Two$Years$of$Discoveries$from$the$ $All4Sky$Automated...

1
Two Years of Discoveries from the AllSky Automated Survey for Supernovae Thomas W.S. Holoien (Ohio State) and the ASASSN Team TWSH is supported by the DOE ComputaFonal Science Graduate Fellowship, grant number DEFG0297ER25308. Contact: [email protected] Presented at the 2015 DOE CSGF Annual Program Review in Arlington, VA, July 2015 IntroducFon About ASASSN Even in the modern era, only human eyes scan the enFre opFcal sky for the violent, variable, and transient events that shape our universe. The AllSky Automated Survey for SuperNovae (ASASSN or "Assassin") is changing this by monitoring the visible sky to 17 th magnitude every 23 days using mulFple telescopes in the northern and southern hemispheres. Our automated pipeline schedules observaFons, processes data and scans images for new potenFal candidates without human interacFon, requiring sophisFcated algorithms to avoid false posiFve detecFons. Having been in operaFon for two years, ASASSN is now generaFng new transient discoveries daily, and has discovered over 450 new cataclysmic variable stars, over 190 new supernovae, and two Fdal disrupFon events, including the closest ever discovered at opFcal wavelengths. ASASSN is finding nearby transients that would not be found by any other professional or amateur survey and the nearby nature of ASASSN discoveries allows for detailed followup across a wide wavelength coverage. Here we present details on the ASASSN survey and its data processing pipeline as well as informaFon on discoveries made by ASASSN in its first two years of operaFon. Discovery StaFsFcs The primary science goal of ASASSN is a complete and unbiased census of bright, nearby supernovae, a task that has never been a^empted by any previous project. Our early results with supernovae have been extremely encouraging, but ASASSN has also discovered many other types of bright transients. In just over two years of operaFon, ASASSN has found: 474 new cataclysmic variable (CV) stars, 41 Mdwarf flares with ΔV≥4, 15 blazar flares, 2 Fdal disrupFon events (TDEs), and 194 Supernovae (147 Type Ia, 37 Type II, 6 Type Ib/Ic, 1 SLSNI, 3 Untyped) Figures 2 and 3 below compare ASASSN supernova discoveries to those of other professional and amateur surveys since the ASASSN “Cassius” unit came online in May 2014. ASASSN is now discovering roughly half of all bright supernovae, and the ASASSN sample appears to be less biased in terms of host galaxy magnitude and distance from the host galaxy nucleus than other searches. ASASSN also finds most of the remaining bright supernovae, but is not the first to report them. Figure 3: Comparison of the number of bright (V<17 mag) SNe discovered by different searches during the first full year ASASSN was operaFonal in both hemispheres. The “All Amateurs” bar comprises all discoveries made by amateur astronomers. ASASSN discovered over half of all bright SNe during this Fme. Figure 4: The distribuFon of bright SNe as a funcFon of absolute host galaxy magnitude and the offset of the SN from the center of the host. The red do^ed horizontal line indicates the median offset for ASASSN SNe, while the blue dashed verFcal line indicates median host absolute magnitude for ASASSN SNe. Among searches for bright SNe, ASASSN appears to be the least biased, discovering SNe across the enFre parameter space (giant and dwarf galaxies, galaxy cores and outskirts). Notable Discoveries Below we highlight some of the most notable discoveries made by ASASSN in the last two years. ASASSN14ae and ASASSN14li (Holoien et al. 2014, Holoien et al. 2015) At redshios z=0.0436 and z=0.0206, these are the nearest TDE candidates ever discovered at opFcal wavelengths. Figure 5: Spectral Fme sequences of ASASSN14ae (leo) and ASASSN14li (right). The longlived blue conFnuum and broad emission lines are characterisFc of Fdal disrupFon events. ASASSN14lp (Shappee et al. 2015) This Type Ia supernova in NGC 4666 (d=15 Mpc) was the second brightest supernova of 2014. Figure 6: EarlyFme mulFwavelength light curves of ASASSN14lp with powerlaw fits. The supernova was discovered roughly two days aoer first light, indicated by the verFcal orange bar. References & Websites Works cited: Dong et al. 2015, arXiv: 1507.03010 Holoien et al. 2014, MNRAS, 445, 3263 Holoien et al. 2015, arXiv: 1507.01598 Shappee et al. 2015, arXiv: 1507.04257 For more informaFon, please see our websites: ASASSN Homepage ASASSN Supernovae TWSH Homepage ASASSN Data Pipeline With roughly 60 GB of raw data taken per night and thousands of possible transient sources in every image, the ASASSN pipeline requires automaFon and sophisFcated source detecFon algorithms to run with as li^le human interacFon as possible. The basics of the ASASSN data processing pipeline are summarized in the Figure below: ObservaFons are scheduled to maximize the discovery rate of transients using the properFes of recent observaFons and expected sky noise from the Sun and the Moon in a new image Data are downloaded from LCOGT as they are taken throughout the night. Photometry of automated targets (such as known CVs) is released through ASASSN “patrol” websites Transients confirmed by human scanners are announced on the ASASSN Transients site and through Astronomer’s Telegrams (ATels) Flagged transient sources are scanned by human eyes and followup confirmaFon images are requested for likely candidate sources Strong candidates are announced immediately The automated pipeline reduces new images, performs image subtracFon, and eliminates poorquality data in realFme Transient sources in images passing the quality cut are automaFcally detected and flagged for human scanning Fields with bad images are scheduled for observaFon ASASSN15lh (Dong et al. 2015) With a peak absolute uband magnitude of M=23.5, this is the most luminous supernova ever discovered. Figure 7: Absolute restframe uband light curve of ASASSN15lh compared to other superluminous supernovae. ASASSN15lh is a full magnitude more luminous than any other SLSN. Figure 1: Sky map showing recent fields observed by ASASSN as of July 21, 2015. Colors indicate the Fme since the field was last observed. The enFre visible sky is covered every 23 days. ASASSN currently consists of two units, one in each hemisphere, hosted by the Las Cumbres Observatory Global Telescope Network (LCOGT). Our northern hemisphere unit, “Brutus,” is deployed at the LCOGT Haleakala staFon, and our Southern hemisphere unit, “Cassius,” is deployed at the LCOGT Cerro Tololo staFon. Both units are composed of four 14cm telescopes on a common mount, with each camera having a roughly 20 square degree field of view. Together, these telescopes allow us to survey approximately 20,000 square degrees each night down to roughly 17 th magnitude in Vband, giving us full sky coverage every 23 nights, weather permitng. UlFmately, we hope to add an addiFonal unit in each hemisphere, allowing nightly fullsky observaFon. A map of our recent sky coverage is shown below.

