Two Way Slab Design (DRAFT)

download Two Way Slab Design (DRAFT)

of 72

Transcript of Two Way Slab Design (DRAFT)

  • 7/28/2019 Two Way Slab Design (DRAFT)

    1/72

    Two Way

    Slab

    Fc' 21 Mpa

    Fy 420 Mpa

    Stress Block depth () Coef. 0.850 0.85 Minimum 0 .65 Max 0.85

    cbalance 0.593

    a balance 0.504 *d

    a maxallowed by ACI (0.75

    a b) 0.378 *d =------------------------------------- 0.428

    Z=d-a/2=d(1-a/2) 0.811 *d

    Nc (Concrete Compressive Force) 0.321 f'c*d*b

    M 0.261 f'c*b*d

    Max RU by ACI =(0.9*M)*fc

    *b*d 4.925 units N, mm

    Max Moment Allowed in the

    section (Ru*b*d) 4.925 b*d Mpa

    max allowed as per ACI318 0.0161

    Slab Thickness (h)

    According to ACI 318-99 Chapter 9

    For a panel with beams

    between supports on all

    sides, the realtive stifness of

    beams in two perpendicular

    directions shall between .2

    and 5.0 m

    Column Section mm C 0.35 m

    Span in long Direction Ll 6.25 m

    Span in short Direction Ls 5 m

    Net Span in long Direction LLn' 5.9 m

    Net Span in short Direction Lsn' 4.65 m

    Ratio between net span in

    long Direction to net span in

    short direction ' 1.268817204Width of beam in long

    direction b beam s 25 cm no needWidth of beam in short

    direction b beam l 25 no needWidth of Slab in long

    Direction blslab ???:Width of Slab in short

    Direction bs slab ?????

    Thickness of Slab Assume 10 cm no need

    Thickness of beam assume 30 no needMoment of Inertia of beam in

    long Direction Ibl 56250 cm4 no needomen o ner a o eam n

    short Direction Ibs 56250 cm 4 no needomen o ner a o s a n

    long direction Isl 520.8333333Moment of Inertia of slab in

    short direction Iss 416.6666667

    units are kg, cm

    cb=d*612612+Fy becaus

    While ACI equation iscb = d* 600

    600+Fy because

  • 7/28/2019 Two Way Slab Design (DRAFT)

    2/72

    1

    Ratio of flextural stifness of

    beam section to flexural

    stifness of slab 1 in direction Ls 1 in direction L L 2Ratio of length of continous

    edges to total perimeter ofslab panel s 1 checkAverage for all sides m 1 check

    Iss=

    Isl=

    LL/Ls 1.25

    = 1

    1/ 2 =

    =ACI says no

    need 1.5625 Ok.

    ACI says no

    need

    = 0.154472727 m

    20 mm

    d=h-cover -5mm 129 mm

    Loads

    Dead Load DL = 3.75 KN /m2

    Live Load LL = 5 KN /m2

    W (Total Load )

    1.4*DL+1.7*LL

    = 13.75 kN/m2

    MomentsLong Span ML (W*Ls*LLn' 2)/8 299.1484375 KN.m

    1.25

    from ACI 318 para 7.7.1 Concrete Cover is

    LL*h12

    Ls*h12

    IssIsl

    Ib s X IssIsl Ib L

    1X L2 2XLI

    Ibs

    Ib L

    Assuming the same

    section of beam inboth diections

    0.2 1X L2 5

    2XLI

    h= LLn'(0.8+fy/1500) ACI eq. no 9-1136+5 '(m - 0.2)

    h= LLn'(0.8+fy/1500) ACI eq. no 9-1236+9'

    if 1/2 < 0.2 the provsions of ACI 9.5.3.2 shall apply

    if 0.2 < 1/2 < 2 ACI eq. no 9-11 shall apply . But h shall not taken less than 120 mmif 1/2 >2 ACI eq. no 9-12 shall apply . But h shall not taken less than 90 mm

    take it as

  • 7/28/2019 Two Way Slab Design (DRAFT)

