∣v(s)∣∣ds

+1

Γ (r)

∫ τi

τi–1

(τi – s)r–1∣∣v(s)∣∣ds + (T – τi)

∣∣Υi

(ω(τi)

)∣∣ +

∣∣Υi

(ω(τi)

)∣∣

]

≤ 1Γ (r)

∫ τ2

0

[(τ2 – s)r–1 – (τ1 – s)r–1]∣∣v(s)

∣∣ds +

1Γ (r)

∫ τ1

0(τ1 – s)r–1∣∣v(s)

∣∣ds

–τ

T∑

0<τi<τ2–τ1

[1

Γ (r)

∫ T

τi

(T – s)r–1∣∣v(s)∣∣ds +

(τi–1 – τi)Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2∣∣v(s)∣∣ds

Page 29: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 29 of 50

+1

Γ (r)

∫ τi

τi–1

(τi – s)r–1∣∣v(s)∣∣ds + (T – τi)

∣∣Υi

(ω(τi)

)∣∣ +

∣∣Υi

(ω(τi)

)∣∣

]

. (B.5)

Obviously, the right-hand side of inequality (B.5) tends to zero as τ1 → τ2. Therefore

∣∣T ω(τ2) – T ω(τ1)

∣∣ → 0 as τ1 → τ2.

Similarly, for τ ∈ J0. Thus T is equicontinuous and therefore completely continuous. Fur-ther, we consider a set Ω ⊂M defined as

Ω ={ω ∈M : ω = ℵT (ω), 0 < ℵ < 1

}.

We need to prove that the set Ω is bounded. Suppose ω ∈ Ω is such that

ω(τ ) = ℵT (ω(τ )

), where 0 < ℵ < 1.

Then for each τ ∈ Ji, we have

∣∣ω(τ )

∣∣ =

∣∣∣∣∣

ℵΓ (r)

∫ τ

0(τ – s)r–1v(s) ds +

ℵν1

η1–

ℵτ

T

[ξ2

η2Γ (r)

∫ T

0(T – s)r–1ω(s) ds

+ν1

η1–

ν2

η2

]

–ℵτ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1v(s) ds +1

Γ (r)

∫ τi

τi–1

(τi – s)r–1v(s) ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2v(s) ds + (T – τi)Υi(ω(τi)

)+ Υi

(ω(τi)

)]∣∣∣∣∣

≤ 1Γ (r)

∫ τ

0(τ – s)r–1∣∣v(s)

∣∣ds +

ν1

η1–

τ

T

[ξ2

η2Γ (r)

∫ T

0(T – s)r–1∣∣ω(s)

∣∣ds

+ν1

η1–

ν2

η2

]

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1∣∣v(s)∣∣ds

+1

Γ (r)

∫ τi

τi–1

(τi – s)r–1∣∣v(s)∣∣ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2∣∣v(s)∣∣ds + (T – τi)

∣∣Υi

(ω(τi)

)∣∣ +

∣∣Υi

(ω(τi)

)∣∣

]

≤ τ r

Γ (r + 1)+

ν1

η1–

τ

T

[ξ2Tr

η2Γ (r + 1)+

ν1

η1–

ν2

η2+

mTr

Γ (r + 1)+

mτ r

Γ (r + 1)+

mτ r–1

Γ (r)

+ m(K′

Υi+ KΥi

)∣∣ω(τ )

∣∣ + m

(L′

Υi+ LΥi

)]

.

Taking the norm on both sides, we get ‖ω‖M ≤ Q. Also, for τ ∈ J0, we can show that‖ω‖M ≤ Q. Thus, Ω is bounded. By Schaefer’s fixed point theorem we conclude that Thas at least one fixed point. Hence, the considered problem (1.3) has at least one solutionin M. The proof is complete. �

Proof of Theorem 2.4 For ω,ω ∈M and τ ∈ Ji, we have

∣∣(T ω)(τ ) – (T ω)(τ )

∣∣

Page 30: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 30 of 50

≤ 1Γ (r)

∫ τ

0(τ – s)r–1∣∣v(s) – v(s)

∣∣ds –

τ

Tξ2

η2Γ (r)

∫ T

0(T – s)r–1∣∣ω(s) – ω(s)

∣∣ds

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1∣∣v(s) – v(s)∣∣ds +

1Γ (r)

∫ τi

τi–1

(τi – s)r–1∣∣v(s) – v(s)∣∣ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2∣∣v(s) – v(s)∣∣ds + (T – τi)

∣∣Υi

(ω(τi)

)– Υi

(ω(τi)

)∣∣

+∣∣Υi

(ω(τi)

)– Υi

(ω(τi)

)∣∣

]

, (B.6)

where v, v ∈M are given by

v(τ ) = A(τ ,ω(τ ), v(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω(s), v(s)

)ds

and

v(τ ) = A(τ ,ω(τ ), v(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω(s), v(s)

)ds.

Using [A1], we have

∣∣v(τ ) – v(τ )

∣∣

=∣∣∣∣A

(τ ,ω(τ ), v(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω(s), v(s)

)ds

– A(τ ,ω(τ ), v(τ )

)–

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω(s), v(s)

)ds

∣∣∣∣

≤ ∣∣A

(t,ω(τ ), v(τ )

)– A

(t,ω(τ ), v(τ )

)∣∣

+∫ τ

0

(τ – s)σ–1

Γ (δ)∣∣B

(s,ω(s), v(s)

)– B

(s,ω(s), v(s)

)∣∣ds

≤ M1∣∣ω(τ ) – ω(τ )

∣∣ + N1

∣∣v(τ ) – v(τ )

∣∣

+τσ

σΓ (δ)(M2

∣∣ω(τ ) – ω(τ )

∣∣ + N2

∣∣v(τ ) – v(τ )

∣∣).

Thus

∣∣v(τ ) – v(τ )

∣∣ ≤

(M1

1 – N1 – N2τσ

σΓ (δ)+

M2τσ

σΓ (δ)

1 – N1 – N2τσ

σΓ (δ)

)∣∣ω(τ ) – ω(τ )

∣∣. (B.7)

Using hypotheses [A1], [A2] and inequalities (B.7) and (B.6), we obtain

∣∣(T ω)(τ ) – (T ω)(τ )

∣∣

≤[(

τ r

Γ (r + 1)–

mτTr–1

Γ (r + 1)–

mτ r+1

TΓ (r + 1)–

mτ r

TΓ (r)

)

×(

M1

1 – N1 – N2τσ

σΓ (δ)+

M2τσ

σΓ (δ)

1 – N1 – N2τσ

σΓ (δ)

)

–ξ2τTr–1

η2Γ (r + 1)–

τ

Tm(A + B)

]

Page 31: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 31 of 50

× ∣∣ω(τ ) – ω(τ )

∣∣.

Now taking the norm on both sides, we have

‖T ω – T ω‖M

≤[(

mTr

Γ (r + 1)+

mTr–1

Γ (r)

)(M1

1 – N1 – N2Tσ

σΓ (δ)+

M2Tσ

σΓ (δ)

1 – N1 – N2Tσ

σΓ (δ)

)

+ξ2Tr

η2Γ (r + 1)+ m(A + B)

]

‖ω – ω‖M.

Hence, the operator T is a contraction. Thus T has a unique fixed point, so the problem(1.3) has a unique solution. �

Proof of Theorem 2.7 Construct the closed ball B = {(ω, y) ∈ X × Y : ‖(ω, y)‖ ≤ R}. Splitthe operator T into two parts as T = F + G with F = (Fr ,Fp) and G = (Gr ,Gp), where

Fr(ω, y)(τ ) =1

Γ (r)

∫ τ

0(τ – s)r–1v(s) ds –

τ

Tξ2

η2Γ (r)

∫ T

0(T – s)r–1ω(s) ds

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1v(s) ds +1

Γ (r)

∫ τi

τi–1

(τi – s)r–1v(s) ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2v(s) ds]

,

Fp(ω, y)(τ ) =1

Γ (p)

∫ τ

0(τ – s)p–1z(s) ds –

τ

Tξ4

η4Γ (p)

∫ T

0(T – s)p–1y(s) ds

–τ

T

n∑

j=1

[1

Γ (p)

∫ T

τj

(T – s)p–1z(s) ds +1

Γ (p)

∫ τj

τj–1

(τj – s)p–1z(s) ds

+T – τj

Γ (p – 1)

∫ τj

τj–1

(τj – s)p–2z(s) ds]

,

Gr(ω)(τ ) =ν1

η1+

τ

T

[ν2

η2–

ν1

η1

]

–τ

T

m∑

i=1

[(T – τi)Υi

(ω(τi)

)+ Υi

(ω(τi)

)],

and

Gp(y)(τ ) =ν3

η3+

τ

T

[ν4

η4–

ν3

η3

]

–τ

T

n∑

j=1

[(T – τj)Υj

(y(τj)

)+ Υj

(y(τj)

)].

