Turbopump Design and Analysis Approach for Nuclear Thermal ... · PDF fileTurbopump Design and...

36
Turbopump Design and Analysis Approach for Nuclear Thermal Rockets Shu-cheng S. Chen 1 , Joseph P. Veres 2 , and James E. Fittje 3 1 NASA Glenn Research Center, Cleveland, Ohio 44135 2 Chief, Compressor Branch, NASA Glenn Research Center, Cleveland, Ohio 44135 3 Analex Corporation, 1100 Apollo Drive, Brook Park, Ohio 44142 1 (216) 433-3585, [email protected] Abstract. A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance characteristics of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed. Keywords: Turbopump; Nuclear Thermal Rocket Engine; Conceptual Design; System Analysis. https://ntrs.nasa.gov/search.jsp?R=20060051740 2018-05-19T20:11:31+00:00Z

Transcript of Turbopump Design and Analysis Approach for Nuclear Thermal ... · PDF fileTurbopump Design and...

Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

Shu-cheng S. Chen1, Joseph P. Veres2, and James E. Fittje3

1NASA Glenn Research Center, Cleveland, Ohio 44135 2Chief, Compressor Branch, NASA Glenn Research Center, Cleveland, Ohio 44135

3Analex Corporation, 1100 Apollo Drive, Brook Park, Ohio 44142 1(216) 433-3585, [email protected]

Abstract. A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance characteristics of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed.

Keywords: Turbopump; Nuclear Thermal Rocket Engine; Conceptual Design; System Analysis.

https://ntrs.nasa.gov/search.jsp?R=20060051740 2018-05-19T20:11:31+00:00Z

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

1

Turb

opum

p D

esig

n an

d A

naly

sis

App

roac

hfo

r Nuc

lear

The

rmal

Roc

kets

Shu

-che

ng S

. Che

n1, J

osep

h P

. Ver

es2 ,

and

Jam

es E

. Fitt

je3

1 NA

SA

Gle

nn R

esea

rch

Cen

ter,

Cle

vela

nd, O

hio

4413

52 C

hief

, Com

pres

sor B

ranc

h, N

AS

A G

lenn

Res

earc

h C

ente

r, C

leve

land

, Ohi

o 44

135

3 Ana

lex

Cor

pora

tion,

110

0 A

pollo

Driv

e, B

rook

Par

k, O

hio

4414

2

Pres

ente

d at

STA

IF-2

006

Con

fere

nce

Alb

uque

rque

, NM

, Feb

ruar

y 15

, 200

6B

yJa

mes

E. F

ittje

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

2

Turb

opum

p D

esig

n M

etho

dolo

gy D

ata

Flow

NES

S

Pum

pDes

Turb

Des

Turb

A

Pum

pA

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

3

NES

S (N

ucle

ar E

ngin

e Sy

stem

Sim

ulat

ion)

Cod

e Fe

atur

es a

nd C

apab

ilitie

s•D

evel

oped

by

NA

SA

/LeR

C, S

AIC

, and

Wes

tingh

ouse

in e

arly

199

0’s

to

supp

ort o

ngoi

ng a

nd fu

ture

stu

dies

of N

ER

VA

-bas

ed N

TR e

ngin

e sy

stem

an

d st

age

desi

gn e

fforts

•NE

SS

is b

ased

on

the

Exp

ande

d Li

quid

Eng

ine

Sim

ulat

ion

(ELE

S)

prog

ram

mod

ified

to in

clud

e so

lid-c

ore

reac

tor d

esig

n m

odel

s•W

estin

ghou

se (r

espo

nsib

le fo

r the

reac

tor s

ubsy

stem

dur

ing

the

NE

RV

A

prog

ram

) pro

vide

d re

acto

r des

ign

mod

els

for a

nea

r-te

rm N

ER

VA

-der

ived

sy

stem

(EN

AB

LER

I) a

nd a

n up

grad

ed v

ersi

on o

f thi

s en

gine

(EN

AB

LER

II)