    3/72

    Total Negative Moment (M

    neg.) 0.65*ML = -194.446484 KN.mTotal Positive Moment (M

    pos.) 0.35*ML = 104.7019531 KN.m

    Column Strip neg. M Fm*M neg.= -157.501652 KN.m

    Middle Strip neg. M

    M neg -Fm*M

    neg. = -36.944832 KN.m

    Column Strip pos. M Fm* M pos 84.80858203 KN.m

    Middle Strip pos. M

    M pos-Fm*M

    pos 19.89337109 KN.m

    Short Span Ms(W*LL*Lsn'

    ^2)/8 232.2729492 KN.m

    Total Negative Moment (M

    neg.) 0.65*Ms = -150.977417 KN.m

    Total Positive Moment (M

    pos.) 0.35*Ms = 81.29553223 KN.m

    Column Strip neg. M Fm''*M neg.= -101.909756 KN.m

    Middle Strip neg. M

    M neg-Fm*M

    neg = -49.0676605 KN.m

    Column Strip pos. M Fm'' * M pos 54.87448425 KN.m

    Middle Strip pos. M

    M pos-Fm*M

    pos= 26.42104797 KN.m

    Column Strip Coef. Long

    Direction

    Find Fm Ll/Ls 0.8

    From Table 1 Fm 0.81

    Column Strip Coef. Short

    Direction

    Ls/LL 1.25

    Find Fm'' 0.675

    Sample Caculation ---------------

    - Moments

    KN.m

    +Moments

    KN.m

    - Moments

    KN.m

    + Moments

    KN.m

    beam -133.876 72.087 -86.623 46.643

    Slab (half) -11.813 6.361 -7.643 4.116

    -36.945 19.893 -49.068 26.421

    2.50 1.25

    Column

    Strip

    Middle Strip

    Long Direction Short direction

    Kind of Strip

    m m

  • 7/28/2019 Two Way Slab Design (DRAFT)

    4/72

    1.25

    3.75 6.25

    5

    LsFig 2 Design Strip

    -14.78

    -13.08

    Km (Ru)= 0.62 units N , mm

    Check Ru max from Table 4.93 units N, mm

    2.50 m 3.75 m

    Mu (KN.m) -36.94 19.89 -49.07 26.42

    M= Mu/0.9 (KN.m) -41.05 22.10 -54.52 29.36d = h- cover -0.5rebar dia

    (mm) 129 129 129 129

    As(min)=0.0018*b h mm2 695 695 1043 1043

    Min No. of bars where S=2hUse

    931 501 1236

    Short Span

    Strip Width ( b) m

    Long Span

    666

    m

    m

    m

    m

    KN.m

    KN.m

    Mb d

    The Positive Moment ??????

    As= M*1000000 (mm2)Fy*Z

    a=0.1d is sutiable in such

    case and Z=0.95d

    On the long Span M= M/Strip width =

    On the short Span M= M/Strip width =

    Since Ru Actual is Ru mthickness 150 mm is ok

    The middle strip Negative Moment on the short span is normally considered the most crtitcal witregard to slab depth of flexture

    Calcualtion and selection of reiforcement for middle strip

  • 7/28/2019 Two Way Slab Design (DRAFT)

    5/72

    Short Span

    1.10 m 1.10 m

    Mu (KN.m) -11.81 6.36 -7.64 4.12

    M= Mu/0.9 (KN.m) -13.13 7.07 -8.49 4.57

    d = h- cover -0.5rebar dia

    (mm) 129 129 129 129

    As(min)=0.0018*b h mm2 306 306 306 306

    Min No. of bars where S=2hse

    assuming Width of all beams 300 mm

    298 160 193 104

    Net half Strip Width ( b) mLong Span

    As= M*1000000 (mm2)Fy*Z

    a=0.1d is sutiable in suchcase and Z=0.95d

    Calcualtion and selection of reiforcement for part of slab column strip

  • 7/28/2019 Two Way Slab Design (DRAFT)

    6/72

    Design the beams (B1)

  • 7/28/2019 Two Way Slab Design (DRAFT)

    7/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    8/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    9/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    10/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    11/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    12/72

    section 9.5

    e Es=2040000

    Fy =200000 Mpa

  • 7/28/2019 Two Way Slab Design (DRAFT)

