Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

17
Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26 10 Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation: Direct and Fixed Point Methods M. Arunkumar 1 , Matina J. Rassias 2 , Yanhui Zhang 3 1 Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India 2 Department of Statistical Science, University College London, 1-19 Torrington Place, #140, London, WC1E 7HB, UK 3 Department of Mathematics, Beijing Technology and Business University, China 1 [email protected]; 2 [email protected]; 3 [email protected] Abstract- In this paper, we obtain the general solution and generalized Ulam - Hyers stability of a 2 variable AC mixed type functional equation 2 ,2 2 ,2 4 , , 6 , f x y z w f x y z w f x yz w f x yz w f yw using direct and fixed point methods. Keywords- Additive Functional Equations; Cubic Functional Equation; Mixed Type AC Functional Equation; Ulam Hyers Stability I. INTRODUCTION The study of stability problems for functional equations is related to a question of Ulam [30] concerning the stability of group homomorphisms and affirmatively answered for Banach spaces by Hyers [9]. It was further generalized and excellent results obtained by number of authors [2], [6], [16], [20], [23]. Over the last six or seven deades, the above problem was tackled by numerous authors and its solutions via various forms of functional equations like additive, quadratic, cubic, quartic, mixed type functional equations which involve only these types of functional equations were discussed. We refer the interested readers for more information on such problems to the monographs [1], [5], [8], [10], [12], [13], [15], [17], [19], [21], [24], [25], [26], [27], [28], [29], [31], [32] and [33]. In 2006, K.W. Jun and H.M. Kim [11] introduced the following generalized additive and quadratic type of functional equation 1 1 1 2 n n n i i i j i i i j n f x n f x f x x (1.1) in the class of function between real vector spaces. The general solution and Ulam stability of mixed type additive and cubic functional equation of the form 3( ) ( ) ( ) ( ) 4[ () () ( )] fx y z f x y z fx y z fx y z fx f y fz 4[ ( ) ( ) ( )] fx y fx z fy z (1.2) was introduced by J.M. Rassias [18]. The stability of generalized mixed type functional equation of the form ( ) ( ) fx ky fx ky 2 2 [ ( ) ( )] 2(1 ) () k fx y fx y k fx (1.3) for fixed integers k and 0, 1 k in quasi-Banach spaces was introduced by M. Eshaghi Gordji and H. Khodaie [7]. The mixed type (I.3) is having the property additive, quadratic and cubic. J.H. Bae and W.G. Park proved the general solution of the 2- variable quadratic functional equation ( , ) ( , ) fx yz w fx yz w 2 ( , ) 2 (, ) fxz fyw (1.4) and investigated the generalized Hyers-Ulam-Rassias stability of (I.4). The above functional equation has solution 2 2 (, ) fxy ax bxy cy (1.5) The stability of the functional equation (I.4) in fuzzy normed space was investigated by M. Arunkumar et., al [3]. Using the ideas in [3], the general solution and generalized Hyers-Ulam- Rassias stability of a 3- variable quadratic functional equation ( , , ) ( , , ) fx yz wu v fx yz wu v 2 ( , , ) 2 (, ,) fxzu fywv (1.6) was discussed by K. Ravi and M. Arunkumar [22]. The solution of the (I.6) is of the form 2 2 2 (,,) fxyz ax by cz dxy eyz fzx (1.7) In this paper, we obtain the general solution and generalized Ulam - Hyers stability of a 2 variable AC mixed type functional equation 2 ,2 2 ,2 f x y z w f x y z w 4 , , 6 , f x yz w f x yz w f yw (1.8) having solutions (,) fxy ax by (1.9) and 3 2 2 3 (, ) fxy ax bx y cxy dy (1.10)

description

http://www.sjmmf.org Abstract. In this paper, we obtain the general solution and generalized Ulam - Hyers stability of a 2 - variable AC - mixed type functional equation f(2x + y; 2z + w) - f(2x - y; 2z - w) = 4[f(x + y; z + w) - f(x - y; z - w)] - 6f(y;w) using direct and fixed point methods.

Transcript of Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Page 1: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

10

Ulam - Hyers Stability of a 2- Variable AC - Mixed

Type Functional Equation: Direct and Fixed Point

Methods M. Arunkumar

1, Matina J. Rassias

2, Yanhui Zhang

3

1Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India 2Department of Statistical Science, University College London, 1-19 Torrington Place, #140, London, WC1E 7HB, UK

3Department of Mathematics, Beijing Technology and Business University, China [email protected]; [email protected]; [email protected]

Abstract- In this paper, we obtain the general solution and

generalized Ulam - Hyers stability of a 2 variable AC mixed

type functional equation

2 , 2 2 , 2

4 , , 6 ,

f x y z w f x y z w

f x y z w f x y z w f y w

using direct and fixed point methods.

Keywords- Additive Functional Equations; Cubic

Functional Equation; Mixed Type AC Functional Equation;

Ulam – Hyers Stability

I. INTRODUCTION

The study of stability problems for functional

equations is related to a question of Ulam [30] concerning

the stability of group homomorphisms and affirmatively

answered for Banach spaces by Hyers [9]. It was further

generalized and excellent results obtained by number of

authors [2], [6], [16], [20], [23].

Over the last six or seven deades, the above problem

was tackled by numerous authors and its solutions via

various forms of functional equations like additive,

quadratic, cubic, quartic, mixed type functional equations

which involve only these types of functional equations

were discussed. We refer the interested readers for more

information on such problems to the monographs [1], [5],

[8], [10], [12], [13], [15], [17], [19], [21], [24], [25], [26],

[27], [28], [29], [31], [32] and [33].

In 2006, K.W. Jun and H.M. Kim [11] introduced the

following generalized additive and quadratic type of

functional equation

1 1 1

2n n n

i i i j

i i i j n

f x n f x f x x

(1.1)

in the class of function between real vector spaces. The general solution and Ulam stability of mixed type additive

and cubic functional equation of the form

3 ( ) ( ) ( )

( ) 4[ ( ) ( ) ( )]

f x y z f x y z f x y z

f x y z f x f y f z

4[ ( ) ( ) ( )]f x y f x z f y z (1.2)

was introduced by J.M. Rassias [18]. The stability of

generalized mixed type functional equation of the form

( ) ( )f x ky f x ky

2 2[ ( ) ( )] 2(1 ) ( )k f x y f x y k f x (1.3)

for fixed integers k and 0, 1k in quasi-Banach spaces

was introduced by M. Eshaghi Gordji and H. Khodaie [7].

The mixed type (I.3) is having the property additive,

quadratic and cubic.

J.H. Bae and W.G. Park proved the general solution of

the 2- variable quadratic functional equation

( , ) ( , )f x y z w f x y z w

2 ( , ) 2 ( , )f x z f y w (1.4)

and investigated the generalized Hyers-Ulam-Rassias

stability of (I.4). The above functional equation has

solution

2 2( , )f x y ax bxy cy (1.5)

The stability of the functional equation (I.4) in fuzzy

normed space was investigated by M. Arunkumar et., al

[3]. Using the ideas in [3], the general solution and generalized Hyers-Ulam- Rassias stability of a 3- variable

quadratic functional equation

( , , ) ( , , )f x y z w u v f x y z w u v

2 ( , , ) 2 ( , , )f x z u f y w v (1.6)

was discussed by K. Ravi and M. Arunkumar [22]. The

solution of the (I.6) is of the form

2 2 2( , , )f x y z ax by cz dxy eyz fzx (1.7)

In this paper, we obtain the general solution and

generalized Ulam - Hyers stability of a 2 variable AC

mixed type functional equation

2 ,2 2 ,2f x y z w f x y z w

4 , , 6 ,f x y z w f x y z w f y w (1.8)

having solutions

( , )f x y ax by (1.9)

and

3 2 2 3( , )f x y ax bx y cxy dy (1.10)

Page 2: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

11

In Section 2, we present the general solution of the

(I.8). The generalized Ulam-Hyers stability using direct

and fixed point method are discussed in Section 3 and

Section 4, respectively.

II. GENERAL SOLUTION

In this section, we present the solution of the (I.8).

Through out this section let U and V be real vector

spaces.

Lemma 2.1: If 2:f U V is a mapping satisfying (I.8)

and let 2:g U V be a mapping given by

( , ) (2 ,2 ) 8 ( , )g x x f x x f x x (II.1)

for all x U then

(2 ,2 ) 2 ( , )g x x g x x (II.2)

for all x U such that g is additive.

Proof: Letting ( , , , )x y z w by (0,0,0,0) in (I.8), we get

(0,0) 0.f (II.3)

Setting ( , , , )x y z w by (0, ,0, )y y in (I.8), we obtain

( , ) ( , )f y y f y y (II.4)

for all y U . Replacing ( , , , )x y z w by ( , , , )x x x x in (I.8),

we arrive

(3 ,3 ) 4 (2 ,2 ) 5 ( , )f x x f x x f x x (II.5)

for all x U . Again replacing ( , , , )x y z w by ( ,2 , ,2 )x x x x in

(I.8) and using (II.3), (II.4) and (II.5), we have

(4 ,4 ) 10 (3 ,3 ) 16 ( , )f x x f x x f x x (II.6)

for all x U . From (II.1), we establish

(2 ,2 ) 2 ( , ) (4 ,4 ) 10 (2 ,2 ) 16 ( , )g x x g x x f x x f x x f x x (II.7)

for all x U . Using (II.6) in (II.7), we desired our result.

Lemma 2.2: If 2:f U V be a mapping satisfying (I.8)

and let 2:h U V be a mapping given by

( , ) (2 ,2 ) 2 ( , )h x x f x x f x x (II.8)

for all x U then

(2 ,2 ) 8 ( , )h x x h x x (II.9)

for all x U such that h is cubic.

