Two cases of stochastic maximum principle in the...

31
Two cases of stochastic maximum principle in the optimal control of SPDEs Marco Fuhrman Politecnico di Milano Ying Hu Universit´ e de Rennes 1 Gianmario Tessitore Universit` a di Milano-Bicocca Rennes 24th of May 2013

Transcript of Two cases of stochastic maximum principle in the...

Page 1: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Two cases of stochastic maximum principle

in the optimal control of SPDEs

Marco Fuhrman

Politecnico di Milano

Ying Hu

Universite de Rennes 1

Gianmario Tessitore

Universita di Milano-Bicocca

Rennes 24th of May 2013

Page 2: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Structure of the talk

We prove Pontryagin maximum principle (necessary conditions for optimality)for a controlled stochastic PDE in the following situations:

1. Part I: Infinite dimensional (white) noise - Special case (No second variationneeded)

• Stochastic parabolic equations in an interval [0,1]

• driven by space-time white noise (cylindrical Wiener process) (Wt)

• with convex set of controls (control affects noise)

• non-linearities are Nemytskii operators F (x) = f(·, x(·)), x ∈ Lp(O)

2. Part II: Finite dimensional noise, General case

• Stochastic parabolic equations in a domain O ⊂ Rd

• driven by a finite dimensional Wiener process Wt = (β1t , . . . , β

mt )

• with non convex set of controls (control affects noise)

• non-linearities are Nemytskii operators:

1

Page 3: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Very incomplete history of SMP in ∞ dimensions

• Bensoussan, J. Frank. Inst. (1983) and Hu-Peng, Stochastics (1990):Special case, State ∞-dim., noise has trace class covariance.

• Peng SICON (1990): General case, state and noise fin. dim.,

• Zhou, SICON (1993): State ∞-dim. noise fin. dim., Linear state equat.and cost.,

• Tang-Li LNPAM (1994): General case, state ∞-dim. noise fin. dim., noisecan have jumps, second derivatives of the coefficients are Hilbert-Schmidt.

• Fuhrman-Hu-T. CRAS 2012, AMO 2012 (electronic): General case, state∞-dim., noise fin. dim., Specific framework to cover stochastic parabolicPDEs

• Lu-Zhang, Preprint 2012: General case, state ∞-dim., noise fin. dim., Pt

characterized as “transposition solution” of a BSEE. Nonlinearities regularin functional spaces.

• Du-Meng, Preprints 2012: General case, state ∞-dim. noise either fin.dim. or trace class, Leading operator A can depend on t; unbounded linearterm affecting noise. Some regularity required for the nonlinarities.

• Fuhrman-Hu-T. : Special case, state ∞-dim. noise ∞-dim. and cylindrical.

2

Page 4: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

PART I: INFINITE DIMENSIONAL - (WHITE) NOISE - Special Case

Formulation of the optimal control problem

Let (W(t, x)), t ≥ 0, x ∈ [0,1] be a space time white noise(Ft)t≥0 denotes its natural (completed) filtration.

The set of admissible control actions U is a convex subset of L∞([0,1]).A control u is a (progressive) process with values in U .

The controlled state equation is the following SPDE: for t ∈ [0, T ], x ∈ [0,1],dXt(x) =

∂2

∂x2Xt(x) dt+ b(x,Xt(x), ut(x)) dt+ σ(x,Xt(x), ut(x))dW(t, x),

Xt(0) = Xt(1) = 0, t ∈ [0, T ]

X0(x) = x0(x), x ∈ [0,1]

where b(x, r, u), σ(x, r, u) : [0,1]× R× R → R are given,we assume they are C1 and Lipschitz with respect to r and u;for fixed r and u we suppose b(·, r, u) ∈ L2([0,1]), σ(·, r, u) ∈ L∞([0,1]) bdd.

We also introduce the cost functional:

J(u) = E∫ T

0

∫Ol(x,Xt(x), ut(x)) dx dt+ E

∫Oh(x,XT(x)) dx

where l(x, r, u) : O×R×R → R, h(x, r) : O×R → R are given bounded functions,we assume that they are C1 with bounded derivatives with respect to r and u;

3

Page 5: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Abstract reformulation

The noise is reformulated as a L2([0,1]) valued cylindrical Wiener process (Wt)

E < Wt, x >L2< Ws, y >L2= (t ∧ s) < x, y >L2, ∀x, y ∈ H = L2([0,1])

A is the realization of the second derivative operator in H with Dirichlet boundaryconditions. So it is an unbounded operator with domain H2

0([0,1]) ⊂ H =L2([0,1]).

