Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows

8
Missouri University of Science and Technology Missouri University of Science and Technology Scholars' Mine Scholars' Mine Symposia on Turbulence in Liquids Chemical and Biochemical Engineering 01 Sep 1969 Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows N. E. Chatterton R. D. Lewis E. W. George Follow this and additional works at: https://scholarsmine.mst.edu/sotil Part of the Chemical Engineering Commons Recommended Citation Recommended Citation Chatterton, N. E.; Lewis, R. D.; and George, E. W., "Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows" (1969). Symposia on Turbulence in Liquids. 42. https://scholarsmine.mst.edu/sotil/42 This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Symposia on Turbulence in Liquids by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected].

Transcript of Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows

Page 1: Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows

Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Symposia on Turbulence in Liquids Chemical and Biochemical Engineering

01 Sep 1969

Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows

N. E. Chatterton

R. D. Lewis

E. W. George

Follow this and additional works at: https://scholarsmine.mst.edu/sotil

Part of the Chemical Engineering Commons

Recommended Citation Recommended Citation Chatterton, N. E.; Lewis, R. D.; and George, E. W., "Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows" (1969). Symposia on Turbulence in Liquids. 42. https://scholarsmine.mst.edu/sotil/42

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Symposia on Turbulence in Liquids by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected].

Page 2: Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows

TWO-DIMENSIONAL LASER-DOPPLER VELDCIMETKY

IN TURBULENT FIDWS*

N. E. C h a tte r to n , R. D. L ew is , and E. W. George Brown E n g in ee r in g Company, In c .H u n ts v i l le , Alabama

ABSTRACT

L o ca liz ed measurement o f the v e lo c i t y o f flow In f lu id s may be accom plished

by d e te c t in g the D opp ler s h i f t In frequ ency from coh eren t, monochromatic l ig h t

s c a tte red from m icrom eter s iz e d contam inant p a r t ic le s w ith in the f lo w . The

v e r s a t i l i t y o f a p p lic a t io n s o f th is te ch n iqu e , f i r s t used s e v e r a l y ea rs ago,

has been expanded by recen t re sea rch . The b a s ic geom etry o f measurement, in

which the s c a t te r e d energy is recombined w ith l ig h t en ergy a t the o r ig in a l

frequency on the fa c e o f the photocathode o f a pho toimil t i p l i e r tube, can be

rearranged in many a l t e r n a t iv e c o n fig u ra t io n s to meet the needs o f the e x p e r i­

m enter. By using a s in g le la s e r , a d d it io n a l arrangem ents are p o s s ib le fo r

o b ta in in g two- o r th ree -d im en s ion a l measurements o f v e lo c i t y components.

S e v e ra l d i f f e r e n t v e lo c im e te r s are d escr ib ed f o r making tw o-d im ensiona l flow

measurements, in c lu d in g both b a ck sca tte r and forward s c a t te r system s. E ffe c ts

o f f lo w system geom etr ies on c a p a b i l i t i e s f o r measuring s p e c i f i c components

are in v e s t ig a te d . E f fe c t s o f la s e r beam p o la r iz a t io n are d iscu ssed and con­

c lu s io n s reached on methods o f o p t im iz in g s ig n a l s tren g th in each o f two

o rth ogon a l measurement system s. R esu lts o f th e a p p lic a t io n o f a tw o-d im ensional

measurement system used fo r o b ta in in g v e lo c i t y p r o f i l e s in tu rb u len t f lo w in

a smooth w a lled fo u r - in ch d iam eter p ip e are p resen ted . O p era tin g a t a Reynolds

number o f about 1.1 x 10**, r e la t i v e tu rb u len t in t e n s i t ie s were measured in

the a x ia l d i r e c t io n and normal to th a t d i r e c t io n . Standard techn iques were

u t i l i z e d . A second readout system was employed to make a measurement o f th is

param eter w ith ou t the requirem ent o f adding s c a t t e r in g cen te rs to the flow .

INTRODUCTION

Measurement o f more than one component o f the v e lo c i t y in tu rbu len t f lu id

f lo w using the la s e r Doppler technique can be accom plished u s in g a number o f

d i f f e r e n t approaches. The o p t ic a l c o n f ig u ra t io n chosen is dependent upon the

in t e r r e la t io n s h ip between the v e lo c lm e te r and the flo w s y s te m -- ln v o lv in g the

g eo m etr ie s , the v e lo c i t y components d e s ir e d , and the c a p a b i l i t y to d e te c t

Che s ca tte red en e rg y . In th is paper, a b r i e f d e s c r ip t io n o f the op e ra tin g

p r in c ip le s o f the d e v ic e is g iv e n , fo llo w e d by d iscu ss ion s o f v e lo c lm e te r

systems em ploying s in g le In c id en t beam and d u a l in c id en t beams. A p p lic a t io n

o f a tw o-d im ensional v e lo c lm e te r is i l lu s t r a t e d w ith re s u lts from m asu re -

ments on a fo u r - in ch d iam eter p ipe w a te r f lo w system.

Resu lts o f measurement o f r e la t i v e tu rb u len t in t e n s it ie s a long the ax is

o f f lo w and app rox im ate ly normal to a d iam eter are g iv e n . A system i s d escribed

which can be u t i l i z e d w ith good r e s u lt s to measure turbu lence p a ra m te rs a t

low v e l o c i t i e s o r where a d d it io n o f s c a t t e r in g p a r t ic le s i s not p r a c t ic a l .

The la t t e r use is r e s t r ic t e d to systems where n a tu ra l contam inants a re present

in s u f f i c i e n t q u a n tity to produce s e v e r a l s ig n a ls p er second. The d e s c r ip t io n

o f the v e lo c lm e te r and r e s u lts o f i t s use p ro v id e a means o f d e te rm in in g

• kT h is work was p a r t ia l l y supported by the Navy Ship Research and Development

C en ter under the C enera l Hydrodynamics Research Program.