Clearly, Tr = Fr + Gr and Tp = Fp + Gp.The first step is to show that T (ω, y)(τ ) = F (ω, y)(τ ) + G(ω, y)(τ ) ∈ B for all (ω, y) ∈ B .For any (ω, y) ∈ B , consider

∣∣(Trω)(τ )

∣∣

≤ 1Γ (r)

∫ τ

0(τ – s)r–1∣∣v(s)

∣∣ds +

ν1

η1

Page 32: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 32 of 50

–τ

T

[ξ2

η2Γ (r)

∫ T

0(T – s)r–1∣∣ω(s)

∣∣ds +

ν1

η1–

ν2

η2

]

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1∣∣v(s)∣∣ds +

1Γ (r)

∫ τi

τi–1

(τi – s)r–1∣∣v(s)∣∣ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2∣∣v(s)∣∣ds + (T – τi)

∣∣Υi

(ω(τi)

)∣∣ +

∣∣Υi

(ω(τi)

)∣∣

]

. (B.8)

Using [A4] for τ ∈ Ji, we have

∣∣v(τ )

∣∣ ≤ ∣

∣A(τ , y(τ ), v(τ )

)∣∣ +

∫ τ

0

(τ – s)σ–1

Γ (δ)∣∣B

(s, y(s), v(s)

)∣∣ds

≤ a1(τ ) + b1(τ )∣∣y(τ )

∣∣ + c1(τ )

∣∣v(τ )

∣∣ +

τσ

σΓ (δ)(a2(τ ) + b2(τ )

∣∣y(τ )

∣∣ + c2(τ )

∣∣v(τ )

∣∣)

≤ a∗1 + b∗

1‖y‖X + c∗1‖v‖X +

σΓ (δ)(a∗

2 + b∗2‖y‖X + c∗

2‖v‖X).

Therefore we get

∣∣v(τ )

∣∣ ≤ ‖v‖X ≤ a∗

1 + b∗1‖y‖X

1 – c∗1 – c∗

2Tσ

σΓ (δ)+

σΓ (δ)a∗

2 + b∗2‖y‖X

1 – c∗1 – c∗

2Tσ

σΓ (δ)= �. (B.9)

Using (B.9) and [A6], relation (B.8) becomes

∣∣Trω(τ )

∣∣ ≤ �τ r

Γ (r + 1)+

ν1

η1–

ξ2τTr–1

Γ (r + 1)–

τν1

Tη1+

τν2

Tη2–

mτ�Tr–1

Γ (r + 1)

–m�τ r+1

TΓ (r + 1)–

m�τ r–1

Γ (r)

–(K′

Υi+ KΥi

)∣∣ω(τ )

∣∣ –

(L′

Υi+ LΥi

)

= C.

Thus

‖Trω‖X ≤ C.

Similarly, for τ ∈ J0, we can verify that

‖Trω‖X ≤ C.

In the similar manner, we have

∣∣(Try)(τ )

∣∣

≤ 1Γ (r)

∫ τ

0(τ – s)r–1∣∣v(s)

∣∣ds +

ν1

η1

–τ

T

[ξ2

η2Γ (r)

∫ T

0(T – s)r–1∣∣ω(s)

∣∣ds +

ν1

η1–

ν2

η2

]

Page 33: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 33 of 50

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1∣∣v(s)∣∣ds +

1Γ (r)

∫ τi

τi–1

(τi – s)r–1∣∣v(s)∣∣ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2∣∣v(s)∣∣ds + (T – τi)

∣∣Υi

(ω(τi)

)∣∣ +

∣∣Υi

(ω(τi)

)∣∣

]

. (B.10)

Using [A4] for τ ∈ Ji, we have

∣∣v(τ )

∣∣ ≤ ∣

∣A(τ , y(τ ), v(τ )

)∣∣ +

∫ τ

0

(τ – s)σ–1

Γ (δ)∣∣B

(s, y(s), v(s)

)∣∣ds

≤ a1(τ ) + b1(τ )∣∣y(τ )

∣∣ + c1(τ )

∣∣v(τ )

∣∣ +

τσ

σΓ (δ)(a2(τ ) + b2(τ )

∣∣y(τ )

∣∣ + c2(τ )

∣∣v(τ )

∣∣)

≤ a∗1 + b∗

1‖y‖X + c∗1‖v‖X +

σΓ (δ)(a∗

2 + b∗2‖y‖X + c∗

2‖v‖X).

Therefore we get

∣∣v(τ )

∣∣ ≤ ‖v‖X ≤ a∗

1 + b∗1‖y‖X

1 – c∗1 – c∗

2Tσ

σΓ (δ)+

σΓ (δ)a∗

2 + b∗2‖y‖X

1 – c∗1 – c∗

2Tσ

σΓ (δ)= �. (B.11)

Using (B.11) and [A6], relation (B.10) becomes

∣∣Try(τ )

∣∣ ≤ �τ r

Γ (r + 1)+

ν1

η1–

ξ2τTr–1

Γ (r + 1)–

τν1

Tη1+

τν2

Tη2–

τ�Tr–1

Γ (r + 1)–

m�τ r+1

TΓ (r + 1)–

m�τ r–1

Γ (r)

–(K′

Υi+ KΥi

)∣∣ω(τ )

∣∣ –

(L′

Υi+ LΥi

)

= C.

Thus

‖Try‖X ≤ C.

Similarly, for τ ∈ J0, we can verify that

‖Try‖X ≤ C.

Hence

∥∥Tr(ω, y)

∥∥X ≤ C.

Now, for any (ω, y) ∈ B , consider

∣∣(Tpω)(τ )

∣∣

≤ 1Γ (p)

∫ τ

0(τ – s)p–1∣∣z(s)

∣∣ds +

ν3

η3

–τ

T

[ξ4

η4Γ (p)

∫ T

0(T – s)p–1∣∣y(s)

∣∣ds +

ν3

η3–

ν4

η4

]

Page 34: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 34 of 50

–τ

T

n∑

j=1

[1

Γ (p)

∫ T

τj

(T – s)p–1∣∣z(s)∣∣ds +

1Γ (p)

∫ τj

τj–1

(τj – s)p–1∣∣z(s)∣∣ds

+T – τj

Γ (p – 1)

∫ τj

τj–1

(τj – s)p–2∣∣z(s)∣∣ds + (T – τj)

∣∣Υj

(y(τj)

)∣∣ +

∣∣Υj

(y(τj)

)∣∣

]

. (B.12)

Using [A5] for τ ∈ Jj, we have

∣∣z(τ )

∣∣ ≤ ∣

∣A′(τ ,ω(τ ), y(τ ))∣∣ +

∫ τ

0

(τ – s)σ–1

Γ (δ)∣∣B′(s,ω(s), y(s)

)∣∣ds

≤ l1(τ ) + m1(τ )∣∣ω(τ )

∣∣ + n1(τ )

∣∣y(τ )

∣∣ +

τσ

σΓ (δ)(l2(τ ) + m2(τ )

∣∣ω(τ )

∣∣ + n2(τ )

∣∣y(τ )

∣∣)

≤ l∗1 + m∗1‖ω‖Y + n∗

1‖y‖Y +Tσ

σΓ (δ)(l∗2 + m∗

2‖ω‖Y + n∗2‖y‖Y

).

Therefore we get

∣∣z(τ )

∣∣ ≤ ‖z‖Y ≤ l∗1 + m∗

1‖ω‖Y1 – n∗

1 – n∗2

σΓ (δ)+

σΓ (δ)l∗2 + m∗

2‖ω‖Y1 – n∗

1 – n∗2

σΓ (δ)= �

∗. (B.13)

Using (B.13) and [A7], relation (B.12) becomes

∣∣Tpω(τ )

∣∣ ≤ �

∗τ p

Γ (p + 1)+

ν3

η3–

ξ4τTp–1

Γ (p + 1)–

τν3

Tη3+

τν4

Tη4–

nτ�∗Tp–1

Γ (p + 1)

–n�∗τ p+1

TΓ (p + 1)–

n�∗τ p–1

Γ (p)

–(K′

Υj+ KΥj

)∣∣ω(τ )

∣∣ –

(L′

Υj+ LΥj

)

= C∗.

Thus

‖Tpω‖Y ≤ C∗.

Similarly, for τ ∈ J0, we can verify that

‖Tpω‖Y ≤ C∗.

