ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile...

56
Maria Ubiali University of Cambridge 08th April 2019 Grad Days 2019 PAST PRESENT AND FUTURE CHALLENGES IN THE DETERMINATION OF THE STRUCTURE OF THE PROTON LECTURE I

Transcript of ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile...

Page 1: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Maria Ubiali University of Cambridge

08th April 2019 Grad Days 2019

PAST PRESENT AND FUTURE CHALLENGES IN THE DETERMINATION OF THE STRUCTURE OF THE PROTON

LECTURE I

Page 2: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Scope of the lectures➡ Give an overview on our understanding on the structure of the proton: from Feynman parton model to modern QCD picture

➡ Introduce basic concepts and techniques behind the determination of the structure of the proton from experimental data

➡ Wealth of ingredients involved: perturbative QCD, experimental measurements, statistical and mathematical problems, higher order predictions, phenomenology tools, machine learning.

➡ Discuss PDF-related phenomenology at the Large Hadron Collider and beyond

➡ Discuss current frontiers and challenges

Disclaimer: these lectures are far from providing a complete picture of the topic. You can find complementary information in excellent lectures on PDFs from W. Giele, G. Salam, A. Martin, P. Nadolsky, S. Forte, D. Stump, W. Melnitchouk, D. Stump, A. Guffanti, J. Rojo ... at recent graduate schools

Page 3: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

References• G. Ridolfi “Notes on deep-inelastic scattering and the Parton model” • S. Forte lectures • Ellis, Stirling and Webber “QCD and collider physics” • G. Dissertori, I. Knowles, M. Schmelling “Quantum Chromo Dynamics” • J. Gao, L. Harland-Lang, J. Rojo - Phys.Rept. 742 (2018) 1-121 • S. Forte, G. Watt - Ann.Rev.Nucl.Part.Sci. 63 (2013) • S. Forte, Acta Phys.Polon. B41 (2010) 2859 • E. Perez, E. Rizvi, Rep.Prog.Phys. 76 (2013) 046201. • A. Accardi, et al., Eur. Phys. J. C76 (8) (2016) 471 • A. De Roeck, R. S. Thorne, Prog.Part.Nucl.Phys. 66 (2011) 727 • http://pdg.lbl.gov/2017/reviews/rpp2017-rev-structure-functions.pdf

List of references complemented by specific references during the lectures

Page 4: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Outline

• First lecture (Today)

• Second lecture (Tuesday)

• Experimental Data

• Disentangling proton’s components

• Statistics and Methodology

• Third lecture (Wednesday)

• Fits and methodology

• The NNPDF approach

• Fourth lecture (Thursday)

• New frontiers and challenges

• Motivation: the big picture

• Parton Model and QCD

• Collinear Factorisation

Page 5: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Standard Model of particle physics• Standard Model (SM) of particle physics one of the greatest triumph of Quantum

Field Theories in the past century • SM remarkably successful theory: no convincing deviations so far from its predictions

SU(3)c ⇥ SU(2)L ⇥ U(1)Y

SU(3)c ⇥ U(1)e.m.

Spontaneous EW Symmetry breaking

Quantum Chromo Dynamics

Page 6: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Some compelling questions

Higgs Boson

Hierarchy problem: Huge gap between EW scale (102 GeV) and Gravitational scale (1019 GeV)

Elementary or composite? Additional Higgs bosons?

Is the vacuum of the universe stable?

Degrassi et al, 2012

Page 7: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Dark Matter

Weakly-interacting massive particle?Sterile neutrino?Extremely light particle (axion)?Alternative explanations?

Interaction with SM?Self-interacting?

Degrassi et al, 2012

Some compelling questions

Higgs Boson

Hierarchy problem: Huge gap between EW scale (102 GeV) and Gravitational scale (1019 GeV)

Elementary or composite? Additional Higgs bosons?

Is the vacuum of the universe stable?

Page 8: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Why 3 families? Can we explain mass & mixings?

Origin of matter-antimatter asymmetry in the Universe?

Are neutrinos Majorana or Dirac fermions?