The f i r s t two au thors are P r in c ip a l Research P h y s ic is ts and the l a t t e r author is a P h y s ic is t w ith the P h ys ica l S c ien ces Research L a b o ra to r ie s o f Brown E n g in eer in g Company, In c .

f a c t o r s which must be s p e c i f i e d in o rd er to d es ign a system f o r a p a r t i c u la r

a p p l ic a t io n .

DESCRIPTION OF THE LASER DOPPI£R TECHNIQUE

The i n i t i a l use o f the D opp ler s h i f t in monochromatic, coherent ra d ia t i on

s c a t te r e d from p a r t ic le s suspended in a f lu id f lo w to d e t e c t v e l o c i t y was

rep o rted by Yeh and Cumnins in 1964.^ Subsequen tly , th is work was extended

and f i r s t a p p lied in a p r a c t ic a l instrument to measure lo c a l iz e d f low in

2 3 4gases and liq u id s a t these L a b o ra to r ie s . ’

Measurements in tu rbu len t f lo w have been repo rted by va r ious workers . In

o r d e r to sum aarize th a t w ork , i t i s necessary to d esc r ib e the p rocesses i n ­

v o lv e d in the d e te c t io n o f v e l o c i t y by the la s e r D opp ler te chnique. A

schem atic rep re s e n ta t io n o f a one-d imensional system i s shown in F igure 1.

F ig u re 1. Geometry o f One-D im ensional L aser Doppler V e lo c lm e te r

The D oppler eq u a tion , in terms o f the param eters shown in F igu re 2, is g iv en by

whe re

(1 )

( 2 )

i - 4 = (3 )

In these e x p re s s io n s , the w ave length o f the la s e r ra d ia t io n In the s c a t te r in g

medium is taken to be app rox im ate ly the same b e fo re and a f t e r s c a t te r in g and

Page 3: Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows

I s rep resen ted by X ; ug and ^ a re u n it v e c to r s in the d i r e c t i o n o f s c a t t e r

and in the d i r e c t io n o f the In c id e n t beam r e s p e c t i v e l y , and v is the v e l o c i t y

o f the f lo w in the p lan e o f measurement. These v e c to r s a r e shown in F ig u re

2. U sin g the a n g le s d e fin ed in t h is f i g u r e , the s c a la r e q u a tio n f o r the

D opp ler s h i f t i s

f D 1 ST s in 1 s in ( y + ( * )

\ irs SCATTERED BEAM

) \ * “0 INCIDENT BEAM

V VELOCITY OF SCATTERER

F igu re 2. R e la t io n s h ip Between O r ig in a l and S c a t te r e d Wave V ec to r

The volume w ith in the s c a t t e r in g medium from which a measurement is made

is determ ined by the in t e r r e la t io n s h ip between the fo cu s in g o p t ic s and the

la s e r beam d iam eter and d is p e r s io n . I f d i f f r a c t i o n l im ite d o p t ic s a re em ploy­

ed , the sm a lles t d iam eter r e g io n th a t may be fo cu sed upon i s g iv en by

D - ( 5 )

where D ' i s the d ia m e te r o f the r e c e iv in g a p e r tu re and f i s the f o c a l len g th

o f the r e c e iv in g le n s . The le n g th o f the measurement volume is s e v e r a l tim es

th is d im ension . The in c id e n t beam i s focused to d im ensions app rox im atin g the

r e c e iv in g system c a p a b i l i t i e s . W h ile th is p ic tu r e i s c o n s id e ra b ly s im p l i f i e d ,

the measurement volume may be though t o f as b e in g produced by the in t e r s e c t io n

o f two c y l in d e r s . The measurement volume used h e re was 75 by 1,000 m icrom eters .

V ariou s methods have been used to make measurements in tu rb u len t f lo w .

G o ld s te in and Hagen^ rep o rted on use o f a spectrum a n a ly z e r as a readou t

method. Welch and Tonne** used a tim e c o r r e la t io n method to read ou t v e l o c i t y

p r o f i l e s a t a p o in t . L ew is , e t a l X used a p h a se -lo ck ed lo op to re co rd in s ta n ­

taneous v e l o c i t i e s . H u ffa k e r , F u l l e r , and Lawrence® rep o rted on the use o f

anoth er type frequ en cy t ra c k e r u s in g the ou tpu t o f a d is c r im in a to r to p ro v id e

the c o n t r o l s ig n a l f o r the feed b ack loop . A l l o f th e methods p r e v io u s ly

used depend on a more o r le s s con tinuous s ig n a l b e in g p resen t in o rd e r to

respond c o r r e c t ly . The readout techn iqu e d e s c r ib e d in th is paper does not

depend upon a near continuous s ig n a l being p re s e n t .

TWO-DIMENSIONAL GEOMETRIES

The ch o ice o f geom etry f o r the o p t ic a l system to be employed in making

a tw o-d im ensiona l measurement i s dependent upon th e measurement d i r e c t io n s

re q u ired and upon a number o f l im it a t io n s imposed by the v e lo c lm e te r system .

These l im ita t io n s must be determ in ed on the b a s is o f p a r t ic u la r c o n f ig u r a t io n s .

