Tutorial aMC@NLO

download Tutorial aMC@NLO

of 182

Transcript of Tutorial aMC@NLO

  • 7/25/2019 Tutorial aMC@NLO

    1/182

    Parton ShowerOlivier Mattelaer

    IPPP/Durham

  • 7/25/2019 Tutorial aMC@NLO

    2/182

    Fabio MaltoniFabio Maltoni

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    1. High-Q Scattering2 2. Parton Shower

    3. Hadronization 4. Underlying Event

    Sherpa artist

    What are the MC for?

    2

  • 7/25/2019 Tutorial aMC@NLO

    3/182

    Fabio MaltoniFabio Maltoni

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    What are the MC for?

    3

    Sher a artist

    2. Parton Shower

    where new h sics lies

    rocess de endent

    first rinci les descri tion

    it can be s stematicall im roved

    1. Hi h-Q Scatterin2

    3. Hadronization 4. Underl in Event

  • 7/25/2019 Tutorial aMC@NLO

    4/182

    Fabio MaltoniFabio Maltoni

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    What are the MC for?

    Sherpa artist

    4

    1. High-Q Scattering2 2. Parton Shower

    4. Underlying Event3. Hadronization

    QCD -known physics

    universal/ process independent

    first principles description

  • 7/25/2019 Tutorial aMC@NLO

    5/182

    Fabio MaltoniFabio Maltoni

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    We need to be able to describe an arbitrarily number ofparton branchings, i.e. we need to dress partons with radiation

    Parton shower

    5

  • 7/25/2019 Tutorial aMC@NLO

    6/182

    Fabio MaltoniFabio Maltoni

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    We need to be able to describe an arbitrarily number ofparton branchings, i.e. we need to dress partons with radiation

    This effect should be unitary:the inclusive cross sectionshouldnt change when extra radiation is added

    Parton shower

    5

  • 7/25/2019 Tutorial aMC@NLO

    7/182Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    We need to be able to describe an arbitrarily number ofparton branchings, i.e. we need to dress partons with radiation

    This effect should be unitary:the inclusive cross sectionshouldnt change when extra radiation is added

    Remember that parton-level cross sections for a hard processare inclusive in anything else. E.g. for LO Drell-Yan production allradiation is included via PDFs (apartfrom non-perturbative power corrections)

    Parton shower

    5

  • 7/25/2019 Tutorial aMC@NLO

    8/182Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    We need to be able to describe an arbitrarily number ofparton branchings, i.e. we need to dress partons with radiation

    This effect should be unitary:the inclusive cross sectionshouldnt change when extra radiation is added

    Remember that parton-level cross sections for a hard processare inclusive in anything else. E.g. for LO Drell-Yan production allradiation is included via PDFs (apartfrom non-perturbative power corrections)

    And finally we want to turn partons into hadrons (hadronization)....

    Parton shower

    5

  • 7/25/2019 Tutorial aMC@NLO

    9/182Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015 6

    First Example

    e+e qqg

    u

    4

    g

    3

    u

    e-

    2

    e+

    1

    a

    u~

    5

    1

    2

    3

    e+

    1

    e-

    2

    z

    g

    3

    u~

    5

    u~

    u

    4

    1

    2

    3

    q q

  • 7/25/2019 Tutorial aMC@NLO

    10/182Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015 6

    First Example

    e+e qqg

    u

    4

    g

    3

    u

    e-

    2

    e+

    1

    a

    u~

    5

    1

    2

    3

    e+

    1

    e-

    2

    z

    g

    3

    u~

    5

    u~

    u

    4

    1

    2

    3

    q q

    x3 = 2k3q/q2

    = 2Eg/S

    x1 = 2k1q/q

    2

    = 2Eq/S

    x2 = 2k2q/q2

    = 2Eq/Sd

    dx1dx2= 0CF

    s

    2

    x21+ x2

    2

    (1 x1)(1 x2)

    x1 + x2 + x3 = 2

  • 7/25/2019 Tutorial aMC@NLO

    11/182Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015 6

    First Example

    e+e qqg

    u

    4

    g

    3

    u

    e-

    2

    e+

    1

    a

    u~

    5

    1

    2

    3

    e+

    1

    e-

    2

    z

    g

    3

    u~

    5

    u~

    u

    4

    1

    2

    3

    q q

    Divergent at and

    Soft Divergencies

    Collinear Divergencies

    x3 = 2k3q/q2

    = 2Eg/S

    x1 = 2k1q/q

    2

    = 2Eq/S

    x2 = 2k2q/q2

    = 2Eq/Sd

    dx1dx2= 0CF

    s

    2

    x21+ x2

    2

    (1 x1)(1 x2)

    x1 + x2 + x3 = 2

    x1 = 1 x2 = 1 (1 x1) = x2x3

    2 (1 cos23)

    (1 x2) = x1x3

    2 (1 cos13)

  • 7/25/2019 Tutorial aMC@NLO

    12/182Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015 6

    First Example

    e+e qqg

    u

    4

    g

    3

    u

    e-

    2

    e+

    1

    a

    u~

    5

    1

    2

    3

    e+

    1

    e-

    2

    z

    g

    3

    u~

    5

    u~

    u

    4

    1

    2

    3

    q q

    Divergent at and

    Soft Divergencies

    Collinear Divergencies

    x3 = 2k3q/q2

    = 2Eg/S

    x1 = 2k1q/q

    2

    = 2Eq/S

    x2 = 2k2q/q2

    = 2Eq/Sd

    dx1dx2= 0CF

    s

    2

    x21+ x2

    2

    (1 x1)(1 x2)

    x1 + x2 + x3 = 2

    x1 = 1 x2 = 1 (1 x1) = x2x3

    2 (1 cos23)

    (1 x2) = x1x3

    2 (1 cos13)

  • 7/25/2019 Tutorial aMC@NLO

    13/182Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015 6

    First Example

    e+e qqg

    u

    4

    g

    3

    u

    e-

    2

    e+

    1

    a

    u~

    5

    1

    2

    3

    e+

    1

    e-

    2

    z

    g

    3

    u~

    5

    u~

    u

    4

    1

    2

    3

    q q

    Divergent at and

    Soft Divergencies

    Collinear Divergencies

    x3 = 2k3q/q2

    = 2Eg/S

    x1 = 2k1q/q

    2

    = 2Eq/S

    x2 = 2k2q/q2

    = 2Eq/Sd

    dx1dx2= 0CF

    s

    2

    x21+ x2

    2

    (1 x1)(1 x2)

    x1 + x2 + x3 = 2

    x1 = 1 x2 = 1 (1 x1) = x2x3

    2 (1 cos23)

    (1 x2) = x1x3

    2 (1 cos13)

  • 7/25/2019 Tutorial aMC@NLO

    14/182Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015 7

    First Example

    x3 = 2k3q/q2

    = 2Eg/S

    x1 = 2k1q/q2

    = 2Eq/S

    x2 = 2

    k2

    q/q2

    = 2Eq/

    Sd

    dx1dx2= 0CF s

    2x

    2

    1+ x2

    2

    (1 x1)(1 x2)

    x1 + x2 + x3 = 2

  • 7/25/2019 Tutorial aMC@NLO

    15/182Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015 7

    First Example

    d

    dx3d cos 13= 0CF

    s

    2

    2

    sin2 13

    1 (1 x3)2

    x3 x3

    3 cos 13

    x3 = 2k3q/q2

    = 2Eg/S

    x1 = 2k1q/q2

    = 2Eq/S

    x2 = 2

    k2

    q/q2

    = 2Eq/

    Sddx1dx2

    = 0CF s2

    x

    2

    1+ x2

    2

    (1 x1)(1 x2)

    x1 + x2 + x3 = 2

    Change the variable to and

  • 7/25/2019 Tutorial aMC@NLO

    16/182Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015 7

    First Example

    d

    dx3d cos 13= 0CF

    s

    2

    2

    sin2 13

    1 (1 x3)2

    x3 x3

    3 cos 13

    x3 = 2k3q/q2

    = 2Eg/S

    x1 = 2k1q/q2

    = 2Eq/S

    x2 = 2

    k2

    q/q2

    = 2

    Eq/

    Sddx1dx2

    = 0CF s2

    x

    2

    1+ x2

    2

    (1 x1)(1 x2)

    x1 + x2 + x3 = 2

    Change the variable to and

  • 7/25/2019 Tutorial aMC@NLO

    17/182Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015 7

    First Example

    d

    dx3d cos 13= 0CF

    s

    2

    2

    sin2 13

    1 (1 x3)2

    x3 x3

    3 cos 13

    x3 = 2k3q/q2

    = 2Eg/S

    x1 = 2k1q/q2

    = 2Eq/S

    x2 = 2

    k2

    q/q

    2= 2

    Eq/

    Sddx1dx2

    = 0CF s2

    x

    2

    1+ x2

    2

    (1 x1)(1 x2)

    x1 + x2 + x3 = 2

    Change the variable to and

  • 7/25/2019 Tutorial aMC@NLO

    18/182Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015 7

    First Example

    d

    dx3d cos 13= 0CF

    s

    2

    2

    sin2 13

    1 (1 x3)2

    x3 x3

    3 cos 13

    x3 = 2k3q/q2

    = 2Eg/S

    x1 = 2k1q/q2

    = 2Eq/S

    x2 = 2

    k2

    q/q

    2= 2

    Eq/

    Sddx1dx2

    = 0CF s2

    x

    2

    1+ x2

    2

    (1 x1)(1 x2)

    x1 + x2 + x3 = 2

    Change the variable to and

    Collinear limit Split our integral in two

    2 dcos13

    sin213= dcos13

    1 cos13+ dcos13

    1 +cos13

    d2

    13

    2

    13

    +d23

    2

    23

    d cos 13(1 cos 13)

    + d cos 23(1 cos 23)

    2

    Fi E l

  • 7/25/2019 Tutorial aMC@NLO

    19/182Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015 8

    First Example

    z fraction of energy

    Generic Formula

    d

    dx3d cos 13= 0CF

    s

    2

    2

    sin2 13

    1

    (1

    x3)2

    x3 x3

    x3 cos 13 Change the variable to and

    Collinear limit

    Split our integral in two

    2 dcos13

    sin213

    =dcos13

    1 cos

    13

    +dcos13

    1 +cos

    13

    d2

    13

    213

    +d23

    223

    d cos 13(1 cos 13)

    + d cos 23(1 cos 23)

    2

    C lli f i i

  • 7/25/2019 Tutorial aMC@NLO

    20/182Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    Consider a process for which two particles are separated by a smallangle ".