    13/72

    154 mm

    IssIsl

  • 7/28/2019 Two Way Slab Design (DRAFT)

    14/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    15/72

    ax , the slab

    h

  • 7/28/2019 Two Way Slab Design (DRAFT)

    16/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    17/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    18/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    19/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    20/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    21/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    22/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    23/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    24/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    25/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    26/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    27/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    28/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    29/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    30/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    31/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    32/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    33/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    34/72

    Important Notes

    E Modulaus of Elasticty for all grades of Steel is the same = 2040 ton/cm2 = 200'000 Mpa

    Important Units

    From to X from to X from to X

    Ib (force ) Kg kg/cm2 Mpa 1/10 Kg.m KN.m 1/100Ton KN 10 kg/m2 Mpa Ib.ft N.m 1.4

    Kibs KN 4.45 psi (lbf/in2) Mpa 0.007 N.mm KN.m

    Kg KN 1/100 KN/m2 Mpa 1/1000 Kg.cm KN.m

    Ib (force ) N 4.5 Psf (lbf/ft2) pa 48

    Fc' MPa 21 22 25 28 30 35 40 45 50

    depth ()Coef. 0.85 0.85 0.85 0.85 0.84 0.80 0.76 0.73 0.69

    Force Stress Moment

    Constant

    0.65

    0.66

    0.67

    0.68

    0.69

    0.7

    0.71

    0.72

    0.73

    0.74

    0.75

    0.76

    0.77

    0.78

    0.79

    0.8

    0.81

    0.82

    0.83

    0.84

    0.85

    21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117 121 125 129 133 137 141 145 1

    WhitneyCoef.

    F'c

    Whitney Rectangualr Depth

  • 7/28/2019 Two Way Slab Design (DRAFT)

    35/72

    7844.523 7844.52

    1 2 3 4 5 6 7 8

    6 0.22 0.283 0.566 0.85 1.13 1.41 1.70 1.98 2.26

    8 0.39 0.503 1.006 1.51 2.01 2.51 3.02 3.52 4.0210 0.62 0.786 1.57 2.36 3.14 3.93 4.71 5.50 6.29

    13 1.04 1.328 2.66 3.98 5.31 6.64 7.97 9.30 10.62

    16 1.58 2.01 4.02 6.03 8.05 10.06 12.07 14.08 16.09

    19 2.23 2.84 5.67 8.51 11.35 14.18 17.02 19.86 22.69

    22 2.98 3.80 7.61 11.41 15.21 19.01 22.82 26.62 30.42

    25 3.85 4.91 9.82 14.73 19.64 24.55 29.46 34.38 39.29

    28 4.83 6.16 12.32 18.48 24.64 30.80 36.96 43.12 49.28

    32 6.31 8.05 16.09 24.14 32.18 40.23 48.27 56.32 64.37

    38 8.90 11.3 22.7 34.04 45.38 56.73 68.07 79.42 90.77

    1 2 3 4 5 6 7 8

    5 0.15 0.196 0.393 0.59 0.79 0.98 1.18 1.38 1.57

    7 0.30 0.385 0.770 1.16 1.54 1.93 2.31 2.70 3.08

    12 0.89 1.131 2.26 3.39 4.53 5.66 6.79 7.92 9.05

    14 1.21 1.540 3.08 4.62 6.16 7.70 9.24 10.78 12.32

    18 2.00 2.55 5.09 7.64 10.18 12.73 15.27 17.82 20.37

    20 2.47 3.14 6.29 9.43 12.57 15.71 18.86 22.00 25.14

    24 3.55 4.53 9.05 13.58 18.10 22.63 27.15 31.68 36.21

    26 4.17 5.31 10.62 15.93 21.25 26.56 31.87 37.18 42.49

    30 5.55 7.07 14.14 21.21 28.29 35.36 42.43 49.50 56.57

    34 7.13 9.08 18.17 27.25 36.33 45.41 54.50 63.58 72.66

    36 7.99 10.2 20.4 30.55 40.73 50.91 61.10 71.28 81.46

    Common shape Areas

    One Way Slab Bending Moments Coef (K)