Quarks and leptons

Super-Kamiokande observation of neutrino oscillations, 2004

Dark Matter

Weakly-interacting massive particle?Sterile neutrino?Extremely light particle (axion)?Alternative explanations?

Interaction with SM?Self-interacting?

Higgs Boson

Hierarchy problem: Huge gap between EW scale (102 GeV) and Gravitational scale (1019 GeV)

Elementary or composite? Additional Higgs bosons?

Is the vacuum of the universe stable?

Some compelling questions

Page 9: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

• The Large Hadron Collider at CERN most powerful accelerator ever built • Extremely successful Run I (7-8 TeV) and great performance at Run II (13-14 TeV) • As luminosity increases, stronger probe on known processes (Higgs, Flavour

anomalies…) & larger mass reach

Higgs rediscovery at Run II

2027 +

2017

With LHC upgrade in ten yearsmass reach increase by ~2

A unique opportunity

Page 10: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Higgs rediscovery at Run II

2027 +

LHC at the forefront of the exploration of the highenergy regime and key to plan future colliders Precise predictions are the key not to miss this

unique opportunity!

With LHC upgrade in ten yearsmass reach increase by ~2

2017

• The Large Hadron Collider at CERN most powerful accelerator ever built • Extremely successful Run I (7-8 TeV) and great performance at Run II (13-14 TeV) • As luminosity increases, stronger probe on known processes (Higgs, Flavour

anomalies…) & larger mass reach

A unique opportunity

Page 11: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

A new precision era in particle physics

102 : EW SCALE

1019 : PLANK SCALEGeV

LHC

Direct detection:precision required to characterise NP

𝜦102 : EW SCALE

1019 : PLANK SCALEGeV

LHC

Indirect detection: precision essential to spot deviations from SMpredictions

𝜦

Page 12: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

A new precision era in particle physics• Is precision physics really possible/necessary at hadron colliders? At the LHC a paradigm shift took place: discovery ➜ discovery through precision •Theoretical predictions to catch up with precision of experimental data

ATLAS SM summary plot (2018)

Page 13: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

A new precision era in particle physics• Is precision physics really possible/necessary at hadron colliders? At the LHC a paradigm shift took place: discovery ➜ discovery through precision •Theoretical predictions to catch up with precision of experimental data

ATLAS SM summary plot (2018)

Page 14: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

• Hard scattering of partons or Partonic cross section (Perturbative QCD+EW)

• Parton Distribution Functions

• Parton Showering and Hadronization

• Multiple Parton Interaction, Underlying Events

The precision ingredients

�th = �̂[O(1) +O(↵s) +O(↵2s) + ...]⌦ f1 ⌦ f2 +O

✓⇤2

Q2

<latexit sha1_base64="PmdqSkLbCk8kscXu4a58YA3GCBU=">AAACgXicbZHbihQxEIbTvR7W8TSrl94ER2GGwSbduh4QYdEbLwR3wdldmPQ01Zn0dNj0gaRaGJp+D5/LO19GzJxkdbcg4eerKlL5K621ssjYL8/fu3Hz1u39O7279+4/eNg/eHRqq8YIORGVrsx5ClZqVcoJKtTyvDYSilTLs/Ti0yp/9l0aq6ryGy5rGRewKFWmBKBDSf8Ht2pRwKzlpqCYdx94Drhh05YL0PRrNwxH47+ag65zSOw1aBaNxkEQxJRXqAppaZaEl3REx3TXw7XMcMgzA6LlX9y4c5hFXXviLm7UIsdR0h+wgK2DsuCQhe9ehzTckZ0YkG0cJ/2ffF6JppAlCg3WTkNWY9yCQSW07Hq8sbIGcQELOXWyBDdV3K4d7OhzR+Y0q4w7JdI1vdzRQmHtskhdZQGY2/9zK3hdbtpg9jZuVVk3KEuxeShrNMWKrtZB58pIgXrpBAij3KxU5OBsQbe0njPhypevitMoCF8G7OTV4Ojj1o598oQ8JUMSkjfkiHwmx2RCBPntPfNeeIG/54985kebUt/b9jwm/4T//g+tUcAe</latexit>