The s c a tte re d r a d ia t io n from a s in g le beam In c id e n t upon a d e s ir e d

volume may be d e te c te d a t two d i f f e r e n t p o s i t io n s in the fo rw ard s c a t t e r

d i r e c t io n to o b ta in a tw o -d im en s ion a l measurement ( s e e F ig u re 3 ) . A geom etry

a v a i la b le fo r o b ta in in g the v e l o c i t y component n e a r ly p a r a l l e l to the in c id e n t

beam is shown in F ig u re 4 . The f i r s t o f th ese s e t-u p s is d e s c r ib ed in the

s e c t io n o f th is paper e n t i t l e d Measurements o f T u rb u len t F low in a F ou r-In ch

P ip e . The l a t t e r s e t-u p re q u ire s th a t the r a d ia t io n in the b a c k s c a tte r d i r ­

e c t io n be s u f f i c i e n t to d e t e c t . F o r 0 .5 m icr om eter d iam e te r p o ly s ty r e n e la t e x

sp h eres , the r a t i o o f in t e n s i t i e s in the near fo rw a rd s c a t t e r d i r e c t io n

compared to in t e n s i t i e s in the f a r backward s c a t t e r d i r e c t i o n is n e a r ly 50

9to 1 a c co rd in g to M ie s c a t t e r in g th e o ry . I f the D op p le r spectrum i s spread

ou t due to tu rb u le n t f lo w , c o n s id e r a b ly g r e a t e r power must be used in the

in c id e n t beam to d e t e c t the s i g n a l . Experim ents in the fo u r - in c h d iam eter

p ip e f o r which d a ta are re p o r te d here In d ic a te d th a t a he lium -neon la s e r w ith

25 m i l l iw a t t ou tp u t was not s u f f i c i e n t to produce a u s e a b le s ig n a l a t the

Reynolds numbers o f f lo w used.

BS - BEAM SPLITTERPMT - PHOTOMULTIPLIER TUBEM - MIRRORL - LENSV - VELOCITY COMPONENT DETERMINED BY

THE SCATTERED BEAM IN THE X-Z PLANEV - VELOCITY COMPONENT DETERMINED BY

THE SCATTERED BEAM IN THE X-Y PLANEPMT 2

zr J V \ 7 . 5 ° ^ ‘ V.

[H \ / / V V: vcal. fp%,S He Ne

GAS LASER

NOTES:

1. Li,, M3, M,,, BSj, AND PMT2 ARE LOCATED IN THE X-Z PLANE.

2. L2 , M l M2 . BSi . ANO PMT, ARE LOCATED IN THE X-Y PLANE.

3. L lt L3. BS2, AND M s ARE LOCATED ON THE X AXIS.4. V2 IS LOCATED IN THE X-Z PLANE.5. V, IS LOCATED IN THE X-Y PLANE.

Figure 3. Two-Dimensional S in g le Inc ident Beam Veloclm eter

BS BEAM SPLITTER S ROTATING WHEEL VELOCITY SIMULATORPMT PHOTOMULTIPLIER TUBE V, VELOCITY COMPONENT DETERMINED BYM MIRROR THE FORWARD SCATTERED BEAML LENSES V2 VELOCITY COMPONENT DETERMINED BY

THE BACK SCATTERED BEAM

r ̂ , r------- 1t— He Ne { ^ i J , m I\GAS LASER \ 15° L- J"2V BSi Li ; 9(J«\s «t W T « s i

i * I i ii---------- J !____________________ i

Figure 4. Forward and Backscatter Veloclmeter System

19

Page 4: Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows

Another system may be em ployed t o o b ta in o rth ogon a l components r e l a t i v e l y

e a s i l y . T h is system employs two In c id e n t beams to o b ta in two d ir e c t io n s o f

near forw ard s c a t te r r a d ia t io n . F ig u re 5 I l lu s t r a t e s such a system . A v e lo -

c im e te r con stru cted w ith th is geom etry o f f e r s symmetry o f measured v e lo c i t y

components w ith r e s p e c t to the f lo w a x is geom etry , which m ight be a c o n s id e r ­

ab le a s s e t in s o fa r as " t r a c k in g " i s concerned as w i l l be seen . The components

thus measured, how ever, a re not those o f most in t e r e s t fo r tu rbu len t f lo w in

most channels . In a d d it io n , Beam 1 can heterodyne w ith s ca tte re d en ergy from

Beam 2 and v ic e ve rsa and th e s c a t te r e d beams can heterodyne w ith each o th e r .

10An e x te n s iv e a n a ly s is o f th is system is found e lsew h ere .

When nx>re than one component o f v e lo c i t y in a system is measured, e f f e c t s

o f the p o la r iz a t io n o f the in c id e n t and s c a t te r e d beams become more d i f f i c u l t

F igu re 6. E f fe c t s o f P o la r iz a t io n R o ta tion on Received S ign a l

F igu re 5. Two-D im ensional Tw in In c id e n t Beam V e lo c im e te r

to a llo w fo r in s e t t in g up the geom etry o f the v e lo c im e te r . An experim ent

was perform ed to f in d ways o f m in im izing p o la r iz a t io n e f f e c t s . The p lane o f

p o la r iz a t io n o f the output o f a Model 124 S p ec tra -P h ys ics la s e r was ro ta ted

by us ing an accesso ry p o la r iz a t io n r o ta to r . A th in mylar wheel was used as

a flow s im u la tor to produce the data shown in F igu re 6. The plane o f p o la r iz a ­

t io n was va r ied from v e r t i c a l ( 0 ° ) to h o r iz o n ta l (9 0 ° ) . Curves 1 and 2 were

ob ta in ed by ob se rv in g the in t e n s it y o f the heterodyne s ign a l on a H ew le tt-

Packard Model 8551 A spectrum an a ly ze r u s in g the back sca tte r and forward

s c a t te r systems o f F igu re 4 . These systems were mounted in the h o r iz o n ta l

p lan e . In the b a ck sca tte r system , a v a r ia t io n o f 2 .5 d e c ib e ls re su lted from

the r o ta t io n o f the p o la r iz a t io n p lan e . In c o n tra s t , the forward s c a t te r

system produced a s ign a l l e v e l th a t v a r ied over 9 d e c ib e ls .