    In the limit of "!0the contribution is coming from a single parentparticle going on shell: therefore its branching is related to time

    scales which are very long with respect to the hard subprocess.

    Collinear factorization

    9

    2b

    c"

    Mn+1

    C lli f t i ti

  • 7/25/2019 Tutorial aMC@NLO

    21/182Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    2a

    b

    c"

    Mn+1"!0

    Consider a process for which two particles are separated by a smallangle ".

    In the limit of "!0the contribution is coming from a single parentparticle going on shell: therefore its branching is related to time

    scales which are very long with respect to the hard subprocess.

    Collinear factorization

    9

    2b

    c"

    Mn+1

    C lli f t i ti

  • 7/25/2019 Tutorial aMC@NLO

    22/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    2a

    b

    c"

    Mn+1"!0

    Consider a process for which two particles are separated by a smallangle ".

    In the limit of "!0the contribution is coming from a single parentparticle going on shell: therefore its branching is related to time

    scales which are very long with respect to the hard subprocess.

    Collinear factorization

    9

    "!0

    2b

    c"

    Mn+1

    C lli f t i ti

  • 7/25/2019 Tutorial aMC@NLO

    23/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    2a

    b

    c"

    Mn+1

    Consider a process for which two particles are separated by a smallangle ".

    In the limit of "!0the contribution is coming from a single parentparticle going on shell: therefore its branching is related to time

    scales which are very long with respect to the hard subprocess.

    Collinear factorization

    9

    "!0 !b

    c

    a

    2a

    Mn

    C lli f t i ti

  • 7/25/2019 Tutorial aMC@NLO

    24/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    2a

    b

    c"

    Mn+1

    Consider a process for which two particles are separated by a smallangle ".

    In the limit of "!0the contribution is coming from a single parentparticle going on shell: therefore its branching is related to time

    scales which are very long with respect to the hard subprocess.

    The inclusion of such a branching cannot change the picture set upby the hard process: the whole emission process must be writablein this limit as the simpler one times a branching probability.

    Collinear factorization

    9

    "!0 !b

    c

    a

    2a

    Mn

    C lli f t i ti

  • 7/25/2019 Tutorial aMC@NLO

    25/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    The process factorizes in the collinear limit. This procedure ituniversal!

    Collinear factorization

    10

    ab

    cn+1 "!

    b

    c

    a

    a

    Mn

    z

    1-z

    Mp a

    b

    c

    z = Eb/Ea

    "

    1

    (pb+pc)2 '

    1

    2EbEc(1 cos ) =1

    t

    C lli f t i ti

  • 7/25/2019 Tutorial aMC@NLO

    26/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    The process factorizes in the collinear limit. This procedure ituniversal!

    Collinear factorization

    10

    ab

    cn+1 "!

    b

    c

    a

    a

    Mn

    soft

    z

    1-z

    Mp a

    b

    c

    z = Eb/Ea

    "

    1

    (pb+pc)2 '

    1

    2EbEc(1 cos ) =1

    t

    C lli f t i ti

  • 7/25/2019 Tutorial aMC@NLO

    27/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    The process factorizes in the collinear limit. This procedure ituniversal!

    Collinear factorization

    10

    ab

    cn+1 "!

    b

    c

    a

    a

    Mn

    soft

    z

    1-zMp a

    b

    c

    z = Eb/Ea

    "

    andcollinear

    divergencies

    1

    (pb+pc)2 '

    1

    2EbEc(1 cos ) =1

    t

    C lli f t i ti

  • 7/25/2019 Tutorial aMC@NLO

    28/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    The process factorizes in the collinear limit. This procedure ituniversal!

    Collinear factorization

    10

    ab

    cn+1 "!

    b

    c

    a

    a

    Mn

    soft

    z

    1-zMp a

    b

    c

    z = Eb/Ea

    "

    andcollinear

    divergencies

    1

    (pb+pc)2 '

    1

    2EbEc(1 cos ) =1

    t

    Collinear factorization:

    when "is small.

    |Mn+1|2dn+1 ' |Mn|

    2dn

    dt

    tdz

    d

    2

    S

    2Pabc(z)

    C lli f t i ti

  • 7/25/2019 Tutorial aMC@NLO

    29/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    tcan be called the evolution variable (will become clearer later): itcan be the virtualitym2of particleaor itspT2orE2"2

    It represents the hardness of the branching and tends to 0 in thecollinear limit.

    Different choice of evolution parameter in different Parton-shower code

    d2/2 = dm2/m2 = dp2T/p2

    T

    Collinear factorization

    11

    m2

    ' z(1 z)2

    E2

    a

    p2T ' zm2

    |Mn+1|2dn+1 ' |Mn|

    2dn

    dt

    tdz

    d

    2

    S

    2Pabc(z)

    Collinear factori ation

  • 7/25/2019 Tutorial aMC@NLO

    30/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    Collinear factorization

    12

    zis the energy variable: it is defined to be the energy fraction taken by partonbfrom partona. It represents the energy sharing betweenbandcand tends to

    1 in the soft limit (partoncgoing soft)

    # is the azimuthal angle. It can be chosen to be the angle between thepolarization ofaand the plane of the branching.

    |Mn+1|2dn+1 ' |Mn|

    2dn

    dt

    tdz

    d

    2

    S

    2Pabc(z)

    P t Sh b i

  • 7/25/2019 Tutorial aMC@NLO

    31/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    The spin averaged (unregulated) splitting functions for the various typesof branching are (Altarelli-Parisi):

    Parton Shower basics

    13

    |Mn+1|2dn+1 ' |Mn|

    2dn

    dt

    tdz

    d

    2

    S

    2Pabc(z)

    P t Sh b i

  • 7/25/2019 Tutorial aMC@NLO

    32/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    The spin averaged (unregulated) splitting functions for the various typesof branching are (Altarelli-Parisi):

    Comments:* Gluons radiate the most* There are soft divergences in z=1 and z=0.* Pqg has no soft divergences.

    Parton Shower basics

    13

    |Mn+1|2dn+1 ' |Mn|

    2dn

    dt

    tdz

    d

    2

    S

    2Pabc(z)

    Argument of !

  • 7/25/2019 Tutorial aMC@NLO

    33/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    Each choice of argument for $Sis equally acceptable at the leading-logarithmic accuracy.However, there is a choice that allows one to resum certain classes of subleadinglogarithms.

    The higher order corrections to the partons splittings imply that the splitting kernelsshould be modified: Pabc(z)Pabc(z) + $s Pabc(z)

    For gggbranchings Pabc(z)diverges as -b0log[z(1-z)] Pabc(z)

    (just zor 1-zif quark is present)

    Recall the one-loop running of the strong coupling:

    We can therefore include the P(z)terms by choosing pT2~z(1-z)Q2as argument of $S:

    Argument of !S

    14

    S(Q2) = S

    (2

    )1 + S(2)b0log

    Q2

    2

    S(2)

    1 S(2)b0logQ2

    2

    S(Q2)

    Pabc(z) + S(Q

    2)Pabc

    = S(Q

    2)

    1 S(Q2)b log z(1 z)

    Pabc(z)

    S(z(1 z)Q2

    )Pabc(z)

    |Mn+1|2dn+1 ' |Mn|

    2dn

    dt

    tdz

    d

    2

    S

    2Pabc(z)

    Argument of !

  • 7/25/2019 Tutorial aMC@NLO

    34/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    Each choice of argument for $Sis equally acceptable at the leading-logarithmic accuracy.However, there is a choice that allows one to resum certain classes of subleadinglogarithms.

    The higher order corrections to the partons splittings imply that the splitting kernelsshould be modified: Pabc(z)Pabc(z) + $s Pabc(z)

    For gggbranchings Pabc(z)diverges as -b0log[z(1-z)] Pabc(z)

    (just zor 1-zif quark is present)

    Recall the one-loop running of the strong coupling:

    We can therefore include the P(z)terms by choosing pT2~z(1-z)Q2as argument of $S:

    Argument of !S

    14

    S(Q2) = S

    (2

    )1 + S(2)b0log

    Q2

    2

    S(2)

    1 S(2)b0logQ2

    2

    S(Q2)

    Pabc(z) + S(Q

    2)Pabc

    = S(Q

    2)

    1 S(Q2)b log z(1 z)

    Pabc(z)

    S(z(1 z)Q2

    )Pabc(z)

    |Mn+1|2dn+1 ' |Mn|

    2dn

    dt

    tdz

    d

    2

    S

    2Pabc(z)

    t

    To Remember

  • 7/25/2019 Tutorial aMC@NLO

    35/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    To Remember

    15

    |Mn+1|2dn+1 ' |Mn|

    2dn

    dt

    t dz

    d

    2

    S

    2Pabc(z)

    To Remember

  • 7/25/2019 Tutorial aMC@NLO

    36/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    To Remember

    15

    |Mn+1|2dn+1 ' |Mn|

    2dn

    dt

    t dz

    d

    2

    S

    2Pabc(z)

    Collinear Limit

    To Remember

  • 7/25/2019 Tutorial aMC@NLO

    37/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    To Remember

    15

    |Mn+1|2dn+1 ' |Mn|

    2dn

    dt

    t dz

    d

    2

    S

    2Pabc(z)