Page 15: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Partonic cross sections

Gavin Salam lectures, Quy Nhon Vietnam 2018

Page 16: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Gavin Salam lectures, Quy Nhon Vietnam 2018

Partonic cross sections

Page 17: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Partonic cross sectionsSlide from Gavin Salam lectures Quy Nhon Vietnam 2018

Page 18: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Partonic cross sections• On previous page, we wrote the series in terms of powers of 𝛼S(MH/2) • But we are free to rewrite it in terms of 𝛼S(𝝻) for any choice of renormalisation scale 𝝻

Slide from Gavin Salam lectures Quy Nhon Vietnam 2018

Page 19: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Partonic cross sections• On previous page, we wrote the series in terms of powers of 𝛼S(MH/2) • But we are free to rewrite it in terms of 𝛼S(𝝻) for any choice of renormalisation scale 𝝻

Slide from Gavin Salam lectures Quy Nhon Vietnam 2018

Page 20: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Partonic cross sections• On previous page, we wrote the series in terms of powers of 𝛼S(MH/2) • But we are free to rewrite it in terms of 𝛼S(𝝻) for any choice of renormalisation scale 𝝻

Slide from Gavin Salam lectures Quy Nhon Vietnam 2018

Page 21: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Partonic cross sections• On previous page, we wrote the series in terms of powers of 𝛼S(MH/2) • But we are free to rewrite it in terms of 𝛼S(𝝻) for any choice of renormalisation scale 𝝻

Slide from Gavin Salam lectures Quy Nhon Vietnam 2018

Page 22: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Partonic cross sections Slide from Gavin Salam lectures Quy Nhon Vietnam 2018

Page 23: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Partonic cross sections

Scale dependence as the theory uncertainty or Missing Higher Order Uncertainty (MHOU)

Slide from Gavin Salam lectures Quy Nhon Vietnam 2018

Page 24: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

• LO: almost all processes • NLO: most processes (automated calculations) • NNLO: all 2 → 1, most 2→2 (explosion of calculations in the past few years) • N3LO: Higgs gluon fusion and Higgs via vector boson fusion

Partonic cross sections

Page 25: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

• Hard scattering of partons or Partonic cross section (Perturbative QCD+EW)

• Parton Distribution Functions

• Parton Showering and Hadronization

• Multiple Parton Interaction, Underlying Events

The precision ingredients

�th = �̂[O(1) +O(↵s) +O(↵2s) + ...]⌦ f1 ⌦ f2 +O

✓⇤2

Q2

<latexit sha1_base64="PmdqSkLbCk8kscXu4a58YA3GCBU=">AAACgXicbZHbihQxEIbTvR7W8TSrl94ER2GGwSbduh4QYdEbLwR3wdldmPQ01Zn0dNj0gaRaGJp+D5/LO19GzJxkdbcg4eerKlL5K621ssjYL8/fu3Hz1u39O7279+4/eNg/eHRqq8YIORGVrsx5ClZqVcoJKtTyvDYSilTLs/Ti0yp/9l0aq6ryGy5rGRewKFWmBKBDSf8Ht2pRwKzlpqCYdx94Drhh05YL0PRrNwxH47+ag65zSOw1aBaNxkEQxJRXqAppaZaEl3REx3TXw7XMcMgzA6LlX9y4c5hFXXviLm7UIsdR0h+wgK2DsuCQhe9ehzTckZ0YkG0cJ/2ffF6JppAlCg3WTkNWY9yCQSW07Hq8sbIGcQELOXWyBDdV3K4d7OhzR+Y0q4w7JdI1vdzRQmHtskhdZQGY2/9zK3hdbtpg9jZuVVk3KEuxeShrNMWKrtZB58pIgXrpBAij3KxU5OBsQbe0njPhypevitMoCF8G7OTV4Ojj1o598oQ8JUMSkjfkiHwmx2RCBPntPfNeeIG/54985kebUt/b9jwm/4T//g+tUcAe</latexit>

Page 26: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

43.9 pb

3.75 pb

1.38 pb

0.87 pb

0.51 pb

ggF (N2LO+N2LL)