Proof: It follows from (II.8) that

(2 ,2 ) 8 ( , ) (4 ,4 ) 10 (2 ,2 ) 16 ( , )h x x g x x f x x f x x f x x

(II.10)

for all x U . Using (II.6) in (II.10), we desired our result.

Remark 2.3: If 2:f U V be a mapping satisfying (I.8)

and let 2, :g h U V be a mapping defined in (II.1) and

(II.8) then

1

( , ) ( , ) ( , )6

f x x h x x g x x (II.11)

for all x U .

Lemma 2.4: If 2:f U V is a mapping satisfying (I.8)

and let :t U V be a mapping given by

( ) ( , )t x f x x (II.12)

for all x U , then t satisfies

(2 ) (2 ) 4[ ( ) ( )] 6 ( )t x y t x y t x y t x y t y

(II.13)

for all ,x y U .

Proof: From (I.8) and (II.12), we get

(2 ) (2 )

(2 ,2 ) (2 ,2 )

4[ ( , ) ( , )] 6 ( , )

4[ ( ) ( )] 6 ( )

t x y t x y

f x y x y f x y x y

f x y x y f x y x y f y y

t x y t x y t y

for all ,x y U .

III. STABILITY RESULTS: DIRECT METHOD

In this section, we investigate the generalized Ulam-

Hyers stability of (I.8) using direct method.

Through out this section let U be a normed space and

V be a Banach space. Define a mapping 2:F U V by

( , , , ) 2 ,2 2 ,2F x y z w f x y z w f x y z w

4 , , 6 ,f x y z w f x y z w f y w

for all , , ,x y z w U .

Theorem 3.1: Let 1j . Let 2:f U V be a mapping for

which there exist a function 4: (0, ]U with the

condition

1lim (2 ,2 ,2 ,2 ) 0

2

nj nj nj nj

njnx y z w

(III.1)

such that the functional inequality

( , , , ) ( , , , )F x y z w x y z w (III.2)

for all , , ,x y z w U . Then there exists a unique 2-variable

additive mapping 2:A U V satisfying (I.8) and

1

2

1(2 ,2 ) 8 ( , ) ( , ) (2 )

2

kj

jk

f x x f x x A x x x

(III.3)

for all x U . The mapping (2 )kj x and ( , )A x x are

defined by

( 1) ( 1)

( 1) ( 1)

(2 ) 4 (2 ,2 ,2 ,2 ) (2 ,2 ,2 ,2 )

1( , ) lim (2 ,2 ) 8 (2 ,2 )

2

kj kj kj kj kj kj k j kj k j

n j n j nj nj

njn

x x x x x x x x x

A x x f x x f x x

(III.4)

for all x U .

Proof: Assume 1j . Letting ( , , , )x y z w by ( , , , )x x x x in

(III.2), we obtain

(3 ,3 ) 4 (2 ,2 ) 5 ( , ) ( , , , )f x x f x x f x x x x x x (III.5)

for all x U . Replacing ( , , , )x y z w by ( ,2 , ,2 )x x x x in

(III.2), we get

Page 3: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

12

(4 ,4 ) 4 (3 ,3 ) 6 (2 ,2 ) 4 ( , )f x x f x x f x x f x x

( ,2 , ,2 )x x x x (III.6)

for all x U . Now, from (III.6) and (III.7), we have

(4 ,4 ) 10 (2 ,2 ) 16 ( , )

4 (3 ,3 ) 4 (2 ,2 ) 5 ( , )

(4 ,4 ) 4 (3 ,3 ) 6 (2 ,2 ) 4 ( , )

f x x f x x f x x

f x x f x x f x x

f x x f x x f x x f x x

4 ( , , , ) ( ,2 , ,2 )x x x x x x x x (III.7)

for all x U . From (III.8), we arrive

(4 ,4 ) 10 (2 ,2 ) 16 ( , ) ( )f x x f x x f x x x (III.8)

where

( ) 4 ( , , , ) ( ,2 , ,2 )x x x x x x x x x (III.9)

for all x U . It is easy to see from (III.9) that

(4 ,4 ) 8 (2 ,2 ) 2( (2 ,2 ) 8 ( ; )) ( )f x x f x x f x x f x x x (III.10)

for all x U . Using (II.1) in (III.11), we obtain

(2 ,2 ) 2 ( , ) ( )g x x g x x x (III.11)

for all x U . From (III.12), we arrive

(2 ,2 ) ( )( , )

2 2

g x x xg x x

(III.12)

for all x U . Now replacing x by 2x and dividing by 2 in (III.13), we get

2 2

2 2

(2 ,2 ) ( , ) (2 )

2 2 2

g x x g x x x (III.13)

for all x U . From (III.13) and (III.14), we obtain

2 2

2

2 2

2

(2 ,2 )( , )

2

(2 ,2 ) (2 ,2 ) (2 ,2 )( , )

2 2 2

g x xg x x

g x x g x x g x xg x x

1 (2 )

( )2 2

xx

(III.14)

for all x U . Proceeding further and using induction on a positive integer n , we get

1

0

(2 ,2 ) 1 (2 )( , )

2 2 2

n n kn

nk

g x x xg x x

(III.15)

0

1 (2 )

2 2

k

k

x

for all x U . In order to prove the convergence of the sequence

(2 ,2 )

2

n n

n

g x x

,

replacing x by 2m x and dividing by 2m in (III.16), for any m, n > 0 , we deduce

0

(2 ,2 ) (2 ,2 )

2 2

1 (2 2 ,2 2 )(2 ,2 )

2 2

1 (2 )0

2 2

n m n m m m

n m m

n m n mm m

m n

k

k mk

g x x g x x

g x xg x x

xas m

for all x U . This shows that the sequence (2 ,2 )

2

n n

n

g x x

is Cauchy sequence. Since V is complete, there exists a

mapping 2( , ) :A x x U V such that

(2 ,2 )( , ) lim

2

n n

nn

g x xA x x x U

.

Letting n in (III.16) and using (II.1), we see that

(III.3) holds for all x U . To show that A satisfies (I.8),

replacing ( , , , )x y z w by (2 ,2 ,2 ,2 )n n n nx y z w and dividing by

2n in (III.2), we obtain

1 1(2 ,2 ,2 ,2 ) (2 ,2 ,2 ,2 )

2 2

n n n n n n n n

n nF x y z w x y z w

for all , , ,x y z w U . Letting n in the above inequality

and using the definition of ( , )A x x , we see that

2 , 2 2 , 2

4 , , 6 ,

A x y z w A x y z w

A x y z w A x y z w A y w

Hence A satisfies (I.8) for all , , ,x y z w U . To prove A is

unique 2-variable additive function satisfying (I.8), we let

B(x,x) be another 2-variable additive mapping satisfying

(I.8) and (III.3), then

1 1

1 1

0

( , ) ( , )

1(2 ,2 ) (2 ,2 )

2

1(2 ,2 ) (2 ,2 ) 8 (2 ,2 )

2

(2 ,2 ) 8 (2 ,2 ) (2 ,2 )

(2 )

2

0

n n n n

n

n n n n n n

n

n n n n n n

k n

k nk

A x x B x x

A x x B x x

A x x f x x f x x

f x x f x x B x x

x

as n

for all n . Hence A is unique.

For 1j , we can prove a similar stability result. This

completes the proof of the theorem.

The following Corollary is an immediate consequence

of Theorem 3.1 concerning the stability of (I.8).

Corollary 3.2: Let 2:F U V be a mapping and there

exists real numbers and s such that

( , , , )F x y z w

4 4 4 4

, 1 1;

1 1, ;

4 4

,

1 1 ;

4 4

s s s s

s s s s

s s s s s s s s

x y z w s or s

x y z w s or s

x y z w x y z w

s or s

(III.17)

for all , , ,x y z w U , then there exists a unique 2- variable

additive function 2:A U V such that

Page 4: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

13

(2 ,2 ) 8 ( , ) ( , )f x x f x x A x x

1

42

4

2 44

4 2

5

18 2

2 2

4 2

2 2

22 2 2 2

2 2 2 2

ss

s

ss

s

s ss

s s

x

x

x

(III.18)

for all x U .

Now we will provide an example to illustrate that (I.8) is

not stable for s = 1 in (ii) of Corollary 3.2.

Example 3.3: Let : R R be a function defined by

, | | 1( )

,

x if xx

otherwise

where 0 is a constant, and define a function 2:f R R by

0

(2 )( , ) .

2

n

nn

xf x x for all x R

Then F satisfies the functional inequality

( , , , ) 32 (| | | | | | | |)F x y z w x y z w (III.19)

for all , , ,x y z w R . Then there do not exist a additive

mapping 2:A R R and a constant 0 such that

(2 ,2 ) 8 ( , ) ( , ) | | .f x x f x x A x x x for all x R (III.20)

Proof: Now

0 0

(2 )( , ) 2

2 2

n

n nn n

xf x x

Therefore we see that f is bounded. We are going to prove

that f satisfies (III.19).