    Collinear Limit

    tis the evolution parameter (control the collinear behaviour)

    To Remember

  • 7/25/2019 Tutorial aMC@NLO

    38/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    To Remember

    15

    |Mn+1|2dn+1 ' |Mn|

    2dn

    dt

    t dz

    d

    2

    S

    2Pabc(z)

    Collinear Limit

    tis the evolution parameter (control the collinear behaviour) zis the energy sharing variable

    To Remember

  • 7/25/2019 Tutorial aMC@NLO

    39/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    To Remember

    15

    |Mn+1|2dn+1 ' |Mn|

    2dn

    dt

    t dz

    d

    2

    S

    2Pabc(z)

    Collinear Limit

    tis the evolution parameter (control the collinear behaviour) zis the energy sharing variable

    alpha_sneed to be evaluated at the scale t

    To Remember

  • 7/25/2019 Tutorial aMC@NLO

    40/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    To Remember

    15

    |Mn+1|2dn+1 ' |Mn|

    2dn

    dt

    t dz

    d

    2

    S

    2Pabc(z)

    Collinear Limit

    tis the evolution parameter (control the collinear behaviour) zis the energy sharing variable

    alpha_sneed to be evaluated at the scale t

    Pis the splitting Kernel (control the soft behaviour)

    Multiple emission

  • 7/25/2019 Tutorial aMC@NLO

    41/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    Now consider Mn+1as the new core process and use the recipe weused for the first emission in order to get the dominant contributionto the (n+2)-body cross section: add a new branching at angle muchsmaller than the previous one:

    This can be done for an arbitrary number of emissions. The recipe toget the leading collinear singularity is thus cast in the form of aniterative sequence of emissions whose probability does not depend onthe past history of the system: a Markov chain. No interference!!!

    Multiple emission

    16

    Mn+2|2dn+2 ' |Mn|

    2dn

    dt

    tdz

    d

    2

    S

    2Pabc(z)

    dt0

    t0 dz0d0

    2

    S

    2Pbde(z

    0

    )

    ","!0

    " "

    2a b

    c"

    "

    d

    e!

    b

    c

    a

    2a

    Mnd

    e

    b!Mn+2

    Multiple emission

  • 7/25/2019 Tutorial aMC@NLO

    42/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    The dominant contribution comes from the region where thesubsequently emitted partons satisfy the strong ordering requirement:"!"!"...

    For the rate for multiple emission we get

    where Qis a typical hard scale and Q0is a small infrared cutoff thatseparates perturbative from non perturbative regimes.

    Each power of $scomes with a logarithm. The logarithm can be easilylarge, and therefore it can lead to a breakdown of perturbation theory.

    Multiple emission

    17

    n+k kS

    Z Q2Q20

    dt

    t

    Z tQ20

    dt0

    t0...

    Z t(k2)Q20

    dt(k1)

    t(k1) n

    S

    2

    klogk(Q2/Q20)

    ","!0

    " "

    2a b

    c"

    "

    d

    e!

    b

    c

    a

    2a

    Mnd

    e

    b!Mn+2

    Sudakov Form Factor

  • 7/25/2019 Tutorial aMC@NLO

    43/182

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    What is the probability of no emission?

    18

    Sudakov Form Factor

    Sudakov Form Factor

  • 7/25/2019 Tutorial aMC@NLO

    44/182

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    What is the probability of no emission?

    18

    Sudakov Form Factor

    Pnonbranching(ti) = 1 Pbranching(ti) = 1 t

    ti

    s

    2

    Z 1

    z

    dzP(z)

    Sudakov Form Factor

  • 7/25/2019 Tutorial aMC@NLO

    45/182

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    What is the probability of no emission?

    So the probability of no emission between

    two scales:

    18

    Sudakov Form Factor

    Pnonbranching(ti) = 1 Pbranching(ti) = 1 t

    ti

    s

    2

    Z 1

    z

    dzP(z)

    Sudakov Form Factor

  • 7/25/2019 Tutorial aMC@NLO

    46/182

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    What is the probability of no emission?

    So the probability of no emission between

    two scales:

    18

    Sudakov Form Factor

    Pnonbranching(ti) = 1 Pbranching(ti) = 1 t

    ti

    s

    2

    Z 1

    z

    dzP(z)

    Pnobranching(Q2, t) = lim

    N

    NYi=0

    1

    t

    ti

    S

    2

    Z dzP(z)

    Sudakov Form Factor

  • 7/25/2019 Tutorial aMC@NLO

    47/182

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    What is the probability of no emission?

    So the probability of no emission between

    two scales:

    18

    Sudakov Form Factor

    Pnonbranching(ti) = 1 Pbranching(ti) = 1 t

    ti

    s

    2

    Z 1

    z

    dzP(z)

    Pnobranching(Q2, t) = lim

    N

    NYi=0

    1

    t

    ti

    S

    2

    Z dzP(z)

    ' limN

    eP

    N

    i=0

    t

    ti

    S

    2

    R dzP(z)

    Sudakov Form Factor

  • 7/25/2019 Tutorial aMC@NLO

    48/182

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    What is the probability of no emission?

    So the probability of no emission between

    two scales:

    18

    Sudakov Form Factor

    Pnonbranching(ti) = 1 Pbranching(ti) = 1 t

    ti

    s

    2

    Z 1

    z

    dzP(z)

    Pnobranching(Q2, t) = lim

    N

    NYi=0

    1

    t

    ti

    S

    2

    Z dzP(z)

    ' eRQ2

    tdt0

    t0 dz

    S2

    P(z) e

    RQ2

    t dp(t0)

    ' limN

    eP

    N

    i=0

    t

    ti

    S

    2

    R dzP(z)

    R

    Sudakov Form Factor

  • 7/25/2019 Tutorial aMC@NLO

    49/182

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    What is the probability of no emission?

    So the probability of no emission between

    two scales:

    18

    Sudakov Form Factor

    Pnonbranching(ti) = 1 Pbranching(ti) = 1 t

    ti

    s

    2

    Z 1

    z

    dzP(z)

    Pnobranching(Q2, t) = lim

    N

    NYi=0

    1

    t

    ti

    S

    2

    Z dzP(z)

    ' eRQ2

    tdt0

    t0 dz

    S2

    P(z) e

    RQ2

    t dp(t0)

    ' limN

    eP

    N

    i=0

    t

    ti

    S

    2

    R dzP(z)

    (Q2, t)Sudakov form factor R

    Sudakov Form Factor

  • 7/25/2019 Tutorial aMC@NLO

    50/182

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    What is the probability of no emission?

    So the probability of no emission between

    two scales:

    18

    Sudakov Form Factor

    Pnonbranching(ti) = 1 Pbranching(ti) = 1 t

    ti

    s

    2

    Z 1

    z

    dzP(z)

    Pnobranching(Q2, t) = lim

    N

    NYi=0

    1

    t

    ti

    S

    2

    Z dzP(z)

    ' eRQ2

    tdt0

    t0 dz

    S2

    P(z) e

    RQ2

    t dp(t0)

    ' limN

    eP

    N

    i=0

    t

    ti

    S

    2

    R dzP(z)

    (Q2, t)Sudakov form factor R

    Sudakov Form Factor

  • 7/25/2019 Tutorial aMC@NLO

    51/182

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    What is the probability of no emission?

    So the probability of no emission between

    two scales:

    18

    Sudakov Form Factor

    Pnonbranching(ti) = 1 Pbranching(ti) = 1 t

    ti

    s

    2

    Z 1

    z

    dzP(z)

    Pnobranching(Q2, t) = lim

    N

    NYi=0

    1

    t

    ti

    S

    2

    Z dzP(z)

    ' eRQ2

    tdt0

    t0 dz

    S2

    P(z) e

    RQ2

    t dp(t0)

    ' limN

    eP

    N

    i=0

    t

    ti

    S

    2

    R dzP(z)

    (Q2, t)Sudakov form factor R

    Sudakov Form Factor

  • 7/25/2019 Tutorial aMC@NLO

    52/182

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    What is the probability of no emission?

    So the probability of no emission between

    two scales:

    18

    Sudakov Form Factor

    Pnonbranching(ti) = 1 Pbranching(ti) = 1 t

    ti

    s

    2

    Z 1

    z

    dzP(z)

    Pnobranching(Q2, t) = lim

    N

    NYi=0

    1

    t

    ti

    S

    2

    Z dzP(z)

    ' eRQ2

    tdt0

    t0 dz

    S2

    P(z) e

    RQ2

    t dp(t0)

    ' limN

    eP

    N

    i=0

    t

    ti

    S

    2

    R dzP(z)

    (Q2, t)Sudakov form factor

    "Property:%(A,B) = %(A,C) %(C,B)

    R

    Parton shower

  • 7/25/2019 Tutorial aMC@NLO

    53/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    Parton shower

    19

    The Sudakov form factor is the heart of the parton shower. It gives the

    probability that a parton does not branch between two scales

    Using this no-emission probability thebranching tree of a par ton is generated.

    Define dPkas the probability for k ordered splittings from leg a at given scales

    Q02 is the hadronization scale (~1 GeV). Below this scale we do not trust theperturbative description for parton splitting anymore.

    dP1(t1) = (Q2, t1) dp(t1)(t1, Q

    2

    0),

    dP2(t1, t2) = (Q2, t1) dp(t1) (t1, t2) dp(t2) (t2, Q

    2

    0)(t1 t2),

    ... = ...

    dPk(t1,...,tk) = (Q2, Q2

    0)

    k

    l=1

    dp(tl)(tl1 tl)

    Unitarity

  • 7/25/2019 Tutorial aMC@NLO

    54/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    The parton shower has to be unitary (the sum over allbranching trees should be 1). We can explicitly show this by

    integrating the probability for ksplittings:

    Unitarity

    20

    dPk(t1,...,tk) = (Q2, Q20)

    k

    l=1

    dp(tl)(tl1

    tl)

    Unitarity

  • 7/25/2019 Tutorial aMC@NLO

    55/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    The parton shower has to be unitary (the sum over allbranching trees should be 1). We can explicitly show this by

    integrating the probability for ksplittings:

    Unitarity

    20

    dPk(t1,...,tk) = (Q2, Q20)

    k

    l=1

    dp(tl)(tl1

    tl)

    Pk dPk(t1,...,tk) = (Q

    2, Q20

    )1k!