Transcript of Two$Years$of$Discoveries$from$the$ $All4Sky$Automated...

Page 1: Two$Years$of$Discoveries$from$the$ $All4Sky$Automated ...assassin/APOW/csgf_poster_holoien.pdfTwo$Years$of$Discoveries$from$the$ $All4Sky$Automated$Survey$for$Supernovae$ $ Thomas$W.4S.$Holoien$(Ohio$State)$and$the$ASAS4SN$Team$

Two  Years  of  Discoveries  from  the    All-­‐Sky  Automated  Survey  for  Supernovae  

 

Thomas  W.-­‐S.  Holoien  (Ohio  State)  and  the  ASAS-­‐SN  Team    

TW-­‐SH  is  supported  by  the  DOE  ComputaFonal  Science  Graduate  Fellowship,  grant  number  DE-­‐FG02-­‐97ER25308.  Contact:  [email protected]­‐state.edu  

Presented  at  the  2015  DOE  CSGF  Annual  Program  Review  in  Arlington,  VA,  July  2015  

IntroducFon  

About  ASAS-­‐SN  

Even  in  the  modern  era,  only  human  eyes  scan  the  enFre  opFcal  sky  for  the  violent,  variable,  and  transient  events  that   shape   our   universe.   The  All-­‐Sky   Automated   Survey  for  SuperNovae  (ASAS-­‐SN  or  "Assassin")   is  changing  this  by  monitoring  the  visible  sky  to  17th  magnitude  every  2-­‐3  days   using   mulFple   telescopes   in   the   northern   and  southern   hemispheres.   Our   automated   pipeline  schedules  observaFons,  processes  data  and  scans  images  for  new  potenFal  candidates  without  human  interacFon,  requiring  sophisFcated  algorithms  to  avoid  false  posiFve  detecFons.   Having   been   in   operaFon   for   two   years,  ASAS-­‐SN   is   now   generaFng   new   transient   discoveries  daily,   and   has   discovered   over   450   new   cataclysmic  variable   stars,   over   190   new   supernovae,   and   two  Fdal  disrupFon   events,   including   the   closest   ever   discovered  at   opFcal   wavelengths.   ASAS-­‐SN   is   finding   nearby  transients   that   would   not   be   found   by   any   other  professional  or  amateur  survey  and  the  nearby  nature  of  ASAS-­‐SN  discoveries  allows  for  detailed  follow-­‐up  across  a  wide  wavelength  coverage.  Here  we  present  details  on  the   ASAS-­‐SN   survey   and   its   data   processing   pipeline   as  well   as   informaFon  on  discoveries  made  by  ASAS-­‐SN   in  its  first  two  years  of  operaFon.    