For all X,V ∈ H, x ∈ [0,1] the non linearities are defined by

F (X,u)(x) = b(x,X(x), u(x)), [G(X,u)V ](x) = σ(x,X(x), u(x))V (x),

L(X,u)(x) =

∫Ol(X(x), u(x))dx, Φ(X)(x) =

∫Oh(X(x))dx

The state equation written in abstract form becomes

dtXt = AXtdt+ F (Xs, us)ds+G(Xs, us)dWs, X0 = x0

where x0 ∈ H and the solution will evolve in H.

The cost becomes

J(x, u) = E∫ T

0L(Xs, us)ds+ EΦ(XT)

4

Page 6: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Standing Framework

(i) A is the generator of a C0 semigroup etA, t ≥ 0, in H. Moreover ∀s > 0:

esA ∈ L2(H) with |esA|L2(H) ≤ Ls−γ; for suitable L > 0, γ ∈ [0,1/2).

where L2(H) is the (Hilbert) space of Hilbert Schmidt operators in H.

(ii) U is a bounded convex subset of a separable Banach space U0

(iii) F : H × U → H is lipschitz in both variables

(iv) G : H × U → L(H) verifies for all s > 0, t ∈ [0, T ], X,Y ∈ H, u, v ∈ U ,

|esAG(t,0, u)|L2(H) ≤ L s−γ,

|esAG(t,X, u)− esAG(t, Y, v)|L2(H) ≤ L s−γ(|X − Y |+ |u− v|), (1)

for some constants L > 0 and γ ∈ [0,1/2).

(v) F (·, ·) is Gateaux differentiable H × U → H,for all s > 0, esAG(·, ·) is Gateaux differentiable H × U → L2(H).

(vi) L(·, ·) and Φ(·) are bounded lipschitz and differentiable

(vii) For all Ξ ∈ H the map u → G(X,u)Ξ is Gateaux differentiable and

|∇uG(X,u)Ξ|L(U0,H) ≤ cost|Ξ|H recall (U0 ⊂ L∞)

5

Page 7: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Under the above assumptions the state equation (formulated in mild sense):

Xt = etAx0 +

∫ t

0e(t−s)AF (Xs, us)ds+

∫ t

0e(t−s)AG(Xs, us)dWs

admits a unique solution X ∈ LpW(Ω, C([0, T ], H)) see [Da Prato, Zabczyk ’92]

Remark: If we perturb the control by spike variation that is we consider solutionof

Xϵt = etAx0 +

∫ t

0e(t−s)AF (Xs, u

ϵs)ds+

∫ t

0e(t−s)AG(Xs, u

ϵs)dWs

where uϵs = usI[t0,t0+ϵ]c(s) + v0I[t0,t0+ϵ](s) for fixed t0 ∈ [0, T ], v0 ∈ U then

|Xϵ(t0 + δ)−X(t0 + δ)|L2(Ω,P,H) ≈ δ(1/2−γ)

6

Page 8: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

First Variation Equation

Let (X, u) be an optimal pair, fix any other bdd. U-valued progressive control v

Let uϵt = ut + ϵ(vt − ut) and Xϵ

t the corr. solution of the state equation.

Finally denote (δu)t = vt − ut

Since we are not considering spike variations things are easy at this level

Xϵt = Xt + ϵYt + o(ϵ).

dYt =[AYt +∇XF (Xt, ut)Yt +∇uF (Xt, ut)(δu)t

]dt

∇XG(Xt, ut)Yt dWt +∇uG(Xt, ut)(δu)t, dWt

Y ϵ0 = 0

By [Da Prato Zabczyk] the above equation admits an unique mild solution with

E( supt∈[0,T ]

|Yt|2) < +∞,

Moreover

J(x, uϵ) = J(x, u) + ϵI(v) + o(ϵ)

with

I(v) = E∫ T

0

[⟨∇XL(Xt, ut), Yt⟩+ ⟨∇uL(Xt, ut), (δu)t⟩

]dt+ E⟨∇XΦ(XT), YT ⟩

7

Page 9: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

We fix a basis (ei)i∈N ∈ H and assume that for all i ∈ N the map X → G(X,u)eiis Gateaux differentiable H → H.

We notice that in our concrete case for all V ∈ H

[∇X(G(X,u)ei)V ](x) =∂

∂Xσ(x,Xt(ξ), ut(ξ))ei(ξ)V (ξ)

So it is enough to choose ei ∈ L∞([0,1])

We denote ∇X(G(Xt, ut)ei)V = Ci(t)V .

Recall that gradients ∇X are with respect to variables X ∈ H = L2([0,1])

For simplicity we let F = 0 from now on:.