    Q

    2

    Q20

    dp(t)k

    , k= 0, 1,...

    Unitarity

  • 7/25/2019 Tutorial aMC@NLO

    56/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    The parton shower has to be unitary (the sum over allbranching trees should be 1). We can explicitly show this by

    integrating the probability for ksplittings:

    Summing over all number of emissions

    Unitarity

    20

    dPk(t1,...,tk) = (Q2, Q20)

    k

    l=1

    dp(tl)(tl1

    tl)

    Pk dPk(t1,...,tk) = (Q

    2, Q20

    )1k!

    Q

    2

    Q20

    dp(t)k

    , k= 0, 1,...

    Unitarity

  • 7/25/2019 Tutorial aMC@NLO

    57/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    The parton shower has to be unitary (the sum over allbranching trees should be 1). We can explicitly show this by

    integrating the probability for ksplittings:

    Summing over all number of emissions

    Unitarity

    20

    dPk(t1,...,tk) = (Q2, Q20)

    k

    l=1

    dp(tl)(tl1

    tl)

    Pk dPk(t1,...,tk) = (Q

    2, Q20

    )1k!

    Q

    2

    Q20

    dp(t)k

    , k= 0, 1,...

    k=0

    Pk = (Q2

    , Q2

    0)

    k=0

    1

    k! Q2

    Q20

    dp(t)k

    = (Q2

    , Q2

    0)exp Q2

    Q20

    dp(t)

    = 1

    Unitarity

  • 7/25/2019 Tutorial aMC@NLO

    58/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    The parton shower has to be unitary (the sum over allbranching trees should be 1). We can explicitly show this by

    integrating the probability for ksplittings:

    Summing over all number of emissions

    Hence, the total probability is conserved

    Unitarity

    20

    dPk(t1,...,tk) = (Q2

    , Q2

    0)

    k

    l=1

    dp(tl)(tl1

    tl)

    Pk dPk(t1,...,tk) = (Q

    2, Q20

    )1k!

    Q

    2

    Q20

    dp(t)k

    , k= 0, 1,...

    k=0

    Pk = (Q2

    , Q2

    0)

    k=0

    1

    k! Q2

    Q20

    dp(t)k

    = (Q2

    , Q2

    0)exp Q2

    Q20

    dp(t)

    = 1

    singularities

  • 7/25/2019 Tutorial aMC@NLO

    59/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    We have shown that the showers is unitary. However, how arethe IR divergences cancelled explicitly? Lets show this for the

    first emission:Consider the contributions from (exactly) 0 and 1 emissionsfrom leg a:

    Expanding to first order in $sgives

    Same structure of the two latter terms, with opposite signs:cancellation of divergences between the approximate virtualand approximate real emission cross sections.

    The probabilistic interpretation of the shower ensures thatinfrared divergences will cancel for each emission.

    singularities

    21

    n= (Q2, Q2

    0) +(Q2, Q2

    0)

    bc

    dz t

    t

    2

    S

    2Pabc(z)

    d

    n 1

    bc

    Q2Q20

    dt

    tdz

    d

    2

    S

    2Pabc(z) +

    bc

    dzdt

    t

    d

    2

    S

    2Pabc(z)

    Final-state parton showers

  • 7/25/2019 Tutorial aMC@NLO

    60/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    p

    22

    Final-state parton showers

  • 7/25/2019 Tutorial aMC@NLO

    61/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    p

    With the Sudakov form factor, we can now implement a final-stateparton shower in a Monte Carlo event generator!

    22

    Final-state parton showers

  • 7/25/2019 Tutorial aMC@NLO

    62/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    p

    With the Sudakov form factor, we can now implement a final-stateparton shower in a Monte Carlo event generator!

    1. Start the evolution at the virtual mass scale t0(e.g. the mass of thedecaying particle) and momentum fraction z0= 1

    22

    Final-state parton showers

  • 7/25/2019 Tutorial aMC@NLO

    63/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    p

    With the Sudakov form factor, we can now implement a final-stateparton shower in a Monte Carlo event generator!

    1. Start the evolution at the virtual mass scale t0(e.g. the mass of thedecaying particle) and momentum fraction z0= 1

    2. Given a virtual mass scale tiand momentum fractionxiat some stage

    in the evolution, generate the scale of the next emission ti+1according tothe Sudakov probability &(ti,ti+1) by solving&(ti+1,ti) = Rwhere Ris a random number (uniform on [0, 1]).

    22

    Final-state parton showers

  • 7/25/2019 Tutorial aMC@NLO

    64/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    p

    With the Sudakov form factor, we can now implement a final-stateparton shower in a Monte Carlo event generator!

    1. Start the evolution at the virtual mass scale t0(e.g. the mass of thedecaying particle) and momentum fraction z0= 1

    2. Given a virtual mass scale tiand momentum fractionxiat some stage

    in the evolution, generate the scale of the next emission ti+1according tothe Sudakov probability &(ti,ti+1) by solving&(ti+1,ti) = Rwhere Ris a random number (uniform on [0, 1]).

    3. If ti+1< tcutit means that the shower has finished.

    22

    Final-state parton showers

  • 7/25/2019 Tutorial aMC@NLO

    65/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    p

    With the Sudakov form factor, we can now implement a final-stateparton shower in a Monte Carlo event generator!

    1. Start the evolution at the virtual mass scale t0(e.g. the mass of thedecaying particle) and momentum fraction z0= 1

    2. Given a virtual mass scale tiand momentum fractionxiat some stage

    in the evolution, generate the scale of the next emission ti+1according tothe Sudakov probability &(ti,ti+1) by solving&(ti+1,ti) = Rwhere Ris a random number (uniform on [0, 1]).

    3. If ti+1< tcutit means that the shower has finished.

    4. Otherwise, generate z= zi/zi+1with a distribution proportional to ($s/2')P(z), where P(z) is the appropriate splitting function.

    22

    Final-state parton showers

  • 7/25/2019 Tutorial aMC@NLO

    66/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    p

    With the Sudakov form factor, we can now implement a final-stateparton shower in a Monte Carlo event generator!

    1. Start the evolution at the virtual mass scale t0(e.g. the mass of thedecaying particle) and momentum fraction z0= 1

    2. Given a virtual mass scale tiand momentum fractionxiat some stage

    in the evolution, generate the scale of the next emission ti+1according tothe Sudakov probability &(ti,ti+1) by solving&(ti+1,ti) = Rwhere Ris a random number (uniform on [0, 1]).

    3. If ti+1< tcutit means that the shower has finished.

    4. Otherwise, generate z= zi/zi+1with a distribution proportional to ($s/2')P(z), where P(z) is the appropriate splitting function.

    5. For each emitted particle, iterate steps 2-4 until branching stops.

    22

    Soft Limit

  • 7/25/2019 Tutorial aMC@NLO

    67/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    There is a lot of freedom in the choice of evolution parametert.It can be the virtuality m2of particle aor its pT2or E2"2... Forthe collinear limit they are all equivalent

    However, in the soft limit (z"0,1) they behave differently Can we chose it such that we get the correct soft limit?

    Soft gluon comes from the full event!

    Soft Limit

    23

    (Q2, t) = exp

    bc Q2

    t

    dt

    tdz

    d

    2

    S

    2Pabc(z)

    Quantum Interference

    Angular ordering

  • 7/25/2019 Tutorial aMC@NLO

    68/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    Radiation inside cones around the original partons is allowed(and described by the eikonal approximation), outside the conesit is zero (after averaging over the azimuthal angle)

    Angular ordering

    24

    photon+photon

    To Remember

  • 7/25/2019 Tutorial aMC@NLO

    69/182

    Mattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    Sudakov Form-Factor: Probablility of No-emission between two scale.

    Probalitity of K-emission

    Ensure that the parton shower is unitary

    Ensure cancelation of IR divergency

    Interference effect via Angular ordering

    25

    ' eRQ2

    tdt0

    t0 dz

    S2

    P(z) e

    RQ2

    t dp(t0)(Q2, t)

    Pk

    dPk(t1,...,tk) = (Q

    2, Q20

    )1

    k!

    Q2Q20

    dp(t)

    k, k= 0, 1,...

    Initial-state

  • 7/25/2019 Tutorial aMC@NLO

    70/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    So far, we have looked at final-state (time-like) splittings. For

    initial state, the splitting functions are the same

    However, there is another ingredient: the parton density (ordistribution) functions (PDFs). Naively: Probability to find a

    given parton in a hadron at a given momentum fraction x = pz/

    Pzand scale t.

    t a state

    26

    x0 t0

    Q2

    x1 t1

    xn1 tn1

    xn tn

    p

    Initial-state

  • 7/25/2019 Tutorial aMC@NLO

    71/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    So far, we have looked at final-state (time-like) splittings. For

    initial state, the splitting functions are the same

    However, there is another ingredient: the parton density (ordistribution) functions (PDFs). Naively: Probability to find a

    given parton in a hadron at a given momentum fraction x = pz/

    Pzand scale t.

    How do the PDFs evolve with increasing t?

    26

    x0 t0

    Q2

    x1 t1

    xn1 tn1

    xn tn

    p

    Initial-state

  • 7/25/2019 Tutorial aMC@NLO

    72/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    So far, we have looked at final-state (time-like) splittings. For

    initial state, the splitting functions are the same

    However, there is another ingredient: the parton density (ordistribution) functions (PDFs). Naively: Probability to find a

    given parton in a hadron at a given momentum fraction x = pz/

    Pzand scale t.