VBF (N2LO)

WH (N2LO)

ZH (N2LO)

ttH(N1LO)

0 5 10 15 20

PDF+as

Scale

PDF uncertainties limiting factor in the accuracy of theoretical predictions

Yellow Report 3 (2013)

Higgs Production Channel % theo. uncertainty σ@13 TeV

PDF uncertainties

Higgs physics

Page 27: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

ggF (N3LO)

VBF (N2LO)

WH (N2LO)

ZH (N2LO)

ttH (N1LO)

0 5 10 15 20

PDF+as

Scale

Higgs Production Channel % theo. uncertainty

Reduced (still often dominant) PDF uncertainties

σ@13 TeV

48.5 pb

3.78 pb

1.37 pb

0.88 pb

0.51 pb

Yellow Report 4 (2016)

PDF uncertainties

Page 28: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Determination of SM parameters

ATLAS collaboration, EPJC 78 (2018) 110

PDF uncertainties

Page 29: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

New Physics

Beenakker et al. EPJC76 (2016)2, 53

PDF uncertainties are a limiting factor in the accuracy of theoretical predictions, both within SM and beyond

PDF uncertainties

Page 30: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Discrepancy between QCD calculations and CDF jet data (1995)

At that time there was no information on PDF uncertainties and the theoretical prediction strongly depends on gluon shape at x>0.1

Historia magistra vitae est

PDF uncertainties

Page 31: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Discrepancy between QCD calculations and CDF jet data (1995)

At that time there was no information on PDF uncertainties and the theoretical prediction strongly depends on gluon shape at x>0.1

Historia magistra vitae est

CTEQ re-performed the parton fit by including the jet data and the discrepancy was removed.

PDF uncertainties

Page 32: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Discrepancy between QCD calculations and CDF jet data (1995)

At that time there was no information on PDF uncertainties and the theoretical prediction strongly depends on gluon shape at x>0.1

Historia magistra vitae est

CTEQ re-performed the parton fit by including the jet data and the discrepancy was removed.

PDFs and new physics are very much related with each other (much more on part IV)

PDF uncertainties

Page 33: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

The parton model and QCD

Page 34: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Historic overview• 1955: Hofstadter et al observed first deviations in scattering of electron off proton

from simple point-like Mott scattering ➜ Finite radius of proton ~ 0.7 fm

Page 35: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Historic overview• 1964: Zweig and Gell-Mann independently postulated existence of three aces

(Zweig) or quarks (Gell-Mann) with fractional electric charge and spin–1/2 to explain proliferation of mesons and baryons in nucleon collision experiments. More of a mathematical model rather than particles! How could such objects be bound so tightly together?

Page 36: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Historic overview• 1967: First deep-inelastic scattering experiments at SLAC 20 GeV linear

accelerator gave first evidence of point-like elementary constituents which were later identified as quarks (Bjorken scaling)

Page 37: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Deep Inelastic Scattering

Page 38: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Deep Inelastic Scattering

Page 39: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Deep Inelastic Scattering

Page 40: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Deep Inelastic Scattering

Page 41: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Deep Inelastic Scattering

Page 42: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Deep Inelastic Scattering

Page 43: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Deep Inelastic Scattering

Page 44: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Deep Inelastic Scattering

Page 45: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Deep Inelastic ScatteringThe surprising results at SLAC was that F1,2 did not vanish as Q2 increased, rather they remained finite and constant and depended only on xB - Bjorken scaling (1969)

Such scaling demonstrated that the exchanged vector boson (photon) scatters off point-like objects that have no mass or scale associated. The lepton scatters off charged spin 1/2 constituents (partons) that carry a fraction x of proton momentum

Page 46: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

The Parton Model

Page 47: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

The Parton Model

Page 48: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

The Parton Model

Page 49: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

The Parton Model

Page 50: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

The Parton Model

Page 51: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Exercise I: Z contribution