The equation for the first variation becomesdYt(x) = AYtdt+

∑∞i=1Ci(t)Yt dβi

t +∇uG(Xt, ut)(δu)t dWt

Y0 = 0

where βit = ⟨ei,Wt⟩ and we have:

• |Ci(t)|L(H) ≤ c, P− a.s. for all t ∈ [0, T ]

•∑∞

i=1 |etACi(s)v|2 ≤ ct−2γ|v|2H for all t ≥ 0, s ≥ 0, (γ < 1/2)

•∑∞

i=1 |etAei|2 ≤ ct−2γ for all t ≥ (γ < 1/2),

We also take into account that A and Ci are self adjoint (although not essential).

8

Page 10: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Adjoint equation

The adjoint equation is (at least formally)−dpt(x) =

[Apt +∇XL(Xt, ut) +

∑∞i=1Ci(t)Qtei

]dt+QtdWt

pT = ∇xΦ(XT)

We expect a solution with pt ∈ H and Qt ∈ L2(H) but we notice that the term∑∞i=1Ci(t)Qtei does not converge for Qt ∈ L2(H).

We can rewrite the above equation in the mild form

pt = e(T−t)A∇XΦ(XT) +

∫ T

t

e(s−t)A∇XL(Xs, us)ds+

+

∫ T

t

∞∑i=1

e(s−t)ACi(s)Qseids+

∫ T

t

QsdWs

but still∑∞

i=1 e(s−t)ACi(s)Qei doesn’t converge if Q ∈ L2(H). Indeed if V ∈ H

∞∑i=1

⟨e(s−t)ACi(s)Qei, V ⟩ =∞∑i=1

⟨Qei, Ci(s)e(s−t)AV ⟩ ≤ |Q|L2(H)

( ∞∑i=1

|Ci(s)e(s−t)AV |2

)1/2

?

On he contrary

∞∑i=1

⟨e(s−t)ACi(s)Qei, V ⟩ ≤

( ∞∑i=1

|Qei|

)supi∈N

|Ci(s)e(s−t)AV |

9

Page 11: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Easy Facts on Schatten - von Neumann classes

We denote by L2(H) the Hilbert space of Hilbert Schmidt operators H → Hendowed with the scalar product ⟨L,M⟩2 =

∑∞i=1⟨Lei,Mei⟩H

Given L ∈ L2(H) there exists a sequence (aLn)n∈N ∈ ℓ2 and a couple of orthonormalbases (eLn)n∈N, (fL

n )n∈N in H such that

L =∞∑

n=1

aLnfLn ⟨eLn, ·⟩ and |L|2 =

∑n

(aLn)2.

If t → Lt is a L2 valued process then the above objects can be selected with thesame measurability properties as L.

Define L1(H) = L ∈ L2(H) : |L|1 < ∞ where

|L|1 := sup⟨B,L⟩2 : B ∈ L2(H), |B|L(H) ≤ 1

• If B ∈ L(H) and L ∈ L1(H) then LB, BL are in L1(H) moreover

|LB|1 ≤ |L|1|B|L(H), |BL|1 ≤ |L|1|B|L(H)

• If L ∈ L1(H) the trace Tr(L) :=∑∞

i=1⟨ei, Lei⟩ converges absolutely and itsvalue is independent on the choice of the basis (ei)i∈N

• |L|1 =∑∞

n=1 |aLn|, Tr(L) =∑∞

n=1 aLn consequently |Tr(L)| ≤ |L|1

10

Page 12: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Coming back to our bad term if Q ∈ L1(H) there exist two ONB such thatQ =

∑j ajfj⟨·, gj⟩, and

∑i

∣∣∣e(s−t)ACi(s)Qei

∣∣∣ =∑i

∣∣∣∣∣∣∑j

e(s−t)ACi(s)ajfj⟨ei, gj⟩

∣∣∣∣∣∣≤

∑j

|aj|∑i

|e(s−t)ACi(s)fj| |⟨ei, gj⟩| by Cauchy

≤∑j

|aj|c(s− t)−γ = c|Q|L1(s− t)−γ.

Moreover we formally compute dt⟨Yt, pt⟩ we get

E⟨YT ,∇XΦ(XT)⟩+ E∫ T

0⟨Ys,∇XL(Xs, us)⟩ds = E

∫ T

0Tr[(∇uG(Xs, us)(δu)s

)Qs

]ds

• The multiplication operator ∇uG(Xs, us)(δu)s is at most bounded in H thus

Tr[(∇uG(Xs, us)(δu)s

)Qs

]is not well defined for Q ∈ L2(H) but is well defined for Q ∈ L1(H) .

• We can not bypass the above term since it will remain in the final formulationof the maximum principle.

Conclusion The non-hilbertian space L1(H) has something to do here

11

Page 13: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Existence of a solution by approximations

Let us denote η := ∇XΦ(XT) ∈ L2(Ω,FT ,P, H) and f := ∇XL(X, u) ∈ L2W(Ω ×

[0, T ], H).