•NE

SS

can

mod

el e

xpan

der,

gas

gene

rato

r and

ble

ed c

ycle

s, a

long

with

m

ulti-

redu

ndan

t pro

pella

nt p

ump

feed

sys

tem

s•T

urbo

mac

hine

ry d

esig

n op

tions

incl

ude

mul

tista

ge a

xial

and

trad

ition

al

cent

rifug

al p

umps

•NE

SS

is u

sed

for r

apid

, pre

limin

ary

deta

iled

desi

gn a

naly

sis

ofbo

th th

e re

acto

r and

key

eng

ine

subs

yste

ms.

The

cod

e de

sign

s th

e re

acto

r,tu

rbom

achi

nery

, tan

kage

, noz

zle,

line

s an

d va

lves

in te

rms

of b

oth

wei

ght

and

perfo

rman

ce/o

pera

ting

char

acte

ristic

s

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

4

NES

S Ex

pand

er C

ycle

Flo

w P

ath

(Ena

bler

1)

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

5

NES

S Tu

rbop

ump

Des

ign

Feat

ures

•Des

ign

both

Axi

al P

umps

(20

stag

es M

ax) o

r Cen

trifu

gal

Pum

ps (4

sta

ges

Max

w/ I

nduc

er)

•Max

imum

Allo

wab

le T

ip S

peed

of 4

57.2

m/s

for H

ydro

gen

•Pum

p an

d In

duce

r hav

e th

e S

ame

RP

M•P

umps

Sta

ged

by S

peci

fic S

peed

(~32

00 fo

r Axi

al a

nd~8

00 fo

r Cen

trifu

gal)

•Des

igns

a P

artia

l Adm

issi

on T

urbi

ne if

Bla

de H

eigh

t <

0.76

2cm

•Tur

bine

is R

PM

Lim

ited

to A

void

Unr

ealis

tic D

esig

ns•T

urbi

ne is

Sta

ged

if In

let M

ach

Num

ber >

1.7

or if

Spe

cific

Spe

ed is

Bel

ow M

inim

um•E

ffici

ency

Cur

ves

Bas

ed o

n E

mpi

rical

Dat

a

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

6

Key

NES

S Tu

rbop

ump

Valu

es

Inpu

ts:

•P

ump

Type

(Axi

al o

r Cen

trifu

gal)

•Tu

rbin

e B

ypas

s Fr

actio

n•

TPA

Con

figur

atio

n (M

ultip

le o

r Sin

gle)

•Fr

actio

n of

Des

ign

Thru

st fo

r Los

s of

Tur

bo-p

ump

•S

peci

fic S

uctio

n S

peed

Out

puts

:•

Pum

p an

d Tu

rbin

e P

erfo

rman

ce (O

n an

d O

ff D

esig

n)•

Num

ber o

f Sta

ges,

Incl

udin

g In

duce

r•

Mas

s Fl

ow R

ate,

Tem

pera

ture

, and

Pre

ssur

e S

ched

ules

•D

etai

led

Rea

ctor

Sub

syst

em M

ass

Bre

ak D

own

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

7

NES

S Sy

stem

Inpu

ts S

umm

ary

•Exp

ande

r Cyc

le•E

nabl

er-I

(Incr

ease

d C

ompu

tatio

nal D

esig

n S

pace

)•2

700K

Cha

mbe

r Tem

pera

ture

•689

4.75

kPa

Cha

mbe

r Pre

ssur

e•3

00:1

Noz

zle

Are

a R

atio

•66.

7kN

and

111

.2kN

Thr

ust L

evel

s•S

ingl

e C

entri

fuga

l Pum

p•P

ump

and

Turb

ine

on C

omm

on S

haft

•Cen

trifu

gal P

ump

(Spe

cific

Suc

tion

Spe

ed o

f 20,

000)

•Reg

ener

ativ

e N

ozzl

e C

oolin

g to

an

Are

a R

atio

of 2

5:1

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

8

NES

S Pu

mp

Des

ign

Out

puts 67

8.93

392.