F

�,Z3 (x) =

nfX

i=1

di[qi(x)� q̄i(x)]<latexit sha1_base64="PdoVdRm/hP+NEJxQeUo98h65UPI=">AAACI3icbVDLSsNAFJ34rPVVdekmWAQFLYkVFEEQBXGpYKvYxHAznbRDZybpzEQsIf/ixl9x40IRNy78F6ePha8DF86ccy9z7wkTRpV2nA9rbHxicmq6MFOcnZtfWCwtLddVnEpMajhmsbwOQRFGBalpqhm5TiQBHjJyFXZO+v7VHZGKxuJS9xLic2gJGlEM2khB6eA0qN5mXgs4h62bfON+89BTKQ8yeujmt5kIorwZ0EY3oMba9kKQWTcfPPygVHYqzgD2X+KOSBmNcB6U3rxmjFNOhMYMlGq4TqL9DKSmmJG86KWKJIA70CINQwVwovxscGNurxulaUexNCW0PVC/T2TAlerx0HRy0G312+uL/3mNVEf7fkZFkmoi8PCjKGW2ju1+YHaTSoI16xkCWFKzq43bIAFrE2vRhOD+Pvkvqe9U3GrFudgtHx2P4iigVbSGNpCL9tAROkPnqIYwekBP6AW9Wo/Ws/VmvQ9bx6zRzAr6AevzC03lpBA=</latexit>

• Show that, in the Parton model, considering also the contribution of a virtual Z boson and its interference with the photon one obtains:

F

�,Z2 (x) = x

nfX

i=1

ci[qi(x) + q̄i(x)]<latexit sha1_base64="j3tBct/hV1M6l6pbbjaKTd/UkQw=">AAACJHicbVDLSsNAFJ34tr6qLt0Ei1BRSlIFBSmIgrhUsCo2abiZTurgzCSdmUhLyMe48VfcuPCBCzd+i9Paha8DF86ccy9z7wkTRpV2nHdrZHRsfGJyarowMzs3v1BcXDpXcSoxqeOYxfIyBEUYFaSuqWbkMpEEeMjIRXhz2PcvbolUNBZnupcQn0Nb0Ihi0EYKintHQbWZeW3gHDav8nJ3vdb1VMqDjNbcvJmJIMpxQBudgBpvwwtBZp188PCDYsmpOAPYf4k7JCU0xElQfPFaMU45ERozUKrhOon2M5CaYkbygpcqkgC+gTZpGCqAE+VngyNze80oLTuKpSmh7YH6fSIDrlSPh6aTg75Wv72++J/XSHW062dUJKkmAn99FKXM1rHdT8xuUUmwZj1DAEtqdrXxNUjA2uRaMCG4v0/+S86rFXer4pxul/YPhnFMoRW0isrIRTtoHx2jE1RHGN2hB/SEnq1769F6td6+Wkes4cwy+gHr4xM7qaSO</latexit>

ci = e2i � 2eiVeZViZPZ + (V 2eZ +A2

eZ)(V2iZ +A2

iZ)P2Z

<latexit sha1_base64="CEeaJYPREtxG851qiPWaWSg91q8=">AAACMnicbZDLSgMxFIYz9VbrrerSzWARWoplZhR0I1Td6K6CvdDbkElP29DMhSQjlKHP5MYnEVzoQhG3PoRpZxbaeiDJx/+fQ5LfCRgV0jBetdTS8srqWno9s7G5tb2T3d2rCT/kBKrEZz5vOFgAox5UJZUMGgEH7DoM6s7oeurXH4AL6nv3chxAx8UDj/YpwVJJdvaW2PQCbNq1ji111OwImhO10+akYjeL+VjoWsXLBAr52I2lGRRUZ9eyszmjZMxKXwQzgRxKqmJnn9s9n4QueJIwLETLNALZiTCXlDCYZNqhgACTER5AS6GHXRCdaPbliX6klJ7e97lantRn6u+JCLtCjF1HdbpYDsW8NxX/81qh7J93IuoFoQSPxBf1Q6ZLX5/mp/coByLZWAEmnKq36mSIOSZSpZxRIZjzX16EmlUyT0rG3WmufJXEkUYH6BDlkYnOUBndoAqqIoIe0Qt6Rx/ak/amfWpfcWtKS2b20Z/Svn8A1UCopw==</latexit>