    Multi Spans of 1 way slab or beams

    mmWeight

    Kg/m

    Area of Cross Section in cm2

    mmWeight

    Kg/m

    Area of Cross Section in cm2

    Column

    neg M=-1/16

    + M=1/14The Most critical(+)

    neg M =-1/10

    The most Critical ( -)

    Pos M =+1/16

    neg M =-1/11

    Pos M =+1/16

  • 7/28/2019 Two Way Slab Design (DRAFT)

    36/72

    Two Spans of 1way Slab or beams

    Shearing force coefOne Way Slab =K1

    Shearing force* =K1*w*Ln

    *note it is not Stress , it is a force

    Ll/Ls Fm

    0.5 0.90.555 0.88

    0.625 0.86

    0.67 0.85

    0.71 0.84

    0.83 0.8

    1 0.75

    1 0.75

    1.2 0.69

    1.4 0.63

    1.5 0.6

    1.6 0.57

    1.8 0.51

    2 0.45

    Table 1

    Shear Reinforcement

    Av=2*leg area

    the steel strength increase , the moment capacity of the section decreases?????? Why

    Design double reinforceed beam in separate sheet

    Coef. Of moments for short Span in column strip

    Coef. Of moments for long Span in column strip

    -M =-1/16

    + M=1/14 + M=1/14

    -M =-1/16-M =-1/9

    1/2 1/21.15/2 1/2

    2* area for 1 bar from the table

  • 7/28/2019 Two Way Slab Design (DRAFT)

    37/72

    Fc' 21 Mpa

    Fy 420 Mpa

    Stress

    Block

    depth ()Coef. 0.850 0.85Minimum0 .65 Max 0.85

    cbalance 0.593

    a balance 0.504 *d

    a maxallowed

    by ACI

    (0.75 a b) 0.378 *d---------------

    ---------------

    ------- 0.428

    Z=d-

    a/2=d(1-a/2) 0.811 *d

    Nc(Concrete

    Compressive

    Force) 0.321 f'c*d*b

    M 0.261 f'c*b*d

    Max RU

    by ACI

    =(0.9*M)*f

    c *b*d 4.925

    units N,

    mm

    Max

    Moment

    Allowed in

    the

    section(Ru*b*d) 4.925 b*d Mpa

    maxallowed

    as per

    ACI 318 0.0161

    As min 0

    max 0As max 0 cm2

    for T-Beams, Ru table and the follwing formulas not applied beacsue the

    section is T not recatngualr

    cb=d*612612+Fy because Es=2040000

    While ACI equation iscb = d* 600

    600+Fy because Fy =200000 Mpa

    As min(Rectangualr Section)=1.4*b*d

    As max (Rectangualr Section)

    As used is within the

  • 7/28/2019 Two Way Slab Design (DRAFT)

    38/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    39/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    40/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    41/72

    Concrete densityv

    kg/m3 Kn/m3 From to X

    ton/m3 KN/m3 in2 mm2 645

    ft2 m2 0.093

    55 60 65 70 100 120 130 150 200

    0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65

    Area

    Constant

    49 153 157 161 165 169 173 177 181 185 189 193 197

  • 7/28/2019 Two Way Slab Design (DRAFT)

    42/72

    9 10

    2.55 2.83

    4.53 5.037.07 7.86

    11.95 13.28

    18.10 20.11

    25.53 28.36

    34.23 38.03

    44.20 49.11

    55.44 61.60

    72.41 80.46

    102.11 113.46

    9 10

    1.77 1.96

    3.47 3.85

    10.18 11.31

    13.86 15.40

    22.91 25.46

    28.29 31.43

    40.73 45.26

    47.80 53.11

    63.64 70.71

    81.75 90.83

    91.65 101.83

    neg M =-1/11 neg M =-1/11

    Pos M =+1/16

    Continues

    - = * - = * Total

  • 7/28/2019 Two Way Slab Design (DRAFT)