87W

eigh

t (N

)25

.35

19.5

3D

iam

eter

(cm

)68

.20%

68.3

0%Ef

ficie

ncy

3057

.618

09.1

Shaf

t Wor

k (k

W)

12.5

67.

53M

ass

Flow

Rat

e (k

g/s)

534.

4734

.47

NPS

P (k

Pa)

33

Num

ber o

f Sta

ges

2000

020

000

Suct

ion

Spec

ific

Spee

d23

967

3093

7R

PM11

.64

11.4

9Pr

essu

re R

ise

(MPa

)11

1.2

66.7

2Th

rust

Lev

el (k

N)

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

9

NES

S Tu

rbin

e D

esig

n O

utpu

ts 10.5

646.

273

Mas

s Fl

ow R

ate

(kg/

s)

269.

217

2.2

Wei

ght (

N)

70%

70%

Effic

ienc

y20

.42

15.8

Dia

met

er (c

m)

1.29

41.

274

Pres

sure

Rat

io

Thru

st L

evel

(kN

)

22

Num

ber

of S

tage

s

27.8

27.7

Tem

pera

ture

Dro

p (K

)2.

2063

2.05

67Pr

essu

re D

rop

(MPa

)11

1.2

66.7

2

2396

730

937

RPM

4648

Spec

ific

Spee

d

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

10

Pum

pDes

Pum

p D

esig

n C

ode

•S

tatio

n-by

-Sta

tion

Mea

n Li

ne C

ode

•Es

timat

es H

ydra

ulic

Los

ses

Alo

ng th

e Fl

ow P

ath

(Ful

ly

Dev

elop

ed In

tern

al F

low

bas

ed o

n E

mpi

rical

and

Sem

i-Em

piric

al

Dat

a)•

Flow

Ass

umed

to b

e in

The

rmod

ynam

ic L

ocal

Qua

si-E

quili

briu

m•

Em

piric

al a

nd S

emi-E

mpi

rical

Flo

w P

ath

Loss

es•

Can

Per

form

Inve

rse

Des

ign

and

Con

stra

ined

Opt

imiz

atio

n•

Axia

l Ind

ucer

and

Cen

trifu

gal M

odel

s ar

e Fu

nctio

nally

Inte

grat

ed•

Rea

l Gas

Pro

perti

es•

Val

idat

ed A

gain

st th

e P

&W

ATD

LH2,

MK

15-O

, and

MK

48-O

P

umps

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

11

Pum

pDes

NTR

Pum

p C

hara

cter

istic

s

11.5

9.37

Inle

t Tip

Dia

met

er (c

m)

20.3

920

.39

Inle

t Tem

pera

ture

(K)

1 +

3(C

ent.)

1 +

3(C

ent.)

Num

ber o

f Sta

ges

2874

.616

98.7

Shaf

t Wor

k (k

W)

82.1

0%82

.60%

Ove

rall

Effic

ienc

y

Thru

st L

evel

(kN

)Fl

uid

6.91

6.09

Inle

t Hub

Dia

met

er (c

m)

139.

2713

9.27

Inle

t Pre

ssur

e (K

Pa)

LH2

LH2

111.

266

.72

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

12

.

*Not

e: C

avita

tion

Inde

x is

def

ined

as:

NP

SP

_ava

ilabl

e –

NP

SP

_req

uire

d.

Pum

pDes

NTR

Pum

p Sp

ecifi

catio

ns

--

14.2

211

.96

Cho

rd L

engt

h (c

m)

+153

.06

+160

.65

-43.

17-5

1.34

Cav

itatio

n In

dex*

(kPa

)60

.01

208.

9116

4---

21.53

66.7

2A

xial

Indu

cer

3813

.537

63.2

196.

50St

age

Pres

sure

Ris

e (k

Pa)

335.