Consider the approximating BSDEs

dpNt = e(T−t)Aη +

∫ T

t

e(s−t)Afsds+

∫ T

t

N∑i=1

e(s−t)ACi(s)QNs eids+

∫ T

t

e(s−t)AQNs dWs

By the standard theory (see [Hu-Peng 91]) there exists a unique solution with

supt∈[0,T ]

E|pNt |2H + E

∫ T

0|QN

t |2L2(H)dt ≤ c

(E|η|2 + E

∫ T

0|ft|2dt

)The idea is to exploit the duality relation with a forward equation in order toobtain good estimates in the L1 norm.

First we show that the same duality relation easily implies weak convergence ofthe solutions of the sequence (pN , QN)

12

Page 14: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

The perturbed forward equation

Consider the perturbed (forward) equationdY Γ,ξ

t = AY Γ,ξt dt+

[∑∞i=1Ci(t)Y

Γ,ξt +Γt

]dWt

Y Γ,ξs = ξ ∈ L2(Ω,Fs,P, H)

Proposition 1 Given Γ ∈ L2W(Ω × [0, T ], L2(H)) the above equation admits a

unique mild solution that verifies

E|Y Γ,ξt |2 ≤ cE

∫ t

s

|Γℓ|2L2(H)dℓ+ Eξ2

E|Y Γ,ξt |2 ≤ cE

∫ t

s

(t− ℓ)−2γ|Γℓ|2L(H)dℓ+ Eξ2

The same estimates hold (with independent constant) for the solutions Y Γ,N ofthe approximating equations

dY Γ,ξ,Nt = AY Γ,ξ,N

t dt+[∑N

i=1Ci(t)YΓ,ξ,Nt +Γt

]dWt

Y Γ,ξ,Ns = ξ ∈ L2(Ω,Fs, H)

Moreover E∫ T

s|Y Γ,ξ,N

t − Y Γ,ξt |2dt → 0 and E|Y Γ,ξ,N

t − Y Γ,ξt |2 → 0 for all t ∈ [s, T ]

13

Page 15: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

If we compute (by introducing Yosida approximations of A) dt⟨Y Γ,Nt , pNt ⟩ we obtain

E∫ T

s

⟨Γt, QNt ⟩2dt+ E⟨ξ, pNs ⟩2 = E

∫ T

s

⟨ft, Y Γ,ξ,Nt ⟩dt+ E⟨η, Y Γ,ξ,N

T ⟩H

and taking into account the convergence of Y Γ,ξ,N towards Y Γ,ξ

Corollary 2 There exists a couple of adapted processes Q ∈ L2(Ω×[0, T ], L2(H)),p ∈ C([0, T ], L2(Ω, H)), such that

QN Q in L2(Ω× [0, T ], L2(H)) pNt pt in L2(Ω, H) ∀t ∈ [0, T ]

Moreover since for all t ∈ [0, T ] the stochastic integral∫ T

te(s−t)AQN

s dWs converges

weakly to∫ T

te(s−t)AQsdWs we immediately deduce that, by difference, for all

t ∈ [0, T ] there exists Ξt in L2(Ω,Ft, H) such that

N∑i=1

∫ T

t

e(s−t)ACi(s)QNs eids Ξt weakly in L2(Ω,FT , H)

The mild BSDE for the couple (p,Q) at this point reeds:

pt = Ξt + e(T−t)Aη +

∫ T

t

e(s−t)Afsds+

∫ T

t

e(s−t)AQsdWs

14

Page 16: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

The above is not satisfactory in the sense that we want at least to obtain a mildBSDE. To start with we notice that the convergence of the bad term holds forthe limit process Q itself namely

Proposition 3

N∑i=1

∫ T

t

e(s−t)ACi(s)Qseids Ξt in L2(Ω,FT ,P, H)

Proof: Given ξ ∈ L2(Ω,FT ,P, H)

E⟨N∑

i=1

∫ T

t

e(s−t)ACi(s)Qseids, ξ⟩ =N∑

i=1

E∫ T

t

⟨Qsei, Ci(s)e(s−t)AE(ξ|Fs)⟩ds

= limM→∞

N∑i=1

E∫ T

t

⟨QMs ei, Ci(s)e

(s−t)AE(ξ|Fs)⟩ds

If γi(s) = Ci(s)e(s−t)AE(ξ|Fs) and Y M,N is the solution of the forward mild SDE

Y M,Nζ =

M∑i=1

∫ ζ

t

e(s−t)ACi(s)YM,Ns dβi

s +N∑

i=1

∫ ζ

t

e(s−t)Aγi(s)dβis

then

E⟨N∑

i=1

∫ T

t

e(s−t)ACi(s)QMs eids, ξ⟩ = E⟨η, Y M,N

ζ ⟩+ E∫ T

t

E⟨fζ, Y M,Nζ ⟩dζ

15

Page 17: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Noticing that for all ρ > t