di = �2eiAeZAiZPZ + 4VeZAeZViZAiZP2Z

<latexit sha1_base64="LLNHtAKl9EP3T9ra/eOnYKW6d+c=">AAACIHicbVDLSsNAFJ3UV62vqks3wSIIYklqoW6EqhuXFeyDtjFMJjft0MmDmYlQQj/Fjb/ixoUiutOvcdpG0dYDczmccy937nEiRoU0jA8ts7C4tLySXc2trW9sbuW3dxoijDmBOglZyFsOFsBoAHVJJYNWxAH7DoOmM7gc+8074IKGwY0cRmD5uBdQjxIslWTnK65Nz45LYNNzO4H2SFXaHtXs9lG58S2o2pjIP+Ztyc4XjKIxgT5PzJQUUIqanX/vuiGJfQgkYViIjmlE0kowl5QwGOW6sYAIkwHuQUfRAPsgrGRy4Eg/UIqreyFXL5D6RP09kWBfiKHvqE4fy76Y9cbif14nlt6pldAgiiUEZLrIi5kuQ32clu5SDkSyoSKYcKr+qpM+5phIlWlOhWDOnjxPGqWieVI0rsuF6kUaRxbtoX10iExUQVV0hWqojgi6R4/oGb1oD9qT9qq9TVszWjqzi/5A+/wCPQ+jCQ==</latexit>

PZ =Q2

(Q2 +M2Z)(4s

2wc

2w)

<latexit sha1_base64="IfboP2lfOAEVPh+L6j9JSQcMBl0=">AAACEXicbVDLSsNAFJ3UV62vqEs3wSKkCCWJBd0IRTduhBbsg7ZpmEwn7dDJg5mJUkJ/wY2/4saFIm7dufNvnLRZaOuBuRzOuZc797gRJVwYxreSW1ldW9/Ibxa2tnd299T9gyYPY4ZwA4U0ZG0XckxJgBuCCIrbEcPQdyluuePr1G/dY8ZJGNyJSYRtHw4D4hEEhZQcVa85ncuexyBK6n1rmuiynt46nb5V0ivceehbKC2lqaMWjbIxg7ZMzIwUQYaao371BiGKfRwIRCHnXdOIhJ1AJgiieFroxRxHEI3hEHclDaCPuZ3MLppqJ1IZaF7I5AuENlN/TyTQ53ziu7LTh2LEF71U/M/rxsK7sBMSRLHAAZov8mKqiVBL49EGhGEk6EQSiBiRf9XQCMp4hAyxIEMwF09eJk2rbJ6VjXqlWL3K4siDI3AMdGCCc1AFN6AGGgCBR/AMXsGb8qS8KO/Kx7w1p2Qzh+APlM8fSe+bZg==</latexit>

Where

cw = cos ✓w

sw = sin ✓w<latexit sha1_base64="vQbk/Nd0HUQsY/kbSNTV2nxDKkA=">AAACEnicbZDLSsNAFIYn9VbrrerSzWBRdFMSFXQjFN24rGAv0IQwmU7boZNJmDmxlNBncOOruHGhiFtX7nwbp20Ebf1h4Oc753Dm/EEsuAbb/rJyC4tLyyv51cLa+sbmVnF7p66jRFFWo5GIVDMgmgkuWQ04CNaMFSNhIFgj6F+P6417pjSP5B0MY+aFpCt5h1MCBvnFY+oP8OEldmmkXegxIP7AdQs6o5rLH+oXS3bZngjPGyczJZSp6hc/3XZEk5BJoIJo3XLsGLyUKOBUsFHBTTSLCe2TLmsZK0nItJdOThrhA0PauBMp8yTgCf09kZJQ62EYmM6QQE/P1sbwv1orgc6Fl3IZJ8AknS7qJAJDhMf54DZXjIIYGkOo4uavmPaIIhRMigUTgjN78rypn5Sd07J9e1aqXGVx5NEe2kdHyEHnqIJuUBXVEEUP6Am9oFfr0Xq23qz3aWvOymZ20R9ZH99X55yo</latexit>