    How do the PDFs evolve with increasing t?

    26

    t

    tfi(x, t) =

    Z 1

    x

    dz

    z

    s

    2Pij(z)fj

    xz, t

    DGLAP

    x0 t0

    Q2

    x1 t1

    xn1 tn1

    xn tn

    p

    Initial-state parton splittings

  • 7/25/2019 Tutorial aMC@NLO

    73/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    Start with a quark PDF f0(x)at scale t0. After a singleparton emission, the probability to find the quark atvirtuality t > t0is

    After a second emission, we have

    p p g

    x0 t0

    Q2

    x1 t1

    xn1 tn1

    xn tn

    p

    27

    f(x, t) =f0(x) +

    t

    t0

    dt

    ts

    2

    1

    x

    dz

    zP(z)f0

    xz

    f(x/z, t)f(x, t) =f0(x) +

    t

    t0

    dt

    ts

    2

    1

    x

    dz

    zP(z)

    f0

    xz

    +

    t

    t0

    dt

    ts

    2

    1

    x/z

    dz

    zP(z)f0

    x

    zz

    The DGLAP equation

  • 7/25/2019 Tutorial aMC@NLO

    74/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    So for multiple parton splittings, we arrive at an integral-differential equation:

    This is the famous DGLAP equation (where we have taken intoaccount the multiple parton species i,j). The boundarycondition for the equation is the initial PDFs fi0(x)at a startingscalet0(around 2 GeV).

    These starting PDFs are fitted to experimental data.

    q

    28

    x0 t0

    Q2

    x1 t1

    xn1 tn1

    xn tn

    p

    t

    tfi(x, t) =

    Z 1

    x

    dz

    z

    s

    2Pij(z)fj

    xz, t

    parton showers

  • 7/25/2019 Tutorial aMC@NLO

    75/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    To simulate parton radiation from the initial state, we start withthe hard scattering, and then deconstruct the DGLAP

    evolution to get back to the original hadron: backwardsevolution!

    i.e. we undo the analytic resummation and replace it withexplicit partons (e.g. in Drell-Yan this gives non-zero pTto

    the vector boson)

    In backwards evolution, the Sudakovs include also the PDFs --this follows from the DGLAP equation and ensuresconservation of probability:

    This represents the probability that parton iwill stay at thesame x(no splittings) when evolving from t1to t2.

    The shower simulation is now done as in a final state shower!

    p

    29

    Ii(x, t1, t2) = exp

    t2

    t1

    dtj

    1

    x

    dx

    x

    s(t)

    2Pij x

    x fi(x

    , t)

    fj(x, t

    )

    Hadronization

  • 7/25/2019 Tutorial aMC@NLO

    76/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    The shower stops if all partons are characterized by a scale atthe IR cut-off: Q0~ 1 GeV.

    Physically, we observe hadrons, not (colored) partons.

    We need a non-perturbative model in passing from partons tocolorless hadrons.

    There are two models (string and cluster), based on physicaland phenomenological considerations.

    30

    Parton Shower MC event generators

  • 7/25/2019 Tutorial aMC@NLO

    77/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015 31

    A parton shower program associates one of the possible histories (and pre-histories in case of pp) of an hard event in an explicit and fully detailed way,

    such that the sum of the probabilities of all possible histories is unity.

    Parton Shower MC event generators

  • 7/25/2019 Tutorial aMC@NLO

    78/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    General-purpose tools

    Complete exclusive description of the events: hard scattering,showering & hadronization (and underlying event)

    Reliable and well-tuned tools

    Significant and intense progress in the development of newshowering algorithms with the final aim to go at NLO in QCD

    31

    A parton shower program associates one of the possible histories (and pre-histories in case of pp) of an hard event in an explicit and fully detailed way,

    such that the sum of the probabilities of all possible histories is unity.

    Parton Shower MC event generators

  • 7/25/2019 Tutorial aMC@NLO

    79/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    General-purpose tools

    Complete exclusive description of the events: hard scattering,showering & hadronization (and underlying event)

    Reliable and well-tuned tools

    Significant and intense progress in the development of newshowering algorithms with the final aim to go at NLO in QCD

    Shower MC Generators: PYTHIA, HERWIG, SHERPA

    31

    A parton shower program associates one of the possible histories (and pre-histories in case of pp) of an hard event in an explicit and fully detailed way,

    such that the sum of the probabilities of all possible histories is unity.

    Parton Shower MC event generators

  • 7/25/2019 Tutorial aMC@NLO

    80/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    General-purpose tools

    Complete exclusive description of the events: hard scattering,showering & hadronization (and underlying event)

    Reliable and well-tuned tools

    Significant and intense progress in the development of newshowering algorithms with the final aim to go at NLO in QCD

    Shower MC Generators: PYTHIA, HERWIG, SHERPA

    31

    A parton shower program associates one of the possible histories (and pre-histories in case of pp) of an hard event in an explicit and fully detailed way,

    such that the sum of the probabilities of all possible histories is unity.

    "Note that a banching tree is not a Feynman diagram: it

    represents the coherent sum of many real and virtual diagrams

    which are summed by the branching algorithm" (HERWIG

    manual)

    To Remember

  • 7/25/2019 Tutorial aMC@NLO

    81/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    The parton shower dresses partons with radiation. This makesthe inclusive parton-level predictions (i.e. inclusive over extraradiation) completely exclusive

    In the soft and collinear limitsthe partons showers areexact, but in practice they are used outside this limit as well.

    Partons showers are universal(i.e. independent from theprocess)

    Building block of the parton shower is the Sudakov

    There is a cut-off in the shower (below which we dont trustperturbative QCD) at which a hadronization modeltakes over

    32

  • 7/25/2019 Tutorial aMC@NLO

    82/182

    Matching/MergingOlivier Mattelaer

    IPPP/Durham

    PS alone vs matched samples

  • 7/25/2019 Tutorial aMC@NLO

    83/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    GeV

    0 50 100 150 200 250 300 350 400

    (pb/bin)

    T

    /dP

    !d

    -310

    -210

    -110

    1

    10

    (wimpy)2Q

    (power)2Q

    (wimpy)2TP

    (power)2TP

    of the 2-nd extra jetTP

    (a la Pythia)tt

    In the soft-collinear approximation of Parton Shower MCs, parameters are used totune the resultLarge variation in results (small prediction power)

    (Pythia only)

    34

    Matrix Elements vs. Parton Showers

  • 7/25/2019 Tutorial aMC@NLO

    84/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015 35

    Matrix Elements vs. Parton Showers

  • 7/25/2019 Tutorial aMC@NLO

    85/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    ME

    1. Fixed order calculation2. Computationally expensive3. Limited number of particles4. Valid when partons are hard and

    well separated5. Quantum interference correct

    6. Needed for multi-jet description

    35

    Matrix Elements vs. Parton Showers

  • 7/25/2019 Tutorial aMC@NLO

    86/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    ME

    1. Fixed order calculation2. Computationally expensive3. Limited number of particles4. Valid when partons are hard and

    well separated5. Quantum interference correct

    6. Needed for multi-jet description

    Shower MC

    1. Resums logs to all orders2. Computationally cheap3. No limit on particle multiplicity4. Valid when partons are collinear

    and/or soft5. Partial interference through

    angular ordering6. Needed for hadronization

    35

    Matrix Elements vs. Parton Showers

  • 7/25/2019 Tutorial aMC@NLO

    87/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Approaches are complementary: merge them!

    ME

    1. Fixed order calculation2. Computationally expensive3. Limited number of particles4. Valid when partons are hard and

    well separated5. Quantum interference correct

    6. Needed for multi-jet description

    Shower MC

    1. Resums logs to all orders2. Computationally cheap3. No limit on particle multiplicity4. Valid when partons are collinear

    and/or soft5. Partial interference through

    angular ordering6. Needed for hadronization

    35

    Matrix Elements vs. Parton Showers

  • 7/25/2019 Tutorial aMC@NLO

    88/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Difficulty: avoid double counting, ensure smooth distributions

    Approaches are complementary: merge them!

    ME

    1. Fixed order calculation2. Computationally expensive3. Limited number of particles4. Valid when partons are hard and

    well separated5. Quantum interference correct

    6. Needed for multi-jet description

    Shower MC

    1. Resums logs to all orders2. Computationally cheap3. No limit on particle multiplicity4. Valid when partons are collinear

    and/or soft5. Partial interference through

    angular ordering6. Needed for hadronization

    35

    Goal for ME-PS merging/matching

  • 7/25/2019 Tutorial aMC@NLO

    89/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Matrix element

    Parton shower 2nd QCD radiation jet intop pair production at

    the LHC, usingMadGraph + Pythia

    36

    Goal for ME-PS merging/matching

  • 7/25/2019 Tutorial aMC@NLO

    90/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Regularization of matrix element divergence

    Matrix element

    Parton shower 2nd QCD radiation jet intop pair production at

    the LHC, usingMadGraph + Pythia

    36

    Goal for ME-PS merging/matching

  • 7/25/2019 Tutorial aMC@NLO

    91/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Regularization of matrix element divergence Correction of the parton shower for large momenta

    Matrix element

    Parton shower 2nd QCD radiation jet intop pair production at

    the LHC, usingMadGraph + Pythia

    36

    Goal for ME-PS merging/matching

  • 7/25/2019 Tutorial aMC@NLO

    92/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Regularization of matrix element divergence Correction of the parton shower for large momenta Smooth jet distributions

    Matrix element

    Parton shower 2nd QCD radiation jet intop pair production at

    the LHC, usingMadGraph + Pythia

    36

    Goal for ME-PS merging/matching

  • 7/25/2019 Tutorial aMC@NLO

    93/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Regularization of matrix element divergence Correction of the parton shower for large momenta Smooth jet distributions

    Matrix element

    Parton shower

    Desired curve

    2nd QCD radiation jet intop pair production at

    the LHC, usingMadGraph + Pythia

    36

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    94/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    ...