0935

7.84

59.8

7In

let N

PSP

111.

266

.72

111.

2Th

rust

Lev

el (k

N)

50.0

48.0

23.0

BET

A2

(Deg

)

0.62

00.

521

-Ti

p Sp

an (c

m)

9510

016

1W

rap

Ang

le (D

eg)

3.70

82.

733

-B

lade

Axi

al L

engt

h (c

m)

23.7

518

.28

-Ti

p D

iam

eter

(cm

)

8/16

8/16

3B

lade

Num

ber

Firs

t Pum

p St

age

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

13R

edun

dant

Red

unda

ntR

edun

dant

Red

unda

ntC

avita

tion

Inde

xH

igh

3763

.212

4

2.76

40.

490

18.5

638

.06/

1266

.72

Seco

nd P

ump

Stag

e

3813

.537

63.2

3813

.5St

age

Pres

sure

Ris

e (k

Pa)

Ver

y H

igh

Ver

y H

igh

Hig

hIn

let N

PSP

111.

266

.72

111.

2Th

rust

Lev

el (k

N)

54.0

48.0

41.0

BET

A2

(Deg

)

0.35

60.

282

0.58

9Ti

p Sp

an (c

m)

8610

011

6W

rap

Ang

le (D

eg)

3.77

22.

837

3.73

1B

lade

Axi

al L

engt

h (c

m)

24.3

519

.25

23.9

7Ti

p D

iam

eter

(cm

)

9/18

8/16

6/12

Bla

de N

umbe

r

Third

Pum

p St

age

Pum

pDes

NTR

Pum

p Sp

ecifi

catio

ns (C

ont.)

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

14

PUM

PA P

ump

Ana

lysi

s C

ode

•U

tiliz

es M

ean

Line

Mod

elin

g M

etho

d to

Mod

el O

ff-D

esig

n P

ump

Per

form

ance

•E

mpi

rical

Cor

rela

tions

use

d to

Mod

el:

•O

ff-D

esig

n E

ffici

ency

•S

lip F

acto

r•

Diff

user

Pre

ssur

e R

ecov

ery

•P

UM

PA

Can

Mod

el:

•A

xial

, Cen

trifu

gal,

and

Mul

tista

ge P

umps

•In

duce

rs (I

nclu

ding

Mix

ed F

low

)•

Rea

l Gas

Pro

perti

es O

btai

ned

from

GA

SP

LUS

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

15

PUM

PA N

TR P

ump

Perf

orm

ance

Map

(Pre

ssur

e R

ise

vs. V

olum

etric

Flo

w R

ate)

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

16

PUM

PA N

TR P

ump

Perf

orm

ance

Map

(Con

t.)(P

ower

Req

uire

d vs

. Vol

umet

ric F

low

Rat

e)

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

17

Turb

Des

Tur

bine

Des

ign

Cod

e

•A

xial

Flo

w T

urbi

ne D

esig

n C

ode

•D

esig

ns M

ultip

le T

urbi

ne T

ypes

:•

Par

tial A

dmis

sion

(Sin

gle

Sta

ge O

nly)

•Fu

ll A

dmis

sion

Impu

lse

(Sin

gle

or D

ual S

tage

s)•

Full

Adm

issi

on 5

0% R

eact

ion

(Sin

gle

or D

ual

S

tage

s)•

Util

izes

Em

piric

al C

orre

latio

ns fo

r bot

h G

eom

etric

La

yout

and

Los

s E

stim

ates

•D

iffer

ent D

ata

Sou

rces

and

Los

s E

valu

atio

n R

atio

nal

for E

ach

Turb

ine

Type

•Rea

l Gas

Effe

cts

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

18

Ther

mod

ynam

ic C

hara

cter

istic

s of

50%

R

eact

ion

Turb

ines

for N

TR11

1.2

66.7

2Th

rust

Lev

el (k

N)

Inle

t Tem

p. (K

)In

let P

ress

ure

(kPa

)

Flui

d

0.38

40.