Discovery  StaFsFcs    The  primary  science  goal  of  ASAS-­‐SN  is  a  complete  and  unbiased  census  of  bright,  nearby  supernovae,  a  task  that  has  never  

been  a^empted  by  any  previous  project.  Our  early  results  with  supernovae  have  been  extremely  encouraging,  but  ASAS-­‐SN  has  also  discovered  many  other  types  of  bright  transients.  In  just  over  two  years  of  operaFon,  ASAS-­‐SN  has  found:    

•  474  new  cataclysmic  variable  (CV)  stars,  •  41  M-­‐dwarf  flares  with  ΔV≥4,  •  15  blazar  flares,  •  2  Fdal  disrupFon  events  (TDEs),  and  •  194  Supernovae  (147  Type  Ia,  37  Type  II,  6  Type  Ib/Ic,  1  SLSN-­‐I,  3  Untyped)  

 

Figures  2  and  3  below  compare  ASAS-­‐SN  supernova  discoveries  to  those  of  other  professional  and  amateur  surveys  since  the  ASAS-­‐SN  “Cassius”  unit  came  online  in  May  2014.  ASAS-­‐SN  is  now  discovering  roughly  half  of  all  bright  supernovae,  and  the  ASAS-­‐SN  sample  appears  to  be  less  biased  in  terms  of  host  galaxy  magnitude  and  distance  from  the  host  galaxy  nucleus  than  other  searches.  ASAS-­‐SN  also  finds  most  of  the  remaining  bright  supernovae,  but  is  not  the  first  to  report  them.  

Figure   3:   Comparison   of   the   number   of   bright   (V<17   mag)   SNe  discovered  by  different  searches  during  the  first  full  year  ASAS-­‐SN  was   operaFonal   in   both   hemispheres.   The   “All   Amateurs”   bar  comprises  all  discoveries  made  by  amateur  astronomers.  ASAS-­‐SN  discovered  over  half  of  all  bright  SNe  during  this  Fme.  

Figure  4:   The  distribuFon  of  bright   SNe  as   a   funcFon  of   absolute  host  galaxy  magnitude  and  the  offset  of  the  SN  from  the  center  of  the  host.  The  red  do^ed  horizontal  line  indicates  the  median  offset  for   ASAS-­‐SN   SNe,   while   the   blue   dashed   verFcal   line   indicates  median   host   absolute   magnitude   for   ASAS-­‐SN   SNe.   Among  searches   for  bright   SNe,  ASAS-­‐SN  appears   to  be   the   least   biased,  discovering   SNe   across   the   enFre   parameter   space   (giant   and  dwarf  galaxies,  galaxy  cores  and  outskirts).  

Notable  Discoveries  Below  we  highlight  some  of  the  most  notable  discoveries  made  by  ASAS-­‐SN  in  the  last  two  years.    

ASASSN-­‐14ae  and  ASASSN-­‐14li  (Holoien  et  al.  2014,  Holoien  et  al.  2015)  At  redshios  z=0.0436  and  z=0.0206,  these  are  the  nearest  TDE  candidates  ever  discovered  at  opFcal  wavelengths.  

Figure   5:   Spectral   Fme   sequences   of   ASASSN-­‐14ae   (leo)   and  ASASSN-­‐14li   (right).   The   long-­‐lived   blue   conFnuum   and   broad  emission  lines  are  characterisFc  of  Fdal  disrupFon  events.  

ASASSN-­‐14lp  (Shappee  et  al.  2015)  This  Type  Ia  supernova  in  NGC  4666  (d=15  Mpc)  was  the  second  brightest  supernova  of  2014.  