These losses are in cu rred a t r e f l e c t in g su rfa ces w ith in the system . A

d i e l e c t r i c su rface (such as a g la s s beam s p l i t t e r ) w i l l change the plane o f

p o la r iz a t io n o f the r e f le c t e d beam from the o r ig in a l plane excep t under s p e c i f i c

c o n d it io n s ; i f the plane o f p o la r iz a t io n i s p erpen d icu la r to the p lane con­

ta in in g the In c id en t and r e f l e c t i v e beam o r i f the in c id en t beam s t r ik e s the

r e f l e c t in g su rface near the norm al, then the p lane o f p o la r iz a t io n is le a s t

a f f e c t e d . R e f le c t io n from m e ta l l ic s u r fa c e s , in g e n e ra l, reduces the in te n s ity

in a g iv en plane o f p o la r iz a t io n by e l l l p t i c a l l y p o la r iz in g the r e f le c t e d

beam. A rranging the system to p ro v id e near normal in c idence on w t a l l l c r e ­

f l e c t o r s a lso reduces th is lo s s . Curves 3 and 4 were ob ta in ed w ith two e x ­

p er im en ta l systems which were designed w ith no a n g le o f in c id en ce g r e a te r

than 25 °. The maxinum s ig n a l lo s s experien ced was 3 1/2 d e c ib e ls . A two-

d im ensional system must use these p r in c ip le s i f the losses are to be kept to

a minimum. The d e s i r a b i l i t y o f th is is r e a d ily apparent in reducing cost o f

the la s e r to be used and in k eep ing the bu lk o f the system as low as p r a c t ic a l .

MEASUREMENTS IN TURBULENT FLOW IN A FOUR-INCH PIPE

A system s im i la r to th a t shown in F igu re 3 was se t up on a 4 -in ch ou ts id e

d iam eter g la s s p ip e flow system . Two modes o f o p e ra tion were attem pted . In

ord e r to b e t t e r ob serve the component o f v e lo c i t y in the z - d ir e c t io n (d e f in e d

in F igu re 3 ) , a d ir e c t io n normal to the a x is o f the p ip e , m o d ific a t io n s were

made in the p ro cess in g c i r c u i t r y f o r s ig n a ls cen tered about ze ro v e lo c i t y .

F i r s t , the re fe re n c e beam was genera ted by passing the la s e r beam through

an a c o u s t ic - o p t ic a l c e l l to s h i f t the frequency o f a p o r t io n o f the beam by

30 m egahertz. S econd ly , the re fe ren c e beam was passed around the flow system

in o rd e r to m in im ize am plitude v a r ia t io n s . The heterodyne s ig n a l produced

by th is system is cen tered about 30 megahertz ra th e r than ze ro frequency.

Th is procedure makes i t p o s s ib le to view low v e lo c i t y sp ec tra on a spectrum

a n a ly ze r w ithou t being trou b led by the z e ro frequency s ig n a l p resent to some

degree in a l l spectrum a n a ly ze rs and, more Im portant, to g e t r id o f the low

frequ en cy noise genera ted in the la s e r . Mode in te ra c t io n in the la s e r can

c rea te spurious s ig n a ls o f narrow bandwidth a t low fre q u en c ie s . Once a

s ig n a l cen tered about 30 m egahertz is ob ta in ed , i t may be mixed w ith a con­

s ta n t frequ en cy ra d io frequency s ig n a l to lo ca te the frequency correspond ing

to ze ro v e lo c i t y a t any p o s i t io n in the spectrum d e s ire d . A b lock diagram

o f th is apparatus is shown in F igu re 7.

The flow system used is a c lo sed lo o p , fou r-in ch d iam eter u n it . The

loop is d r iv en by a 60-horsepower a c to r d r iv in g a pump ra ted a t 1100 gal/m in

a t a t o t a l head r is e o f 150 f e e t o f l iq u id at 1700 rpm. Bulk flow ra te s

through the tube are measured w ith a p r o p e l le r - ty p e vo lu m etr ic flow m eter lo ca ted

in the 4 -ln ch d iam eter l in e on the su c tion s ide o f the pump. The v e lo c im e te r

measurements were made in a g la s s -w a lle d sec tion o f the system . The system

is v ib r a t io n Is o la te d from the surroundings by rubber pads on the supports

and a f l e x i b l e cou p lin g to the pump. A vacuum system was used to remove

Page 5: Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows

LASERBEAM

H3

F ig u re 7. Double C on vers ion H eterodyne System

d is s o lv e d a i r from the w ater in the loop so as to p reven t bubble fo rm a tion .

6The u lt im a te Reynolds number o f the system i s 1 .8 x 10 . The f lo w system

heats up d u r in g runs because o f f r i c t i o n . Measurements u t i l i z e d here were

made o v e r a w a te r tem perature range o f 95 to 105°F co rresp on d in g to a Reynolds

number range o f 1.12+0.06 x 10^ a t the v e lo c i t y used . The v e lo c im e te r r e ­

c e iv in g a p e r tu re was s e t to produce a read ab le s ig n a l a t a l l measurement

p o s it io n s w ith in the tube. An e x c e p t io n to these o p e ra t in g co n d it io n s was

in measurements w ith the doub le con ve rs ion h e terodyne system , where the

len g th o f tim e necessary to make the measurement extended the o p e ra t in g

tem peratures t o between 90 and 114°F.