If x = y = z = w = 0 then (III.19) is trivial. If

1| | | | | | | |

2x y z w , then the left hand side of (III.19)

is less than 32 . Now suppose that

10 | | | | | | | |

2x y z w . Then there exists a positive

integer k such that

1

1 1| | | | | | | |

2 2k kx y z w

(III.21)

so that

1 1 1 11 1 1 12 ,2 ,2 ,2

2 2 2 2

k k k kx y z w

and consequently

1 1 1

1 1

2 ( , ),2 ( , ),2 ( , ),

2 (2 ,2 ),2 (2 ,2 ), ( 1,1).

k k k

k k

y w x y z w x y z w

x y z w x y z w

Therefore for each 0,1,........ 1n k , we have

2 ( , ),2 ( , ),2 ( , ),

2 (2 ,2 ),2 (2 ,2 ), ( 1,1).

n n n

n n

y w x y z w x y z w

x y z w x y z w

and

(2 (2 ,2 )) (2 (2 ,2 ))

4[ (2 ( , )) (2 ( , ))] 6 (2 ( , )) 0

n n

n n n

x y z w x y z w

x y z w x y z w y w

For 0,1,........ 1n k . From the definition of f and (III.21),

we obtain that

0

( , , , )

1(2 (2 ,2 )) (2 (2 ,2 ))

2

4[ (2 ( , )) (2 ( , ))] 6 (2 ( , ))

1(2 (2 ,2 )) (2 (2 ,2 ))

2

4[ (2 ( , )) (2 ( , ))] 6 (2 ( , ))

116 1

2

n n

nn

n n n

n n

nn k

n n n

nn k

F x y z w

x y z w x y z w

x y z w x y z w y w

x y z w x y z w

x y z w x y z w y w

2

6 32 (| | | | | | | |)2k

x y z w

Thus f satisfies (III.19) for all , , ,x y z w R with

10 | | | | | | | |

2x y z w

We claim that the additive (I.8) is not stable for s = 1 in (ii)

Corollary 3.2. Suppose on the contrary that there exist a

additive mapping 2:A R R and a constant 0

satisfying (III.20). Since f is bounded and continuous for

all x R , A is bounded on any open interval containing the

origin and continuous at the origin. In view of Theorem

3.1. A must have the form ( , ) A x x cx for any x in R .

Thus we obtain that

(2 ,2 ) 8 ( , ) ( | |) | |, f x x f x x c x (III.22)

But we can choose a positive integer m with | |m c .

If 1

10,

2mx

, then 2 (0,1)n x for all 0, 1,..... 1.n m

For this x, we get

1

0 0

(2 ) (2 )(2 ,2 ) 8 ( , )

2 2

( | |)

n nm

n nn n

x xf x x f x x

m x c x

which contradicts (III.22). Therefore (I.8) is not stable in

sense of Ulam, Hyers and Rassias if s = 1, assumed in (ii)

of (III.17).

A counter example to illustrate the non stability in (iii)

of Corollary 3.2 is given in the following example.

Example 3.4: Let s be such that1

04

s . Then there is a

function 2:F R R and a constant 0 satisfying

1 3

4 4 4 4( , , , ) | | | | | | | |s s s s

F x y z w x y z w

(III.23)

for all , , ,x y z w R and

0

(2 ,2 ) 8 ( , ) ( , )supx

f x x f x x A x x

x

(III.24)

Page 5: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

14

for every additive mapping 2( , ) :A x x R R .

Proof: If we take

( , )ln( , ), 0 ( , )

0, 0

x x x x if xf x x

if x

Then from (III.24), it follows that

0

0

0

0

(2 ,2 ) 8 ( , ) ( , )sup

(2 ,2 ) 8 ( , ) ( , )sup

(2,2)ln | 2 ,2 | 8 (1,1)ln | , | (1,1)sup

sup (2,2)ln | 2 ,2 | 8(1,1)ln | , | (1,1)

x

nn

nn

nn

f x x f x x A x x

x

f n n f n n A n n

n

n n n n n n nA

n

n n n n A

We have to prove (III.23) is true.

Case (i): If , , , 0x y z w in (III.23) then,

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

(2 ,2 )ln | 2 ,2 |

(2 ,2 )ln | 2 ,2 |

4( , ) ln | , |

4( , ) ln | , | 6( , ) ln | , |

f x y z w f x y z w f x y z w

f x y z w f y w

x y z w x y z w

x y z w x y z w

x y z w x y z w

x y z w x y z w y w y w

Set 1 2 3 4, , ,x v y v z v w v it follows that

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 2 4 2

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

(2 ,2 )ln | 2 ,2 |

(2 ,2 )ln | 2 ,2 |

4( , ) ln | , |

4( , ) ln | , | 6( , ) ln | ,

f x y z w f x y z w f x y z w

f x y z w f y w

v v v v v v v v

v v v v v v v v

v v v v v v v v

v v v v v v v v v v v v

4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4 2 4

|

(2 ,2 ) (2 ,2 )

4 ( , )

4 ( , ) 6 ( , )

f v v v v f v v v v

f v v v v

f v v v v f v v

1 3

4 4 4 41 2 3 4

1 3

4 4 4 4

| | | | | | | |

| | | | | | | |

s s s s

s s s s

v v v v

x y z w

Case (ii): If , , , 0x y z w in (III.23) then,

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

(2 ,2 )ln | 2 ,2 |

(2 ,2 )ln | 2 ,2 |

4( , ) ln | , |

4( , ) ln | , | 6( , ) ln | , |

f x y z w f x y z w f x y z w

f x y z w f y w

x y z w x y z w

x y z w x y z w

x y z w x y z w

x y z w x y z w y w y w

Set 1 2 3 4, , ,x v y v z v w v it follows that

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

( 2 , 2 ) ln | 2 , 2 |

( 2 , 2 ) ln | 2 , 2 |

4( , ) ln | , |

4( , ) ln | , |

f x y z w f x y z w f x y z w

f x y z w f y w

v v v v v v v v

v v v v v v v v

v v v v v v v v

v v v v v v v v

2 4 2 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4 2 4

1 3

4 4 4 41 2 3 4

1 3

4 4 4 4

6( , ) ln | , |

( 2 , 2 ) ( 2 , 2 )

4 ( , )

4 ( , ) 6 ( , )

| | | | | | | |

| | | | | | | |

s s s s

s s s s

v v v v

f v v v v f v v v v

f v v v v

f v v v v f v v

v v v v

x y z w

Case (iii): If , 0, , 0x z y w then 2 ,x y

2 , , 0,2 ,2 , , 0z w x y z w x y z w x y z w in (III.23)

then,

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

(2 ,2 )ln | 2 ,2 |

(2 ,2 )ln | 2 ,2 |

4( , ) ln | , |

4( , ) ln | , | 6( , ) ln | , |

f x y z w f x y z w f x y z w

f x y z w f y w

x y z w x y z w

x y z w x y z w

x y z w x y z w

x y z w x y z w y w y w

Set 1 2 3 4, , ,x v y v z v w v it follows that

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 2 4

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

(2 ,2 ) ln | 2 ,2 |

(2 ,2 ) ln | (2 ,2 ) |

4( , ) ln | , |

4( , ) ln | ( , ) | 6( ,

f x y z w f x y z w f x y z w

f x y z w f y w

v v v v v v v v

v v v v v v v v

v v v v v v v v

v v v v v v v v v v

2 4) ln | , |v v

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4 2 4

1 3

4 4 4 41 2 3 4

1 3

4 4 4 4

(2 ,2 ) (2 ,2 )

4 ( , )

4 ( , ) 6 ( , )

| | | | | | | |

| | | | | | | |

s s s s

s s s s

f v v v v f v v v v

f v v v v

f v v v v f v v

v v v v

x y z w

Case (iv): If , 0, , 0x z y w then 2 ,x y

2 , , 0,2 ,2 , , 0z w x y z w x y z w x y z w in (III.23)

then,

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

(2 ,2 )ln | 2 ,2 |

(2 ,2 )ln | 2 ,2 |

4( , ) ln | , |

4( , ) ln | , | 6( , ) ln | , |

f x y z w f x y z w f x y z w

f x y z w f y w

x y z w x y z w

x y z w x y z w

x y z w x y z w

x y z w x y z w y w y w

Set 1 2 3 4, , ,x v y v z v w v it follows that

Page 6: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

15

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 2 4

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

(2 ,2 ) ln | (2 ,2 ) |

(2 ,2 ) ln | 2 ,2 |

4( , ) ln | ( , ) |

4( , ) ln | , | 6( ,

f x y z w f x y z w f x y z w

f x y z w f y w

v v v v v v v v

v v v v v v v v

v v v v v v v v

v v v v v v v v v v

2 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4 2 4

1 3

4 4 4 41 2 3 4

1 3

4 4 4 4

) ln | , |

(2 ,2 ) (2 ,2 )

4 ( , )

4 ( , ) 6 ( , )

| | | | | | | |

| | | | | | | |

s s s s

s s s s

v v

f v v v v f v v v v

f v v v v

f v v v v f v v

v v v v

x y z w

Case (v): If 0x y z w in (III.23) then it is trivial.

Now we will provide an example to illustrate that the

(I.8) is not stable for 1

4s in (iv) of Corollary 3.2.

Example 3.5: Let : R R be a function defined by

1, | |

4( )

,4

x if x

x

otherwise

where 0 is a constant, and define a function 2:f E R by

0

(2 )( , ) .

2

n

nn

xf x x for all x R

Then F satisfies the functional inequality

1 1 1 1

4 4 4 4

( , , , )

8 | | | | | | | | | | | | | | | |

F x y z w

x y z w x y z w

(III.25)

for all , , ,x y z w R . Then there do not exist a additive

mapping 2:A R R and a constant 0 such that

(2 ,2 ) 8 ( , ) ( , ) | | .f x x f x x A x x x for all x R (III.26)

Proof: Now

0 0

(2 ) 1( , )

4 22 2

n

n nn n

xf x x

.

Therefore we see that f is bounded. We are going to

prove that f satisfies (III.25).

If x = y = z = w = 0 then (III.25) is trivial.

If 1 1 1 1

4 4 4 41

| | | | | | | | | | | | | | | |2

x y z w x y z w , then the left

hand side of (III.25) is less than 8 . Now suppose that

1 1 1 1

4 4 4 41

0 | | | | | | | | | | | | | | | |2

x y z w x y z w .

