Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in...

19
Turbulence in Superfluid Helium-4 at mK Temperatures Otaniemi, 16. Nov. 2001 W. Schoepe Institut für Experimentelle und Angewandte Physik Universität Regensburg

Transcript of Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in...

Page 1: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Turbulence in Superfluid Helium-4 atmK Temperatures

Otaniemi, 16. Nov. 2001

W. Schoepe

Institut für Experimentelle und Angewandte Physik

Universität Regensburg

Page 2: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Contents

1. Why is turbulence in superfluids at T = 0 interesting?

2. Basics of classical turbulence.

3. Basics of superfluid turbulence.

4. Classical character of superfluid turbulence at high vortex densities.

5. Quantum turbulence: our experiment.

6. Conclusion.

Literature:

R.J. Donnelly „Quantized Vortices in Helium II“Cambridge University Press, Cambridge 1991.

Lecture Notes in Physics „Quantized Vortex Dynamics andSuperfluid Turbulence“, Vol. 571, Springer 2001.

Page 3: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Classical turbulence

Navier-Stokes-equation:

( ) Vpgrad1VgradVtV rrrr

∆ν+ρ

−=⋅+∂∂

ρην = kinematic viscosity

air 1,4 · 10-5 m2/swater 10-6

HeI (2,2 K) 1,7 · 10-8

HeII (0K) 0

( ) L/V~VgradV 2rr⋅

VL

LVRe

22

ν⋅≡⇒

2L/V~V ν∆⋅νr

Reynoldszahlν

= VLRe

Page 4: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Example

Sphere in water

RV

L = 2 R = 10-2 m⇒ Re = 6

22

101010−

−− ⋅ = 102

V = 10-2 m/s

Re < 1: laminar flowdrag force 6πηRV (Stokes)

Re > 103: turbulent flowdrag force 22

D VRc21 ρπ

definition 22

DVR

21

forcedragcρπ

=

sphere: cD ≈ 0,4

Page 5: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Kolmogorov’s Law

1V l 2V

3/2221 l|VV| ∝−rr

|21 VV|rr

− can depend only on

=ε 3

2

sm

kgWatt and l (m)

⇒ | 3/121 )l(|VV ε∝−rr

3/23/23/23/2221 kl|VV|E −ε∝ε∝−∝rr

3/2

kkdk)k(FE −∫

∞∝= ⇒

3/5k)k(F −∝

Kolmogorov 1941v. Weizsäcker 1945

Page 6: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Decay of turbulence

>ω<ν=−=ε 2

dtdE , V

rrrot=ω

⇒∝ε⇒∝⇒∝ε −− 322/3 ttEE

2/3t−∝ω

Page 7: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Superfluid turbulence (T = 0)

(4He, BEC)

Equation of motion : nonlinearSchrödinger equation

ψψ+ψ∇−=∂ψ∂ 22

2||V

m2ti hh

Madelung transformation: φ=ψ iae

φ∇=m

v hr

2ma=ρ

0)v(t

=ρ⋅∇+∂ρ∂ r

continuity equation

mVav)v(

tv 2

∇−=∇⋅+∂∂ rrr

Euler equation

no viscosity, no Reynolds number

pure potential flow: 0vrot =r

quantized circulation: ∫ κ=⋅ Nrdv rr , vortices with N = 1

superfluid turbulence = tangle of singly quantized vortices

Page 8: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

High vortex densities:

classical character

Examples:

1. rotating superfluid:

imitation of classical solid body rotation

rv rrr ×Ω= ( )Ω=rr 2vrot

by n vortices/area:

Ω==κ 2|vrot|n r

2. Tabeling’s “washing machine”:

Kolmogorov’s law

3. Decay of grid turbulence

Page 9: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Quantum turbulence

L line length density

= 23 m

1mm

κ circulation quantum

sm10

27

inter vortex spacing )m(L

1

energy/mass E ~ κ 2L

2

2

sm

dissipated power/mass

κε 3

223

smL~

vorticity

κω

s1L~

quantum turbulence when characteristic length scalel <

L1

41

3l

εκ<

Page 10: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Experimental Setup

• A magnetic microsphere is levitating between two ho-

rizontally arranged superconducting electrodes made of

niobium

• no mechanical suspension elements, horizontal stabi-

lity is provided by trapped flux lines

• the sphere is electrostatically charged by applying a high

dc voltage to the capacitor before cooling below Tc

• space between the electrodes is filled with pure 4He

• excitation of vertical oscillations of the sphere around its

equilibrium levitation position by applying a resonant ac

electric field

• measurement of: velocity amplitude of the oscillatons

• parameters: driving force amplitude / temperature

Page 11: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

different regimes

0 200 400 600 8000

10

20

30

40

T = 300 mK

v (m

m/s

)