∞∑i=1

E∫ ρ

t

|e(ρ−s)Aγi(s)ds|2 =∞∑i=1

E∫ ρ

t

|e(ρ−s)ACi(s)e(s−t)AE(ξ|Fs)ds|2 ≤ cE|ξ|2

we can show that, for all fixed t ∈ [0, T ], as N,M → ∞

E|Y M,Nζ − Y ∞

ζ |2 → 0,

∫ T

t

E|Y M,Nζ − Y ∞

ζ |2dζ → 0

where Y ∞ is the mild solution of the forward SDEdY ∞

t = AY ∞ζ dζ +

∑∞i=1Ci(ζ)Y

M,Nζ dβi

ζ +∑∞

i=1 γi(ζ)dβiζ

Y ∞t = 0

In conclusion

E⟨N∑

i=1

∫ T

t

e(s−t)ACi(s)Qseids, ξ⟩ → E⟨η, Y ∞t ⟩+ E

∫ T

t

E⟨fζ, Y ∞ζ ⟩dζ

In an identical way we can show that

E⟨N∑

i=1

∫ T

t

e(s−t)ACi(s)QNs eids, ξ⟩ → E⟨η, Y ∞

t ⟩+ E∫ T

t

E⟨fζ, Y ∞ζ ⟩dζ

and this concludes the proof

16

Page 18: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Estimates of Q in the L1 norm

Proposition 4 E∫ T

0(T − s)2γ|Qs|2L1(H)ds ≤ cE|η|2 + cE

∫ T

0|fs|2ds

Remembering the representation QNt =

∑∞n=1 an(t)fn(t)⟨en(t), ·⟩ we choose

ΓNt := α(t)

N∑n=1

sgn(an(t))fn(t)⟨en(t), ·⟩ with α : [0, T ] → R.

We notice that |ΓNt |L(H) ≤ α(t) and that ⟨Qt,ΓN

t ⟩L2(H) = α(t)∑N

n=1 |aQn (t)| so

that:

E∫ T

0|Qt|L1(H)α(t)dt = E

∫ T

0supN

⟨Qt, γNt ⟩2dt ≤ sup

N

[E⟨η, Y ΓN

T ⟩H +

∫⟨fs, Y ΓN

s ⟩Hds

]where

dY Γt = AY Γ

t dt+[∑∞

i=1Ci(t)Y Γt +Γt

]dWt

Y Γs = 0

recalling the estimate of Y Γ with respect to the L(H) norm of Γ we get.

E

∫ T

0|Qt|1α(t)dt ≤ cη,f

(∫ T

0(T − s)−2γα2(s)ds

)1/2

and the proof follows letting α(s) = (T − s)−γα(s) and rewriting the above as

E

∫ T

0|Qt|1(T − t)γα(t)dt ≤ cη,f |α|L2[0,T ]

17

Page 19: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.
Page 20: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Corollary 5 The sequence∑∞

i=1

∫ T

te(s−t)ACi(s)Qseids converges in L1(Ω,P, H)

and the BSDE is satisfied in proper sense that is for all t ∈ [0, T ] it holds P-a.s.

pt = e(T−t)Aη +

∫ T

t

e(s−t)Afsds+∞∑i=1

∫ T

t

e(s−t)ACi(s)Qseids+

∫ T

t

e(s−t)AQsdWs

Proof: Recall the estimate∞∑i=1

∣∣∣e(s−t)ACi(s)Qei

∣∣∣ ≤ C|Q|L1(s− t)−γ.

Then for all N

EN∑

i=1

∣∣∣∣∫ T

t

e(s−t)ACi(s)Qseids

∣∣∣∣ ≤ cE∫ T

t

|Qs|L1(s− t)−γds

≤(E∫ T

t

|Qs|2L1(T − s)2γds

)1/2(∫ T

t

(T − s)−2γ(s− t)−2γds

)1/2

and the claim follows since this last integral converges.

18

Page 21: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Conclusion

Passing to the limit the duality relation holding for (pN , QN) we get (recallingthe expansion of the cost)

J(x, uϵ)− J(x, u) = ϵE∫ T

0⟨(δu)s,

[∇uF (Xs, us)

]∗ps⟩ds+ ϵE

∫ T

0⟨∇uL(Xs, us), (δu)s⟩ds

+ϵE∫ T

0Tr[(∇uG(Xs, us)(δu)s

)Qs

]ds+ o(ϵ)

And we now know that all the terms in the above formula are well defined.

Recall the we are assuming that |∇uG(Xs, us)vs|L(H) ≤ cost and we have justproved that Q ∈ L1(H), P⊗ dt, a.s..

