Types of cell membrane transport Factors affecting transport Cell membrane Chemical gradient...

65
Transport across cell membrane by Vani Gupta

Transcript of Types of cell membrane transport Factors affecting transport Cell membrane Chemical gradient...

  • Slide 1

Slide 2 Slide 3 Types of cell membrane transport Factors affecting transport Cell membrane Chemical gradient Electrical gradient Rate of transport Passive transport Diffusion Osmosis Facilitated diffusion Active transport Pumps phagocytosis Endocytosis/exocytosis Slide 4 Factors affecting transport: cell membrane The cell needs to absorb and excrete various compounds throughout its life. These compounds need to pass through the membrane which is made from a phospholipid bilayer The phospholipid bilayer is formed by phospholipid molecules bipolar molecule: the fatty acid side is hydrophobic, the phosphoric side is hydrophilic Slide 5 The membrane is permeable to: The membrane is impermeable to: H2O Gases (O2, CO2, N2) Lipids Small, neutral molecules (such as urea) Small, charged molecules large molecules such as amino acids, glucose and larger These compounds must go through channels present in the membrane in order to enter or exit the cell Slide 6 Factors affecting transport: Chemical gradient Compound moves from an area of high concentration to low concentration (or concentration gradient) All compounds permeable to the phospholipid bilayer will move this way Slide 7 Factors affecting transport: Electrical force Positive ions are attracted to negative ions and vice versa Ions are repelled by ions of the same charge (+ against + and against -) Slide 8 Movement across the cell membrane Both chemical and electrical forces (electrochemical force) drive the movement of compounds across the cell membrane Slide 9 Factors affecting the rate of transport The rate of transport will depend on: The concentration gradient The compound permeability to the membrane The type and number of charges present on the compound Slide 10 Crossing of cell membrane fats and oils can pass directly through inside cell outside cell waste lipid sat sugaraa H2OH2O Slide 11 Types of Transport Proteins Channel proteins are embedded in the cell membrane & have a pore for materials to cross Carrier proteins can change shape to move material from one side of the membrane to the other Slide 12 Cell membrane channels Need to make doors through membrane protein channels allow substances in & out specific channels allow specific material in & out H 2 O channel, salt channel, sugar channel, etc. inside cell outside cell Slide 13 Protein channels Proteins act as doors in the membrane channels to move specific molecules through cell membrane HIGH LOW Slide 14 Passive transport Compounds will move from area of high concentration toward area of lower concentration No ATP is needed for this type of transport Passive transport mainly TWO types A-Osmosis B-Diffusion-diffusion again two types a-simple diffusion- no energy needed b- facilitated diffusion- no energy needed -help through a protein channel Slide 15 Osmosis Each compound obeys the law of diffusion diffusion of water from HIGH concentration of water to LOW concentration of water across a semi-permeable membrane However, some compounds are unable to cross the cell membrane (glucose, electrolytes) Water can cross will enter or exit the cell depending its concentration gradient. Slide 16 Slide 17 Cells in Solutions Slide 18 PLASMOLYSIS Isotonic Solution NO NET MOVEMENT OF H 2 O (equal amounts entering & leaving) Hypotonic Solution CYTOLYSIS Hypertonic Solution PLASMOLYSIS Slide 19 Diffusion Simple diffusion- no energy needed Movement across higher to lower concentration gradient. Facilitated diffusion- Some compounds are unable to diffuse through the membrane. They will be allow to cross if the membrane has proteins that can bind these compounds and enable to cross toward the area of lower concentration Slide 20 Simple and facilitated diffusion inside cell outside cell lipid inside cell outside cell H2OH2O simple diffusionfacilitated diffusion H2OH2O protein channel Slide 21 Simple Diffusion Doesnt require energy Moves high to low concentration Example: Oxygen or water diffusing into a cell and carbon dioxide diffusing out. Slide 22 Simple Diffusion The rate of diffusion will be increased when there is : Concentration greater the difference in concentration,faster Concentration: the difference in between two areas (the gradient) causes