In a similar manner, we have

∣∣(Tpy)(τ )

∣∣

≤ 1Γ (p)

∫ τ

0(τ – s)p–1∣∣z(s)

∣∣ds +

ν3

η3

–τ

T

[ξ4

η4Γ (p)

∫ T

0(T – s)p–1∣∣y(s)

∣∣ds +

ν3

η3–

ν4

η4

]

–τ

T

n∑

j=1

[1

Γ (p)

∫ T

τj

(T – s)p–1∣∣z(s)∣∣ds +

1Γ (p)

∫ τj

τj–1

(τj – s)p–1∣∣z(s)∣∣ds

Page 35: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 35 of 50

+T – τj

Γ (p – 1)

∫ τj

τj–1

(τj – s)p–2∣∣z(s)∣∣ds + (T – τj)

∣∣Υj

(y(τj)

)∣∣ +

∣∣Υj

(y(τj)

)∣∣

]

. (B.14)

Using [A5] for τ ∈ Jj, we have

∣∣z(τ )

∣∣ ≤ ∣

∣A′(τ ,ω(τ ), y(τ ))∣∣ +

∫ τ

0

(τ – s)σ–1

Γ (δ)∣∣B′(s,ω(s), y(s)

)∣∣ds

≤ l1(τ ) + m1(τ )∣∣ω(τ )

∣∣ + n1(τ )

∣∣y(τ )

∣∣ +

τσ

σΓ (δ)(l2(τ ) + m2(τ )

∣∣ω(τ )

∣∣ + n2(τ )

∣∣y(τ )

∣∣)

≤ l∗1 + m∗1‖ω‖Y + n∗

1‖y‖Y +Tσ

σΓ (δ)(l∗2 + m∗

2‖ω‖Y + n∗2‖y‖Y

).

Therefore we get

∣∣z(τ )

∣∣ ≤ ‖z‖Y ≤ l∗1 + m∗

1‖ω‖Y1 – n∗

1 – n∗2

σΓ (δ)+

σΓ (δ)l∗2 + m∗

2‖ω‖Y1 – n∗

1 – n∗2

σΓ (δ)= �

∗. (B.15)

Using (B.15) and [A7], relation (B.14) becomes

∣∣Tpy(τ )

∣∣ ≤ �

∗τ p

Γ (p + 1)+

ν3

η3–

ξ4τTp–1

Γ (p + 1)–

τν3

Tη3+

τν4

Tη4–

nτ�∗Tp–1

Γ (p + 1)

–n�∗τ p+1

TΓ (p + 1)–

n�∗τ p–1

Γ (p)

–(K′

Υj+ KΥj

)∣∣ω(τ )

∣∣ –

(L′

Υj+ LΥj

)

= C∗.

Thus

‖Tpy‖Y ≤ C∗.

Similarly, for τ ∈ J0, we can verify that

‖Tpy‖Y ≤ C∗.

Hence

∥∥Tp(ω, y)

∥∥Y ≤ C∗,

and thus

∥∥T (ω, y)

∥∥X×Y ≤ ∥

∥Tr(ω, y) + Tp(ω, y)∥∥X×Y ≤ C + C∗ = R,

which implies that T (B) ⊆ B .Second, we show that G is a contraction. For any (ω, y), (ω, y) ∈ B , we have

∣∣Gr(ω) – Gr(ω)

∣∣ ≤ τ

T

m∑

i=1

[(T – τi)

∣∣Υi

(ω(τi)

)– Υi

(ω(τi)

)∣∣ +

∣∣Υi

(ω(τi)

)– Υi

(ω(τi)

)∣∣]

Page 36: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 36 of 50

≤ m(AΥi+ AΥi )‖ω – ω‖X .

Similarly,

∣∣Gp(y) – Gp(y)

∣∣ ≤ τ

T

n∑

j=1

[(T – τj)

∣∣Υj

(y(τj)

)– Υj

(y(τj)

)∣∣ +

∣∣Υj

(y(τj)

)– Υj

(y(τj)

)∣∣]

≤ n(AΥj+ AΥj )‖y – y‖Y .

From the assumptions m(AΥi+AΥi ) < 1 and n(AΥj

+AΥj ) < 1 it follows that G is a contrac-tion.

Our final step is to show that F = (Fr +Fp) is compact. The continuity of F follows fromthe continuity of A,B,A′,B′. For (ω, y) ∈ B , we have

∣∣Frω(τ )

∣∣ ≤ 1

Γ (r)

∫ τ

0(τ – s)r–1∣∣v(s)

∣∣ds –

τ

Tξ2

η2Γ (r)

∫ T

0(T – s)r–1∣∣ω(s)

∣∣ds

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1∣∣v(s)∣∣ds +

1Γ (r)

∫ τi

τi–1

(τi – s)r–1∣∣v(s)∣∣ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2∣∣v(s)∣∣ds

]

. (B.16)

By [A4], for τ ∈ Ji, we have

∣∣v(τ )

∣∣ ≤ ∣

∣A(τ ,ω(τ ), v(τ )

)∣∣ +

∫ τ

0

(τ – ξ )σ–1

Γ (δ)∣∣B

(s,ω(s), v(s)

)∣∣ds

≤ a1(τ ) + b1(τ )∣∣ω(τ )

∣∣ + c1(τ )

∣∣v(τ )

∣∣ +

τσ

σΓ (δ)(a2(τ ) + b2(τ )

∣∣ω(τ )

∣∣ + c2(τ )

∣∣v(τ )

∣∣)

≤ a∗1 + b∗

1‖ω‖X + c∗1‖v‖X +

σΓ (δ)(a∗

2 + b∗2‖ω‖X + c∗

2‖v‖X).

Therefore we get

∣∣v(τ )

∣∣ ≤ ‖v‖X ≤ a∗

1 + b∗1‖ω‖X

1 – c∗1 – c∗

2Tσ

σΓ (δ)+

σΓ (δ)a∗

2 + b∗2‖ω‖X

1 – c∗1 – c∗

2Tσ

σΓ (δ)= �. (B.17)

Using (B.17) in (B.16), after simplification, we get

∣∣Frω(τ )

∣∣ ≤ ℘1.

In a similar manner, we have

∣∣Fry(τ )

∣∣ ≤ 1

Γ (r)

∫ τ

0(τ – s)r–1∣∣v(s)

∣∣ds –

τ

Tξ2

η2Γ (r)

∫ T

0(T – s)r–1∣∣ω(s)

∣∣ds

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1∣∣v(s)∣∣ds +

1Γ (r)

∫ τi

τi–1

(τi – s)r–1∣∣v(s)∣∣ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2∣∣v(s)∣∣ds

]

. (B.18)

Page 37: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 37 of 50

By [A4], for τ ∈ Ji, we have

∣∣v(τ )

∣∣ ≤ ∣

∣A(τ ,ω(τ ), v(τ )

)∣∣ +

∫ τ

0

(τ – ξ )σ–1

Γ (δ)∣∣B

(s,ω(s), v(s)

)∣∣ds

≤ a1(τ ) + b1(τ )∣∣ω(τ )

∣∣ + c1(τ )

∣∣v(τ )

∣∣ +

τσ

σΓ (δ)(a2(τ ) + b2(τ )

∣∣ω(τ )

∣∣ + c2(τ )

∣∣v(τ )

∣∣)

≤ a∗1 + b∗

1‖ω‖X + c∗1‖v‖X +

σΓ (δ)(a∗

2 + b∗2‖ω‖X + c∗

2‖v‖X).

Therefore we get

∣∣v(τ )

∣∣ ≤ ‖v‖X ≤ a∗

1 + b∗1‖ω‖X

1 – c∗1 – c∗

2Tσ

σΓ (δ)+

σΓ (δ)a∗

2 + b∗2‖ω‖X

1 – c∗1 – c∗

2Tσ

σΓ (δ)= �. (B.19)

Using (B.19) in (B.18), after simplification, we get

∣∣Frω(τ )

∣∣ ≤ ℘1.

Hence

∥∥Fr(ω, y)

∥∥X ≤ ℘1.