    ...

    PS (

    ME

    )

    [Mangano][Catani, Krauss, Kuhn, Webber][Lnnblad]

    37

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    95/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    ...

    ...

    PS (

    ME

    )

    [Mangano][Catani, Krauss, Kuhn, Webber][Lnnblad]

    DC DC

    DC

    37

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    96/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    ...

    ...

    PS (

    ME

    )

    [Mangano][Catani, Krauss, Kuhn, Webber][Lnnblad]

    kT< Qc

    kT> Qc

    kT> Qc

    kT> Qc

    kT< Qc

    kT< Qc

    kT> Qc

    kT< Qc

    37

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    97/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    ...

    ...

    PS (

    ME

    )

    Double counting between ME and PS easily avoided using phase space cutbetween the two: PS below cutoff, ME above cutoff.

    [Mangano][Catani, Krauss, Kuhn, Webber][Lnnblad]

    kT< Qc

    kT> Qc

    kT> Qc

    kT> Qc

    kT< Qc

    kT< Qc

    kT> Qc

    kT< Qc

    37

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    98/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    So double counting problem easily solved, butwhat about getting smooth distributions that areindependent of the precise value of Qc?

    Below cutoff, distribution is given by PS- need to make ME look like PS near cutoff

    Lets take another look at the PS!

    38

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    99/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    t0

    t1

    t2

    tcuttcut

    tcut

    tcut

    39

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    100/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    How does the PS generate the configuration above?

    t0

    t1

    t2

    tcuttcut

    tcut

    tcut

    39

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    101/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    How does the PS generate the configuration above?

    Probability for the splitting at t1is given by

    t0

    t1

    t2

    tcuttcut

    tcut

    tcut

    (q(t1, t0))2s(t1)

    2

    Pgq(z)

    39

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    102/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    How does the PS generate the configuration above?

    Probability for the splitting at t1is given by

    t0

    t1

    t2

    tcuttcut

    tcut

    tcut

    (q(t1, t0))2s(t1)

    2

    Pgq(z)

    39

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    103/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    How does the PS generate the configuration above?

    Probability for the splitting at t1is given by

    t0

    t1

    t2

    tcuttcut

    tcut

    tcut

    (q(t1, t0))2s(t1)

    2

    Pgq(z)

    39

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    104/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    How does the PS generate the configuration above?

    Probability for the splitting at t1is given by

    and for the whole tree

    t0

    t1

    t2

    tcuttcut

    tcut

    tcut

    (q(t1, t0))2s(t1)

    2

    Pgq(z)

    (q(tcut, t0))2g(t2, t1)(q(cut, t2))

    2s(t1)

    2Pgq(z)

    s(t2)

    2Pqg(z

    0)

    39

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    105/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    How does the PS generate the configuration above?

    Probability for the splitting at t1is given by

    and for the whole tree

    t0

    t1

    t2

    tcuttcut

    tcut

    tcut

    (q(t1, t0))2s(t1)

    2

    Pgq(z)

    (q(tcut, t0))2g(t2, t1)(q(cut, t2))

    2s(t1)

    2Pgq(z)

    s(t2)

    2Pqg(z

    0)

    39

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    106/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    How does the PS generate the configuration above?

    Probability for the splitting at t1is given by

    and for the whole tree

    t0

    t1

    t2

    tcuttcut

    tcut

    tcut

    (q(t1, t0))2s(t1)

    2

    Pgq(z)

    (q(tcut, t0))2g(t2, t1)(q(cut, t2))

    2s(t1)

    2Pgq(z)

    s(t2)

    2Pqg(z

    0)

    39

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    107/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    How does the PS generate the configuration above?

    Probability for the splitting at t1is given by

    and for the whole tree

    t0

    t1

    t2

    tcuttcut

    tcut

    tcut

    (q(t1, t0))2s(t1)

    2

    Pgq(z)

    (q(tcut, t0))2g(t2, t1)(q(cut, t2))

    2s(t1)

    2Pgq(z)

    s(t2)

    2Pqg(z

    0)

    39

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    108/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    How does the PS generate the configuration above?

    Probability for the splitting at t1is given by

    and for the whole tree

    t0

    t1

    t2

    tcuttcut

    tcut

    tcut

    (q(t1, t0))2s(t1)

    2

    Pgq(z)

    (q(tcut, t0))2g(t2, t1)(q(cut, t2))

    2s(t1)

    2Pgq(z)

    s(t2)

    2Pqg(z

    0)

    39

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    109/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    How does the PS generate the configuration above?

    Probability for the splitting at t1is given by

    and for the whole tree

    t0

    t1

    t2

    tcuttcut

    tcut

    tcut

    (q(t1, t0))2s(t1)

    2

    Pgq(z)

    (q(tcut, t0))2g(t2, t1)(q(cut, t2))

    2s(t1)

    2Pgq(z)

    s(t2)

    2Pqg(z

    0)

    39

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    110/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    t0

    t1

    t2

    tcuttcut

    tcut

    tcut

    (q(tcut, t0))2g(t2, t1)(q(cut, t2))

    2s(t1)

    2Pgq(z)

    s(t2)

    2Pqg(z

    0)

    40

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    111/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    t0

    t1

    t2

    tcuttcut

    tcut

    tcut

    Corresponds to the matrix element

    BUT with $sevaluated at the scale of each splitting

    (q(tcut, t0))2g(t2, t1)(q(cut, t2))

    2s(t1)

    2Pgq(z)

    s(t2)

    2Pqg(z

    0)

    40

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    112/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    t0

    t1

    t2

    tcuttcut

    tcut

    tcut

    Corresponds to the matrix element

    BUT with $sevaluated at the scale of each splitting

    Sudakov suppression due to not allowing additional radiationabove the scale tcut

    (q(tcut, t0))2g(t2, t1)(q(cut, t2))

    2s(t1)

    2Pgq(z)

    s(t2)

    2Pqg(z

    0)

    40

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    113/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    |M|2(s, p3, p4, ...)

    41

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    114/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    To get an equivalent treatment of the correspondingmatrix element, do as follows:

    |M|2(s, p3, p4, ...)

    41

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    115/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    To get an equivalent treatment of the correspondingmatrix element, do as follows:1. Cluster the event using some clustering algorithm

    - this gives us a corresponding parton shower history

    |M|2(s, p3, p4, ...)

    41

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    116/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    To get an equivalent treatment of the correspondingmatrix element, do as follows:1. Cluster the event using some clustering algorithm

    - this gives us a corresponding parton shower history

    t0

    t1

    t2 |M|2(s, p3, p4, ...)

    41

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    117/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    To get an equivalent treatment of the correspondingmatrix element, do as follows:1. Cluster the event using some clustering algorithm

    - this gives us a corresponding parton shower history

    2. Reweight $sin each clustering vertex with the clusteringscale

    t0

    t1

    t2

    |M|2 |M|2s(t1)

    s(t0)

    s(t2)

    s(t0)

    |M|2(s, p3, p4, ...)

    41

    Merging ME with PS

  • 7/25/2019 Tutorial aMC@NLO

    118/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    To get an equivalent treatment of the correspondingmatrix element, do as follows:1. Cluster the event using some clustering algorithm

    - this gives us a corresponding parton shower history

    2. Reweight $sin each clustering vertex with the clusteringscale

    3. Use some algorithm to apply the equivalent Sudakovsuppression

    t0

    t1

    t2

    (q(tcut, t0))2g(t2, t1)(q(cut, t2))

    2

    |M|2 |M|2s(t1)

    s(t0)

    s(t2)

    s(t0)

    |M|2(s, p3, p4, ...)

    41

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    119/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    x1

    x2

    42

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    120/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    We are of course not interested in e+e-but p-p(bar)- what happens for initial state radiation?

    x1

    x2

    42

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    121/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    We are of course not interested in e+e-but p-p(bar)- what happens for initial state radiation?

    Lets do the same exercise as before:

    x1tcut

    t1 t2

    tcut

    tcut

    tcutt0

    x1

    x2

    qqe(s, ...)fq(x0

    1, t0)fq(x2, t0)

    P = (Iq(tcut, t0))2g(t2, t1)(q(tcut, t2))

    2s(t1)

    2

    Pgq(z)z

    fq(x1, t1)fq(x01, t1)

    s(t2)2

    Pqg(z0)

    42

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    122/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    We are of course not interested in e+e-but p-p(bar)- what happens for initial state radiation?

    Lets do the same exercise as before:

    x1tcut

    t1 t2

    tcut

    tcut

    tcutt0

    x1

    x2

    qqe(s, ...)fq(x0

    1, t0)fq(x2, t0)

    P = (Iq(tcut, t0))2g(t2, t1)(q(tcut, t2))

    2s(t1)

    2

    Pgq(z)z

    fq(x1, t1)fq(x01, t1)

    s(t2)2

    Pqg(z0)

    42

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    123/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    We are of course not interested in e+e-but p-p(bar)- what happens for initial state radiation?

    Lets do the same exercise as before:

    x1tcut

    t1 t2

    tcut

    tcut

    tcutt0

    x1

    x2

    qqe(s, ...)fq(x0

    1, t0)fq(x2, t0)

    P = (Iq(tcut, t0))2g(t2, t1)(q(tcut, t2))

    2s(t1)

    2

    Pgq(z)z

    fq(x1, t1)fq(x01, t1)

    s(t2)2

    Pqg(z0)

    42

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    124/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    We are of course not interested in e+e-but p-p(bar)- what happens for initial state radiation?