Then there exists a positive integer k such that

1 1 1 1

4 4 4 41

1 1| | | | | | | | | | | | | | | |

2 2k kx y z w x y z w

(III.27)

so that

1 1 1 1

1 1 14 4 4 41 1 1

2 | | | | | | | | ,2 ,2 ,2 2 2

k k kx y z w x y

1 11 12 ,2

2 2

k kz w

and consequently

1 1 1

1 1

2 ( , ),2 ( , ),2 ( , ),

1 12 (2 ,2 ),2 (2 ,2 ), , .

4 4

k k k

k k

y w x y z w x y z w

x y z w x y z w

Therefore for each 0,1,........ 1n k , we have

2 ( , ),2 ( , ),2 ( , ),

1 12 (2 ,2 ),2 (2 ,2 ) , .

4 4

n n n

n n

y w x y z w x y z w

x y z w x y z w

and

(2 (2 ,2 )) (2 (2 ,2 ))

4[ (2 ( , )) (2 ( , ))] 6 (2 ( , )) 0

n n

n n n

x y z w x y z w

x y z w x y z w y w

For 0,1,........ 1n k . From the definition of f and (III.27),

we obtain that

0

( , , , )

1(2 (2 ,2 )) (2 (2 ,2 ))

2

4[ (2 ( , )) (2 ( , ))] 6 (2 ( , ))

1(2 (2 ,2 )) (2 (2 ,2 ))

2

4[ (2 ( , )) (2 ( , ))] 6 (2 ( , ))

1 16

2 4

n n

nn

n n n

n n

nn k

n n n

nn k

F x y z w

x y z w x y z w

x y z w x y z w y w

x y z w x y z w

x y z w x y z w y w

1 1 1 1

4 4 4 4

24

2

8 | | | | | | | | | | | | | | | |

k

x y z w x y z w

Thus f satisfies (III.25) for all , , ,x y z w with

1 1 1 1

4 4 4 41

0 | | | | | | | | | | | | | | | |2

x y z w x y z w

We claim that (I.8) is not stable for 1

4s in (iii) Corollary

3.2. Suppose on the contrary that there exist a additive

mapping 2:A R R and a constant 0 satisfying

(III.26). Since f is bounded and continuous for all x R , A

is bounded on any open interval containing the origin and

continuous at the origin. In view of Theorem 3.1, A must

have the form ( , ) A x x cx for any x in R . Thus we obtain

that

(2 ,2 ) 8 ( , ) ( | |) | |, f x x f x x c x (III.28)

But we can choose a positive integer m with | |m c .

If1

10,

2mx

, then 2 (0,1)n x for all

0, 1,..... 1.n m For this x, we get

Page 7: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

16

1

0 0

(2 ) (2 )(2 ,2 ) 8 ( , )

2 2

( | |)

n nm

n nn n

x xf x x f x x

m x c x

which contradicts (III.28). Therefore (I.8) is not stable in

sense of Ulam, Hyers and Rassias if 1

4s , assumed in (iv)

of (III.17).

Theorem 3.6: Let 1j . Let 2:f U V be a mapping for

which there exist a function 4: (0, ]U with the

condition

1lim (2 ,2 ,2 ,2 ) 0

8

nj nj nj nj

njnx y z w

(III.29)

such that the functional inequality

( , , , ) ( , , , )F x y z w x y z w (III.30)

for all , , ,x y z w U . Then there exists a unique 2-variable

cubic mapping 2:C U V satisfying (I.8) and

1

2

1(2 ,2 ) 2 ( , ) ( , ) (2 )

8

kj

jk

f x x f x x C x x x

(III.31)

for all x U . The mapping (2 )kj x and ( , )C x x are

defined by

( 1) ( 1)

( 1) ( 1)

(2 ) 4 (2 ,2 ,2 ,2 ) (2 ,2 ,2 ,2 )

1( , ) lim (2 ,2 ) 2 (2 ,2 )

8

kj kj kj kj kj kj k j kj k j

n j n j nj nj

njn

x x x x x x x x x

C x x f x x f x x

(III.32)

for all x U .

Proof: It is easy to see from (III.9) that

(4 ,4 ) 2 (2 ,2 ) 8( (2 ,2 ) 2 ( ; )) ( )f x x f x x f x x f x x x

(III.34)

for all x U . Using (II.8) in (III.34), we obtain

(2 ,2 ) 8 ( , ) ( )h x x h x x x (III.35)

for all x U . From (III.35), we arrive

(2 ,2 ) ( )( , )

8 8

h x x xh x x

(III.36)

for all x U . Now replacing x by 2x and dividing by 8

in (III.36), we get

2 2

2 2

(2 ,2 ) ( , ) (2 )

8 8 8

h x x h x x x (III.37)

for all x U . From (III.36) and (III.37), we obtain

2 2

2

2 2

2

(2 ,2 )( , )

8

(2 ,2 ) (2 ,2 ) (2 ,2 )( , )

8 8 8

h x xh x x

h x x h x x h x xh x x

1 (2 )( )

8 8

xx

(III.38)

for all x U . Proceeding further and using induction on a

positive integer n , we get

1

0

(2 ,2 ) 1 (2 )( , )

8 8 8

n n kn

n kk

h x x xh x x

0

1 (2 )

8 8

k

kk

x

(III.39)

for all x U . In order to prove the convergence of the

sequence

(2 ,2 )

8

n n

n

h x x

,

replacing x by 2m x and dividing by 8m in (III.39), for any

m, n > 0 , we deduce

0

(2 ,2 ) (2 ,2 )

8 8

1 (2 2 ,2 2 )(2 ,2 )

8 8

1 (2 )

8 8

0

n m n m m m

n m m

n m n mm m

m n

k

k mk

h x x h x x

h x xh x x

x

as m

for all x U . This shows that the sequence (2 ,2 )

8

n n

n

h x x

is Cauchy sequence. Since V is complete, there exists a

mapping 2( , ) :C x x U V such that

(2 ,2 )( , ) lim

2

n n

nn

h x xC x x x U

.

Letting n in (III.39) and using (II.8), we see that

(III.31) holds for all x U . To show that C satisfies (I.8)

and it is unique the proof is similar to that of Theorem 3.1

The following Corollary is an immediate consequence

of Theorem 3.6 concerning the stability of (I.8).

Corollary 3.7: Let 2:F U V be a mapping and there

exists real numbers and s such that

( , , , )F x y z w

4 4 4 4

, 3 3;

3 3, ;

4 4

,

3 3 ;

4 4

s s s s

s s s s

s s s s

s s s s

x y z w s or s

x y z w s or s

x y z w

x y z w

s or s

(III.40)

for all , , ,x y z w U , then there exists a unique 2- variable

cubic function 2:C U V such that

(2 ,2 ) 2 ( , ) ( , )f x x f x x C x x

Page 8: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

17

1

42

4

2 44

4 2

5 / 7

18 2

7 8 2

4 2

7 8 2

22 2 2 2

7 8 2 7 8 2

ss

s

ss

s

s ss

s s

x

x

x

(III.41)

for all x U .

Now we will provide an example to illustrate that (I.8)

is not stable for s = 3 in (ii) of Corollary 3.6.

Example 3.8: Let : R R be a function defined by

3, | | 1( )

,

x if xx

otherwise

where 0 is a constant, and define a function 2:f R R by

0

(2 )( , ) .

8

n

nn

xf x x for all x R

Then F satisfies the functional inequality

33 3 3 316 8

( , , , ) (| | | | | | | | )7

F x y z w x y z w

(III.42)

for all , , ,x y z w R . Then there do not exist a cubic

mapping 2:C R R and a constant 0 such that

3(2 ,2 ) 2 ( , ) ( , ) | | .f x x f x x C x x x for all x R (III.43)

Proof: Now

0 0

(2 ) 8( , )

78 8

n

n nn n

xf x x

Therefore we see that f is bounded. We are going to prove

that f satisfies (III.42).

If x = y = z = w = 0, then (III.42) is trivial. If

3 3 3 3 1| | | | | | | |

8x y z w , then the left hand side of (III.42)

is less than 16 8

7

. Now suppose that

3 3 3 3 10 | | | | | | | |

8x y z w .

Then there exists a positive integer k such that

3 3 3 3

2 1

1 1| | | | | | | |

8 8k kx y z w

(III.44)

so that

1 3 1 3 1 3 1 31 1 1 12 ,2 ,2 ,2

8 8 8 8

k k k kx y z w

and consequently

1 1 1

1 1

2 ( , ),2 ( , ),2 ( , ),

1 12 (2 ,2 ),2 (2 ,2 ) , .

2 2

k k k

k k

y w x y z w x y z w

x y z w x y z w

Therefore for each 0,1,........ 1n k , we have

2 ( , ),2 ( , ),2 ( , ),

1 12 (2 ,2 ),2 (2 ,2 ) , .

2 2

n n n

n n

y w x y z w x y z w

x y z w x y z w

and

(2 (2 ,2 )) (2 (2 ,2 ))

4[ (2 ( , )) (2 ( , ))] 6 (2 ( , )) 0

n n

n n n

x y z w x y z w

x y z w x y z w y w

For 0,1,........ 1n k . From the definition of f and (III.44),

we obtain that

0

( , , , )

1(2 (2 ,2 )) (2 (2 ,2 ))

2

4[ (2 ( , )) (2 ( , ))] 6 (2 ( , ))

1(2 (2 ,2 )) (2 (2 ,2 ))

2

4[ (2 ( , )) (2 ( , ))] 6 (2 ( , ))

1 116

8

n n

nn

n n n

n n

nn k

n n n

nn k

F x y z w

x y z w x y z w

x y z w x y z w y w

x y z w x y z w

x y z w x y z w y w

3

3 3 3 3

6 8 1

7 8

16 8(| | | | | | | | )

7

k

x y z w

Thus f satisfies (III.42) for all , , ,x y z w with

3 3 3 3 10 | | | | | | | |

8x y z w

We claim that (I.8) is not stable for s =3 in (ii)

Corollary 3.7. Suppose on the contrary that there exist a

cubic mapping 2:C R R and a constant 0 satisfying

(III.43). Since f is bounded and continuous for all x R , C

is bounded on any open interval containing the origin and

continuous at the origin. In view of Theorem 3.6, C must

have the form 3( , ) C x x cx for any x in R . Thus we

obtain that

3(2 ,2 ) 2 ( , ) ( | |) | | , f x x f x x c x (III.45)

But we can choose a positive integer m with | |m c .