392

U/C

340.

4634

4.12

Tip

Spee

d (m

/s)

1.25

21.

236

Pres

sure

Rat

io (T

-to-S

)31

533

6.1

Exit

Tem

p. (K

)68

1268

39.6

Exit

Pres

sure

(kPa

)33

2.9

354

8493

.784

16.4

2874

.716

98.7

Wor

k O

utpu

t (kW

)87

.00%

86.6

0%O

vera

ll Ef

ficie

ncy

(T-to

-S)

H2

H2

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

19

Mea

n D

iam

eter

(cm

)1s

tN

ozzl

e Ex

it A

ngle

(Deg

)

Thru

st L

evel

2.9

2.08

Seco

nd R

otor

Bla

de H

eigh

t (cm

)2.

671.

93Fi

rst R

otor

Bla

de H

eigh

t (cm

)24

.22

19.1

6

1618

9090

1stN

ozzl

e In

flow

Ang

le (D

eg)

22

Num

ber o

f Sta

ges

111.

266

.72

Geo

met

ric C

hara

cter

istic

s of

50%

Rea

ctio

n Tu

rbin

es fo

r NTR

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

20

Ther

mod

ynam

ic C

hara

cter

istic

s of

Im

puls

e Tu

rbin

es D

esig

ned

for N

TR11

1.2

66.7

2Th

rust

Lev

el (k

N)

Inle

t Tem

p. (K

)In

let P

ress

ure

(kPa

)

Flui

d

0.22

40.

219

U/C

229.

2122

7.99

Tip

Spee

d (m

/s)

1.35

31.

339

Pres

sure

Rat

io (T

-to-S

)31

4.4

335.

6Ex

it Te

mp.

(K)

6329

.463

50.1

Exit

Pres

sure

(kPa

)33

2.9

345.

084

93.7

8416

.428

74.7

1698

.7W

ork

Out

put (

kW)

65.5

%63

.6%

Ove

rall

Effic

ienc

y (T

-to-S

)H

2H

2

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

21

Geo

met

ric C

hara

cter

istic

s Im

puls

e Tu

rbin

es fo

r NTR

Mea

n D

iam

eter

(cm

)

1stN

ozzl

e Ex

it A

ngle

(Deg

)

Thru

st L

evel

2.00

1.58

Seco

nd R

otor

Bla

de H

eigh

t (cm

)

1.90

1.52

Firs

t Rot

or B

lade

Hei

ght (

cm)

16.2

712

.49

1618

9090

1stN

ozzl

e In

flow

Ang

le (D

eg)

22

Num

ber o

f Sta

ges

111.

266

.72

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

22

TUR

BA

Tur

bine

Ana

lysi

s C

ode

•U

tiliz

es M

eal L

ine

Flow

Mod

elin

g •

Obt

ains

Des

ign

Poi

nt P

erfo

rman

ce a

nd G

ener

ates

C

hara

cter

istic

Map

s•

Em

piric

ally

Der

ived

Cor

rela

tions

Fro

m E

xist

ing

Eng

ines

an

d Te

st R

igs

•D

esig

n P

oint

Obt

aine

d fro

m C

orre

latio

ns o

f Effi

cien

cy to

S

pout

ing

Vel

ocity

Rat

io•

Off-

Des

ign

Effi

cien

cy O

btai

ned

from

Em

piric

al D

ata

Nor

mal

ized

Rel

ativ

e to

Des

ign

•Fl

ow C

ondi

tions

Cal

cula

ted

at T

ip, H

ub, a

nd M

ean

Line

Rea

l Gas

Pro

perti

es fr

om G

AS

PLU

S

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

23

Two-

Stag

e N

TR T

urbi

ne P

erfo

rman

ce(T

urbi

ne P

ress

ure

Rat

io v

s. F

low

Par

amet

er)

Flow

Par

amet

er

PressureRatio

05

1015

201

1.1

1.2

100%

RP

M

90%

RP

M

80%

RP

M

70%

RP

M

60%

RP

M60

% R

PM70%

RPM80%

RPM

90%

RPM

100%

RPM

Flow

Par

amet

er (m

T1/

2 /P

)

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

24

Two-

Stag

e N

TR T

urbi

ne P

erfo

rman

ce C

ont.