Now for any (ω, y) ∈ B , we have

∣∣Fpω(τ )

∣∣ ≤ 1

Γ (p)

∫ τ

0(τ – s)p–1∣∣z(s)

∣∣ds –

τ

Tξ4

η4Γ (p)

∫ T

0(T – s)p–1∣∣y(s)

∣∣ds

–τ

T

n∑

j=1

[1

Γ (p)

∫ T

τj

(T – s)p–1∣∣z(s)∣∣ds +

1Γ (p)

∫ τj

τj–1

(τj – s)p–1∣∣z(s)∣∣ds

+T – τj

Γ (p – 1)

∫ τj

τj–1

(τj – s)p–2∣∣z(s)∣∣ds

]

. (B.20)

By [A5], for τ ∈ Jj, we have

∣∣z(τ )

∣∣ ≤ ∣

∣A′(τ ,ω(τ ), z(τ ))∣∣ +

∫ τ

0

(τ – s)σ–1

Γ (δ)∣∣B′(s,ω(s), z(s)

)∣∣ds

≤ l1(τ ) + m1(τ )∣∣x(τ )

∣∣ + n1(τ )

∣∣z(τ )

∣∣ +

τσ

σΓ (δ)(l2(τ ) + m2(τ )

∣∣ω(τ )

∣∣ + n2(τ )

∣∣z(τ )

∣∣)

≤ l∗1 + m∗1‖ω‖Y + n∗

1‖z‖Y +Tσ

σΓ (δ)(l∗2 + m∗

2‖ω‖Y + n∗2‖z‖Y

).

Therefore we get

∣∣z(τ )

∣∣ ≤ ‖z‖Y ≤ l∗1 + m∗

1‖ω‖Y1 – n∗

1 – n∗2

σΓ (δ)+

σΓ (δ)l∗2 + m∗

2‖ω‖Y1 – n∗

1 – n∗2

σΓ (δ)= �. (B.21)

Using (B.21) in (B.20), after simplification, we get

‖Fpω‖Y ≤ ℘2.

Page 38: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 38 of 50

In a similar manner, we have

∣∣Fpy(τ )

∣∣ ≤ 1

Γ (p)

∫ τ

0(τ – s)p–1∣∣z(s)

∣∣ds –

τ

Tξ4

η4Γ (p)

∫ T

0(T – s)p–1∣∣y(s)

∣∣ds

–τ

T

n∑

j=1

[1

Γ (p)

∫ T

τj

(T – s)p–1∣∣z(s)∣∣ds +

1Γ (p)

∫ τj

τj–1

(τj – s)p–1∣∣z(s)∣∣ds

+T – τj

Γ (p – 1)

∫ τj

τj–1

(τj – s)p–2∣∣z(s)∣∣ds

]

. (B.22)

By [A5], for τ ∈ Jj, we have

∣∣z(τ )

∣∣ ≤ ∣

∣A′(τ ,ω(τ ), z(τ ))∣∣ +

∫ τ

0

(τ – s)σ–1

Γ (δ)∣∣B′(s,ω(s), z(s)

)∣∣ds

≤ l1(τ ) + m1(τ )∣∣x(τ )

∣∣ + n1(τ )

∣∣z(τ )

∣∣ +

τσ

σΓ (δ)(l2(τ ) + m2(τ )

∣∣ω(τ )

∣∣ + n2(τ )

∣∣z(τ )

∣∣)

≤ l∗1 + m∗1‖ω‖Y + n∗

1‖z‖Y +Tσ

σΓ (δ)(l∗2 + m∗

2‖ω‖Y + n∗2‖z‖Y

).

Therefore we get

∣∣z(τ )

∣∣ ≤ ‖z‖Y ≤ l∗1 + m∗

1‖ω‖Y1 – n∗

1 – n∗2

σΓ (δ)+

σΓ (δ)l∗2 + m∗

2‖ω‖Y1 – n∗

1 – n∗2

σΓ (δ)= �. (B.23)

Using (B.23) in (B.22), after simplification, we get

‖Fpy‖Y ≤ ℘2.

Hence

∥∥Fp(ω, y)

∥∥Y ≤ ℘2.

Thus

∥∥F (ω, y)

∥∥X×Y ≤ ∥

∥Fr(ω, y) + Fp(ω, y)∥∥X×Y ≤ ℘1 + ℘2 = R1,

which implies that F is uniformly bounded on B .Take a bounded subset C of B and (ω, y) ∈ C. Then for τ1, τ2 ∈ Ji with 0 ≤ τ1 ≤ τ2 ≤ 1,

we have

∣∣Frω(τ2) – Frω(τ1)

∣∣

≤ 1Γ (r)

∫ τ2

0(τ2 – s)r–1∣∣v(s)

∣∣ds +

1Γ (r)

∫ τ1

0(τ1 – s)r–1∣∣v(s)

∣∣ds

–τ

T∑

0<τi<τ2–τ1

[1

Γ (r)

∫ T

τi

(T – s)r–1∣∣v(s)∣∣ds +

(τi–1 – τi)Γ (r – 1)

∫ τi–1

τi

(τi – s)r–2∣∣v(s)∣∣ds

–1

Γ (r)

∫ τi–1

τi

(τi – s)r–1∣∣v(s)∣∣ds

]

Page 39: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 39 of 50

≤ 1Γ (r)

∫ τ2

0

[(τ2 – s)r–1 – (τ1 – s)r–1]∣∣v(s)

∣∣ds +

1Γ (r)

∫ τ1

0(τ1 – s)r–1∣∣v(s)

∣∣ds

–τ

T∑

0<τi<τ2–τ1

[1

Γ (r)

∫ T

τi

(T – s)r–1∣∣v(s)∣∣ds +

(τi–1 – τi)Γ (r – 1)

∫ τi–1

τi

(τi – s)r–2∣∣v(s)∣∣ds

–1

Γ (r)

∫ τi–1

τi

(τi – s)r–1∣∣v(s)∣∣ds

]

. (B.24)

Obviously, the right-hand side of inequality (B.24) tends to zero as τ1 → τ2.Therefore

∣∣Frω(τ2) – Frω(τ1)

∣∣ → 0 as τ1 → τ2.

Similarly,

∣∣Fry(τ2) – Fry(τ1)

∣∣ → 0 as τ1 → τ2.

Now for any τ1, τ2 ∈ Jj with 0 ≤ τ1 ≤ τ2 ≤ 1, we have

∣∣Fpω(τ2) – Fpω(τ1)

∣∣

≤ 1Γ (p)

∫ τ2

0(τ2 – s)p–1∣∣z(s)

∣∣ds +

1Γ (p)

∫ τ1

0(τ1 – s)p–1∣∣z(s)

∣∣ds

–τ

T∑

0<τj<τ2–τ1

[1

Γ (p)

∫ T

τi

(T – s)p–1∣∣z(s)∣∣ds +

(τj–1 – τj)Γ (p – 1)

∫ τj–1

τj

(τj – s)p–2∣∣z(s)∣∣ds

–1

Γ (p)

∫ τj–1

τj

(τj – s)p–1∣∣z(s)∣∣ds

]

≤ 1Γ (p)

∫ τ2

0

[(τ2 – s)p–1 – (τ1 – s)p–1]∣∣z(s)

∣∣ds +

1Γ (p)

∫ τ1

0(τ1 – s)p–1∣∣z(s)

∣∣ds

–τ

T∑

0<τj<τ2–τ1

[1

Γ (p)

∫ T

τi

(T – s)p–1∣∣z(s)∣∣ds +

(τj–1 – τj)Γ (p – 1)

∫ τj–1

τj

(τj – s)p–2∣∣z(s)∣∣ds

–1

Γ (p)

∫ τj–1

τj

(τj – s)p–1∣∣z(s)∣∣ds

]

. (B.25)

Obviously, the right-hand side of inequality (B.25) tends to zero as τ1 → τ2.Therefore

∣∣Fpω(τ2) – Fpω(τ1)

∣∣ → 0 as τ1 → τ2.

Similarly,

∣∣Fpy(τ2) – Fpy(τ1)

∣∣ → 0 as τ1 → τ2.

Thus

∣∣F (x, y)(τ2) – F (x, y)(τ1)

∣∣ → 0 as τ1 → τ2.

Page 40: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 40 of 50

Hence F is equicontinuous, and by the Arzelà–Ascoli theorem we obtain that F is com-pact. Finally, by Theorem A.7 system (1.4) has at least one solution, which completes theproof. �

Proof of Theorem 2.8 Suppose ω,ω ∈X . For τ ∈ Ji, we have

∣∣Trω(τ ) – Trω(τ )

∣∣

≤ 1Γ (r)

∫ τ

0(τ – s)r–1∣∣v(s) – v(s)

∣∣ds –

τ

Tξ2

η2Γ (r)

∫ T

0(T – s)r–1∣∣ω(s) – ω(s)

∣∣ds

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1∣∣v(s) – v(s)∣∣ds +

1Γ (r)

∫ τi

τi–1

(τi – s)r–1∣∣v(s) – v(s)∣∣ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2∣∣v(s) – v(s)∣∣ds + (T – τi)

∣∣Υi

(ω(τi)

)– Υi

(ω(τi)

)∣∣

+∣∣Υi

(ω(τi)

)– Υi

(ω(τi)

)∣∣

]

, (B.26)

where

v(τ ) = A(τ , y(τ ), v(τ )

)+

∫ τ

0

(τ – ξ )σ–1

Γ (δ)B

(s, y(s), v(s)

)ds

and

v(τ ) = A(τ , y(τ ), v(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s, y(s), v(s)

)ds.