If1

10,

2mx

, then 2 (0,1)n x for all

0, 1,..... 1.n m For this x, we get

31

0 0

3 3

(2 ) (2 )(2 ,2 ) 2 ( , )

8 8

( | |)

n nm

n nn n

x xf x x f x x

m x c x

which contradicts (III.45). Therefore (I.8) is not stable in

sense of Ulam, Hyers and Rassias if s =3, assumed in

the inequality (ii) of (III.41).

A counter example to illustrate the non stability in (iii)

of Corollary 3.7 is given in the following example.

Example 3.9: Let s be such that 3

04

s . Then there is a

function 2:F R R and a constant 0 satisfying

3 3

4 4 4 4( , , , ) | | | | | | | |s s s s

F x y z w x y z w

(III.46)

for all , , ,x y z w R and

Page 9: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

18

30

(2 ,2 ) 2 ( , ) ( , )supx

f x x f x x C x x

x

(III.47)

for every cubic mapping 2( , ) :C x x R R .

Proof: If we take

3( , ) ln( , ), 0 ( , )

0, 0

x x x x if xf x x

if x

Then from (III.47), it follows that

30

3

0

3 3 3 3 3

3

0

3 3

0

(2 ,2 ) 2 ( , ) ( , )sup

(2 ,2 ) 2 ( , ) ( , )sup

(2,2) ln | 2 ,2 | 2 (1,1) ln | , | (1,1)sup

sup (2,2) ln | 2 ,2 | 8(1,1) ln | , | (1,1)

x

nn

nn

nn

f x x f x x C x x

x

f n n f n n C n n

n

n n n n n n n C

n

n n n n C

We have to prove (III.46) is true.

Case (i): If , , , 0x y z w in (III.46) then,

3

3

3

3 3

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

(2 ,2 ) ln | 2 ,2 |

(2 ,2 ) ln | 2 ,2 |

4( , ) ln | , |

4( , ) ln | , | 6( , ) ln | , |

f x y z w f x y z w f x y z w

f x y z w f y w

x y z w x y z w

x y z w x y z w

x y z w x y z w

x y z w x y z w y w y w

Set 1 2 3 4, , ,x v y v z v w v it follows that

3

1 2 3 4 1 2 3 4

3

1 2 3 4 1 2 3 4

3

1 2 3 4 1 2 3 4

3 3

1 2 3 4 1 2 3 4 2 4

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

(2 ,2 ) ln | 2 ,2 |

(2 ,2 ) ln | 2 ,2 |

4( , ) ln | , |

4( , ) ln | , | 6( , ) ln

f x y z w f x y z w f x y z w

f x y z w f y w

v v v v v v v v

v v v v v v v v

v v v v v v v v

v v v v v v v v v v

2 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4 2 4

1 3

4 4 4 41 2 3 4

1 3

4 4 4 4

| , |

(2 ,2 ) (2 ,2 )

4 ( , )

4 ( , ) 6 ( , )

| | | | | | | |

| | | | | | | |

s s s s

s s s s

v v

f v v v v f v v v v

f v v v v

f v v v v f v v

v v v v

x y z w

Case (ii): If , , , 0x y z w in (III.46) then,

3

3

3

3 3

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

(2 ,2 ) ln | 2 ,2 |

(2 ,2 ) ln | 2 ,2 |

4( , ) ln | , |

4( , ) ln | , | 6( , ) ln | , |

f x y z w f x y z w f x y z w

f x y z w f y w

x y z w x y z w

x y z w x y z w

x y z w x y z w

x y z w x y z w y w y w

Set 1 2 3 4, , ,x v y v z v w v it follows that

3

1 2 3 4 1 2 3 4

3

1 2 3 4 1 2 3 4

3

1 2 3 4 1 2 3 4

3

1 2 3 4 1 2 3

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

( 2 , 2 ) ln | 2 , 2 |

( 2 , 2 ) ln | 2 , 2 |

4( , ) ln | , |

4( , ) ln | ,

f x y z w f x y z w f x y z w

f x y z w f y w

v v v v v v v v

v v v v v v v v

v v v v v v v v

v v v v v v v

3

4 2 4 2 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4 2 4

1 3

4 4 4 41 2 3 4

1 3

4 4 4 4

| 6( , ) ln | , |

( 2 , 2 ) ( 2 , 2 )

4 ( , )

4 ( , ) 6 ( , )

| | | | | | | |

| | | | | | | |

s s s s

s s s s

v v v v v

f v v v v f v v v v

f v v v v

f v v v v f v v

v v v v

x y z w

Case (iii): If , 0, , 0x z y w then 2 ,x y

2 , , 0,2 ,2 , , 0z w x y z w x y z w x y z w in (III.46)

then,

3

3

3

3 3

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

(2 ,2 ) ln | 2 ,2 |

(2 ,2 ) ln | 2 ,2 |

4( , ) ln | , |

4( , ) ln | , | 6( , ) ln | , |

f x y z w f x y z w f x y z w

f x y z w f y w

x y z w x y z w

x y z w x y z w

x y z w x y z w

x y z w x y z w y w y w

Set 1 2 3 4, , ,x v y v z v w v it follows that

3

1 2 3 4 1 2 3 4

3

1 2 3 4 1 2 3 4

3

1 2 3 4 1 2 3 4

3

1 2 3 4 1 2 3 4 2

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

(2 ,2 ) ln | 2 ,2 |

(2 ,2 ) ln | (2 ,2 ) |

4( , ) ln | , |

4( , ) ln | ( , ) | 6(

f x y z w f x y z w f x y z w

f x y z w f y w

v v v v v v v v

v v v v v v v v

v v v v v v v v

v v v v v v v v v

3

4 2 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4 2 4

1 3

4 4 4 41 2 3 4

1 3

4 4 4 4

, ) ln | , |

(2 ,2 ) (2 ,2 )

4 ( , )

4 ( , ) 6 ( , )

| | | | | | | |

| | | | | | | |

s s s s

s s s s

v v v

f v v v v f v v v v

f v v v v

f v v v v f v v

v v v v

x y z w

Case (iv): If , 0, , 0x z y w then 2 ,x y

2 , , 0,2 ,2 , , 0z w x y z w x y z w x y z w in (III.46)

then,

3

3

3

3 3

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

(2 ,2 ) ln | 2 ,2 |

(2 ,2 ) ln | 2 ,2 |

4( , ) ln | , |

4( , ) ln | , | 6( , ) ln | , |

f x y z w f x y z w f x y z w

f x y z w f y w

x y z w x y z w

x y z w x y z w

x y z w x y z w

x y z w x y z w y w y w

Set 1 2 3 4, , ,x v y v z v w v it follows that

Page 10: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

19

3

1 2 3 4 1 2 3 4

3

1 2 3 4 1 2 3 4

3

1 2 3 4 1 2 3 4

3

1 2 3 4 1 2 3 4 2

(2 ,2 ) (2 ,2 ) 4 ( , )

4 ( , ) 6 ( , )

(2 ,2 ) ln | (2 ,2 ) |

(2 ,2 ) ln | 2 ,2 |

4( , ) ln | ( , ) |

4( , ) ln | , | 6(

f x y z w f x y z w f x y z w

f x y z w f y w

v v v v v v v v

v v v v v v v v

v v v v v v v v

v v v v v v v v v

3

4 2 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4 2 4

1 3

4 4 4 41 2 3 4

1 3

4 4 4 4

, ) ln | , |

(2 ,2 ) (2 ,2 )

4 ( , )

4 ( , ) 6 ( , )

| | | | | | | |

| | | | | | | |

s s s s

s s s s

v v v

f v v v v f v v v v

f v v v v

f v v v v f v v

v v v v

x y z w

Case (v): If 0x y z w in (III.46) then it is trivial.

Now we will provide an example to illustrate that (I.8)

is not stable for 3

4s in (iv) of Corollary 3.7.

Example 3.10: Let : R R be a function defined by

3 3, | |

4( )

3,

4

x if x

x

otherwise

where 0 is a constant, and define a function 2:f R R by

0

(2 )( , ) .

8

n

nn

xf x x for all x R

Then F satisfies the functional inequality

3 3 3 32

3 3 3 34 4 4 4

( , , , )

96 8 | | | | | | | | | | | | | | | |

7

F x y z w

x y z w x y z w

(III.48)

for all , , ,x y z w R . Then there do not exist a cubic

mapping 2:C R R and a constant 0 such that

3(2 ,2 ) 2 ( , ) ( , ) | | .f x x f x x C x x x for all x R (III.49)

Proof: Now

0 0

(2 ) 1 3 6( , )

4 78 8

n

n nn n

xf x x

.

Therefore we see that f is bounded. We are going to prove

that f satisfies (III.48).

If x = y = z = w = 0, then (III.48) is trivial.

If 3 3 3 3

3 3 3 34 4 4 41

| | | | | | | | | | | | | | | |8

x y z w x y z w , then the

left hand side of (III.48) is less than 96

7

. Now suppose

that

3 3 3 3

3 3 3 34 4 4 41

0 | | | | | | | | | | | | | | | |8

x y z w x y z w .