(Tur

bine

Effi

cien

cy v

s. S

pout

ing

Vel

ocity

Rat

io)

60%

RPM

70%

RPM

80%

RPM

90%

RPM

100%

RPM

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

25

Con

cept

ual D

esig

n of

the

Liqu

id H

ydro

gen

Turb

opum

p fo

r the

66.

72kN

Thr

ust N

TR

24.4

2cm

10.8

2cm

Turb

ine

Inle

tTu

rbin

e O

utle

t

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

26

Sum

mar

y

•A

Seq

uenc

e fo

r NTR

TP

A D

esig

n an

d A

naly

sis

has

been

Util

ized

and

Pre

sent

ed•

Des

ign

Poi

nt P

erfo

rman

ce a

nd O

ff-D

esig

n P

erfo

rman

ce M

aps

for b

oth

the

Pum

p an

d Tu

rbin

e w

ere

Cal

cula

ted

•In

itial

Con

cept

ual D

esig

n of

TP

A’s

for a

66.

7kN

and

11

1.2k

N T

hrus

t NTR

Eng

ine

have

bee

n C

ompl

eted

•Fo

r Fur

ther

Info

rmat

ion

Abo

ut P

umpD

es, P

UM

PA

, Tu

rbD

es, o

r TU

RB

A s

ee N

AS

A/T

M-2

005-

2140

04

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

27

Ref

eren

ces

•C

som

oran

d S

utto

n, S

mal

l, H

igh-

Pre

ssur

e Li

quid

Hyd

roge

n Tu

rbop

ump,

NAS

A C

R-

1351

86, 1

980.

•Fo

wle

r, J.

R.,

GA

SP

LUS

Use

r's M

anua

l, N

AS

P C

ontra

ctor

Rep

ort 1

012,

Sve

rdru

p Te

chno

logy

, Cle

vela

nd, O

H, M

arch

, 198

8.•

Hen

dric

ks, R

. C.,

Tam

, L. T

., an

d M

uszy

nska

, A.,

Turb

omac

hine

Sea

ling

and

Sec

onda

ry F

low

s; P

art 2

–R

evie

w o

f Rot

ordy

nam

ics

Issu

es in

Inhe

rent

ly U

nste

ady

Flow

Sys

tem

s w

ith S

mal

l Cle

aran

ces,

NAS

A/TM

-200

4-21

1991

, NAS

A G

lenn

R

esea

rch

Cen

ter,

2004

.•

Pel

acci

o, S

chie

l, an

d P

etro

sky,

Nuc

lear

Eng

ine

Sys

tem

Sim

ulat

ion

(NE

SS

): V

ersi

on

2.0,

NA

SA

CR

-191

081,

Sci

ence

App

licat

ions

Inte

rnat

iona

l Cor

p., T

orra

nce,

C

alifo

rnia

, 199

3.

•R

ocke

tdyn

eE

ngin

eerin

g, O

rbit

Tran

sfer

Veh

icle

Eng

ine

Tech

nolo

gy P

rogr

am T

ask

B-

6 H

igh

Spe

ed T

urbo

pum

p B

earin

gs, N

AS

A C

R-1

8923

0, R

ocke

tdyn

eD

ivis

ion,

R

ockw

ell I

nter

natio

nal C

orp.

, 199

2.•

Sche

er, D

., P

UM

PD

ES

–A

Com

pute

r Pro

gram

for P

relim

inar

y P

redi

ctio

n of

H

ydro

gen

or O

xyge

n C

entri

fuga

l Pum

p D

esig

n P

oint

Per

form

ance

, Sve

rdru

p Te

chno

logy

, Cle

vela

nd, O

hio.