Using [A1], we have

∣∣v(τ ) – v(τ )

∣∣

=∣∣∣∣A

(τ , y(τ ), v(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s, y(s), v(s)

)ds

– A(τ , y(τ ), v(τ )

)–

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s, y(s), v(s)

)ds

∣∣∣∣

≤ ∣∣A

(τ , y(τ ), v(τ )

)– A

(τ , y(τ ), v(τ )

)∣∣

+∫ τ

0

(τ – s)σ–1

Γ (δ)∣∣B

(s, y(s), v(s)

)– B

(s, y(s), v(s)

)∣∣ds

≤ M1∣∣y(τ ) – y(τ )

∣∣ + N1

∣∣v(τ ) – v(τ )

∣∣

+τσ

σΓ (δ)(M2

∣∣y(τ ) – y(τ )

∣∣ + N2

∣∣v(τ ) – v(τ )

∣∣).

Thus

∣∣v(τ ) – v(τ )

∣∣ ≤

(M1

1 – N1 – N2τσ

σΓ (δ)+

M2τσ

σΓ (δ)

1 – N1 – N2τσ

σΓ (δ)

)∣∣y(τ ) – y(τ )

∣∣. (B.27)

Page 41: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 41 of 50

Using hypotheses [A1], and [A3] and inequalities (B.27) and (B.26), we get

∣∣(Trω)(τ ) – (Trω)(τ )

∣∣

≤[(

τ r

Γ (r + 1)–

mτTr–1

Γ (r + 1)–

mτ r+1

TΓ (r + 1)–

mτ r

TΓ (r)

)

×(

M1

1 – N1 – N2τσ

σΓ (δ)+

M2τσ

σΓ (δ)

1 – N1 – N2τσ

σΓ (δ)

)]∣∣y(τ ) – y(τ )

∣∣

–[

ξ2τTr–1

η2Γ (r + 1)+

τ

Tm(AΥi

+ AΥi )]∣∣ω(τ ) – ω(τ )

∣∣.

Now taking the norm on both sides, we have

‖Trω – Trω‖X

≤[(

mTr

Γ (r + 1)+

mTr–1

Γ (r)

)(M1

1 – N1 – N2Tσ

σΓ (δ)+

M2Tσ

σΓ (δ)

1 – N1 – N2Tσ

σΓ (δ)

)]

‖y – y‖X

+[

ξ2Tr

η2Γ (r + 1)+ m(AΥi

+ AΥi )]

‖ω – ω‖X . (B.28)

In the same way, we can directly verify that

‖Try – Try‖X

≤[(

mTr

Γ (r + 1)+

mTr–1

Γ (r)

)(M1

1 – N1 – N2Tσ

σΓ (δ)+

M2Tσ

σΓ (δ)

1 – N1 – N2Tσ

σΓ (δ)

)]

‖y – y‖X

+[

ξ2Tr

η2Γ (r + 1)+ m(AΥi

+ AΥi )]

‖ω – ω‖X . (B.29)

Therefore from (B.28) and (B.29) we get

∥∥Tr(ω, y) – Tr(ω, y)

∥∥X ≤ �1

∥∥(ω, y) – (ω, y)

∥∥X .

Now, suppose ω,ω ∈ Y . For τ ∈ Jj, we have

∣∣Tpω(τ ) – Tpω(τ )

∣∣

≤ 1Γ (p)

∫ τ

0(τ – s)p–1∣∣z(s) – z(s)

∣∣ds –

τ

Tξ4

η4Γ (p)

∫ T

0(T – s)p–1∣∣y(s) – y(s)

∣∣ds

–τ

T

n∑

j=1

[1

Γ (p)

∫ T

τj

(T – s)p–1∣∣z(s) – z(s)∣∣ds +

1Γ (p)

∫ τj

τj–1

(τj – s)p–1∣∣z(s) – z(s)∣∣ds

+T – τj

Γ (p – 1)

∫ τj

τj–1

(τj – s)p–2∣∣z(s) – z(s)∣∣ds + (T – τj)

∣∣Υj

(y(τj)

)– Υj

(y(τj)

)∣∣

+∣∣Υj

(y(τj)

)– Υj

(y(τj)

)∣∣

]

, (B.30)

Page 42: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 42 of 50

where

z(τ ) = A′(τ ,ω(τ ), z(τ ))

+∫ τ

0

(τ – s)σ–1

Γ (δ)B′(s,ω(s), z(s)

)ds

and

z(τ ) = A′(τ ,ω(τ ), z(τ ))

+∫ τ

0

(τ – s)σ–1

Γ (δ)B′(s,ω(s), z(s)

)ds.

Using [A2], we have

∣∣z(τ ) – z(τ )

∣∣

=∣∣∣∣A

′(τ ,ω(τ ), z(τ ))

+∫ τ

0

(τ – s)σ–1

Γ (δ)B′(s,ω(s), z(s)

)ds

– A′(τ ,ω(τ ), z(τ ))

–∫ τ

0

(τ – s)σ–1

Γ (δ)B′(s,ω(s), z(s)

)ds

∣∣∣∣

≤ ∣∣A′(τ ,ω(τ ), z(τ )

)– A′(τ ,ω(τ ), z(τ )

)∣∣

+∫ τ

0

(τ – s)σ–1

Γ (δ)∣∣B′(s,ω(s), z(s)

)– B′(s,ω(s), z(s)

)∣∣ds

≤ M′1∣∣ω(τ ) – ω(τ )

∣∣ + N′

1∣∣z(τ ) – z(τ )

∣∣

+τσ

σΓ (δ)(M′

2∣∣ω(τ ) – ω(τ )

∣∣ + N′

2∣∣z(τ ) – z(τ )

∣∣).

Thus

∣∣z(τ ) – z(τ )

∣∣ ≤

(M′

1

1 – N′1 – N′

2τσ

σΓ (δ)+

M′2

τσ

σΓ (δ)

1 – N′1 – N′

2τσ

σΓ (δ)

)∣∣ω(τ ) – ω(τ )

∣∣. (B.31)

Using hypotheses [A2], [A3] and inequalities (B.31) and (B.30), we have

∣∣(Tpω)(τ ) – (Tpω)(τ )

∣∣

≤[(

τ p

Γ (p + 1)–

nτTp–1

Γ (p + 1)–

nτ p+1

TΓ (p + 1)–

nτ p

TΓ (p)

)

×(

M1

1 – N1 – N2τσ

σΓ (δ)+

M2τσ

σΓ (δ)

1 – N1 – N2τσ

σΓ (δ)

)]∣∣ω(τ ) – ω(τ )

∣∣

–[

ξ4τTp–1

η4Γ (p + 1)+

τ

Tn(AΥj

+ AΥj )]∣∣y(τ ) – y(τ )

∣∣.

Now taking the norm on both sides, we have

‖Tpω – Tpω‖Y

≤[(

nTp

Γ (p + 1)+

nTp–1

Γ (p)

)(M′

1

1 – N′1 – N′

2Tσ

σΓ (δ)+

M′2

σΓ (δ)

1 – N′1 – N′

2Tσ

σΓ (δ)

)]

‖ω – ω‖Y

Page 43: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 43 of 50

+[

ξ4Tp

η4Γ (p + 1)+ n(AΥj

+ AΥj )]

‖y – y‖Y . (B.32)

In the same way, we can obtain

‖Tpy – Tpy‖Y

≤[(

nTp

Γ (p + 1)+

nTp–1

Γ (p)

)(M′

1

1 – N′1 – N′

2Tσ

σΓ (δ)+

M′2

σΓ (δ)

1 – N′1 – N′

2Tσ

σΓ (δ)

)]

‖y – y‖Y

+[

ξ4Tp

η4Γ (p + 1)+ n(AΥj

+ AΥj )]

‖ω – ω‖Y . (B.33)

Thus from (B.32) and (B.33) we get

∥∥Tp(ω, y) – Tp(ω, y)

∥∥Y ≤ �2

∥∥(ω, y) – (ω, y)

∥∥Y .

Hence it follows that

∥∥T (ω, y) – T (ω, y)

∥∥X×Y ≤ max(�1,�2)

(‖ω – ω‖X×Y + ‖y – y‖X×Y).