diffusion. The greater the difference in concentration, the faster the diffusion. Molecular sizequickly. Molecular size: smaller substances diffuse more quickly. Large molecules (such as starches and proteins) simply cannot diffuse through. Shape of Ion/Moleculeprevent Shape of Ion/Molecule: a substances shape may prevent it from diffusing rapidly, where others may have a shape that aids their diffusion. Viscosity of the Mediumslowly Viscosity of the Medium: the lower the viscosity, the more slowly molecules can move through it. Slide 23 Movement of the Medium cytoplasmic steaming Movement of the Medium: currents will aid diffusion. Like the wind in air, cytoplasmic steaming (constant movement of the cytoplasm) will aid diffusion in the cell. Solubility:lipid easily, Solubility: lipid - soluble molecules will dissolve through the phospholipid bilayer easily, as will gases like CO 2 and O 2. Polaritywaternot protein ion Polarity: water will diffuse, but because of its polarity, it will not pass through the non-polar phospholipids. Instead, water passes though specialized protein ion channels Slide 24 Facilitated diffusion Doesnt require energy Uses transport proteins to move high to low concentration Examples: Glucose or amino acids moving from blood into a cell. Slide 25 Slide 26 Slide 27 Active Transport Active Transport - Pumps - phagocytosis - Endocytosis/exocytosis Slide 28 Active transport ATP (energy) is needed pump Moves materials from LOW to HIGH concentration AGAINST concentration gradient Slide 29 Example-1 ATPase pumps The most common: Na/K pumps reestablish membrane potential. Present in all cells. Two K + ions are exchanged with 3 Na + ions Slide 30 Slide 31 Example 3: In order to make ATP in the mitochondria, a proton pump (hydrogen ion) is required. Slide 32 Slide 33 Endocytosis Endocytosis Endocytosisin Endocytosis: (Endo means in). invagination Endocytosis is the taking in of molecules or particles by invagination of the cell membrane forming a vesicle. Integrity of plasma membrane is maintained. requires energy. This requires energy. Endocytosis is fallowed by exocytosis on the other side. Transcytosis, vesicle trafficking, or cytopempsis. Slide 34 Types of endocytosis 1. pinocytosis (cell drinking): small molecules are ingested and a vesicle is immediately formed. This is seen in small intestine cells (villi) large p 2. phagocytosis (cell eating): large particles, (visible with light microscope) are invaginated into the cell (ie: white blood cells eat bacteria Slide 35 Slide 36 Phagocytosis Used to engulf large particles such as food, bacteria, etc. into vesicles Called Cell Eating Slide 37 Capture of a Yeast Cell (yellow) by Membrane Extensions of an Immune System Cell (blue) Slide 38 Receptor-Mediated Endocytosis Some integral proteins have receptors on their surface to recognize & take in hormones, cholesterol, etc. Slide 39 Exocytosis out Exocytosis: (Exo means out.) reverse Exocytosis is the reverse of endocytosis. This is where a cell releases the contents of a vesicle outside of the cell. These contents may be wastes, proteins, hormones, or some other product for secretion. This also requires energy. Example: vesicles from the Golgi fuse with the plasma membrane and the proteins are released outside of the cell. Slide 40 Slide 41 Fusion of vesicle with plasma membrane is mediated by a number of accessory proteins- SNARE protein. Require stimulus and Ca. Exception- Renin from JG cells and PTH from parathyroid gland by decrease in intracellular Ca. Constitutive Secretion- Immunoglobulin from plasma Cells and collagen from fibroblast. Regulated- endocrine gland, pancreatic acinar cells Slide 42 Membrane Transport Proteins 1. Water Channels or Aquaporins (AQPs) 12 types Amount of water is regulated by No. of AQPs They are known as gated channel although they are pores. Two types a) Aquaporins- only water. b) Aquaglyceroporins- also for small molecules. Slide 43 2- Ion Channels- All cells specially on excitable cells Neurons and muscle cells Selective and non selective Gated voltage gated and extracellular agonist or antagonist gated ex acetylcholine gated cationic specific channel at motor end plate of skeletal muscle. Conductance- 1-2 picosimens and > 100 picosimens. Ex- Na, K, Ca, Cl, Anion, cation. Slide 44 3.Solute Carriers- > 40 types, > 300 transporters. three gps-1. Uniporters- single molecule across the membrane (GLUT ) 2. Symporters- Two or more molecules Ex- Na-k-cl Symporter (Kidney) Na - Glucose Cotransporter. 