    43/72

    1/2

    +M=W*Ln8

    -8

    -8

    Extend Total Asto 0.25 Spanthen bend 1/2

    s

  • 7/28/2019 Two Way Slab Design (DRAFT)

    44/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    45/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    46/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    47/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    48/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    49/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    50/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    51/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    52/72

  • 7/28/2019 Two Way Slab Design (DRAFT)

    53/72

    Load Distribution to Beams

    6.25

    Section C-

    C

    50 cm

    25 cm

    m

    m

    B

    B2 B

    c c

    b =

    h

  • 7/28/2019 Two Way Slab Design (DRAFT)

    54/72

    50

    25

    Fc' 21 Mpa

    Fy 420 Mpa

    concrete Density 25

    Stress Block depth

    () Coef. 0.850 0.85Minimum

    0 .65 Max 0.85

    Column Section mm C 0.35 m

    Span in long Direction Ll 6.25 m

    Span in short

    Direction Ls 5 m

    Net Span in long

    Direction LLn' 5.9 m

    Net Span in short

    Direction Lsn' 4.65 m

    h' 50 cm

    b' 25 cm

    Concrete cover 5 cm

    d'= 45 cm

    Load Calculations

    Wufrom slab to B1

    Slab Load 10.4 KN/m

    Wufrom slab to B1 16.10388 KN/mif concrete Density 25

    B1 Self weight

    3.13 KN/m

    Ultimate self

    weight(B1) 4.38 KN/m

    Ultimate Total Load

    (B1) 20.48 KN/m

    The edge beams will be designed as a rectangualr section beam , while all interior ones desinged as T -Beams

    B1

    B2

    c

    c

    Short Beam design (B1) as Rectangualr Section

    KN/m3

    for the purpose of load calcualtions, dimensions of beamsection will be assumed as follwing:

    d'= h'-concrete cover

    =0.333*Slab Load*short Beam Span

    try to link this value to the slab Load calcs based on selecting1way or 2 way slab , if not possible you can enter manually

    = h*b*concrete density

    KN/m3

    Section C-Ccm

    cm

    (S 1)

    Edge Slab

  • 7/28/2019 Two Way Slab Design (DRAFT)

    55/72

    M(-ve)

    Km (neg) 1/10

    M(-ve) -44.28 KN.m

    Mu(-ve) KN.m

    Mu(-ve) -49.20051 KN.m

    M(+ve)

    Km (neg) 1/14

    M(+ve) 31.63 KN.m

    Mu(+ve) KN.m

    Mu(+ve) 35.143221 KN.m

    Max RU by ACI

    =(0.9*M)*fc *b*d 4.925 b*d

    units N,

    mm

    therfore

    44280458.28 4.925 b*dd

    d 0 *1/ b for check with Page 24 of the red book

    Min total Thickness b (cm) h (cm)

    20 0

    25 0

    30 0

    35 0

    40 0

    0.3780523 *d

    a max 17.012355 cmZ=d(1-a/2) 0.8109738 *d

    Z= 36.493823 cm

    Moment Reinforcement

    3.2099698 cm2

    2.2928356 cm2

    As min 3.75 cm2

    max 0.0160672As max 18.075627 cm2

    =- Km(neg)*W*Lsn

    From the ACI 318 ---------- the Moment Coef; Km as the follwing

    =M(-ve)/0.90

    =M(+ve)/0.90

    =Km(pos)*W*Lsn

    since neg Moment is higher than positive one, -M will beused for reinforcement clacualtions

    Mu(-ve)=Ru*b*d

    (M/Ru)b

    Lsn/??

    (N.mm)

    a max allowed byACI (0.75 a b)

    =As*fy0.85*f'c*b

    As(-)= (-M)Fy*Z

    As(+)= +MFy*Z

    use 2 dia 16 at the top the botom

    As min(Rectangualr Section) =1.4*b*dfy

    As max (Rectangualr Section) = max*b*d

    As used is within the limit

    *

  • 7/28/2019 Two Way Slab Design (DRAFT)

    56/72

    3.0211481 cm 17.01 cm OK

    Shear Reinforcement

    K1 1/2

    Vu(Force)= 47.61 KN

    47.61 KN

    0.45 m2.325 m

    47.61 KN

    Shear force at the

    critical Section (Vuc)