This implies that T is a contraction and hence has a unique fixed point. This completesthe proof. �

Appendix 3

Proof of Theorem 3.11 Let ω ∈M be a solution of inequality (3.1), and let ω∗ be a solutionof the considered problem (1.3). Then

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDrω∗(τ ) = A(τ ,ω∗(τ ), cDrω∗(τ ))

+∫ τ

0(τ–s)σ–1

Γ (δ) B(s,ω∗(s), cDrω∗(s)) ds, τ ∈ J , τ �= τi, i = 1, 2, . . . , m,

�ω∗(τi) = Υi(ω∗(τi)), �ω∗′ (τi) = Υi(ω∗(τi)), i = 1, 2, . . . , m,

η1ω∗(0) + ξ1Irω∗(0) = ν1, η2ω

∗(T) + ξ2Irω∗(T) = ν2.

Using the inequality

∣∣ω(τ ) – ω∗(τ )

∣∣ ≤ ∣

∣ω(τ ) – q(τ )∣∣ +

∣∣q(τ ) + ω∗(τ )

∣∣, (C.1)

by Theorem 3.10 we have

∣∣ω(τ ) – ω∗(τ )

∣∣

≤[

τ r

Γ (r + 1)–

mτ r+1

TΓ (r + 1)–

τmT

]

εr +1

Γ (r)

∫ τ

0(τ – s)r–1∣∣v(s) – v∗(s)

∣∣ds

–τξ2

Tη2Γ (r)

∫ T

0(T – s)r–1∣∣ω(s) – ω∗(s)

∣∣ds

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1∣∣v(s) – v∗(s)∣∣ds

Page 44: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 44 of 50

+1

Γ (r)

∫ τi

τi–1

(τi – s)r–1∣∣v(s) – v∗(s)∣∣ds +

T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2∣∣v(s) – v∗(s)∣∣ds

+ (T – τi)∣∣Υi

(ω(τi)

)– Υi

(ω∗(τi)

)∣∣ +

∣∣Υi

(ω(τi)

)– Υi

(ω∗(τi)

)∣∣

]

, (C.2)

where v, v∗ ∈M are given by

v(τ ) = A(τ ,ω(τ ), v(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω(s), v(s)

)ds

and

v∗(τ ) = A(τ ,ω∗(τ ), v∗(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω∗(s), v∗(s)

)ds.

Using [A1], we have

∣∣v(τ ) – v∗(τ )

∣∣

=∣∣∣∣A

(τ ,ω(τ ), v(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω(s), v(s)

)ds

– A(τ ,ω∗(τ ), v∗(τ )

)–

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s,ω∗(s), v∗(s)

)ds

∣∣∣∣

≤ ∣∣A

(τ ,ω(τ ), v(τ )

)– A

(τ ,ω∗(τ ), v∗(τ )

)∣∣

+∫ τ

0

(τ – s)σ–1

Γ (δ)∣∣B

(s,ω(s), v(s)

)– B

(s,ω∗(s), v∗(s)

)∣∣ds

≤ M1∣∣ω(τ ) – ω∗(τ )

∣∣ + N1

∣∣v(τ ) – v∗(τ )

∣∣

+τσ

σΓ (δ)(M2

∣∣ω(τ ) – ω∗(τ )

∣∣ + N2

∣∣v(τ ) – v∗(τ )

∣∣).

Thus

∣∣v(τ ) – v∗(τ )

∣∣ ≤

(M1

1 – N1 – N2τσ

σΓ (δ)+

M2τσ

σΓ (δ)

1 – N1 – N2τσ

σΓ (δ)

)∣∣ω(τ ) – ω∗(τ )

∣∣. (C.3)

Using hypothesis [A2] and (C.3), by inequality (C.2) we get

∣∣ω(τ ) – ω∗(τ )

∣∣

≤[

τ r

Γ (r + 1)–

mτ r+1

TΓ (r + 1)–

τmT

]

εr

+[(

τ r

Γ (r + 1)–

mτTr–1

Γ (r + 1)–

mτ r+1

TΓ (r + 1)–

mτ r

TΓ (r)

)

×(

M1

1 – N1 – N2τσ

σΓ (δ)+

M2τσ

σΓ (δ)

1 – N1 – N2τσ

σΓ (δ)

)

–ξ2τTr–1

η2Γ (r + 1)–

τ

Tm(A + B)

]

× ∣∣ω(τ ) – ω∗(τ )

∣∣.

Page 45: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 45 of 50

By taking the norm and simplifying we get

∥∥ω – ω∗∥∥

M

≤[

Tr

Γ (r + 1)–

mTr

Γ (r + 1)– m

]

εr +[(

mTr

Γ (r + 1)+

mTr–1

Γ (r)

)

×(

M1

1 – N1 – N2Tσ

σΓ (δ)+

M2Tσ

σΓ (δ)

1 – N1 – N2Tσ

σΓ (δ)

)

+ξ2Tr

η2Γ (r + 1)+ m(A + B)

]

× ∥∥ω – ω∗∥∥

M,

from which we obtain

∥∥ω – ω∗∥∥

M

≤ [ Tr

Γ (r+1) – mTr

Γ (r+1) – m]εr

1 – [( mTrΓ (r+1) + mTr–1

Γ (r) )( M11–N1–N2

σΓ (δ)+

M2Tσ

σΓ (δ)1–N1–N2

σΓ (δ)) + ξ2Tr

η2Γ (r+1) + m(A + B)].

Thus

∥∥ω – ω∗∥∥

M ≤ Crεr ,

where

Cr =[ Tr

Γ (r+1) – mTr

Γ (r+1) – m]

1 – [( mTrΓ (r+1) + mTr–1

Γ (r) )( M11–N1–N2

σΓ (δ)+

M2Tσ

σΓ (δ)1–N1–N2

σΓ (δ)) + ξ2Tr

η2Γ (r+1) + m(A + B)],

that is, problem (1.3) is Ulam–Hyers stable. Now putting ϑ(ε) = Crεrϑ(0) = 0 yields thatproblem (1.3) is generalized Ulam–Hyers stable. �

Proof of Theorem 3.20 Let (ω, y) ∈X ×Y be a solution of inequality (3.9), and let (ω∗, y∗) ∈X ×Y be a solution of the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDrω∗(τ ) = A(τ , y∗(τ ), cDrω∗(τ )) +∫ τ

0(τ–s)σ–1

Γ (δ) B(s, y∗(s), cDrω∗(s)) ds

where τ ∈ J , τ �= τi for i = 1, 2, . . . , m,cDpy∗(τ ) = A′(τ ,ω∗(τ ), cDpy∗(τ )) +

∫ τ

0(τ–s)σ–1

Γ (δ) B′(s,ω∗(s), cDpy∗(s)) ds

where τ ∈ J , τ �= τj for j = 1, 2, . . . , n,

�ω∗(τi) = Υi(ω∗(τi)), �ω′∗(τi) = Υi(ω∗(τi)), i = 1, 2, . . . , m,

�y∗(τj) = Υj(y∗(τj)), �y′∗(τj) = Υj(y∗(τj)), j = 1, 2, . . . , n,

η1ω∗(0) + ξ1Irω∗(0) = ν1, η2ω

∗(T) + ξ2Irω∗(T) = ν2,

η3y∗(0) + ξ3Ipy∗(0) = ν3, η4y∗(T) + ξ4Ipy∗(T) = ν4.

(C.4)

Then in view of Lemma A.3, the solution of (C.4) is

ω∗(τ ) =1

Γ (r)

∫ τ

0(τ – s)r–1v(s) ds +

ν1

η1–

τ

T

[ν1

η1–

ν2

η2+

ξ2

η2Γ (r)

∫ T

0(T – s)r–1ω∗(s) ds

]

Page 46: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 46 of 50

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1v(s) ds +1

Γ (r)

∫ τi

τi–1

(τi – s)r–1v(s) ds

+T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2v(s) ds + (T – τi)Υi(ω∗(τi)

)+ Υi

(ω∗(τi)

)]

and

y∗(τ ) =1

Γ (p)

∫ τ

0(τ – s)p–1z(s) ds –

τ

T

[ν3

η3–

ν4

η4+

ξ4

η4Γ (p)

∫ T

0(T – s)p–1y∗(s) ds

]

–τ

T

n∑

j=1

[1

Γ (p)

∫ T

τj

(T – s)p–1z(s) ds +1

Γ (p)

∫ τj

τj–1

(τj – s)p–1z(s) ds

+T – τj

Γ (p – 1)

∫ τj

τj–1

(τj – s)p–2z(s) ds + (T – τj)Υj(y∗(τj)

)+ Υj

(y∗(τj)

)]

,

where

v(τ ) = A(τ , y(τ ), v(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s, y(s), v(s)

)ds

and

z(τ ) = A′(τ ,ω(τ ), z(τ ))

+∫ τ

0

(τ – s)σ–1

Γ (δ)B′(s,ω(s), z(s)

)ds.