Then there exists a positive integer k such that

3 3 3 3

3 3 3 34 4 4 42 1

1 1| | | | | | | | | | | | | | | |

8 8k kx y z w x y z w

(III.50)

so that

1 1 1 1

1 1 14 4 4 41 1 1

2 | | | | | | | | ,2 ,2 ,2 2 2

k k kx y z w x y

1 11 12 ,2

2 2

k kz w

and consequently

1 1 1

1 1

2 ( , ),2 ( , ),2 ( , ),

1 12 (2 ,2 ),2 (2 ,2 ), , .

2 2

k k k

k k

y w x y z w x y z w

x y z w x y z w

Therefore for each 0,1,........ 1n k , we have

2 ( , ),2 ( , ),2 ( , ),

1 12 (2 ,2 ),2 (2 ,2 ) , .

2 2

n n n

n n

y w x y z w x y z w

x y z w x y z w

and

(2 (2 ,2 )) (2 (2 ,2 ))

4[ (2 ( , )) (2 ( , ))] 6 (2 ( , )) 0

n n

n n n

x y z w x y z w

x y z w x y z w y w

For 0,1,........ 1n k . From the definition of f and (III.50),

we obtain that

0

( , , , )

1(2 (2 ,2 )) (2 (2 ,2 ))

8

4[ (2 ( , )) (2 ( , ))] 6 (2 ( , ))

1(2 (2 ,2 )) (2 (2 ,2 ))

8

4[ (2 ( , )) (2 ( , ))] 6 (2 ( , ))

1 16 3

8

n n

nn

n n n

n n

nn k

n n n

nn k

F x y z w

x y z w x y z w

x y z w x y z w y w

x y z w x y z w

x y z w x y z w y w

3 3 3 3

3 3 3 34 4 4 4

12 8 1

4 7 8

8 | | | | | | | | | | | | | | | |

k

x y z w x y z w

Thus f satisfies (III.48) for all , , ,x y z w with

3 3 3 3

3 3 3 34 4 4 41

0 | | | | | | | | | | | | | | | |8

x y z w x y z w

We claim that (I.8) is not stable for 3

4s in (iii) Corollary

3.7. Suppose on the contrary that there exist a cubic

mapping 2:C R R and a constant 0 satisfying

(III.49). Since f is bounded and continuous for all x R , C

is bounded on any open interval containing the origin and

continuous at the origin. In view of Theorem 3.6, C must

have the form 3( , ) C x x cx for any x in R . Thus we

obtain that

3(2 ,2 ) 2 ( , ) ( | |) | | , f x x f x x c x (III.51)

But we can choose a positive integer m with | |m c .

Page 11: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

20

If1

10,

2mx

, then 2 (0,1)n x for all

0, 1,..... 1.n m For this x, we get

31

0 0

3 3

(2 ) (2 )(2 ,2 ) 2 ( , )

8 8

( | |)

n nm

n nn n

x xf x x f x x

m x c x

which contradicts (III.51). Therefore (I.8) is not stable in

sense of Ulam, Hyers and Rassias if 3

4s , assumed in (iv)

of (III.41).

Now, we are ready to prove our main stability results.

Theorem 3.11: Let 1j . Let 2:f U V be a mapping

for which there exist a function 4: (0, ]U with the

condition given in (III.1) and (III.29) respectively, such that the functional inequality

( , , , ) ( , , , )F x y z w x y z w (III.52)

for all , , ,x y z w U . Then there exists a unique 2-variable

additive mapping 2:A U V unique 2-variable cubic

mapping 2:C U V satisfying (I.8) and

( , ) ( , ) ( , )f x x A x x C x x

1 1

2 2

1 1 1(2 ) (2 )

6 2 8

kj kj

j jk k

x x

(III.53)

for all x U . The mapping (2 )kj x , ( , )A x x and ( , )C x x are

defined in (III.4), (III.5) and (III.33)

for all x U .

Proof: By Theorems 3.1 and 3.6, there exists a unique 2-

variable additive function 2

1 :A U V and a unique 2-

variable cubic function 2

1 :C U V such that

11

2

1(2 ,2 ) 8 ( , ) ( , ) (2 )

2

kj

jk

f x x f x x A x x x

(III.54)

and

11

2

1(2 ,2 ) 2 ( , ) ( , ) (2 )

8

kj

jk

f x x f x x C x x x

(III.55)

for all x U . Now from (III.54) and (III.55), one can see

that

1 1

1

1

1

1

1 1

2 2

1 1( , ) ( , ) ( , )

6 6

(2 ,2 ) 8 ( , ) ( , )

6 6 6

(2 ,2 ) 2 ( , ) ( , )

6 6 6

1(2 ,2 ) 8 ( , ) ( , )

6

(2 ,2 ) 8 ( , ) ( , )

1 1 1(2 ) (2 )

6 2 8

kj kj

j jk k

f x x A x x C x x

f x x f x x A x x

f x x f x x C x x

f x x f x x A x x

f x x f x x A x x

x x

for all x U . Thus we obtain (III.55) by defining

1

1( , ) ( , )

6A x x A x x

and

1

1( , ) ( , )

6C x x C x x , (2 )kj x , ( , )A x x

and ( , )C x x are defined in (III.4), (III.5) and (III.33)

for all x U .

The following corollary is the immediate consequence

of Theorem 3.11, using Corollaries 3.2 and 3.7 concerning

the stability of (I.8).

Corollary 3.12: Let 2:F U V be a mapping and there

exists real numbers and s such that

( , , , )F x y z w

4 4 4 4

, 3 3;

3 3, ;

4 4

,

3 3 ;

4 4

s s s s

s s s s

s s s s s s s s

x y z w s or s

x y z w s or s

x y z w x y z w

s or s

(III.56)

for all , , ,x y z w U , then there exists a unique 2-variable

additive mapping 2:A U V unique 2-variable cubic

mapping 2:C U V such that

( , ) ( , ) ( , )f x x A x x C x x

1

2

4

4 4

2

4

4 2

44

4 2

5 11

6 7

18 2 1 1

6 2 2 7 8 2

4 2 1 1

6 2 2 7 8 2

22 2 1 1

6 2 2 7 8 2

2 2 1 1

6 2 2 7 8 2

s

s

s s

s

s

s s

s

s

s s

ss

s s

x

x

x

x

(III.57)

for all x U .

Now we will provide an example to illustrate that (I.8)

is not stable for 1s in (ii) of Corollary 3.12.

Example 3.13: Let : R R be a function defined by

3( ), | | 1( )

,

x x if xx

otherwise

where 0 is a constant, and define a function 2:f R R by

0

(2 )( , ) .

2

n

nn

xf x x for all x R

Then F satisfies the functional inequality

Page 12: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

21

( , , , ) 32 (| | | | | | | |)F x y z w x y z w (III.58)

for all , , ,x y z w R . Then there do not exist a 2-variable

additive mapping 2:A U V and 2-variable cubic

mapping 2:C U V and a constant 0 such that

( , ) ( , ) ( , ) | | .f x x A x x C x x x for all x R (III.59)

A counter example to illustrate the non stability in (iii)

of Corollary 3.12 is given in the following example.

Example 3.14: Let s be such that1

04

s . Then there is a

function 2:F R R and a constant 0 satisfying

1 3

4 4 4 4( , , , ) | | | | | | | |s s s s

F x y z w x y z w

(III.60)

for all , , ,x y z w R and

0

( , ) ( , ) ( , )supx

f x x A x x C x x

x

(III.61)

for every additive mapping 2( , ) :A x x R R , and for every

cubic mapping 2( , ) :C x x R R .

Now we will provide an example to illustrate that (I.8)

is not stable for 1

4s in (iv) of Corollary 3.12.

Example 3.15: Let : R R be a function defined by

3 1( ), | |

4( )

,4

x x if x

x

otherwise

where 0 is a constant, and define a function 2:f R R by

0

(2 )( , ) .

2

n

nn

xf x x for all x R

Then F satisfies the functional inequality

1 1 1 1

4 4 4 4

( , , , )

8 | | | | | | | | | | | | | | | |

F x y z w

x y z w x y z w

(III.62)

for all , , ,x y z w R . Then there do not exist a 2-variable

additive mapping 2:A U V and a cubic mapping 2:C R R and a constant 0 such that

3(2 ,2 ) 2 ( , ) ( , ) | | .f x x f x x C x x x for all x R (III.63)

IV. STABILITY RESULTS:FIXED POINT METHOD

In this section, we apply a fixed point method for

achieving stability of the 2-variable AC (I.8).

Now, we present the following theorem due to B.

Margolis and J.B. Diaz [14] for fixed point Theory.

Theorem 4.1: Suppose that for a complete generalized

metric space ,d and a strictly contractive mapping

:T with Lipschitz constant L . Then, for each

given x , either 1,n nd T x T x for all 0n ,or there

exists a natural number 0n such that

i) 1,n nd T x T x for all 0n n ;

ii) The sequence nT x is convergent to a fixed to a fixed

point *y of T

iii) *y is the unique fixed point of T in the set

0: , ;n

y d T x y

iv) * 1, ,

1d y y d y Ty

L

for all y .

Using the above theorem, we now obtain the generalized

Hyers-Ulam-Rassias stability of (I.8).

Thorough out this section, let U be a vector space and V

Banach space. Define a mapping 2:F U V by

( , , , ) 2 ,2 2 ,2F x y z w f x y z w f x y z w

4 , , 6 ,f x y z w f x y z w f y w

for all , , ,x y z w U .

Theorem 4.2: Let 2:f U V be a mapping for which

there exists a function 4: (0, ]U with the condition

1lim ( , , , ) 0ni

n n n n

i i i in

x y z w

(IV.1)

with 2i if 0i and 1

2i if 1i such that the

functional inequality

( , , , ) ( , , , )F x y z w x y z w (IV.2)

for all , , ,x y z w U . If there exists 1L L i such that

the function

1

2x x x ,

has the property

i ix L x . (IV.3)

Then there exists a unique 2-variable additive mapping 2:A U V satisfying (I.8) and

1

(2 ,2 ) 8 ( , ) ( , )1

iLf x x f x x A x x x

L

(IV.4)

for all x U . The mapping (2 )kj x and ( , )A x x are

defined in (III.10) and (III.5) respectively for all x U .