So we con conclude (by the usual localization - Lebesgue differentiation proce-dure) that ∀v ∈ U it holds P⊗ dt a.s.

⟨∇uL(Xs, us), v − us⟩+Tr[(∇uG(Xs, us)vs

)Qs

]≥ 0

Uniqueness of the mild BSDE ?

19

Page 22: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

PART II: FINITE DIMENSIONAL NOISE

Formulation of the optimal control problem

Let (β1t , . . . , β

mt ), t ≥ 0, be a standard m-dimensional Wiener process.

(Ft)t≥0 denotes its natural (completed) filtration.

The set of control actions U is a separable metric space not necessarily convex.A control u is a process in U .

O ⊂ Rn is a bounded open set with regular boundary. The controlled stateequation is an SPDE of the following semi abstract form: for t ∈ [0, T ], x ∈ O, dXt(x) = AXt(x) dt+ b(x,Xt(x), ut) dt+

m∑j=1

σj(x,Xt(x), ut) dβjt ,

X0(x) = x0(x),

where

b(x, r, u), σj(x, r, u) : O × R × U → R are given (all difficulties are already presentif b and σj are very regular in r and independent on x).

H = L2(O) is the state space, with usual scalar product ⟨·, ·⟩.We assume x0 ∈ H. The solution Xt, t ∈ [0, T ], will be a process in H.

A is the realization of a partial differential operator, with appropriate boundaryconditions.

20

Page 23: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Standing assumptions

1) Regular coefficients

The functions b(x, r, u), σj(x, r, u), l(x, r, u), h(x, r) are measurable anda) continuous in u;b) of class C2 in r ∈ R;c) bounded together with their first and second derivative w.r.t. r,

2) Lp-boundedness of the semigroup

A is a generator of a strongly continuous semigroup etA, t ≥ 0, in H = L2(O).Moreover, for every p ∈ [2,∞) and t ∈ [0, T ],

etA(Lp(O)) ⊂ Lp(O), ∥etAf∥Lp(O) ≤ Cp∥f∥Lp(O)

for some constants Cp independent of t and f .

3) Compactness in L4 of the semigroup

the restriction of etA, t ≥ 0, to L4(O) is an analytic semigroup with domain ofthe infinitesimal generator compactly imbedded in L4(O).

21

Page 24: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Statement of the stochastic maximum principle

For u ∈ U and X, p, q1, . . . , qm ∈ H = L2(O) denote

H(u,X, p, q1, . . . , qm) =

∫O

[l(x,X(x), u)+b(x,X(x), u)p(x)+σj(x,X(x), u)qj(x)

]dx

Theorem. Let (Xt, ut) be an optimal pair. Then there are (suitably charac-terized):

1) (m+1) L2(O)-valued adapted processes pt, q1t, . . . , qmt, t ∈ [0, T ],2) one operator-valued process Pt, t ∈ [0, T ];

for which the following inequality holds P-a.s. for a.e. t ∈ [0, T ]:for every v ∈ U ,

H(v, Xt, pt, q1t, . . . , qmt)−H(ut, Xt, pt, q1t, . . . , qmt)

+1

2⟨Pt[σj(·, Xt(·), v)− σj(·, Xt(·), ut)], σj(·, Xt(·), v)− σj(·, Xt(·), ut)⟩ ≥ 0.

The first adjoint processes pt, qjt are characterized as the unique solutions inH of an appropriate BSPDE and satisfy

supt∈[0,T ]

E∥pt∥2H + E∫ T

0∥qjt∥2H dt < ∞.

The second adjoint process Pt takes values in the space of linear bounded op-erators L4(O) → L4(O)∗ = L4/3(O) and also admits a suitable unique character-ization.

22

Page 25: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Preliminaries to the proof of the maximum principle

Let (X, u) be an optimal pair. We introduce the spike variation:we fix an arbitrary interval [t, t+ ϵ] ⊂ (0, T ) and an arbitrary v ∈ U and define

uϵt =

ut if t /∈ [t, t+ ϵ],

v if t ∈ [t, t+ ϵ].

Letδlt(x) = l(x, Xt(x), uϵ

t)− l(x, Xt(x), ut)δbt(x) = b(x, Xt(x), uϵ

t)− b(x, Xt(x), ut)δσjt(x) = σj(x, Xt(x), uϵ

t)− σj(x, Xt(x), ut)δb′t(x) = b′(x, Xt(x), uϵ

t)− b′(x, Xt(x), ut)δσ′

jt(x) = σ′j(x, Xt(x), uϵ

t)− σ′j(x, Xt(x), ut)

Let (X, u) be an optimal pair, uϵt the spike variation, and Xϵ

t the corr. solution:dXϵ

t(x) = AXϵt(x) dt+ b(x,Xϵ

t(x), uϵt) dt+ σj(x,Xϵ

t(x), uϵt) dβ

jt ,

Xϵ0(x) = x0(x)

We wish to represent in the form

Xϵt = Xt + Y ϵ

t + Zϵt + remainder term

where the remainder has to be o(ϵ).