    Lets do the same exercise as before:

    x1tcut

    t1 t2

    tcut

    tcut

    tcutt0

    x1

    x2

    qqe(s, ...)fq(x0

    1, t0)fq(x2, t0)

    P = (Iq(tcut, t0))2g(t2, t1)(q(tcut, t2))

    2s(t1)

    2

    Pgq(z)z

    fq(x1, t1)fq(x01, t1)

    s(t2)2

    Pqg(z0)

    42

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    125/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    We are of course not interested in e+e-but p-p(bar)- what happens for initial state radiation?

    Lets do the same exercise as before:

    x1tcut

    t1 t2

    tcut

    tcut

    tcutt0

    x1

    x2

    qqe(s, ...)fq(x0

    1, t0)fq(x2, t0)

    P = (Iq(tcut, t0))2g(t2, t1)(q(tcut, t2))

    2s(t1)

    2

    Pgq(z)z

    fq(x1, t1)fq(x01, t1)

    s(t2)2

    Pqg(z0)

    42

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    126/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    We are of course not interested in e+e-but p-p(bar)- what happens for initial state radiation?

    Lets do the same exercise as before:

    x1tcut

    t1 t2

    tcut

    tcut

    tcutt0

    x1

    x2

    qqe(s, ...)fq(x0

    1, t0)fq(x2, t0)

    P = (Iq(tcut, t0))2g(t2, t1)(q(tcut, t2))

    2s(t1)

    2

    Pgq(z)z

    fq(x1, t1)fq(x01, t1)

    s(t2)2

    Pqg(z0)

    42

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    127/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    tcut

    t1 t2

    tcut

    tcut

    tcutt0

    x1

    x1

    x2

    qqe(s, ...)fq(x0

    1, t0)fq(x2, t0)

    (Iq(tcut, t0))2g(t2, t1)(q(tcut, t2))

    2s t1

    2

    Pgq z

    z

    fq x1, t1

    fq(x01, t1)

    s t2

    2Pqg(z

    0)

    43

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    128/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    tcut

    t1 t2

    tcut

    tcut

    tcutt0

    x1

    x1

    x2

    ME with$

    sevaluated at the scale of each splitting

    qqe(s, ...)fq(x0

    1, t0)fq(x2, t0)

    (Iq(tcut, t0))2g(t2, t1)(q(tcut, t2))

    2s t1

    2

    Pgq z

    z

    fq x1, t1

    fq(x01, t1)

    s t2

    2Pqg(z

    0)

    43

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    129/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    tcut

    t1 t2

    tcut

    tcut

    tcutt0

    x1

    x1

    x2

    ME with$

    sevaluated at the scale of each splittingPDF reweighting

    qqe(s, ...)fq(x0

    1, t0)fq(x2, t0)

    (Iq(tcut, t0))2g(t2, t1)(q(tcut, t2))

    2s t1

    2

    Pgq z

    z

    fq x1, t1

    fq(x01, t1)

    s t2

    2Pqg(z

    0)

    43

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    130/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    tcut

    t1 t2

    tcut

    tcut

    tcutt0

    x1

    x1

    x2

    ME with$

    sevaluated at the scale of each splittingPDF reweighting

    Sudakov suppression due to non-branching above scale tcut

    qqe(s, ...)fq(x0

    1, t0)fq(x2, t0)

    (Iq(tcut, t0))2g(t2, t1)(q(tcut, t2))

    2s t1

    2

    Pgq z

    z

    fq x1, t1

    fq(x01, t1)

    s t2

    2Pqg(z

    0)

    43

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    131/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    x1

    x2

    44

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    132/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    x1

    x2

    Again, use a clustering scheme to get a parton shower history

    44

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    133/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    x1

    t1 t2

    t0x1

    x2

    Again, use a clustering scheme to get a parton shower history

    44

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    134/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    x1

    t1 t2

    t0x1

    x2

    Again, use a clustering scheme to get a parton shower history Now, reweight both due to $sand PDF

    |M|2 |M|2

    s(t1)

    s(t0)

    s(t2)

    s(t0)

    fq(x0

    1, t0)

    fq(x01, t1)

    44

    Matching for initial state radiation

  • 7/25/2019 Tutorial aMC@NLO

    135/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    x1

    t1 t2

    t0x1

    x2

    Again, use a clustering scheme to get a parton shower history Now, reweight both due to $sand PDF

    Remember to use first clustering scale on each side for PDF scale:

    |M|2 |M|2s(t1)

    s(t0)

    s(t2)

    s(t0)

    fq(x0

    1, t0)

    fq(x01, t1)

    Pevent= (x1, x2, p3, p4, . . .)fq(x1, t1)fq(x2, t0)

    44

    Matching schemes

  • 7/25/2019 Tutorial aMC@NLO

    136/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    We still havent specified how to apply the Sudakovreweighting to the matrix element

    Three general schemes available in the literature:" CKKW scheme [Catani,Krauss,Kuhn,Webber 2001; Krauss 2002]

    " Lnnblad scheme (or CKKW-L) [Lnnblad 2002]

    " MLM scheme [Mangano unpublished2002; Mangano et al. 2007]

    45

    CKKW matching

  • 7/25/2019 Tutorial aMC@NLO

    137/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    [Catani, Krauss, Kuhn, Webber 2001][Krauss 2002]

    46

    CKKW matching

  • 7/25/2019 Tutorial aMC@NLO

    138/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Apply the required Sudakov suppression

    analytically, using the best available (NLL) Sudakovs.

    (Iq(tcut, t0)) g(t2, t1)(q(tcut, t2))

    [Catani, Krauss, Kuhn, Webber 2001][Krauss 2002]

    46

    CKKW matching

  • 7/25/2019 Tutorial aMC@NLO

    139/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    t0

    Apply the required Sudakov suppression

    analytically, using the best available (NLL) Sudakovs.

    Perform truncated showering: Run the parton shower starting att0, but forbid any showers above the cutoff scale tcut.

    (Iq(tcut, t0)) g(t2, t1)(q(tcut, t2))

    [Catani, Krauss, Kuhn, Webber 2001][Krauss 2002]

    46

    CKKW matching

  • 7/25/2019 Tutorial aMC@NLO

    140/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    t0

    Apply the required Sudakov suppression

    analytically, using the best available (NLL) Sudakovs.

    Perform truncated showering: Run the parton shower starting att0, but forbid any showers above the cutoff scale tcut.

    (Iq(tcut, t0)) g(t2, t1)(q(tcut, t2))

    [Catani, Krauss, Kuhn, Webber 2001][Krauss 2002]

    kT1

    kT2

    kT3

    46

    CKKW matching

  • 7/25/2019 Tutorial aMC@NLO

    141/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    t0

    Apply the required Sudakov suppression

    analytically, using the best available (NLL) Sudakovs.

    Perform truncated showering: Run the parton shower starting att0, but forbid any showers above the cutoff scale tcut.

    (Iq(tcut, t0)) g(t2, t1)(q(tcut, t2))

    [Catani, Krauss, Kuhn, Webber 2001][Krauss 2002]

    kT3

    kT1

    kT2

    x

    x

    46

    CKKW matching

  • 7/25/2019 Tutorial aMC@NLO

    142/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    t0

    Apply the required Sudakov suppression

    analytically, using the best available (NLL) Sudakovs.

    Perform truncated showering: Run the parton shower starting att0, but forbid any showers above the cutoff scale tcut.

    (Iq(tcut, t0)) g(t2, t1)(q(tcut, t2))

    [Catani, Krauss, Kuhn, Webber 2001][Krauss 2002]

    kT3

    kT1

    kT2

    x

    x

    * Best theoretical treatment of matrix element

    - Requires dedicated PS implementation- Mismatch between analytical Sudakov and (non-NLL) shower Implemented in Sherpa (v. 1.1)

    46

    CKKW-L matching

  • 7/25/2019 Tutorial aMC@NLO

    143/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    t0

    [Lnnblad 2002][Hoeche et al. 2009]

    47

    CKKW-L matching

  • 7/25/2019 Tutorial aMC@NLO

    144/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Cluster back to parton shower history

    t0

    [Lnnblad 2002][Hoeche et al. 2009]

    47

    CKKW-L matching

  • 7/25/2019 Tutorial aMC@NLO

    145/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Cluster back to parton shower history

    t0

    [Lnnblad 2002][Hoeche et al. 2009]

    47

    CKKW-L matching

  • 7/25/2019 Tutorial aMC@NLO

    146/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Cluster back to parton shower history Perform showering step-by-step for each step in the parton shower

    history, starting from the clustering scale for that step

    t0

    [Lnnblad 2002][Hoeche et al. 2009]

    47

    CKKW-L matching

  • 7/25/2019 Tutorial aMC@NLO

    147/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Cluster back to parton shower history Perform showering step-by-step for each step in the parton shower

    history, starting from the clustering scale for that step

    t0

    [Lnnblad 2002][Hoeche et al. 2009]

    kT1

    47

    CKKW-L matching

  • 7/25/2019 Tutorial aMC@NLO

    148/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Cluster back to parton shower history Perform showering step-by-step for each step in the parton shower

    history, starting from the clustering scale for that step

    t0

    [Lnnblad 2002][Hoeche et al. 2009]

    kT1

    47

    CKKW-L matching

  • 7/25/2019 Tutorial aMC@NLO

    149/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Cluster back to parton shower history Perform showering step-by-step for each step in the parton shower

    history, starting from the clustering scale for that step

    Veto the event if any shower is harder than the clustering scale forthe next step (or tcut, if last step)

    t0

    [Lnnblad 2002][Hoeche et al. 2009]

    kT1

    47

    CKKW-L matching

  • 7/25/2019 Tutorial aMC@NLO

    150/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Cluster back to parton shower history Perform showering step-by-step for each step in the parton shower

    history, starting from the clustering scale for that step

    Veto the event if any shower is harder than the clustering scale forthe next step (or tcut, if last step)