F (pN)

low driving forces: laminar flow, dissipation is givenby ballistic scattering of phonons

large driving forces: turbulent flow, large dissipati-on similiar to classical flow

intermediate range: state of system is unstable, sy-stem switches intermittently between laminar flowand turbulent flow

Page 12: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

turbulent regime

0 2 4 6 8 10 120

20

40

60

80

100

T = 100 mK

v (m

m/s

)

F (nN)

In the turbulent regime a driving force similiar toturbulent flow in classical fluids is observed:

Ft = γ(v2−v20)

using the classic turbulent drag coefficient

γ = CDρπR2/2

with CD ≈ 0.4 for spheres, which describes thesolid line through the data.

Page 13: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Intermittent Switching

18

20

22

24

26

28

30

time (100 s / division)

18

20

22

24

26

28

30

v (m

m/s

)

18

20

22

24

26

28

30

Page 14: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Turbulent Statistics

20 30 40 501

10

100

1000

ba

32 mK 100 mK 200 mK 300 mK 403 mK

µ (s

)F-λvt (pN)

0 10 20 30 40 500.001

0.01

0.1

1

T = 300 mKF = 59 pN

t (s)

P(t

)

Page 15: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Laminar Statistics

0 10 20 30 40 500

1

2

3

4

5

6

7

b

+10%

-10%4.79

28mK 100mK 200mK 300mK 403mK

v w (

mm

/s)

F-λvt (pN)0 2 4 6 8 10 12

0.01

1

a

T = 300 mKF = 55 pN

P( ∆

v)

∆v (mm/s)

P (∆v) = exp(−(∆v/vw)2)

Page 16: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Lifetime of Laminar Phases

Cumulative distribution function:

P (t) = P (∆v(t)) = exp

(−

(∆v(t)

vw

)2)

where

∆v(t) = ∆vmax(1 − exp(−t/τ)).

Failure rate:

Λ(t) = −d lnP (t)dt

= v−2w

d(∆v2)dt

for long times t τ :

∆v = ∆vmax = const and therefore P = const

and hence Λ = 0:

stable laminar phases although v > v

Page 17: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Stability of Laminar Phases

0 100 200 300 400 5001E-3

0,01

0,1

1

45,0 pN

47,1 pN

49,1 pN

51,2 pN

300mK

rel.

Anz

ahl l

amin

arer

Pha

sen

t in s

0 200 400 600 800 1000 1200 14000.01

0.1

1

without 60

Co sourceτ = 25 min

T = 300 mKF = 47 pN

with 60

Co sourceτ = 3 min

norm

aliz

ed n

umbe

r of

lam

inar

pha

ses

t (s)

Page 18: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Summary

Statistics of turbulent phase laminar phase vortex nucleation

CDF exponential(t) Gauss(∆v) double exponential(∆v)

PDF exponential Weibull exp · double exponential

Failure rate const linear exponential

dependence Fturb vw vc(T ), ∆vc

Page 19: Turbulence in Superfluid Helium-4 at mK Temperatures · R.J. Donnelly „Quantized Vortices in Helium II“ Cambridge University Press, Cambridge 1991. Lecture Notes in Physics „Quantized

Summary

• A levitating magnetic microsphere is oscillating in liquid

helium in the mK range, creating turbulence.

• Between turbulent and laminar regimes there is a unstable

regime where the system switches between both states

intermittently.

• The velocities reached during laminar phases are Weibull

distributed, while the lifetimes of turbulent phases are

exponentially distributed.

• The distributions are independent of temperature.

• Metastable laminar phases exist, their lifetime is only

limited by natural background radiation

Future

• using different sized spheres

• perform the experiment in superfluid 3He