23

Page 26: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Equation for Y ϵt (to be understood in a mild sense):

dY ϵt (x) =

[AY ϵ

t (x) + b′(x, Xt(x), ut) · Y ϵt (x)

]dt

+σ′j(x, Xt(x), ut) · Y ϵ

t (x) dβjt + δbt(x) dt+ δσjt(x) dβ

jt

Y ϵ0(x) = 0

Equation for Zϵt (to be understood in a mild sense):

dZϵt(x) =

[AZϵ

t(x) + b′(x, Xt(x), ut) · Zϵt(x)

]dt+ σ′

j(x, Xt(x), ut) · Zϵt(x) dβ

jt

+[12b′′(x, Xt(x), ut) · Y ϵ

t (x)2 + δb′t(x) · Y ϵ

t (x)]dt

+[12σ′′j (x, Xt(x), ut) · Y ϵ

t (x)2 + δσ′

jt(x) · Y ϵt (x)

]dβj

t

Zϵ0(x) = 0

Proposition. For all p ≥ 2,

supt∈[0,T ]

(E∥Y ϵ

t ∥pLp(O)

)1/p= sup

t∈[0,T ]

(E∫O|Y ϵ

t (x)|pdx)1/p

≤ Cp√ϵ.

supt∈[0,T ]

(E∥Zϵ

t∥pLp(O)

)1/p= sup

t∈[0,T ]

(E∫O|Zϵ

t(x)|pdx)1/p

≤ Cp ϵ.

supt∈[0,T ]

(E∥Xϵ

t − Xt − Y ϵt − Zϵ

t∥2H)1/2

= supt∈[0,T ]

(E∫O|Xϵ

t(x)− Xt(x)− Y ϵt (x)− Zϵ

t(x)|2dx)1/2

= o(ϵ).

24

Page 27: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Expansion of the cost functional

Let (X, u) be an optimal pair for the cost

J(u) = E∫ T

0

∫Ol(x,Xt(x), ut) dx dt+ E

∫Oh(x,XT(x)) dx

Let uϵt be the spike variation, and J(uϵ) the corresponding cost. Then clearly

J(uϵ)− J(u) ≥ 0.

Recall

δlt(x) = l(x, Xt(x), uϵt)− l(x, Xt(x), ut)

Proposition. We have

0 ≤ J(uϵ)− J(u) = E∫ T

0

∫Oδlt(x) dx dt+∆ϵ

1 +∆ϵ2 + o(ϵ),

where

∆ϵ1 = E

∫ T

0

∫Ol′(x, Xt(x), ut)(Y

ϵt (x) + Zϵ

t(x)) dx dt

+E∫Oh′(x, XT(x))(Y

ϵT(x) + Zϵ

T(x)) dx,

∆ϵ2 =

1

2E∫ T

0

∫Ol′′(x, Xt(x), ut)Y

ϵt (x)

2 dx dt+1

2E∫Oh′′(x, XT(x))Y

ϵT(x)

2 dx.

25

Page 28: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

The first adjoint processes

Consider the backward SPDE −dpt(x) = −qjt(x) dβjt +

[A∗pt(x) + b′(x, Xt(x), ut) · pt(x)

+σ′j(x, Xt(x), ut) · qjt(x) + l′(x, Xt(x), ut)

]dt

pT(x) = h′(x, XT(x))

By Hu-Peng, Stoch Anal Appl (’91) there exists of a unique (m + 1)-uple ofadapted processes (p, q1, ..., qm) solving the above in a mild sense and verifying

supt∈[0,T ]

E∫O|pt(x)|2Hdx+ E

∫ T

0

∫O|qjt(x)|2Hdx dt < ∞

Computing d∫O Y ϵ

t (x)pt(x) dx , d∫O Zϵ

t(x)pt(x) dx, and joining what one obtainswith the expression for ∆ϵ

2 we get

0 ≤ J(uϵ)−J(u) = E∫ T

0

∫O

[δlt(x)+δbt(x)pt(x)+δσjt(x)qjt(x)

]dx dt+

1

2∆ϵ

3+o(ϵ),

where ∆ϵ3 =

E∫ T

0

∫O

[l′′(x, Xt(x), ut) + b′′(x, Xt(x), ut)pt(x) + σ′′

j (x, Xt(x), ut)qjt(x)]Y ϵt (x)

2dxdt

+E∫Oh′′(x, XT(x))Y

ϵT(x)

2dx.

