tut_2

3
Math236 – Week 2 Tutorial Exercises Some comments for question 6.  The hypocycloid based on a small wheel of radius r  rolling inside a circle of radius  R creates a path in the plane given by ϕ(θ) = (R − r)cos θ + r cos R − r r θ , (R − r )sin θ − r sin R − r r θ This is derived on page 97 the book  Trigonometric Delights  by Eli Maor, which is available at the link: http://press.p rinceton.edu/bo oks/maor/chapte r_7.pdf . The derivative of this path is ϕ (θ) = (R − r ) sin θ − sin R − r r θ , cos θ − cos R − r r θ The speed of the path is  ϕ (θ) · ϕ (θ) and ϕ (θ) · ϕ (θ) = (R − r ) 2 2 + 2 si n( θ)sin θ(R − r ) r  2 cos( θ)cos θ(R − r) r = 4(R − r) 2 sin 2 Rθ 2r . This means that the speed is ϕ (θ) = 2(R − r ) sin Rθ 2r . The cusps occur at the points corresponding to Rθ 2r  = mπ ,  for some inte ger m. For example to get exactly three cusps, we would need them to occur at θ  = 0, 2π/3 and 4π/3, so having  R three times r  works. 0.4  0.2 0.2 0.4 0.6 0.8 1.0 0.5 0.5 1

description

equation of hypocycloid

Transcript of tut_2

Page 1: tut_2

7/21/2019 tut_2

http://slidepdf.com/reader/full/tut2563dba3d550346aa9aa3e01e 1/3

Math236 – Week 2 Tutorial Exercises

Some comments for question 6.  The hypocycloid based on a small wheel of radius r  rollinginside a circle of radius  R creates a path in the plane given by

ϕ(θ) =

(R − r)cos θ + r cos

R − r

r

θ

, (R − r)sin θ − r sin

R − r

r

θ

This is derived on page 97 the book  Trigonometric Delights  by Eli Maor, which is available at

the link:http://press.princeton.edu/books/maor/chapter_7.pdf.The derivative of this path is

ϕ(θ) = (R − r)

− sin θ − sin

R − r

r

θ

, cos θ − cos

R − r

r

θ

The speed of the path is  ϕ(θ) · ϕ(θ)

and

ϕ(θ) · ϕ(θ) = (R − r)2

2 + 2 sin(θ)sin

θ(R − r)

r

− 2 cos(θ)cos

θ(R − r)

r

= 4(R − r)2 sin2

2r

.

This means that the speed is

ϕ(θ) = 2(R − r)

sin

2r

.The cusps occur at the points corresponding to

2r  = mπ,   for some integer m.

For example to get exactly three cusps, we would need them to occur at  θ  = 0, 2π/3 and 4π/3,

so having  R three times r  works.

0.4   0.2 0.2 0.4 0.6 0.8 1.0

0.5

0.5

1

Page 2: tut_2

7/21/2019 tut_2

http://slidepdf.com/reader/full/tut2563dba3d550346aa9aa3e01e 2/3

Ex. 1. Find φ(0),  φ�(t) and  φ�(0) in each of the following cases of paths in  R2 or  R3 :

(a)   φ : [0 , 1] → R3 : φ(t) =

sin2πt , cos2πt , 2t− t2

;

(b)   φ : [0 , 4π] → R3 : φ(t) =et, cos t , sin t

;

(c)   φ : [0 , 4] → R2 : φ(t) =t2, t3 − 4t

;

(d)   φ : [0 , 6π] → R3 : φ(t) =

sin2t , log(1 + t) , t

.

Ex. 2. Determine the velocity vector and the equation of the tangent line for each of the following paths,at the specified value of  t.

(a)   r(t) = (6t , 3t2, t3), at   t = 0

(b)   φ(t) = (sin 3t , cos3t , 2t3/2) , at  t = 1

(c)   φ(t) = (cos2 t , 3t− t3, t) , at  t = 0

(d)   φ(t) = (0 , 0 , t) at   t = 1 .

Ex. 3. Find the path φ such that  φ(0) = (0 ,−5 , 1) and  φ�

(t) =t , et , t

2.

Ex. 4. Suppose a particle follows the path φ(t) =et, e−t, cos t

 until it flies off  on a tangent at   t = 1 .

Where is it at  t = 2 ?

Ex. 5. Suppose a particle following the path φ(t) =t2, t3 − 4t

 flies off  on a tangent at  t = 2 .

Compute the position of the particle at  t = 3 .

Ex. 6. Find an explicit form describing the path of a particle moving along a hypocycloid with (i) 5 cusps,(ii) 6 cusps, (iii) 3 cusps. (iv) What can you say about a hypocycloid with only 2 cusps?[In each case centre the hypocycloid at (0, 0) and let there be a cusp at the point (1, 0).]

Ex. 7. Suppose that   z0   ∈   C   is fixed. A polynomial  P (z) is said to be divisible by   z  − z0   if there isanother polynomial  Q(z) such that  P (z) = (z − z0)Q(z) .

(a) Show that for every  c ∈ C  and  k ∈ N , the polynomial  c(zk − zk0

) is divisible by  z − z0 .

(b) Consider the polynomial  P (z) =  a0 +  a1z +  a2z2 + . . . + anz

n, where  a0, a1, a2, . . . , an  ∈  Care arbitrary. Show that the polynomial  P (z)− P (z0) is divisible by  z − z0 .

(c) Deduce that  P (z) is divisible by  z − z0   if  P (z0) = 0 .

(d) Suppose that a polynomial  P (z) of degree  n  vanishes at  n  distinct values  z1, z2, . . . , zn  ∈ C ,so that  P (z1) = P (z2) =  . . . =  P (zn) = 0 .Show that  P (z) =  c(z − z1)(z − z2) . . . (z − zn) , where c ∈ C  is a constant.

(e) Suppose that a polynomial P (z) of degree at most  n  vanishes at more than  n  distinct values.

Show that  P (z) = 0 identically.

Ex. 8. Suppose that   α ∈ C  is fixed and  |α| <  1 . Show that  |z| ≤ 1 if and only if z − α

1 − αz

≤ 1 .

Ex. 9. Suppose that z =  x + iy, where  x, y  ∈ R .Express each of the following in terms of  x  and  y:

(a)   |z − 1|3 (b)z + 1

z − 1

(c)

z + i

−iz

.

1

Page 3: tut_2

7/21/2019 tut_2

http://slidepdf.com/reader/full/tut2563dba3d550346aa9aa3e01e 3/3

Ex. 10. Suppose that c ∈ R  and   α ∈ C  with   α �= 0 .

(a) Show that   αz + αz + c = 0 is the equation of a straight line on the plane.

(b) What does the equation  zz  + αz + αz + c = 0 represent if  |α|2 ≥ c?

Ex. 11. Suppose that z, w ∈ C. Show that |z + w|2 + |z − w|2 = 2|z|2 + |w|2

.

Ex. 12. Find all the roots of the equation (z8 − 1)(z3 + 8) = 0.

Ex. 13. For each of the following, compute all the values and plot them on the plane:

(a) (1 + i)−1/2 (b) (−4)3/4 (c) (1− i)3/8.