Two fa c t o r s a s so c ia ted w ith o p t ic a l system param eters have been c i t e d

as cau s in g l i n e broaden ing o f the D opp ler s ig n a l . Exam ination o f Equation 4

fo r th e D opp ler frequency shows that i f s c a t te r e d r a d ia t io n is r e c e iv ed o v e r

a f i n i t e an gu la r a p e rtu re , the D oppler spectrum o f the r a d ia t io n i s broadened

a c c o rd in g ly . D i f f e r e n t ia t io n o f Equation 4 w ith re sp e c t to © and * y ie ld s

dfD - j j i sin f cos ('*' + f ) ♦ \ cos 1 sln + f l j M

+ s in ^ cos ( « + e ) dw ( . ( 6 )

2 )For a system such as th a t shown in F igu re 6 , f * 90° and the f r a c t io n a l s h i f t is

u tn 1 a—— * c o t 0 d© - — tan — d y . ( 7 )f D 2 2

The s ig n a l produced by a s c a t t e r e r p a ss in g through the measurement volume is

in th e form o f a p u lse . The tim e o f o ccu rren ce o f the p u lse is

t - ( 6 )n

where D is a d im ension o f the measurement volume such as d e fin e d in Equation 5

and v^ is the v e lo c i t y component across th a t d im ension . The spectrum o f such

a p u lse has frequ en cy spread o f

( 9 )

I t has been p o in ted ou t that f o r d i f f r a c t i o n l im ite d o p t i c s , the frequency

spread caused by the spread in s c a t te r in g a n g le s observed should be rero f o r

rays r e c e iv e d from the bundle a t the focu s o f the o p t ic a l system . The

magnitude o f p o s s ib le v e lo c i t y spread in the system used here may be es tim a ted

by ta k in g a v a lu e o f about 0 - 15° approxim ate mean v e r t i c a l component measure-

3merit a n g le , d© * (3 nan a p e r tu re a t a d is ta n c e o f 140 mm), dy * 0 ( f o r

purposes o f th is o rd e r o f m agnitude e s t im a te ) to g e t from E quation 7

— 5 - 0.08 . (1 0 )D

T h is va lu e may not be ob served in p r a c t ic e . In a d d it io n to the reason

fo r a narrow er spectrum g iv e n ab ove , the h e te ro d yn in g e f f i c i e n c y a t the

p h o t o m i l t ip l l e r is dependent on how n e a r ly c o l in e a r the s c a t t e r e r and r e f e r ­

ence beams a r e , and the beam I n t e n s i t i e s drop o f f a t the edges o f the s c a t t e r ­

in g vo lume.

The frequ en cy spread in the measured v e r t i c a l component i s a ls o a f fe c t e d

by in t r o d u c t io n o f a component o f th e a x ia l v e l o c i t y in to the measurement by

the f i n i t e a n g le o f a ccep tan ce in the system . A t the c e n te r o f the f lo w , under

the same c o n d it io n s c i t e d above to c a lc u la t e maximum frequ en cy spread due to

the e f f e c t o f f i n i t e a p e rtu re on the measurement o f the d e s ir e d component,

the maxitmim freq u en cy component in trodu ced in to the measurement due to th is

e f f e c t may be c a lc u la te d from E qu a tion 4 . I f the system i s c a r e fu l ly a lig n e d

to be sym m etrica l abou t a component normal t o the a x ia l f lo w , an ang le o f

e3

280deg ( 11 )

is used in the e q u a t io n . T h is y ie ld s

d fD “ ±195 k i lo h e r t z (1 2 )

where the mean D op p le r frequ en cy produced by the v e l o c i t y component a lon g the

system a x is i s 3 .60 m egahertz.

Using a m ylar w heel a t the measurement p o in t , the frequ en cy spread due

to a l l fa c t o r s m entioned here amounts to

—p ST o .04 . ( 13)D

Wave t ra in s from the wheel appear to ex tend o v e r a lo n g e r p e r io d o f time than

would be exp ec ted from a p a r t i c l e t r a v e r s in g the measurement volum e. For

th is reason , the frequ en cy spread due to pu lse broaden ing would be expected

to be le s s than w ith p a r t ic u la t e m a te r ia l . A nother measurement was made w ith

the m ylar w heel p la ced so th a t the v e lo c i t y was a p p rox im a te ly normal to the

p lane c o n ta in in g the s c a tte re d and r e fe r e n c e beams. An e f f e c t i v e s c a t te r in g

ang le o f

© « 0 .6 2 deg ( 14)

was computed on the b a s is o f an ob served D opp ler mean frequ en cy o f 130 k i l o h e r t z .

The frequ en cy spread was 70 k i l o h e r t z . Th is p ro v id e s an upper l im i t fo r the

pu lse b roaden ing f o r the w h ee l, s in ce the an gu la r ap e rtu re should produce the

frequ ency speed n o ted . Computation o f th is frequ en cy spread y ie ld s

f D - +70 k i lo h e r t z (1 5 )

which i s doub le the measured v a lu e . H owever, a t such a sm all e f f e c t i v e

s c a t t e r in g a n g le sm all e r r o r s in w heel p o s i t io n produce la r g e e r r o r s in th is

measurement. In com putations o f the frequ en cy spread due to the angu lar

a p e r tu re , the va lu e computed from the above measurements was used:

d© - 0.762 deg . ( 16)

Th is va lu e i s 60 p e rc en t o f the va lu e coaqxited from the a p e rtu re s iz e .

The p u lse b roaden in g o f the spectrum may be es tim a ted from Equations 8

and 9 . Near the a x is o f the tube, the sa in f lo w v e lo c i t y i s la r g e enough

w ith re sp e c t to the tu rb u len t v e l o c i t y tha t the time fo r a p a r t i c l e to go

a cross the beam may be e s tlam ted from the mean v e l o c i t y a lo n e . T h is holds

fo r measurements normal to the a x is o f the system as w e l l , s in c e v e lo c i t i e s

21

Page 6: Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows

In th e * * d ir e c t io n s arc s a u l l compared to Bean a x ia l v e l o c i t y . W ith a 75-

m icrom eter w ide baas and a peak aean v e lo c i t y o f 8 .65 m eters p e r second , the

frequ en cy spread I s

f t f t - 115 k i l o h e r t z (1 7 )

T h is spread I s dependent on the p o s i t io n w ith in the f lo w , o f cou rse .