Page 52: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Exercise II: Paschos-Wolfenstein relation

R =�NC(⌫)� �NC(⌫̄)

�CC(⌫)� �CC(⌫̄)<latexit sha1_base64="ocRFikyeWlzkd3nUY07Kr1G8YSs=">AAACUnicbVLNS8MwHM3m15xTqx69BIewHRytCnoRhrt4kinuA9Yy0izdwpK0JKkwSv9GQbz4h3jxoGZbD+7jQeDx3u+R5CV+xKjStv2Zy29sbm3vFHaLe6X9g0Pr6Litwlhi0sIhC2XXR4owKkhLU81IN5IEcZ+Rjj9uTP3OK5GKhuJFTyLicTQUNKAYaSP1Lfp85wYS4cRVdMhRP3Elh4+NtOKKuHqxIvpIJsZJq+lCoLEu0FgM9K2yXbNngKvEyUgZZGj2rXd3EOKYE6ExQ0r1HDvSXoKkppiRtOjGikQIj9GQ9AwViBPlJbNKUnhulAEMQmmW0HCm/k8kiCs14b6Z5EiP1LI3Fdd5vVgHt15CRRRrIvB8oyBmUIdw2i8cUEmwZhNDEJbUnBXiETINa/MKRVOCs3zlVdK+rDlXNfvpuly/z+oogFNwBirAATegDh5AE7QABm/gC/yA39xH7jtvfsl8NJ/LMidgAfnSH0shtJc=</latexit>

R =1

2

✓1

2� sin ✓2w

<latexit sha1_base64="N/POhavrC2OaHehfe/YYG8R50eo=">AAACHXicbVA9SwNBEN2LXzF+RS1tDoMQC8NdFLQRgjaWUUwi5GLY28wli3t7x+6cEo78ERv/io2FIhY24r9x81Fo4oOBx3szzMzzY8E1Os63lZmbX1hcyi7nVlbX1jfym1t1HSWKQY1FIlI3PtUguIQachRwEyugoS+g4d+dD/3GPSjNI3mN/RhaIe1KHnBG0Ujt/NHVqRcoylJ3kJYHnoAAi7+EA09z6WEPkLYfbsue4t0e7rfzBafkjGDPEndCCmSCajv/6XUiloQgkQmqddN1YmylVCFnAgY5L9EQU3ZHu9A0VNIQdCsdfTew94zSsYNImZJoj9TfEykNte6HvukMKfb0tDcU//OaCQYnrZTLOEGQbLwoSISNkT2Myu5wBQxF3xDKFDe32qxHTTZoAs2ZENzpl2dJvVxyD0vO5VGhcjaJI0t2yC4pEpcckwq5IFVSI4w8kmfySt6sJ+vFerc+xq0ZazKzTf7A+voBx0WiVw==</latexit>

• Show that, in the Parton model, considering a (anti)neutrino-initiated DIS process on a deuteron target — assuming SU(2) isospin symmetry un(x)=dp(x) and dn(x) = up(x) — the ratio R

NC (mediated by Z) and CC (mediated by W+/-), assuming strange and anti-strange to be equal in the target, is independent of Parton Distribution Functions and can be used to determined the Weinberg angle 𝜃W

You may use (without deriving it) the result (and set c, cbar = 0)

Page 53: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Wrap-up

➡The structure of the proton has been a crucial ingredient to test and verify perturbative QCD and it is now key to the precision challenge that we are facing at the LHC

➡Today’s lecture

✓ Parametrisation of the proton in terms of structure functions

✓ Parton model picture

✓ (QCD - Improved parton model)

✓ (DGLAP evolution equations)

✓ (Collinear Factorisation Theorem)

Page 54: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Extra material

Page 55: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Deep Inelastic ScatteringSlide from F Olness lectures CTEQ school 2017

Page 56: ubiali grad part1 · 2019. 4. 8. · Dark Matter Weakly-interacting massive particle? Sterile neutrino? Extremely light particle (axion)? Alternative explanations? Interaction with

Partonic cross sections Slide from Gavin Salam lectures Quy Nhon Vietnam 2018