Consider

∣∣ω(τ ) – ω∗(τ )

∣∣

≤ ∣∣ω(τ ) – q(τ )

∣∣ +

∣∣q(τ ) – ω∗(τ )

∣∣

≤[

τ r

Γ (r + 1)–

mτ r+1

TΓ (r + 1)–

τmT

]

εr +1

Γ (r)

∫ τ

0(τ – s)r–1∣∣v(s) – v∗(s)

∣∣ds

–τξ2

Tη2Γ (r)

∫ T

0(T – s)r–1∣∣ω(s) – ω∗(s)

∣∣ds

–τ

T

m∑

i=1

[1

Γ (r)

∫ T

τi

(T – s)r–1∣∣v(s) – v∗(s)∣∣ds

+1

Γ (r)

∫ τi

τi–1

(τi – s)r–1∣∣v(s) – v∗(s)∣∣ds +

T – τi

Γ (r – 1)

∫ τi

τi–1

(τi – s)r–2∣∣v(s) – v∗(s)∣∣ds

+ (T – τi)∣∣Υi

(ω(τi)

)– Υi

(ω∗(τi)

)∣∣ +

∣∣Υi

(ω(τi)

)– Υi

(ω∗(τi)

)∣∣

]

, (C.5)

where v, v∗ ∈X are given by

v(τ ) = A(τ , y(τ ), v(τ )

)+

∫ τ

0

(t – s)σ–1

Γ (δ)B

(s, y(s), v(s)

)ds

and

v∗(τ ) = A(τ , y∗(τ ), v∗(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s, y∗(s), v∗(s)

)ds.

Page 47: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 47 of 50

Using [A1], we have

∣∣v(τ ) – v∗(τ )

∣∣

=∣∣∣∣A

(τ , y(τ ), v(τ )

)+

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s, y(s), v(s)

)ds

– A(τ , y∗(τ ), v∗(τ )

)–

∫ τ

0

(τ – s)σ–1

Γ (δ)B

(s, y∗(s), v∗(s)

)ds

∣∣∣∣

≤ ∣∣A

(τ , y(τ ), v(τ )

)– A

(τ , y∗(τ ), v∗(τ )

)∣∣

+∫ τ

0

(τ – s)σ–1

Γ (δ)∣∣B

(s, y(s), v(s)

)– B

(s, y∗(s), v∗(s)

)∣∣ds

≤ M1∣∣y(τ ) – y∗(τ )

∣∣ + N1

∣∣v(τ ) – v∗(τ )

∣∣

+τσ

σΓ (δ)(M2

∣∣y(τ ) – y∗(τ )

∣∣ + N2

∣∣v(τ ) – v∗(τ )

∣∣).

Thus

∣∣v(τ ) – v∗(τ )

∣∣ ≤

(M1

1 – N1 – N2τσ

σΓ (δ)+

M2τσ

σΓ (δ)

1 – N1 – N2τσ

σΓ (δ)

)∣∣y(τ ) – y∗(τ )

∣∣. (C.6)

Using hypothesis [A3] and (C.6), inequality (C.5) implies

∣∣ω(τ ) – ω∗(τ )

∣∣

≤[

τ r

Γ (r + 1)–

mτ r+1

TΓ (r + 1)–

τmT

]

εr

+[(

τ r

Γ (r + 1)–

mτTr–1

Γ (r + 1)–

mτ r+1

TΓ (r + 1)–

mτ r

TΓ (r)

)

×(

M1

1 – N1 – N2τσ

σΓ (δ)+

M2τσ

σΓ (δ)

1 – N1 – N2τσ

σΓ (δ)

)∣∣y(τ ) – y∗(τ )

∣∣

]

–[

τξ2Tr–1

η2Γ (r + 1)+

τ

Tm(AΥi

+ AΥi )]∣∣ω(τ ) – ω∗(τ )

∣∣.

By taking the norm and simplifying, we get

∥∥ω – ω∗∥∥

X ≤[

Tr

Γ (r + 1)–

mTr

Γ (r + 1)– m

]

εr +[(

mTr

Γ (r + 1)+

mTr–1

Γ (r)

)

×(

M1

1 – N1 – N2Tσ

σΓ (δ)+

M2Tσ

σΓ (δ)

1 – N1 – N2Tσ

σΓ (δ)

)∥∥y – y∗∥∥

X

]

–[

ξ2Tr

η2Γ (r + 1)+ m(AΥi

+ AΥi )]∥∥ω – ω∗∥∥

X . (C.7)

For simplicity, we consider

Sr =Tr

Γ (r+1) – mTr

Γ (r+1) – m

1 + ξ2Tr

η2Γ (r+1) + m(AΥi+ AΥi )

,

Page 48: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 48 of 50

Qr =( mTr

Γ (r+1) + mTr–1

Γ (r) )( M11–N1–N2

σΓ (δ)+

M2Tσ

σΓ (δ)1–N1–N2

σΓ (δ))

1 + ξ2Tr

η2Γ (r+1) + m(AΥi+ AΥi )

.

Then (C.7) implies

∥∥ω – ω∗∥∥

X ≤ Srεr + Qr∥∥y – y∗∥∥

X (C.8)

and, similarly,

∥∥y – y∗∥∥

Y ≤ Spεp + Qp∥∥ω – ω∗∥∥

Y . (C.9)

From (C.8) and (C.9) we write

∥∥ω – ω∗∥∥

X – Qr∥∥y – y∗∥∥

X ≤ Srεr ,∥∥y – y∗∥∥

Y – Qp∥∥ω – ω∗∥∥

Y ≤ Spεp,[

1 –Qr

–Qp 1

][‖ω – ω∗‖X×Y

‖y – y∗‖X×Y

]

≤[Srεr

Spεp

]

.

Solving the last inequality, we have

[‖ω – ω∗‖X×Y

‖y – y∗‖X×Y

]

≤[

1�

Qr�

Qp�

1�

][Srεr

Spεp

]

,

where

� = 1 – QrQp > 0.

Further simplification gives

∥∥ω – ω∗∥∥

X×Y ≤ Srεr

�+QrSpεp

�,

∥∥y – y∗∥∥

X×Y ≤ Spεp

�+QrSrεr

�,

from which we have

∥∥ω – ω∗∥∥

X×Y +∥∥y – y∗∥∥

X×Y ≤ Srεr

�+Spεp

�+QrSpεp

�+QrSrεr

�. (C.10)

Let max{εr , εp} = ε. Then from (C.10) we get

∥∥(ω, y) –

(ω∗, y∗)∥∥

X×Y ≤ Cr,pε,

where

Cr,p =[Sr

�+Sp

�+QrSp

�+QrSr

]

.

This completes the proof. �

Page 49: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 49 of 50

AcknowledgementsThe research of the second author is supported by Prince Sultan University through research group Nonlinear AnalysisMethods in Applied Mathematics (NAMAM), group number RG-DES-2017-01-17.

FundingNot applicable.

Availability of data and materialsNot applicable.

Competing interestsOn behalf of all authors, the corresponding author declares that they have no conflict of interest.

Authors’ contributionsAll authors have equally and significantly contributed to the contents of this manuscript. All authors read and approvedthe final manuscript.

Author details1Department of Mathematics, University of Peshawar, Peshawar, Pakistan. 2Department of Mathematics and GeneralSciences, Prince Sultan University, Riyadh, Saudi Arabia. 3Department of Exact Science and Engineering, “1 Decembrie1918” University of Alba Iulia, Alba Iulia, Romania.

Publisher’s NoteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 1 November 2019 Accepted: 29 January 2020

References1. Ahmad, B., Alsaedi, A., Alghamdi, B.S.: Analytic approximation of solutions of the forced Duffing equation with

integral boundary conditions. Nonlinear Anal., Real World Appl. 9(4), 1727–1740 (2008)2. Ahmad, B., Nieto, J.J.: Existence results for nonlinear boundary value problems of fractional integro-differential

equations with integral boundary conditions. Bound. Value Probl. 2009, 708576 (2009)3. Ahmad, N., Ali, Z., Shah, K., Zada, A., ur Rahman, G.: Analysis of implicit type nonlinear dynamical problem of impulsive

fractional differential equations. Complexity 2018, 1–15 (2018)4. Alzabut, J., Tyagi, S., Martha, C.: On the stability and Lyapunov direct method for fractional difference model of BAM

neural networks. J. Intell. Fuzzy Syst. (2019). https://doi.org/10.3233/JIFS-1795375. Balachandran, K., Kiruthika, S.: Existence of solutions of abstract fractional impulsive semilinear evolution equations.