Proof: Consider the set

2: , 0 0p p U V p

and introduce the generalized metric on ,

, ,

inf 0, ,

d g h d g h

K p x q x K x x U

It is easy to see that ,d is complete.

Page 13: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

22

Define 2:T by

1

, ,i i

i

Tp x x p x x

for all x U . Now for all ,p q ,

,

, , , ,

1 1 1, , , ,

1 1, , , ,

, , , ,

, .

i i i i i

i i

i i i i

i i

d g h K

p x x q x x K x x U

p x x q x x K x x U

p x x q x x LK x x U

T p x x T q x x LK x x U

d Tp Tq LK

This gives , ,d Tp Tq Ld p q , for all ,p q , i.e., T is a

strictly contractive mapping of , with Lipschitz constant

L . From (III.12), we arrive

(2 ,2 ) ( )( , )

2 2

g x x xg x x

(IV.5)

for all x U . Using (IV.3) for the case 0i it reduces to

(2 ,2 )( , ) ( )

2

g x xg x x L x for all x U

i.e., 1, ,d g Tg L d g Tg L L

Again replacing2

xx , in (IV.5), we get,

( , ) 2 ,2 2 2

x x xg x x g

(IV.6)

for all x U . Using (IV.3) for the case 1i it reduces to

( , ) 2 , ( )2 2

x xg x x g x

for all x U ,

i.e., 0, 1 , 1d g Tg d g Tg L

Now from the fixed point alternative in both cases, it

follows that there exists a fixed point A of T in such

that

1 11( , ) lim ( , ) 8 ( , )n n n n

i i i inni

A x x f x x f x x

(IV.7)

for all x U , since lim , 0n

nd T g A

.

To prove 2:A U V is additive. Putting , , ,x y z w by

, , ,n n n n

i i i ix y z w in (IV.2) and divide by n

i . It follows

from (IV.1) that

, , ,, , , lim

, , ,lim 0

n n n n

i i i i

nni

n n n n

i i i i

nni

F x y z wA x y z w

x y z w

for all , , ,x y z w U , i.e., A satisfies (I.8).

According to the alternative fixed point, since A is the

unique fixed point of T in the set

: , ,p d f p A is the unique function such that

(2 ,2 ) 8 ( , ) ( , )f x x f x x A x x K x

for all x U and 0K . Again using the fixed point

alternative, we obtain

1

, ,1

d f A d f TfL

this implies

1

, ,1

iLd f A d f Tf

L

which yields

1

(2 ,2 ) 8 ( , ) ( , )1

iLf x x f x x A x x x

L

this completes the proof of the theorem.

The following Corollary is an immediate consequence of

Theorem 4.2 concerning the stability of (I.8).

Corollary 4.3: Let 2:F U V be a mapping and there

exists real numbers and s such that

( , , , )F x y z w

4 4 4 4

, 1 1;

1 1, ;

4 4

,

1 1 ;

4 4

s s s s

s s s s

s s s s s s s s

x y z w s or s

x y z w s or s

x y z w x y z w

s or s

(IV.8)

for all , , ,x y z w U , then there exists a unique 2- variable

additive function 2:A U V such that

(2 ,2 ) 8 ( , ) ( , )f x x f x x A x x

1 1

44 1 2

4

44 1 2 4

4

2 18 2

2 2

2 4 2

2 2

2 22 2 2 2

2 2

ss s

s

ss s

s

ss s s

s

x

x

x

(IV.9)

for all x U .

Proof: Setting

4 4 4 4

, ,

,

,

,

s s s s

s s s s

s s s s s s s s

x y z

x y z w

x y z w

x y z w x y z w

Page 14: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

23

for all , , ,x y z w U . Then, for 2s if 0i and for 1s

if 1i we get

4 4 4 4

, , ,

,

,

,

0 as ,

0 as ,

0 as ,

n n n n

i i i i

n

i

s s s sn n n n

i i i in

i

s s s sn n n n

i i i in

i

s s s sn n n n

i i i in

i

s s s sn n n n

i i i i

x y z w

x y z w

x y z w

x y z w

x y z w

n

n

n

Thus (IV.1) is holds. But we have 1

2x x x , has

the property i ix L x , for all x U . Hence

2 4

2 4 4

1

2

1(4 ( , , , ) ( ,2 , ,2 ))

2

(18 || || 2 || 2 || )2

(4 2 ) || ||2

(22 2 2 2 ) || ||2

s s

s s

s s s

x x

x x x x x x x x

x x

x

x

Now

2 4

2 4 4

(18 || || 2 || 2 || )2

1(4 2 ) || ||

2

(22 2 2 2 ) || ||2

s s

i i

i

s s

i i

i i

s s s

i

i

x x

x x

x

4 2 4

4 2 4 4

(18 || || 2 || 2 || )2

(4 2 ) || ||2

(22 2 2 2 ) || ||2

s s s

i

i

s s s

i

i

s s s s

i

i

x x

x

x

1

4 1 2 4

4 1 2 4 4

1

4 1

4 1

(18 || || 2 || 2 || )2

(4 2 ) || ||2

(22 2 2 2 ) || ||2

( )

( )

( )

s s s

i

s s s

i

s s s s

i

s

i

s

i

s

i

x x

x

x

x

x

x

for all x U .

Hence the (IV.3) holds either, 12sL for 1s if 0i and

1

1

2sL

for 1s if 1i .

Now from (IV.4), we prove the following cases for (i).

Case (i): 12sL for 1s if 0i .

1 01 1

1

1 1

1

1 1

11 1

(2 ,2 ) 8 ( , ) ( , )

2 18 2|| ||

1 2 2

2 18 2|| ||

1 2 2

2 2 18 2|| ||

2 2 2

2 18 2|| ||

2 2

s ss

s

s ss

s

s ss

s

s s

s

s

f x x f x x A x x

x

x

x

x

Case (ii): 1

1

2sL

for 1s if 1i .

1 1

11

1

1 1

1

1 1

1 1

(2 ,2 ) 8 ( , ) ( , )

1

18 22|| ||

1 21

2

2 18 2|| ||

2 1 2

2 2 18 2|| ||

2 2 2

2 18 2|| ||

2 2

sss

s

s ss

s

s ss

s

s s

s

s

f x x f x x A x x

x

x

x

x

In similar manner we can prove the following cases

4 12 sL for 1s if 0i and 4 1

1

2 sL

for 1s if 1i ,

and 4 12 sL for 1s if 0i and 4 1

1

2 sL

for 1s if

1i for (ii) and (iii) respectively. Hence the proof is

complete.

Theorem 4.4: Let 2:f U V be a mapping for which

there exist a function 4: (0, ]U with the condition

3

1lim ( , , , ) 0n n n n

i i i inni

x y z w

(IV.10)

with 2i if 0i and 1

2i if 1i such that the

functional inequality

( , , , ) ( , , , )F x y z w x y z w (IV.11)

for all , , ,x y z w U . If there exists 1L L i such that

the function

1

2x x x ,

has the property

3

i ix L x . (IV.12)

Page 15: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

24

Then there exists a unique 2-variable cubic mapping 2:C U V satisfying (I.8) and

1

(2 ,2 ) 2 ( , ) ( , )1

iLf x x f x x C x x x

L

(IV.4)

for all x U . The mapping (2 )kj x and ( , )C x x are

defined in (III.10) and (III.33) respectively for all x U .

Proof: Consider the set

2: , 0 0p p U V p

and introduce the generalized metric on ,

, ,

inf 0, ,

d g h d g h

K p x q x K x x U

It is easy to see that ,d is complete.

Define 2:T by

3

1, ,i i

i

Tp x x p x x

for all x U . Now for all ,p q ,

3 3 3

3 3

,

, , , ,

1 1 1, , , ,

1 1, , , ,

, , , ,

, .

i i i i i

i i i

i i i i

i i

d g h K

p x x q x x K x x U

p x x q x x K x x U

p x x q x x LK x x U

T p x x T q x x LK x x U

d Tp Tq LK

This gives , ,d Tp Tq Ld p q , for all ,p q , i.e., T is a

strictly contractive mapping of , with Lipschitz constant L .

From (III.36), we arrive

(2 ,2 ) ( )( , )

8 8

h x x xh x x

(IV.14)

for all x U . Using (IV.14) for the case 0i it reduces to

(2 ,2 )( , ) ( )

8

h x xh x x L x

for all x U ,

i.e., 1, ,d h Th L d h Th L L

Again replacing2

xx , in (IV.14), we get,

( , ) 8 ,2 2 2

x x xh x x h

(IV.15)

for all x U . Using (IV.14) for the case 1i it reduces to

( , ) 8 , ( )2 2

x xh x x h x

for all x U ,

i.e., 0, 1 , 1d h Th d h Th L

Now from the fixed point alternative in both cases, it

follows that there exists a fixed point C of T in such

that

1 1

3

1( , ) lim ( , ) 2 ( , )n n n n

i i i inni

C x x f x x f x x

(IV.16)

for all x U , since lim , 0n

nd T h C

.

To prove 2:C U V is cubic. Putting , , ,x y z w by

, , ,n n n n

i i i ix y z w in (IV.11) and divide by 3n

i . It follows

from (IV.1) that

3

3

, , ,, , , lim

, , ,lim 0

n n n n

i i i i

nni

n n n n

i i i i

nni

F x y z wC x y z w

x y z w

for all , , ,x y z w U , i.e., C satisfies (I.8).