Jul

y, 1

995,

to A

ppea

r as

a N

AS

A-T

M in

200

5.

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

28

•Sc

heer

, D.,

TUR

BD

ES

–A

Com

pute

r Pro

gram

for P

relim

inar

y P

redi

ctio

n of

Des

ign

Poi

nt P

erfo

rman

ce fo

r Sev

eral

Typ

es o

f Roc

ket E

ngin

e Tu

rbin

es, S

verd

rup

Tech

nolo

gy, C

leve

land

, Ohi

o. M

ay, 1

995,

to A

ppea

r as

a N

AS

A-T

M in

200

5.•

Schn

eide

r, V

eres

, Hah

, Ner

one,

Cun

ning

ham

, Kra

ft, a

nd T

aver

nelli,

“Sat

ellit

e P

rope

llant

Pum

p R

esea

rch,

”Joi

nt P

ropu

lsio

n C

onfe

renc

e, A

IAA

-200

5-35

60, J

uly,

20

05.

•S

obin

, A. J

. and

Bis

sell,

W. R

., Tu

rbop

ump

Sys

tem

s fo

r Liq

uid

Roc

ket E

ngin

es, N

ASA

SP

-810

7, R

ocke

tdyn

eD

ivis

ion,

Roc

kwel

l Int

erna

tiona

l Cor

p., A

ugus

t, 19

74.

•Te

xas

A&

M U

nive

rsity

, “R

otor

dyna

mic

sIn

stab

ility

Pro

blem

s in

Hig

h-P

erfo

rman

ce

Turb

omac

hine

ry,”

Con

fere

nce

Pro

ceed

ings

, NA

SA

Con

fere

nce

Pub

licat

ion

2443

, 19

86.

•V

eres

, J.P

., C

entri

fuga

l and

Axi

al P

ump

Des

ign

and

Off-

Des

ign

Per

form

ance

P

redi

ctio

n, N

AS

A-T

M-1

0674

5, F

ebru

ary,

199

5.•

Ver

es, A

Met

hod

for M

odel

ing

Axi

al T

urbi

ne M

ean

Line

Flo

w, 1

993,

to A

ppea

r as

a N

AS

A-T

M in

200

5.•

Wal

ker,

J. F

., C

hen,

S. S

., an

d S

chee

r, D

. D.,

Rot

atin

g-P

ump

Des

ign

Cod

e, N

ASA

Tech

Brie

f LE

W-1

7576

-1, N

AS

A G

lenn

Res

earc

h C

ente

r, A

ugus

t 25,

200

4.

Ref

eren

ces

(Con

t.)

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

29

Bac

k-up

Cha

rts

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

30

Sing

le v

s. D

ual T

urbo

-Pum

p A

ssem

blie

s•

Sin

gle

TPA

–S

ingl

e P

oint

of F

ailu

re–

Sim

pler

Des

ign

and

Inte

grat

ion

•D

ual T

PA

–M

ore

Rob

ust S

yste

m–

Mor

e C

ompl

ex D

esig

n an

d In

tegr

atio

n

•D

ual T

PA

Inte

grat

ion

Issu

es–

Wha

t Thr

ust L

evel

Dur

ing

Pum

p-O

ut S

cena

rio?

–O

pera

te T

PA

at D

esig

n or

Off-

Des

ign?

?

?