Figure   6:   Early-­‐Fme   mulFwavelength   light   curves   of   ASASSN-­‐14lp  with   power-­‐law   fits.   The   supernova   was   discovered   roughly   two  days  aoer  first  light,  indicated  by  the  verFcal  orange  bar.  

References  &  Websites  Works  cited:  •  Dong  et  al.  2015,  arXiv:  1507.03010  •  Holoien  et  al.  2014,  MNRAS,  445,  3263  •  Holoien  et  al.  2015,  arXiv:  1507.01598  •  Shappee  et  al.  2015,  arXiv:  1507.04257  

 

For  more  informaFon,  please  see  our  websites:  

ASAS-­‐SN  Homepage   ASAS-­‐SN  Supernovae   TW-­‐SH  Homepage  

ASAS-­‐SN  Data  Pipeline  With  roughly  60  GB  of  raw  data  taken  per  night  and  thousands  of  possible  transient  sources  in  every  image,  the  ASAS-­‐SN  pipeline   requires   automaFon   and   sophisFcated   source   detecFon   algorithms   to   run   with   as   li^le   human   interacFon   as  possible.  The  basics  of  the  ASAS-­‐SN  data  processing  pipeline  are  summarized  in  the  Figure  below:  

•  ObservaFons  are  scheduled  to  maximize  the  discovery  rate  of  transients  using  the  properFes  of  recent  observaFons  and  expected  sky  noise  from  the  Sun  and  the  Moon  in  a  new  image    

•  Data  are  downloaded  from  LCOGT  as  they  are  taken  throughout  the  night.  

•  Photometry  of  automated  targets  (such  as  known  CVs)  is  released  through  ASAS-­‐SN  “patrol”  websites    

•  Transients  confirmed  by  human  scanners  are  announced  on  the  ASAS-­‐SN  Transients  site  and  through  Astronomer’s  Telegrams  (ATels)  

•  Flagged  transient  sources  are  scanned  by  human  eyes  and  follow-­‐up  confirmaFon  images  are  requested  for  likely  candidate  sources    

•  Strong  candidates  are  announced  immediately  

•  The  automated  pipeline  reduces  new  images,  performs  image  subtracFon,  and  eliminates  poor-­‐quality  data  in  real-­‐Fme  

 

•  Transient  sources  in  images  passing  the  quality  cut  are  automaFcally  detected  and  flagged  for  human  scanning    

•  Fields  with  bad  images  are  scheduled  for  observaFon  

ASASSN-­‐15lh  (Dong  et  al.  2015)  With  a  peak  absolute  u-­‐band  magnitude  of  M=-­‐23.5,  this  is  the  most  luminous  supernova  ever  discovered.  

Figure   7:   Absolute   rest-­‐frame   u-­‐band   light   curve   of   ASASSN-­‐15lh  compared  to  other  superluminous  supernovae.  ASASSN-­‐15lh  is  a  full  magnitude  more  luminous  than  any  other  SLSN.  

Figure  1:  Sky  map  showing  recent  fields  observed  by  ASAS-­‐SN  as  of  July   21,   2015.   Colors   indicate   the   Fme   since   the   field   was   last  observed.  The  enFre  visible  sky  is  covered  every  2-­‐3  days.  

ASAS-­‐SN   currently   consists   of   two   units,   one   in   each  hemisphere,   hosted   by   the   Las   Cumbres   Observatory  Global   Telescope   Network   (LCOGT).   Our   northern  hemisphere   unit,   “Brutus,”   is   deployed   at   the   LCOGT  Haleakala   staFon,   and   our   Southern   hemisphere   unit,    “Cassius,”    is  deployed  at  the  LCOGT  Cerro  Tololo  staFon.  Both  units    are  composed  of  four  14-­‐cm  telescopes  on  a  common  mount,  with  each   camera  having  a   roughly  20  square  degree  field  of   view.   Together,   these   telescopes  allow  us  to  survey  approximately  20,000  square  degrees  each   night   down   to   roughly   17th   magnitude   in   V-­‐band,  giving   us   full   sky   coverage   every   2-­‐3   nights,   weather  permitng.  UlFmately,  we  hope  to  add  an  addiFonal  unit  in  each  hemisphere,  allowing  nightly  full-­‐sky  observaFon.    A  map  of  our  recent  sky  coverage  is  shown  below.