Electron. J. Qual. Theory Differ. Equ. 2010, Article ID 4 (2010)6. Benchohra, M., Seba, D.: Impulsive fractional differential equations in Banach spaces. Electron. J. Qual. Theory Differ.

Equ. 2009, Article ID 8 (2009)7. Berhail, A., Bouache, N., Matar, M.M., Alzabut, J.: On nonlocal integral and derivative boundary value problem of

nonlinear Hadamard Langevin equation with three different fractional orders. Bol. Soc. Mat. Mex. (2019).https://doi.org/10.1007/s40590-019-00257-z

8. Chalishajar, D.N., Karthikeyan, K.: Boundary value problems for impulsive fractional evolution integrodifferentialequations with Gronwall’s inequality in Banach spaces. J. Discont. Nonlinear. Complex 3, 33–48 (2014)

9. Evans, L.C., Gangbo, W.: Differential Equations Methods for the Monge–Kantorovich Mass Transfer Problem. Am.Math. Soc., Providence (1999)

10. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cone. Academic Press, Orlando (1988)11. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics World Scientific, River Edge (2000)12. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27(4), 222–224 (1941)13. Iswarya, M., Raja, R., Rajchakit, G., Alzabut, J., Lim, C.P.: A perspective on graph theory based stability analysis of

impulsive stochastic recurrent neural networks with time-varying delays. Adv. Differ. Equ. 2019, 502 (2019).https://doi.org/10.1186/s13662-019-2443-3

14. Kaufmann, E.R., Kosmatova, N., Raffoul, Y.N.: A second-order boundary value problem with impulsive effects on anunbounded domain. Nonlinear Anal. 69(9), 2924–2929 (2008)

15. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-HollandMathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

16. Kosmatov, N.: Initial value problems of fractional order with fractional impulsive conditions. Results Math. 63,1289–1310 (2013)

17. Lee, E.K., Lee, Y.H.: Multiple positive solutions of singular two point boundary value problems for second orderimpulsive differential equation. Appl. Math. Comput. 158(3), 745–759 (2004)

18. Li, T., Zada, A.: Connections between Hyers–Ulam stability and uniform exponential stability of discrete evolutionfamilies of bounded linear operators over Banach spaces. Adv. Differ. Equ. 2016, 153 (2016)

19. Li, T., Zada, A., Faisal, S.: Hyers–Ulam stability of nth order linear differential equations. J. Nonlinear Sci. Appl. 9,2070–2075 (2016)

20. Matar, M.M., Abu Skhail, E.S., Alzabut, J.: On solvability of nonlinear fractional differential systems involving nonlocalinitial conditions. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5910

21. Meral, F., Royston, T., Magin, R.: Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci.Numer. Simul. 15(4), 939–945 (2010)

22. Muslim, M., Kumar, A., Agarwal, R.P.: Exact controllability of fractional integro-differential systems of order α ∈ (1, 2)with deviated argument. An. Univ. Oradea, XXIV 59(2), 185–194 (2017)

Page 50: Ulam–Hyersstabilityofimpulsive ......Zadaetal.AdvancesinDifferenceEquations20202020:64 Page2of50 sciencesandengineering.Manyevolutionaryprocessesthatpossessabruptchangesat ...

Zada et al. Advances in Difference Equations (2020) 2020:64 Page 50 of 50

23. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)24. Pratap, A., Raja, R., Alzabut, J., Dianavinnarasi, J., Cao, J., Rajchakit, G.: Finite-time Mittag-Leffler stability of

fractional-order quaternion-valued memristive neural networks with impulses. Neural Process. Lett. (2019).https://doi.org/10.1007/s11063-019-10154-1

25. Rassias, T.M.: On the stability of linear mappings in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)26. Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995)27. Seemab, A., Ur Rehman, M., Alzabut, J., Hamdi, A.: On the existence of positive solutions for generalized fractional

boundary value problems. Bound. Value Probl. 2019, 186 (2019). https://doi.org/10.1186/s13661-019-01300-828. Shah, R., Zada, A.: A fixed point approach to the stability of a nonlinear Volterra integrodifferential equation with

delay. Hacet. J. Math. Stat. 47(3), 615–623 (2018)29. Shah, S.O., Zada, A.: Existence, uniqueness and stability of solution to mixed integral dynamic systems with

instantaneous and noninstantaneous impulses on time scales. Appl. Math. Comput. 359, 202–213 (2019)30. Shah, S.O., Zada, A., Hamza, A.E.: Stability analysis of the first order non-linear impulsive time varying delay dynamic

system on time scales. Qual. Theory Dyn. Syst. 18(3), 825–840 (2019)31. Shah, S.O., Zada, A.: Existence, uniqueness and stability of solution to mixed integral dynamic systems with

instantaneous and noninstantaneous impulses on time scales. Appl. Math. Comput. 359, 202–213 (2019)32. Shen, J., Wang, W.: Impulsive boundary value problems with nonlinear boundary conditions. Nonlinear Anal. 69(4),

4055–4062 (2008)33. Tang, S., Zada, A., Faisal, S., El-Sheikh, M.M.A., Li, T.: Stability of higher-order nonlinear impulsive differential equations.

J. Nonlinear Sci. Appl. 9, 4713–4721 (2016)34. Tian, Y., Chen, A., Ge, W.: Multiple positive solutions to multipoint one-dimensional p-Laplacian boundary value

problem with impulsive effects. Czechoslov. Math. J. 61(1), 127–144 (2011)35. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publishers, New York (1968)36. Wang, X., Arif, M., Zada, A.: β -Hyers–Ulam–Rassias stability of semilinear nonautonomous impulsive system.

Symmetry 11(2), 231 (2019)37. Wang, J., Zada, A., Ali, W.: Ulam’s-type stability of first-order impulsive differential equations with variable delay in

quasi-Banach spaces. Int. J. Nonlinear Sci. Numer. Simul. 19(5), 553–560 (2018)38. Wang, G., Zhang, L., Song, G.: Systems of first order impulsive fractional differential equations with deviating

arguments and nonlinear boundary conditions. Nonlinear Anal. TMA 74, 974–982 (2011)39. Wang, J., Zada, A., Waheed, H.: Stability analysis of a coupled system of nonlinear implicit fractional anti-periodic

boundary value problem. Math. Methods Appl. Sci. 42(18), 6706–6732 (2019)40. Yurko, V.A.: Boundary value problems with discontinuity conditions in an interior point of the interval. J. Differ. Equ.

36(8), 1266–1269 (2000)41. Zada, A., Ali, S.: Stability analysis of multi-point boundary value problem for sequential fractional differential

equations with non-instantaneous impulses. Int. J. Nonlinear Sci. Numer. Simul. 19(7), 763–774 (2018)42. Zada, A., Ali, S., Li, Y.: Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous

integral impulses and boundary condition. Adv. Differ. Equ. 2017, 317 (2017)43. Zada, A., Ali, W., Farina, S.: Hyers–Ulam stability of nonlinear differential equations with fractional integrable impulses.

Math. Methods Appl. Sci. 40(15), 5502–5514 (2017)44. Zada, A., Ali, W., Park, C.: Ulam’s type stability of higher order nonlinear delay differential equations via integral

inequality of Grönwall–Bellman–Bihari’s type. Appl. Math. Comput. 350, 60–65 (2019)45. Zada, A., Mashal, A.: Stability analysis of nth order nonlinear impulsive differential equations in quasi-Banach space.

Numer. Funct. Anal. Optim. 41(3), 294–321 (2020)46. Zada, A., Riaz, U., Khan, F.U.: Hyers–Ulam stability of impulsive integral equations. Boll. Unione Mat. Ital. 12(3), 453–467

(2019)47. Zada, A., Shah, S.O.: Hyers–Ulam stability of first-order non-linear delay differential equations with fractional

integrable impulses. Hacet. J. Math. Stat. 47(5), 1196–1205 (2018)48. Zada, A., Shah, O., Shah, R.: Hyers Ulam stability of non-autonomous systems in terms of boundedness of Cauchy

problems. Appl. Math. Comput. 271, 512–518 (2015)49. Zada, A., Shaleena, S., Li, T.: Stability analysis of higher order nonlinear differential equations in β -normed spaces.

Math. Methods Appl. Sci. 42(4), 1151–1166 (2019)50. Zada, A., Yar, M., Li, T.: Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional

differential equations with integral boundary conditions. Ann. Univ. Paedagog. Crac. Stud. Math. 17, 103–125 (2018)51. Zada, A., Waheed, H., Alzabut, J., Wang, X.: Existence and stability of impulsive coupled system of fractional

integrodifferential equations. Demonstr. Math. 52, 296–335 (2019)