26

Page 29: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

The second adjoint processes

Consider again

∆ϵ3 = E

∫ T

0

∫OHt(x)Y

ϵt (x)

2dxdt+E∫Oh(x)Y ϵ

T(x)2 dx = E

∫ T

0⟨HtY

ϵt , Y

ϵt ⟩ dt+E⟨hY ϵ

T , YϵT ⟩

where

Ht(x) = l′′(x, Xt(x), ut) + b′′(x, Xt(x), ut)pt(x) + σ′′j (x, Xt(x), ut)qjt(x),

h(x) = h′′(x, XT(x)).

Here and below, by Ht and h we denote multiplication operators by Ht(·) andh(·), acting on H:

Ht : f(·) 7→ Ht(·)f(·), h : f(·) 7→ h(·)f(·), f ∈ H = L2(O).

Note that

|h(x)| ≤ C := sup |h′′| < ∞, E∫ T

0

∫O|Ht(x)|2dx dt < ∞,

due to the occurrence of qjt(x), so

h(·) ∈ L∞(O) P− a.s., Ht(·) ∈ L2(O), P× dt− a.e.

In particular, h is bounded but Ht is not a (bounded) linear operator on H.

To finish our argument we have to compute limϵ→0 ϵ−1∆ϵ3

27

Page 30: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Characterization of P

For fixed t ∈ [0, T ] and f ∈ L4, we consider the equationdYt,f

s (x) = AYt,fs (x) ds+ b′(x, Xs(x), us)Yt,f

s (x) ds+ σ′j(x, Xs(x), us)Yt,f

s (x) dW js ,

Yt,ft (x) = f(x),

We define a progressive process (Pt)t∈[0,T ] with values in the space of bounded

linear operators L4 → (L4)∗ = L4/3 setting for t ∈ [0, T ], f, g ∈ L4

⟨Ptf, g⟩ = EFt

∫ T

t

⟨HsYt,fs ,Yt,g

s ⟩ ds+ EFt⟨hYt,fT ,Yt,g

T ⟩, P− a.s.

The process (Pt)t∈[0,T ] enjoys the following properties

Boundedness supt∈[0,T ] E∥Pt∥2L < ∞,

Continuity E|⟨Pt+ϵ − Pt)f, g⟩| → 0, as ϵ → 0, f, g ∈ L4(O)

Regularization For every η ∈ (0,1/4) there exists a constant Cη such that

E supf,g

|⟨Pt(−A)ηf, (−A)ηg⟩|2 ≤ Cη(T − t)−4ηE[∫ T

0∥Hs∥2L2(O)ds+ ∥h∥2L2(O)

].

where D(−A)η is the domain of the fractional power of A in L4(O) and thesup is taken over all f, g ∈ D(−A)η, ∥f∥L4(O) ≤ 1, ∥g∥L4(O) ≤ 1.

28

Page 31: Two cases of stochastic maximum principle in the …perso.univ-rennes1.fr/jurgen.angst/WS3/Tessitore_WS3.pdfVery incomplete history of SMP in ∞ dimensions • Bensoussan, J. Frank.

Conclusion of the proof

By the Markov property and suitable estimates(recalling that, for all p ≥ 1, E∥Y ϵ

t ∥2pLp(O) ≤ Cp ϵp for all t ∈ [0, T ]. )

∆ϵ3 = E

∫ T

0⟨HsY

ϵs , Y

ϵs ⟩ ds+ E⟨hY ϵ

T , YϵT ⟩ = E

∫ T

t0

⟨HsYϵs , Y

ϵs ⟩ ds+ E⟨hY ϵ

T , YϵT ⟩

= o(ϵ) + E∫ T

t0+ϵ

⟨HsYt0+ϵ,Y ϵ

t0+ϵ

s ,Yt0+ϵ,Y ϵt0+ϵ

s ⟩ ds+ E⟨hYt0+ϵ,Y ϵt0+ϵ

T ,Yt0+ϵ,Y ϵt0+ϵ

T ⟩

= o(ϵ) + E⟨Pt0+ϵYϵt0+ϵ, Y

ϵt0+ϵ⟩,

The argument is then concluded by proving the two following two relations:

E⟨(Pt0+ϵ − Pt0)Yϵt0+ϵ, Y

ϵt0+ϵ⟩ = o(ϵ),

E⟨Pt0Yϵt0+ϵ, Y

ϵt0+ϵ⟩ = E

∫ t0+ϵ

t0

⟨Psδϵσj(s, ·), δϵσj(s, ·)⟩ ds+ o(ϵ)

since in that case we obtain

∆ϵ3 = E

∫ t0+ϵ

t0

⟨Psδϵσj(s, ·), δϵσj(s, ·)⟩ ds+ o(ϵ)

29