The fo u r - in c h d iam eter f lo w system was used to study the I n t e r r e la t io n ­

sh ip between system g eom etr ies and the fa c to r s a f f e c t in g the D opp ler f r e ­

quency ou tp u t. The h o r iz o n ta l component o f v e lo c i t y measured was p a r a l l e l to

the tube a x is w h ile the v e lo c i t y conq>onent measured normal to th is a x is was

s l i g h t l y o f f the v e r t i c a l . W ith a f ix e d r e c e iv e r geom etry , the re s u lta n t

measurement d i r e c t io n a t th re e p o s it io n s w ith in the tube Is shown In F igu re 8 .

As can be s een , the s c a t t e r in g an g le changes as the measurement volume Is

moved In from the edge o f the tube. The s c a t te r in g an g le must be determ ined

a t each p o in t and used to c a lc u la t e the con vers ion fa c t o r from frequ en cy to

v e l o c i t y . In th is system , the v e lo c lm e te r geom etry remains f ix e d du rin g the

scan . The v e r t i c a l component may be d i r e c t l y measured, but a system o f that

typ e would r e q u ire rea lign m en t a t each measurement p o s i t io n . S ince the s c a t t e r ­

ed energy In the h o r iz o n ta l component system i s con ta in ed w ith in a p r in c ip a l

p la n e , the s c a t t e r in g an g le remains fix e d d u rin g scan . Th is component was

measured a t a s l i g h t angle t o the a x ia l d i r e c t io n .

3. C • POSITION (0.00)83°19'

F igu re 8. V a ria tion o f Measured N e a r -V e rt ic a l Component With Radial Position

Measurements In a tube with these components saist take account o f the

d if fe r e n t "tra c k in g " rates o f the measurement volumes. Figure 9 shows the

re la t io n sh ip between the distance the velocim eter Is traversed and the d is ­

tance from the edge o f the tube the measurement volume la moved. The two

measurement volumes do not move at the same rate as the system la traversed,

and, In f a c t , the near v e r t ic a l component measurement v o lu v la traversed

n o n - l in e a r ly w ith re sp e c t to the system m otion . The two volum es, i f s e t to

c o in c id e a t the edge o f the tube, w i l l be separa ted by 0 .7 in ch a t the center .

By making the volum es c o in c id e n t a qu arter o f the way across the tube, the

maxlaim d r r o r Is about 0 .3 In ch , which i s s t i l l too la r g e f o r any c o r r e l a t i o n -

typ e measurement. Sim ultaneous measurements o f these two components a t the

same measurement p o s i t io n r e q u ir e s a complex t ra v e r s in g scheme, w ith the two

component systems t r a v e r s in g a t d i f f e r e n t r a t e s .

The mean v e l o c i t y p r o f i l e was measured from a spectrum a n a ly z e r ou tpu t.

The r e s u lts o f th is measurement a re shown in F igu re 10. The mean v e lo c i t y

a t the c e n te r o f the tube was 8 .65 meters p e r second as measured by the

v e lo c lm e te r as compared t o a v e lo c i t y o f 8 .58 m eters per second computed

from the v o lu m e tr ic measurement o f the flow m ete r .

A l l d a ta u s in g a spectrum a n a ly ze r ou tp u t was ob ta in ed by adding 0.500

m icrom eter p o ly s ty re n e la t e x spheres to the w a te r in the system . Measure-

ments near the w a l l w ith th e apparatus are n o t expected to have much s i g n i ­

f ic a n c e because o f the len g th o f the measurement volume a long the r e f e r en c e

beam— about 1 m il l im e te r t o the h a l f power p o in ts . At po in ts f a r from the

w a l l , the s ig n i f ic a n c e o f the l in e broaden ing fa c to r s can be e s t im a ted . At

th e c en te r o f the tube, by us in g mean v e l o c i t y o f 8.65 meters per second, the

h o r iz o n ta l component y ie ld s

0.043 (1 8 )

1/1

s

0-0 0.4 0.8 1.2 1.6 2.0 2.4 2.f

DISTANCE FR0H EDGE OF TUBE (in)

F igure 9. Measurement Volume P o s ition "Tracking" o f Velocim eter Motion

■ —

iLEGEND:

/

OLDV DATA□ NIKURADSE, 1.1 * 10s NRe NOTES:1 . V - VELOCITY IN AXIAL

DIRECTION2. VM x * VELOCITY IN AXIAL

DIRECTION AT TUBE’S CENTER

h1 —0.0 0.2 0.4 0.6 0.8 1.0

FRACTIONAL PIPE RADIUS, r/R

Figure 10. Mean V e loc ity P ro f i le In 4-1 neh Tube

1.2

22

Page 7: Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows

and Che near ve r tic a l component yields

AVv“ - °-030 (1 9 )

xmax

The va lu es are computed from measurement o f o n e -h a l f the freq u en cy spread b e ­

tween h a l f am p litu de p o in ts . C o r r e c t iv e fa c t o r s th a t can be a p p lie d have

been d iscu ssed a b o ve . These In c lu d e the freq u en cy spread due to p u lse w id th

from Equation 17

- 115 k i l o h e r t z (2 0 )

and the frequ en cy spread due to the an gu la r a p e r tu re from E qu a tion 13

d f = 140 k i l o h e r t z (2 1 )°H

fo r the h o r iz o n ta l component and from the an gu la r a p e rtu re computed from

Equations 13 and 7

d fp = 50 k i l o h e r t z (2 2 )

f o r the v e r t i c a l component.