    Vuc 38.40 KN

    Concrete shear strength 87.64 KN

    The shear Force must

    Carried by Stirrups

    Vst 64645.56 N

    64.64556 KN

    The Clear Spacing of bars in layer must not be less than nominal bar Dia or 4/3 of aggreragtesize or 2.5 cm

    ac ua = s y

    0.85*f'c*bless than

    according to ACI code the critical section for shear is at a distance equal to distance (d) from support .Shear force at the supporting point =K1*w*Ln

    Shear force =Critical shear forceX X-x''

    The concrete shear strength according to the ACI-99=0.17*(F'c)*b*d

    4 16

    8@ 25 cm

    Vst=Av*Fy*d*0.85s

    for shear , assume dia 8mm U stirrups @ 25 cm will be enough ,

    = Vuc-Concrete shear Strength

  • 7/28/2019 Two Way Slab Design (DRAFT)

    57/72

    D (Long span/short span ) 1.61

    Wfrom slab to B2 19.154295 KN/MBeam Self

    weight(Ultimate ) 4.38 KN/M

    Total Ultimate load 23.53 KN/M

    M(-)

    M ultimate (-)

    M(+)

    M(-ve)

    Km (neg) 1/10

    M(-ve) -81.91 KN.m

    Mu(-ve) KN.m

    Mu(-ve) -91.00609 KN.m

    M(+ve)

    Km (neg) 1/14

    M(+ve) 58.50 KN.m

    Mu(+ve) KN.m

    Mu(+ve) 65.004347 KN.m

    Moment Reinforcement

    5.9374749 cm2

    4.2410535 cm2

    As min 3.75 cm2

    max 0.0160672As max 18.075627 cm2

    5.5882117 cm 17.01 cm OK

    3 16Reinforcment Details of B1

    Long Beam design (B2)

    WB2=(0.333*Slab Load*Slab Short Span*(1.5- 0.5 )D

    =- Km(neg)*W*LLn

    From the ACI 318 ---------- the Moment Coef; Km as the follwing

    =M(-ve)/0.90

    =M(+ve)/0.90

    =Km os *W*Lsn

    since neg Moment is higher than positive one, -M will beused for reinforcement clacualtions

    As(-)= (-M)Fy*Z

    As(+)= +MFy*Z

    use 4 dia 16 at the top 3 @ the botom

    As min(Rectangualr Section) =1.4*b*dfy

    As max (Rectangualr Section) = max*b*d

    As used is within the limit

    The Clear Spacing of bars in layer must not be less than nominal bar Dia or 4/3 of aggreragtesize or 2.5 cm

    a actual =As*fy0.85*f'c*b

    less than

  • 7/28/2019 Two Way Slab Design (DRAFT)

    58/72

    Shear Reinforcement

    K1 1/2

    Vu(Force)= 69.41 KN

    69.41 KN

    0.45 m

    2.95 m

    69.41 KN

    Shear force at the

    critical Section (Vuc)

    Vuc 58.82 KN

    Concrete shear strength 87.64 KN

    The shear Force must

    Carried by Stirrups

    Vst 64.65 KN

    according to ACI code the critical section for shear is at a distance equal to distance (

    d) from support .Shear force at the supporting point =K1*w*Ln

    Shear force =Critical shear forceX X-x''

    The concrete shear strength according to the ACI-99=0.17*(F'c)*b*d

    4 16

    3 16Reinforcment Details of B1

    8@ 25 cm

    Vst=Av*Fy*d*0.85s

    for shear reinforcement , assume dia 8mm U stirrups @ 25 cm will beenough , Av =1.006 cm2

    = Vuc-Concrete shear Strength

  • 7/28/2019 Two Way Slab Design (DRAFT)