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

31

•NE

SS

can

mod

el e

xpan

der,

gas

gene

rato

r and

ble

ed c

ycle

s, a

long

with

m

ulti-

redu

ndan

t pro

pella

nt p

ump

feed

sys

tem

s•T

urbo

mac

hine

ry d

esig

n op

tions

incl

ude

mul

tista

ge a

xial

and

trad

ition

al

cent

rifug

al p

umps

•Key

cod

e ou

tput

s in

clud

e re

acto

r ope

ratin

g ch

arac

teris

tics

and

wei

ghts

, as

wel

l as,

the

engi

ne s

ubsy

stem

par

amet

ers

incl

udin

g pe

rform

ance

, w

eigh

ts, d

imen

sion

s, p

ress

ures

, tem

pera

ture

s, s

peci

fic im

puls

e (Is

p)

valu

es, L

H2

mas

s flo

ws,

and

turb

opum

pop

erat

ing

char

acte

ristic

s fo

r bo

th n

omin

al a

nd o

ff-de

sign

ope

ratin

g co

nditi

ons

•N

ES

S is

writ

ten

in s

tand

ard

FOR

TRA

N

•NE

SS

hyd

roge

n pr

oper

ties

pack

age

was

rece

ntly

upg

rade

d fro

m

tabu

lar l

ooku

ps to

GA

SP

LUS

NES

S (N

ucle

ar E

ngin

e Sy

stem

Sim

ulat

ion)

Cod

e Fe

atur

es a

nd C

apab

ilitie

s (C

ont.)

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

32

Hyd

roge

n D

isso

ciat

ion

•IS

P ~

(Tc/

Mw

)^0.

5•

Pot

entia

l Per

form

ance

In

crea

se w

ith

Hyd

roge

n D

isso

ciat

ion

•Lo

wer

Pre

ssur

e an

d H

ighe

r Tem

pera

ture

A

llow

for D

isso

ciat

ion

•N

TR S

yste

m S

ize

and

Mas

s Te

nd to

Incr

ease

w

ith L

ower

Pc

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

33

RO

VER

/NER

VA P

rogr

am A

chie

vem

ents

•B

igge

st:

Pho

ebus

2 w

ith 4

086

elem

ents

(410

0MW

The

rmal

)•

Hig

hest

Thr

ust:

Pho

ebus

2A

with

930

kN

•H

ighe

st P

rope

llant

Flo

w R

ate:

Pho

ebus

2A w

ith 1

20kg

/s•

Hig

hest

ISP

: P

ewee

with

838

s•

Min

imum

Rea

ctor

Spe

cific

Mas

s: P

hoeb

us 2

A a

t 2.3

kg/M

W•

Sm

alle

st:

Nuc

lear

Fur

nace

with

49

Ele

men

ts (4

4MW

The

rmal

)•

Hot

test

: P

ewee

with

255

0K E

xit G

as a

nd a

275

0K F

uel T

emp.

•Lo

nges

t Liv

ed:

Nuc

lear

Fur

nace

at 1

09m

in•

Hig

hest

Pow

er D

ensi

ty:

Pew

ee w

ith 1

.3 M

W/F

uel E

lem

ent 5

200

MW

/M3

(Fue

l)

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

34

Hig

h th

rust

Mar

s ro

und

trip

(sho

rt s

tay)

Low

thru

stM

ars

roun

d tr

ip(s

hort

sta

y)Q

uick

er M

issi

ons

Roc

ket

Equa

tion

Adj

uste

d fo

r St

age

Frac

tion

Why

NTP

Ena

bles

Fas

ter M

issi

ons

Typi

cal A

ttrib

utes

:LO

X/L

H2

NTP

Spe

cific

Impu

lse

420–

460

s80

0–95

0 s

Thru

st/W

eigh

t50

–70

3–6

Exh

aust

Tem

pera

ture

3000

K+

~270

0 K

For t

he s

ame

payl

oad

mas

s, h

igh

ISP

allo

ws:

–M

uch

low

er p

rope

llant

mas

s fo

r the

sam

e ∆V

/ tri

p tim

e–

Muc

h hi

gher

∆V

/ fa

ster

trip

tim

e fo

r sam

e pr

opel

lant

m

ass

–O

r a b

alan

ce o

f bot

h be

nefit

s

16%

20%

40%

at L

ewis

Fie

ldG

lenn

Res

earc

h C

ente

r

35

Typi

cal N

TR V

ehic

le D

esig

n