These c o r r e c t iv e fa c to r s a re a p p lie d on the b a s is o f assum ing each f r e ­

quency spread I s an independent Gaussian d is t r ib u t io n . The c o r r e c te d spread

w i l l be 2 2 2 *

(t^ - ) ■ r ir |b “-) - ( l A ) - ( i £ - ) ] «»>V xmax/ l v xmax/ V xmax/ V xmax/ Jc o r r

where the o n e -h a l f fa c to r s in the p u lse and a n gu la r a p e r tu re terms e n te r b e ­

cause the d e s ir e d spread Is the r o o t mean square d e v ia t io n from the mean. The

frequ en cy spreads must be c o n ve rted to e q u iv a le n t v e l o c i t y spreads to use th is

e q u a t io n , Av t co rresp on d in g to the pu lse b road en in g term , d v co rresp on d in g to

the an gu la r a p e r tu re term and a v to the observed sp read . By u s in g va lu es from

Equations 18 and 19, con verted to v e l o c i t i e s , the c o r r e c te d va lu es become

( - T Y 1----- ) - 0 .0335 (2 4 )V <v>xmax'

c o r r

V <av v----- 1 “ 0 .028 . (2 5 )

V ( v ) xmax J c o r r

The angu lar a p e rtu re c o r r e c t io n fa c to r s i g n i f i c a n t l y a f f e c t s the h o r iz o n ta l

component, but not the v e r t i c a l . The pu lse c o r r e c t io n f a c t o r s i g n i f i c a n t l y

a f f e c t s bo th . The p e rcen t c o r r e c t io n produced by these term s la a t the moat

23 p e rc e n t. As one moves toward the edge o f the tu b e , the an gu la r ap e rtu re

c o r r e c t io n fa c t o r becomes leaa Im portan t f o r the h o r iz o n ta l component and

remains about the same fo r the v e r t i c a l component. The p u lse c o r r e c t io n

fa c t o r becomes le s s lo iportan t as th e edge o f the tube la approached . The

c o r r e c te d cu rves o f r e la t i v e tu rb u le n t In t e n s i t i e s a re p lo t t e d In F igu re 11.

The frequ en cy sp reads * f y and A fj j w ere ob ta in ed by om asurlng between +3rr p o in ts

on the Gaussian shaped spectrum a n a ly z e r t r a c e s .

The two components o f r e la t iv e turbulenc In ten s ity measured here were

14compared to the re s u lt s o f L au fe r presented In H lnze. L au fe r s d a ta , taken

w ith hot-w ire anemometers, were obtained a t a s l ig h t ly sm a lle r Reynold 's

number than here. The agreement between the data i s good except that the v e r t i ­

c a l component measured appeared more constant w ith rad ia l d istance In the

current measurement. A lso , near the w e ll , the la s e r veloclm eter measured h o r i ­

zon ta l component Increased at a g re a te r d istance from the w a ll than did the

previous re s u lt . As explained e a r l i e r , the measurement volume was la rg e s t

a long th is ax is and w ith th is p a r t ic u la r se t-up one could not expect to get the

re so lu tio n requ ired to s u t u r e tu rbu len t In te n s it ie s at the w a ll.

The second aaode o f operation described above was used w ith the v e r t ic a l

0.161--------------------------------- -------------------------------------------------------------------------------LEGEND:

8 MEASURED HORIZONTAL COMPONENT ICASURED VERTICAL COMPONENT

A VERTICAL COMPONENT - LAUFER (see Note)»; n , , _____________ □ HORIZONTAL COMPONENT - LAUFER (see Note)5; j A MEASUREMENT TAKEN WITH APPARATUS OF£ I FIGURE 7 - VERTICAL COMPONENT

- ----------1------ NOTE: LAUFER DATA TAKEN AT Re * 5 « 105.£ v i DATA IS REPRODUCED FROM HINZE1*.

2 0.08 ---------------------- ------------------1-----------| ^ U i i - | _

0.00 _____ I____________I____________1______1____________ I______I_____0.0 0.2 0.4 0.6 0.8 1.0

r/R

F igu re 11. R e la t iv e Turbulent In te n s it ie s

component at one po in t a t the cen ter o f the tube. The r e la t iv e tu rbu len t in ­

ten s ity measured in th is manner was

/ Av „ \[ - — — j = 0.025 . (26 )

v / co rr

A p lo t o f the counting ra te versus frequency i s shown in F ig u re 12. A

Gaussian d is t r ib u t io n has been p lo tted w ith the same root mean square d e v ia t io n

using the same mean. The no ise le v e l Ind icated on the p lo t was o b ta in ed by

b lock ing the sc a tte red beam and observ ing the cou n t. The s ig n i f i c a n c e o f the

measurement Is that the count was made w ith no a r t i f i c i a l contam inants added

to the w ater. A spectrum a n a ly z e r output o f th is s ign a l could not be used to

determine the frequency spread because o f the sm all number o f s ig n a ls b e in g

produced.

An am biguity Is present In app ly ing the pu lse width co rrec tion fa c to r

when a r t i f i c i a l contaminants a re added to the system. In such a ca se , more

than one p a r t ic le Is present w ith in the measurement volume at any one time

and the resu ltan t pulse t ra in appears to o ften exceed the number o f cyc les

expected from the dimensions o f the volume. The system w ith no a r t i f i c i a l

contaminants p resent Is such that In d iv id u a l p a r t ic le s produce the heterodyne

s ig n a ls rece ived .