    59/72

    4

    5

    6 6

    0

    4 m 3 m

    13

    50

    20 6

    13

    50

    4

    20

    Column Section mm C 0.35 m

    Span in long Direction Ll 6.25 m

    Span in short

    Direction Ls 5 m

    Net Span in long

    Direction LLn' 5.9 m

    Net Span in short

    Direction Lsn' 5.8 m

    Slab thickness 13 cm

    calcualtionFlange width for short beam

    228 cm

    595 cm

    145 cm

    145 cm

    assume total depth (t)= 50 cm

    m

    m

    B

    B2 B4

    c c

    (S 2)intenal Slab

    (S 3)Edge Slab

    (S1)Edge Slab

    Distribution of loads from slab to beams

    B3

    m m

    m

    m

    m

    m

    a

    a

    section a-a

    es gn o n erna eams , as eams

    for Symitrical monolithicaly cast T-Beams , the ACI code 318, section.. Limits theflange width not to exceed 1/4 the span of the beam and the effective overhangingslab width on each side of the web not to exceed.1-8* slab thickness

    2- 1/2 clear distance to the next webTherefore width of flange must be the smallest value of

    2*8*slab thickness+b web

    cm

    cm

    half clear distance to the next web

    Span/4

    The flange width will be

    cm

    (S 4)Edge Slab

    (S 5)edge Slab

    bb

    section b-b

    cm

    cm

  • 7/28/2019 Two Way Slab Design (DRAFT)

    60/72

    43.2 cm

    13 cm

    38.88 cm

    36.7 cm

    Take the larger 38.88 cm

    Load Calculations

    Slab Load 10.4 KN/mWufrom (Slab to B3)

    Wufrom S2 to B3 20.08656 KN/m

    Wufrom S4 to B3 20.08656 KN/m

    if concrete Density 25B1 Self weight

    2.50 KN/m

    Ultimate self

    weight(B1) 3.50 KN/m

    Ultimate Total Load

    (B1) 43.67 KN/m

    M(-ve)

    Km (neg) 1/8

    M(-ve) -183.65 KN.m

    Mu(-ve) KN.m

    Mu(-ve) -204.0505 KN.m

    M(+ve)

    Km (neg) 1/14

    M(+ve) 104.94 KN.m

    Mu(+ve) KN.m

    Mu(+ve) 116.6003 KN.m

    12.49575 cm2

    As (+) 7.140426 cm2

    3364.725 KN

    524.8213 KN

    Nc> Nt OK

    d= h-cover- Stirrups- .5main steel

    The initial value of arm should be obtained from the follwing two equations which ever giveslarger.

    assume a = thickness of flange(slab thickness)

    Z=0.9*d or

    Z=d- a/2

    =0.333*Slab Load*short Beam S an

    = h*b*concrete densityKN/m3

    =- Km(neg)*W*Lsn

    From the ACI 318 ---------- the Moment Coef; Km as the follwing

    =M(-ve)/0.90

    =M(+ve)/0.90

    =Km(pos)*W*Lsn

    since neg Moment is higher than positive one, -M will beconsidered for reinforcement clacualtions

    Short Beam design (B3) as T-beam

    First Trial

    As(-)= (-M)Fy*Z

    Nc = 0.85*F'c*a*bflange

    Nt = As*Fy

    If Nc > Nt , the beam can be desinged as rectangualr

  • 7/28/2019 Two Way Slab Design (DRAFT)

    61/72

    2.027707 cm

    Assume a = 1.927707

    Z=d-a/2 42.23615 cm

    As 11.50281 cm2

    Check a for this As 1.866583 cm

    a is close to assumed one

    Shear Reinforcem (B3)

    K1 1/2

    Vu(Force)= 126.65 KN

    126.65 KN

    0.432 m

    2.9 m

    126.65 KN

    Shear force at the

    critical Section (Vuc)

    Vuc 107.79 KN

    Concrete shear strength 67.31 KN

    The shear Force must

    Carried by Stirrups 40.48 KN

    Vst 62.06 KN

    Vst > Required OK

    Far from assumption , 2nd trial is required

    a =As*fy0.85*f'c*b

    Second Trial

    use rebards --------------

    according to ACI code the critical section for shear is at a distance equal to distance (d) from support .Shear force at the supporting point =K1*w*Ln

    Shear force =Critical shear forceX X-x''