3. Antiporters- Two or more molecules in opposite directions Ex :Na- H antiporter ( PH regulation) 3Na- Ca, Cl- HCO3 Slide 45 4.ATP DEPENDENT TRANSPORTERS 1. ATPase Ion Transporters 1. P- Type- gate phosphorylted during transport. Na- K ATP ase. 2. V- Type- Vacuolar H- ATPase urine acidification on Vacules like endosomes and lysosomes. 2. ATP binding cassette (ABC) transporters 7 subgroups transport diverse group of ions ex- Cl, Cholesterol, bile acids, drugs, iron and organic anions. EX:- Cystic fibrosis transmembrane regulator. Multidrug Resistance Protein. organic Anions.. Slide 46 Molecular Motors: Kinesin- over the microtubule Dynein- retrogate transport Myosin- over the microfilaments.- 18 types a Slide 47 Q-1 all membrane processes, such as pumping and channelling of molecules are carried out by. a-lipid b-carbohydrate c-nucleic acid d-protein Slide 48 Q-2 Which of the following statement about membrane transport protein is incorrect a-carrier proteins are similar to enzymes in that they show saturation b-carrier protein can facilitate both active and passive transport c-channel protein can facilitate both active and passive transport d-the Na + /Glucose transport protein carries out secondary active transport. Slide 49 Q-3 Diffusion across the plasma membrane is more rapid if a substance is a-a protein b-hydrophilic c-high in its oil : water partition coefficient d-larger and globular in shape Slide 50 Q-4 the difference between simple diffusion and facilitated transport is that facilitated transport. a-is concentration dependent b-occurs across plasma membrane c-require membrane protein d-utilize a substance moving with its concentration gradient Slide 51 Q-5 Erythrocyte glucose transporter specifically transports glucose down its concentration gradient and exhibit hyperbolic saturation kinetics.This is an example of a-active mediated transport b-passive mediated transport c-non- mediated transport d-group translocation Slide 52 Q-6 which one of the following is a correct statement for Na-K ATPase. a-it gives out 3 Na-ions and takes in 2 K-ions b- it gives out 2 Na-ions and takes in 3 K-ions c- it gives out 3 Ca-ions and takes in 2 K-ions d-it gives out 3 Na-ions and takes in 2 Ca-ions Slide 53 Q7-which of the following effects of the steroid digitalis is observed after treatment of congestive heart failure. a-decrease in cytosolic sodium levels b-inhibition of Na-K ATPase c-decrease in the force of heart muscle contraction d-stimulation of the plasma membrane ion pump. Slide 54 Q8-you wish to design a new drug which will act as an ionophore to deliver Ca 2+ across the nerve cell membrane.This drug would most likely be a-hydrophobic on the outside and hydrophilic on inside b-insoluble in lipid c-soluble in proteins d-smaller than 0.001 nm in diameter Slide 55 Q9- the process by which a cell secretes macro- molecule by fusing a vesicle to the plasma membrane is called a-endocytosis b-exocytosis c-pinocytosis d-phagocytosis Slide 56 Q10- free fatty acids enter cell by a-passive diffusion b-active diffusion c- through carrier protein d Active transport Slide 57 Q-11 Aquaglyceroporins transport- a. Water only b. water and small molecules. c. Water and Glucose d. Water and salt. Slide 58 Q-12 Which of the fallowing is responsible for PH Regulation- a. Antiporters. b. Symporters c. Uniporters. d. Co-porters. Slide 59 Q-13 V type transporters are a. ATPase dependent. b. Symporters. c. Carrier Proteins. d. Receptor Proteins. Slide 60 Q-14.GLUT is an example of- a. Antiporters. b. Symporters c. Uniporters. d. Co-porters. Slide 61 Q-15 Presence of Ion channels are must on a. Excitable tissue. b. Non excitable tissue. c. Renal tissue d. Cardiac muscle. Slide 62 Q-16. Na- K ATPase transport Na- a. Towards Concentration gradient. b. Against Concentration gradient. c. Towards electro chemical gradient. d. Against electrochemical gradient. Slide 63 Q-17. Rennin secretion from JG cells is an example of- a.) Exocytosis b.) pincocytosis c.) Vacular movement. d.) Transcytosis. Slide 64 Q.- 18. PTH secretion fro parathyroid glands require- a.) low intracellular Ca. b.) high Intracellular Ca. c.) Low intracellular K. d.) high Intracellular K. Slide 65 Q-19. Transcytosis incudes- a. Endocytosis and phagocytosis. b. Endocytosis and pincocytosis. c. Endocytosis and exocytosis. d. Endocytosis only. Slide 66 Q-20. Transcytosis occurs at a). Epethelial Cells. b). Endocrine Cells. c). Nerve cells. d). None of the above.