According to the alternative fixed point, since C is the

unique fixed point of T in the set

: , ,p d f p C is the unique function such that

(2 ,2 ) 8 ( , ) ( , )f x x f x x A x x K x

for all x U and 0K . Again using the fixed point

alternative, we obtain

1

, ,1

d f C d f TfL

this implies

1

, ,1

iLd f C d f Tf

L

which yields

1

(2 ,2 ) 2 ( , ) ( , )1

iLf x x f x x C x x x

L

this completes the proof of the theorem.

The following Corollary is an immediate consequence of

Theorem 4.4 concerning the stability of (I.8).

Corollary 4.5: Let 2:F U V be a mapping and there

exists real numbers and s such that

( , , , )F x y z w

4 4 4 4

, 1 1;

3 3, ;

4 4

,

3 3 ;

4 4

s s s s

s s s s

s s s s s s s s

x y z w s or s

x y z w s or s

x y z w x y z w

s or s

(IV.17)

for all , , ,x y z w U , then there exists a unique 2- variable

cubic function 2:C U V such that

(2 ,2 ) 8 ( , ) ( , )f x x f x x A x x

Page 16: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

25

1 1

44 1 2

4

44 1 2 4

4

2 18 2

8 2

2 4 2

8 2

2 22 2 2 2

8 2

ss s

s

ss s

s

ss s s

s

x

x

x

(IV.18)

for all x U .

Proof: The proof of the corollary is similar tracing as that

of corollary 4.3.

Theorem 4.6: Let 2:f U V be a mapping for which

there exist a function 4: (0, ]U with (IV.1) and

(IV.10) where 2i if 0i and 1

2i if 1i such that

the functional inequality

( , , , ) ( , , , )F x y z w x y z w (IV.19)

for all , , ,x y z w U . If there exists 1L L i such that

the function

1

2x x x ,

has the (IV.3) and (IV.12), then there exists a unique 2-

variable additive mapping 2:A U V unique 2-variable

cubic mapping 2:C U V satisfying (I.8) and

11

( , ) ( , ) ( , )31

iLf x x A x x C x x x

L

(IV.20)

for all x U . The mapping (2 )kj x , ( , )A x x and ( , )C x x are

defined in (III.5), (III.10) and (III.33) respectively for

all x U .

Proof: By Theorems 4.1 and 4.4, there exists a unique 2-

variable additive function 2

1 :A U V and a unique 2-

variable cubic function 2

1 :C U V such that

1

1(2 ,2 ) 8 ( , ) ( , )1

iLf x x f x x A x x x

L

(IV.21)

and

1

1(2 ,2 ) 2 ( , ) ( , )1

iLf x x f x x C x x x

L

(IV.22)

for all x U . Now from (III.21) and (III.22), one can see

that

1 1

1

1

1 1( , ) ( , ) ( , )

6 6

(2 ,2 ) 8 ( , ) ( , )

6 6 6

(2 ,2 ) 2 ( , ) ( , )

6 6 6

f x x A x x C x x

f x x f x x A x x

f x x f x x C x x

1

1

1 1

1(2 ,2 ) 8 ( , ) ( , )

6

(2 ,2 ) 8 ( , ) ( , )

1

6 1 1

i i

f x x f x x A x x

f x x f x x A x x

L Lx x

L L

for all x U . Thus we obtain (IV.21) by defining

1

1( , ) ( , )

6A x x A x x

and

1

1( , ) ( , )

6C x x C x x , (2 )kj x , ( , )A x x

and ( , )C x x are defined in (III.10), (III.5) and (III.33) for

all x U .

The following corollary is the immediate consequence

of Theorem 4.6, using Corollaries 4.3 and 4.5 concerning

the stability of (I.8).

Corollary 4.7: Let 2:F U V be a mapping and there

exists real numbers and s such that

( , , , )F x y z w

4 4 4 4

, 3 3;

3 3, ;

4 4

,

3 3 ;

4 4

s s s s

s s s s

s s s s s s s s

x y z w s or s

x y z w s or s

x y z w x y z w

s or s

(IV.23)

for all , , ,x y z w U , then there exists a unique 2-variable

additive mapping 2:A U V unique 2-variable cubic

mapping 2:C U V such that

( , ) ( , ) ( , )f x x A x x C x x

1

2

4

4 4

2 4

4

4 2

18 2 1 1

3 2 2 7 8 2

4 2 1 1

3 2 2 7 8 2

22 2 2 2 1 1

3 2 2 7 8 2

s

s

s s

s

s

s s

s s

s

s s

x

x

x

(III.24)

for all x U .

V. CONCLUSION

The (I.8) is stable in Banach spaces via direct and fixed

point method in sprit of Hyers, Ulam, Rasssias.

REFERENCES

[1] J. Aczel and J. Dhombres, Functional Equations in Several

Variables, Cambridge Univ, Press, 1989.

[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.

[3] M. Arunkumar, V. Arasu, N. Balaji, Fuzzy Stability of a 2 Variable Quadratic Functional Equation, International

Page 17: Ulam - Hyers Stability of a 2- Variable AC - Mixed Type Functional Equation

Journal of Modern Mathematics Frontier Sept. 2012, Vol. 1 Iss. 3, PP. 10-26

26

Journal Mathematical Sciences and Engineering

Applications, Vol. 5 IV (July, 2011), 331-341.

[4] J.H. Bae and W.G. Park, A functional equation orginating from quadratic forms, J. Math. Anal. Appl. 326 (2007), 1142-1148.

[5] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.

[6] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.

[7] M. Eshaghi Gordji, H. Khodaie, Solution and stability of generalized mixed type cubic, quadratic and additive

functional equation in quasi- Banach spaces, arxiv: 0812. 2939v1 Math FA, 15 Dec 2008.

[8] M. Eshaghi Gordji, H. Khodaei, J.M. Rassias, Fixed point methods for the stability of general quadratic functional equation, Fixed Point Theory 12 (2011), 1, 71-82.

[9] D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci., U.S.A.,27 (1941) 222-224.

[10] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables,Birkhauser, Basel, 1998.

[11] K. W. Jun and H. M. Kim, On the stability of an n-dimensional quadratic and additive type functional equation,

Math. Ineq. Appl 9(1) (2006), 153-165.

[12] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.

[13] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.

[14] B.Margoils, J.B.Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull.Amer. Math. Soc. 126 74 (1968), 305-309.

[15] M.M. Pourpasha, J. M. Rassias, R. Saadati, S.M. Vaezpour, A fixed point approach to the stability of Pexider quadratic

functional equation with involution J. Inequal. Appl. 2010, Art. ID 839639, 18 pp.

[16] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) 126-130.

[17] J.M. Rassias, H.M. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasi-_-normed spaces J. Math. Anal. Appl. 356 (2009), 1, 302-309.

[18] J.M. Rassias, K.Ravi, M.Arunkumar and B.V.Senthil Kumar, Ulam Stability of Mixed type Cubic and Additive functional equation, Functional Ulam Notions (F.U.N) Nova Science Publishers, 2010, Chapter 13, 149 - 175.

[19] J.M. Rassias, E. Son, H.M. Kim, On the Hyers-Ulam stability of 3D and 4D mixed type mappings, Far East J. Math. Sci. 48 (2011), 1, 83-102.

[20] Th.M. Rassias, On the stability of the linear mapping in

Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297-300.

[21] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.

[22] K.Ravi and M.Arunkumar, Stability of a 3- variable Quadratic Functional Equation, Journal of Quality Measurement and Analysis, July 4 (1), 2008, 97-107.

[23] K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, 08, 36-47.

[24] K. Ravi, J.M. Rassias, M. Arunkumar, R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation, J. Inequal. Pure Appl. Math. 10 (2009), 4, Article 114, 29 pp.

[25] K. Ravi, J.M. Rassias, B.V. Senthil Kumar, A fixed point

approach to the generalized Hyers-Ulam stability of reciprocal difference and adjoint functional equations, Thai J. Math. 8 (2010), 3, 469-481.

[26] K. Ravi, J.M. Rassias, B.V. Senthil Kumar Generalized Hyers-Ulam stability of a 2-variable reciprocal functional

equation Bull. Math. Anal. Appl. 2 (2010), 2, 84-92.

[27] K. Ravi, J.M. Rassias, R. Kodandan, Generalized Ulam-Hyers stability of an AQ-functional equation in quasi-_-normed spaces, Math. AEterna 1 (2011), 3-4, 217-236.

[28] K. Ravi, J.M. Rassias, R. Murali, Orthogonal stability of a mixed type additive and quadratic functional equation, Math. AEterna 1 (2011), 3-4, 185-199.

[29] S.M. Jung, J.M. Rassias, A fixed point approach to the stability of a functional equation of the spiral of Theodorus, Fixed Point Theory Appl. 2008, Art. ID 945010, 7 pp.

[30] S.M. Ulam, Problems in Modern Mathematics, Science

Editions,Wiley, New York, 1964.

[31] T.Z. Xu, J.M. Rassias, W.X Xu, Generalized Ulam-Hyers stability of a general mixed AQCQ-functional equation in multi-Banach spaces: a fixed point approach, Eur. J. Pure Appl. Math. 3 (2010), no. 6, 1032- 1047.

[32] T.Z. Xu, J.M. Rassias, M.J. Rassias, W.X. Xu, A fixed point approach to the stability of quintic and sextic functional equations in quasi-_-normed spaces, J. Inequal. Appl. 2010, Art. ID 423231, 23 pp.

[33] T.Z. Xu, J.M Rassias, W.X. Xu, A fixed point approach to the stability of a general mixed AQCQ-functional equation in non-Archimedean normed spaces, Discrete Dyn. Nat. Soc. 2010, Art. ID 812545, 24 pp.