    The concrete shear strength according to the ACI-99=0.17*(F'c)*b*d

    Vst=Av*Fy*d*0.85s

    for shear , assume dia 8mm U stirrups @ 25 cm will be enough ,

    Vuc-Concrete shear Strength =

  • 7/28/2019 Two Way Slab Design (DRAFT)

    62/72

    calcualtionFlange width for long T beam228 cm

    440 cm

    147.5 cm

    147.5 cm

    assume total depth (t)= 50 cm

    43.2 cm

    13 cm

    38.88 cm

    36.7 cm

    Take the larger 38.88 cm

    D (Long span/short span ) S2 1.03

    Wfrom S2 to B4 20.424125 KN/M

    D (Long span/short span ) S3 4

    Wfrom S3 to B4 14.2857 KN/M

    Beam Self weight(Ultimate )

    3.50

    Total Ultimate load 38.21 KN/M

    M(-ve)

    Km (neg) 1/10M(-ve) -133.01 KN.m

    Mu(-ve) KN.m

    Mu(-ve) -147.7871 KN.m

    M(+ve)

    Km (neg) 1/14

    M(+ve) 95.01 KN.m

    Mu(+ve) KN.m

    Mu(+ve) 105.56222 KN.m

    Long Beam design (B4) as T-beam

    Long Beam design (B4)

    WB4=(0.333*Slab Load*Slab Short Span*(1.5- 0.5 )D

    =- Km(neg)*W*LLn

    From the ACI 318 ---------- the Moment Coef; Km as the follwing

    =M -ve /0.90

    =M(+ve)/0.90

    =Km os *W*Lsn

    since neg Moment is higher than positive one, -M will beused for reinforcement clacualtions

    = h*b*concrete density

    KN/mB4 self wt = =

    2*8*slab thickness+b web

    half clear distance to the next web

    Span/4

    The flange width will be

    d= h-cover- Stirrups- .5main steel

    The initial value of arm should be obtained from the follwing two equations which ever giveslarger.

    assume a = thickness of flange(slab thickness)

    Z=0.9*d or

    Z=d- a/2

    Load Calculations

  • 7/28/2019 Two Way Slab Design (DRAFT)

    63/72

    Moment Reinforcement

    9.050259 cm2

    As (+) 6.464471 cm2

    3422.738 KN

    380.1109 KN

    Nc> Nt OK

    1.44371 cm

    Assume a = 1.34371

    Z=d-a/2 42.52814 cm

    As 7.44652 cm2

    Check a for this As #DIV/0! cm

    a is close to assumed one

    Shear Reinforcement

    K1 1/2

    Vu(Force)= 112.72 KN

    112.72 KN

    0.432 m

    2.95 m

    112.72 KN

    Far from assumption , 2nd trial is required

    use ------------ at the top and ---------@ the botom

    The Clear Spacing of bars in layer must not be less than nominal bar Dia or 4/3 of aggreragtesize or 2.5 cm

    according to ACI code the critical section for shear is at a distance equal to distance (d) from support .Shear force at the supporting point =K1*w*LLn

    First Trial

    As(-)= (-M)Fy*Z

    Nc = 0.85*F'c*a*bflange

    Nt = As*Fy

    If Nc > Nt , the beam can be desinged as rectangualrsection beam with Flange width

    a =As*fy0.85*f'c*b

    Second Trial

  • 7/28/2019 Two Way Slab Design (DRAFT)

    64/72

    Shear force at the

    critical Section (Vuc)

    Vuc 96.21 KN

    Concrete shear strength 67.31 KN

    The shear Force must

    Carried by Stirrups 28.90

    Vst 71.83 KN

    Vst > Required OK

    Shear force =Critical shear forceX X-x''

    The concrete shear strength according to the ACI-99=0.17*(F'c)*b*d

    4 16

    3 16Reinforcment Details of B 1

    8@ 25 cm

    Vst=Av*Fy*d*0.85s

    for shear , assume dia 8mm U stirrups @ 25 cm will be enough , Av=1.006 cm2

    = Vuc-Concrete shear Strength

  • 7/28/2019 Two Way Slab Design (DRAFT)

    65/72

    >