    Keep any shower emissions that are softer than the clustering scalefor the next step

    t0

    [Lnnblad 2002][Hoeche et al. 2009]

    kT1

    47

    CKKW-L matching

  • 7/25/2019 Tutorial aMC@NLO

    151/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Cluster back to parton shower history Perform showering step-by-step for each step in the parton shower

    history, starting from the clustering scale for that step

    Veto the event if any shower is harder than the clustering scale forthe next step (or tcut, if last step)

    Keep any shower emissions that are softer than the clustering scalefor the next step

    t0

    [Lnnblad 2002][Hoeche et al. 2009]

    kT1

    kT2

    47

    CKKW-L matching

  • 7/25/2019 Tutorial aMC@NLO

    152/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Cluster back to parton shower history Perform showering step-by-step for each step in the parton shower

    history, starting from the clustering scale for that step

    Veto the event if any shower is harder than the clustering scale forthe next step (or tcut, if last step)

    Keep any shower emissions that are softer than the clustering scalefor the next step

    t0

    [Lnnblad 2002][Hoeche et al. 2009]

    kT1

    kT2

    47

    CKKW-L matching

  • 7/25/2019 Tutorial aMC@NLO

    153/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Cluster back to parton shower history Perform showering step-by-step for each step in the parton shower

    history, starting from the clustering scale for that step

    Veto the event if any shower is harder than the clustering scale forthe next step (or tcut, if last step)

    Keep any shower emissions that are softer than the clustering scalefor the next step

    t0

    [Lnnblad 2002][Hoeche et al. 2009]

    kT1

    kT2

    kT4

    47

    CKKW-L matching

  • 7/25/2019 Tutorial aMC@NLO

    154/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    Cluster back to parton shower history Perform showering step-by-step for each step in the parton shower

    history, starting from the clustering scale for that step

    Veto the event if any shower is harder than the clustering scale forthe next step (or tcut, if last step)

    Keep any shower emissions that are softer than the clustering scalefor the next step

    t0

    [Lnnblad 2002][Hoeche et al. 2009]

    kT1

    kT2

    kT4

    47

    * Automatic agreement between Sudakov and shower

    - Requires dedicated PS implementation" Need multiple implementations to compare between showers

    Implemented in Ariadne, Sherpa (v. 1.2), and Pythia 8

    MLM matching

    [M.L. Mangano, ~2002, 2007] [J A l 2007 2008]

  • 7/25/2019 Tutorial aMC@NLO

    155/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    t0

    [J.A. et al 2007, 2008]

    48

    MLM matching

    [M.L. Mangano, ~2002, 2007] [J A l 2007 2008]

  • 7/25/2019 Tutorial aMC@NLO

    156/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    t0

    [J.A. et al 2007, 2008]

    The simplest way to do the Sudakov suppression is to run the

    shower on the event, starting from t0!

    48

    MLM matching

    [M.L. Mangano, ~2002, 2007] [J A l 2007 2008]

  • 7/25/2019 Tutorial aMC@NLO

    157/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    kT1

    kT2kT3

    kT4

    t0

    [J.A. et al 2007, 2008]

    The simplest way to do the Sudakov suppression is to run the

    shower on the event, starting from t0!

    48

    MLM matching

    [M.L. Mangano, ~2002, 2007] [J A l 2007 2008]

  • 7/25/2019 Tutorial aMC@NLO

    158/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    kT1

    kT2kT3

    kT4

    t0

    [J.A. et al 2007, 2008]

    The simplest way to do the Sudakov suppression is to run theshower on the event, starting from t0!

    Perform jet clustering after PS - if hardest jet kT1> tcutor there arejets not matched to partons, reject the event

    48

    MLM matching

    [M.L. Mangano, ~2002, 2007] [J A t l 2007 2008]

  • 7/25/2019 Tutorial aMC@NLO

    159/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    kT1

    kT2kT3

    kT4

    (Iq(tcut, t0)) g(t2, t1)(q(tcut, t2))

    (Iq(tcut, t0))2(q(tcut, t0))

    2

    t0

    [J.A. et al 2007, 2008]

    The simplest way to do the Sudakov suppression is to run theshower on the event, starting from t0!

    Perform jet clustering after PS - if hardest jet kT1> tcutor there arejets not matched to partons, reject the event

    The resulting Sudakov suppression from the procedure is

    which turns out to be a good enough approximation of the correctexpression

    48

    MLM matching

    [M.L. Mangano, ~2002, 2007] [J A et al 2007 2008]

  • 7/25/2019 Tutorial aMC@NLO

    160/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    kT1

    kT2kT3

    kT4

    (Iq(tcut, t0)) g(t2, t1)(q(tcut, t2))

    (Iq(tcut, t0))2(q(tcut, t0))

    2

    t0

    [J.A. et al 2007, 2008]

    The simplest way to do the Sudakov suppression is to run theshower on the event, starting from t0!

    Perform jet clustering after PS - if hardest jet kT1> tcutor there arejets not matched to partons, reject the event

    The resulting Sudakov suppression from the procedure is

    which turns out to be a good enough approximation of the correctexpression

    48

    * Simplest available scheme

    * Allows matching with any shower, without modification

    " Sudakov suppression not exact, minor mismatch with shower

    Implemented in AlpGen, HELAC, MadGraph+Pythia 6

  • 7/25/2019 Tutorial aMC@NLO

    161/182

    matching schemes

  • 7/25/2019 Tutorial aMC@NLO

    162/182

    Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: Bei ing 2015

    We have a number of choices to make in the aboveprocedure. The most important are:

    1. The clustering scheme used to determine the parton

    shower history of the ME event

    2. What to use for the scale Q2(factorization scale)

    3. How to divide the phase space between parton showersand matrix elements

    50

    Back to the matching goal

  • 7/25/2019 Tutorial aMC@NLO

    163/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    2nd QCD radiation jet intop pair production at

    the LHC, usingMadGraph + Pythia

    Regularization of matrix element divergence Correction of the parton shower for large momenta Smooth jet distributions

    Matrix element

    Parton shower

    51

    Back to the matching goal

  • 7/25/2019 Tutorial aMC@NLO

    164/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    2nd QCD radiation jet intop pair production at

    the LHC, usingMadGraph + Pythia

    Regularization of matrix element divergence Correction of the parton shower for large momenta Smooth jet distributions

    Matrix element

    Parton shower

    Matching scale

    51

    Back to the matching goal

  • 7/25/2019 Tutorial aMC@NLO

    165/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    2nd QCD radiation jet intop pair production at

    the LHC, usingMadGraph + Pythia

    Regularization of matrix element divergence Correction of the parton shower for large momenta Smooth jet distributions

    Parton shower

    Matching scale

    Emissions from PS

    51

    Back to the matching goal

  • 7/25/2019 Tutorial aMC@NLO

    166/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    2nd QCD radiation jet intop pair production at

    the LHC, usingMadGraph + Pythia

    Regularization of matrix element divergence Correction of the parton shower for large momenta Smooth jet distributions

    Parton shower

    Matching scale

    Emissions from ME

    51

    Back to the matching goal

  • 7/25/2019 Tutorial aMC@NLO

    167/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    2nd QCD radiation jet intop pair production at

    the LHC, usingMadGraph + Pythia

    Regularization of matrix element divergence Correction of the parton shower for large momenta Smooth jet distributions

    Parton shower

    Matching scale

    Sudakov suppression

    51

    Back to the matching goal

  • 7/25/2019 Tutorial aMC@NLO

    168/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    2nd QCD radiation jet intop pair production at

    the LHC, usingMadGraph + Pythia

    Regularization of matrix element divergence Correction of the parton shower for large momenta Smooth jet distributions

    Parton shower

    Matching scale51

    Back to the matching goal

  • 7/25/2019 Tutorial aMC@NLO

    169/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    2nd QCD radiation jet intop pair production at

    the LHC, usingMadGraph + Pythia

    Regularization of matrix element divergence Correction of the parton shower for large momenta Smooth jet distributions

    Parton shower

    Matching scale

    Desired curve

    51

    Summary of Matching Procedure

    1. Generate ME events (with different parton multiplicities) using

  • 7/25/2019 Tutorial aMC@NLO

    170/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    ( p p ) gparton-level cuts (pTME/%R or kTME)

    2. Cluster each event and reweight $sand PDFs based on thescales in the clustering vertices

    3. Apply Sudakov factors to account for the required non-radiation above clustering cutoff scale and generate partonshower emissions below clustering cutoff:

    a. (CKKW) Analytical Sudakovs + truncated showers

    b. (CKKW-L) Sudakovs from truncated showers

    c. (MLM) Sudakovs from reclustered shower emissions

    4. Apply separation cut

    52

    Comparing to experiment: W+jets

  • 7/25/2019 Tutorial aMC@NLO

    171/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    ) [GeV]min

    TJet Transverse Energy (E

    0 50 100 150 200

    [pb]

    T

    )dE

    T

    /dE

    (d

    min

    TE

    -210

    -110

    1

    10

    210

    CDF Run II Preliminaryn jets) +e(W

    CDF Data -1dL = 320 pbW kin: 1.1|

    e20[GeV]; |eTE

    30[GeV]

    T]; E2

    20[GeV/cWTM

    Jets: |

  • 7/25/2019 Tutorial aMC@NLO

    172/182

    Mattelaer Olivier Monte-Carlo Lecture: Beijing 2015

    mg5> generate p p > w+, w+ > l+ vl @0

    mg5> add process p p > w+ j, w+ > l+ vl @1

    mg5> add process p p > w+ j j, w+ > l+ vl @2

    mg5> output

    In run_card.dat:

    1 = ickkw

    0 = ptj

    15 = xqcut

    kTmatching scale

    Matching on

    Matching automatically done when run through

    MadEvent and Pythia!

    No cone matching

    Example: Simulation of pp(W with 0, 1, 2 jets

    (comfortable on a laptop)

    54

    matching in Mad