1.600 -------------------------------------------------------------------------------------------------------------- ---------NOTES:TU-7 ---------- ---------------------- -----TUBE CENTER v-v• - 15.75 / \

, 1,200 V/z » 1.75 «/mHz ----4---V-i---------- ----------------m \ 0-707" LEGEND: / POINT•C ----MEASURED / 1'UJ ----GAUSSIAN DISTRIBUTION / l

i -------Prrrrr-___ __ _ _______ __ ___ ___ _________ _____ __________ NOISE

ol Z L I 1 . 1 1 1 1 , LEVEL0.00 0.40 0.80 1.20 1.60 2.00 2.40

FREQUENCY (mHz)

F igu re 12. Counting Rate as a Function o f Frequency

23

Page 8: Two-Dimensional Laser-Doppler Velocimetry in Turbulent Flows

The techn ique as p r e s e n t ly used is cumbersome, w itn essed by the fa c t th a t

w ith th is f lo w system on ly one data p o in t cou ld be obta ined w ith a reasonab le

exp en d itu re o f tim e. The t o t a l len g th o f tim e u t i l i z e d in c o l l e c t in g data

used In the p lo t te d spectrum shape was ap p rox im a te ly one and a h a l f hours. In

a d d it io n , two shut-downs were n ecessa ry to l e t the w a ter c o o l to s ta y w ith in

the tem perature o p e ra t in g range s p e c i f ie d e a r l i e r . During th is tim e , contaminant

l e v e l had to remain constan t and no a i r bubbles cou ld be a llow ed to form .

A d d it io n a l experim ents are planned to decrease the length o f time requ ired f o r

a measurement and to e x p lo re any a d d it io n a l l im ita t io n s .

CONCLUSIONS

Tw o-dim ensional measurements o f tu rbu lence parameters in f lu id f lo w us ing

a la s e r D opp ler v e lo c im e te r req u ire d e ta i le d a n a ly s is o f v e lo c im e te r - f lo w

system in te r a c t io n s to produce m ean ingfu l r e s u lt s . Frequency broaden ing o f

the s ig n a l is produced by both p u lse w id th and angu lar apertu re e f f e c t s . W h ile

both fa c to r s can be c o n t r o l le d , o th e r c o n s id e ra t io n s en te r in to the c a p a b i l i t y

to va ry them. A sm a lle r apertu re s i z e produces a reduced s ig n a l l e v e l . In

th is ca se , the s ig n a l l e v e l was ad ju s ted to the minimum co n s is ten t w ith r e l ia b le

da ta ta k in g . A sm a lle r measurement volume can be produced, but th is req u ires

in creased apertu re s iz e s and in c rea ses frequ ency spread due to pu lse w id th .

Measurements may be made in la r g e systems where i t is im p ra c t ic a l to add

s c a t t e r in g p a r t ic le s so lon g as c o n d it io n s w ith in the f lu id remain constan t

o v e r the measurement tim e. Low frequ en cy la s e r n o is e and low frequ ency char­

a c t e r i s t i c s o f e le c t r o n ic readout systems can be circum vented in low v e lo c i t y

tu rb u len t f lo w measurements by use o f a dua l conversion heterodyne system .

R esu lts comparable to more con ven tion a l methods are ob ta in a b le w ith p roper

a t t e n t io n to the o p e ra t in g param eters.

SYMBOLS

f DDoppler frequency

KS s c a t te r in g frequency

*o in c id en t frequency

Us . Uo u n it v e c to rs

^ w ave len g th in s c a t t e r in g medium

v f lu id f lo w v e lo c i t y

D sm a lle s t d iam eter o f beam

f f o c a l len g th o f r e c e iv in g lens

D' r e c e iv in g apertu re

0 , tl/ ang les d e fin ed in f ig u r e 2

t tim e o f s c a t t e r in g pulse

vn v e l o c i t y in p lane normal to s ca tte red beam

A f frequ en cy spread o f pu lse

v n h o r iz o n ta l v e lo c i t y component

v v v e r t i c a l v e lo c i t y component

vx max c e n te r l in e v e lo c i t y

REFERENCES

1. Yeh, Y .,and Cunmins, H. F . , App. Phy, L e t t e r s , 4 , 176 (1 9 6 4 ).

2. Foreman, J . W.2 , 77, (1 9 6 5 ).

. , J r . , George , F. W ., and L ew is , R. D., , App. Phy. L e t t e r s

3. Foreman, J . W.• » J r . * e t a l , P ro c . IEEE, 54. 424-425 ( 1966).

4 . Foreman, J . w.• » J r . , e t a l , IEEE Journal o f Quantum E le c t r o n ic s ,Q E -l, 260- 266 (1966)

5. G o ld s te in , R. J . , and Hagen, W. F . , Phys. F lu id s ,10, 1349-1352 ( 1967).

6. W elch , N. E .,an d Toirnne, J . , AIAA Paper No. 67-179, AIAA 5th Aerospace S c ien ces M ee tin g , New York , New York , January 23-26, 1967.

7. L ew is , R. D . , e t a l , Phys F lu id s , 11, 433-435 (1 9 6 8 ).

8 . H u ffa k e r , Robert M ., F u l le r , C. E . , and Lawrence, T. R . , paper presen ted a t In t e r n a t io n a l Autom otive E n g in eer in g Congress, D e t r o i t , M ich igan , January 13-17, 1969.

9 . Department o f Coiimerce, N a t io n a l Bureau o f S tandards, Tab les o f S c a t te r in g Functions f o r S p h er ica l P a r t i c l e s , A p p lied Mathematics S e r ie s 4 , January 1949.

10. L ew is , R. D . , e t a l , In v e s t ig a t io n o f Two-Dimensional Flow Measurements Using the Laser D oppler Techn ique, Brown E ng in eerin g Company, I n c . , T ech n ica l Note AST-285, H u n ts v i l le , Alabama, December 1968.

11. Cunmins, H. F .,and K n ab le , N. , P roc . IEEE. 51, 1246 ( 1963).

12. P ik e , E. R . , e t a l , J . S e t. I n s t r . . 1. 727-730 ( 1968).

13. Ross, M. , L a ser R e c e iv e r s . John W iley and Sons, In c .,N ew York, 1966

14. H ln ze , J . 0 . , Turbu lence, An In tro d u c t io n to I t s Mechanism and T h eo ry , M cG raw -H ill Book Company, New York, 1959.

24