Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

23
© 2008 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary 2008 International ANSYS Conference Rotor-Structure Interaction Simulation of Centrifugal Chiller Pavak Mehta Trane (Ingersoll Rand) Dave Looman ANSYS, Inc.

Transcript of Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

Page 1: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

2008 International ANSYS Conference

Rotor-Structure Interaction Simulation of Centrifugal Chiller

Pavak MehtaTrane (Ingersoll Rand)Dave LoomanANSYS, Inc.

Page 2: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 2 ANSYS, Inc. Proprietary

Outline

• Trane Centrifugal Chiller• Background

– Current Rotordynamics design• ANSYS Rotordynamics Model Validation

– Rotor Only Model • ANSYS Rotordynamics Model Application

– Centrifugal Chiller Model• Summary

Page 3: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 3 ANSYS, Inc. Proprietary

Trane Centrifugal Chiller

• Water cooled chiller: 100 to 3000 tons capacity• Power frequency: 50 Hz or 60 Hz

Rotor housed inside compressor

Compressor supported on shells

Heat Exchange Shells sitting on the soft pads

Page 4: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 4 ANSYS, Inc. Proprietary

Background

• Current Rotordynamics Design Approach– Tool: Specialized commercial code– Model: Rotor supported on bearings held rigidly– Output: Critical speed and shaft response– Limitation: Exclusion of structural resonances, Variable

bearing stiffness (impractical)

• New Rotordynamics Design Approach– Tool: ANSYS v 11 sp1– Model: Rotor supported on bearings housed in chiller– Output: Critical speed, shaft and chiller response,

dynamic bearing forces, etc– Limitation: Structural resonance correlation w/ test

Page 5: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 5 ANSYS, Inc. Proprietary

Schematics of Rotordynamics Model

Current Model New ANSYS Model

xy

zShaft

Impeller

Motor rotor

Bearings

Shaft

Impeller

Motor rotor

Bearings

Chiller

Page 6: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 6 ANSYS, Inc. Proprietary

Outline

• Trane Centrifugal Chiller• Background

– Current Rotordynamics design• ANSYS Rotordynamics Model Validation

– Rotor Only Model • ANSYS Rotordynamics Model Application

– Centrifugal Chiller Model• Summary

Page 7: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 7 ANSYS, Inc. Proprietary

Rotor Only FEA model

• Linear brick elements (solid 185)• Impellers modeled as 3D point mass with rotary

inertia• Shaft components connected using contact elements• Rotor-shaft (w/ clearance) connected using

constrained equations• Stationary reference frame model

Page 8: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 8 ANSYS, Inc. Proprietary

Rotor Support Bearing Model

• 2D spring/damper with cross-terms• Stiffness and damping varies with speed• In house code used to calculate stiffness matrix

Bearing element COMBI214

Page 9: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 9 ANSYS, Inc. Proprietary

Rotor Only Campbell DiagramConstant Bearing Stiffness

1st Bending mode – Forward Whirl

1st Bending mode – Backward Whirl

1x - excitation

Operation Speed ANSYS: Solid line

In-house: Dotted line

System rigid body mode

Critical Speed

Speed (RPM)

Nat

ural

Fre

quen

cy (H

z)

Page 10: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

Rotor Only Campbell DiagramVariable Bearing Stiffness

System rigid body mode1x - excitation

1st Bending mode – Forward Whirl

1st Bending mode – Backward Whirl

Critical Speed

ANSYS: Solid line

In-house: Dotted lineOperation Speed

Speed (RPM)

Nat

ural

Fre

quen

cy (H

z)

Variable bearing stiffness provides accurate critical speed prediction

Page 11: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

Rotor Critical Mode Animation

Page 12: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

Rotor OnlySynchronous Forced Response

In-house ANSYS (+2.5%)ANSYS: Solid line

In-house: Dotted line

Horizontal Shaft tip magnitude

Vertical Shaft tip magnitude

Speed (RPM)

Dis

plac

emen

t Mag

nitu

de (m

ils)

Operation Speed

Page 13: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

Rotor Only Orbit at Critical Speed

Vert

ical

dis

plac

emen

t (m

ils)

Horizontal displacement

Minor axis

Major axis

Shaft tip orbit at resonance

In-house

ANSYS

ANSYS provides confidence in rotor synchronous response prediction

Page 14: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

Outline

• Trane Centrifugal Chiller• Background

– Current Rotordynamics design• ANSYS Rotordynamics Model Validation

– Rotor Only Model• ANSYS Rotordynamics Model Application

– Centrifugal Chiller Model• Summary

Page 15: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary

Chiller FEA Model

• 3D representation of bearing support

• Mixed, solid-shell element model

• Stationary reference frame analysis

• 1 MDOF model

Compressor

Shells

Rotor

Page 16: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 16 ANSYS, Inc. Proprietary

Rotor Only vs. Chiller Synchronous Forced Response

Speed (RPM)

Dis

plac

emen

t Mag

nitu

de (m

ils) Operation Speed

Horizontal Shaft tip magnitude

Vertical Shaft tip magnitude

Rotor: Solid line

Chiller: Dotted line

High shaft response due to rotor-structural interaction is visible

Page 17: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 17 ANSYS, Inc. Proprietary

Analysis vs. TestComparison of Shaft Response

Speed (RPM)

Dis

plac

emen

t Mag

nitu

de (m

ils) Operation Speed

Horizontal Shaft tip magnitude

Vertical Shaft tip magnitude

Response shows good qualitative comparison

Analysis: Dotted line

Test: Solid line

Page 18: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 18 ANSYS, Inc. Proprietary

Prediction of Dynamic Forces

2

1

3

1

4

3

2

4

Speed (RPM)

Dyn

amic

Bea

ring

Forc

e (lb

s) Operation Speed

Dynamic forces will help with reliability design of bearings

2

Page 19: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 19 ANSYS, Inc. Proprietary

Prediction of Impeller-housing clearance

Speed (RPM)

Dis

plac

emen

t (m

ils)

Dynamic clearance prediction allows fine tuning of flow paths

Clearance

Shaft displacement

Housing (internal surface) displacement

Page 20: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 20 ANSYS, Inc. Proprietary

Outline

• Trane Centrifugal Chiller• Background

– Current Rotordynamics design• ANSYS Rotordynamics Model Validation

– Rotor Only Model• ANSYS Rotordynamics Model Application

– Centrifugal Chiller Model• Summary

Page 21: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 21 ANSYS, Inc. Proprietary

Summary

• Prediction of rotor system resonances with varying bearing property and whirl description is possible – within 2-5% accuracy of in-house code – Rotor Only– no classical splitting visible over speed – Chiller

• Prediction of synchronous harmonic forced response with bearing property as a function of speed– Results matched well w/ in-house code – Rotor Only– Magnitude and frequency trend matched with Test – Chiller

• Accurate structural FEA model is essential for rotor-structure interaction– For better test and analysis correlation

Page 22: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 22 ANSYS, Inc. Proprietary

Benefits of ANSYS Rotordynamics on Chiller Design

• Allows 3D structure (chiller) representation for accurate rotor-structure interaction predictions

• Shaft synchronous and/or asynchronous forced response and chiller structural response can be predicted

• Structure and rotor design can be fine tuned in the early design stage and thus saves product launch time-to-market and development resources

Page 23: Turbo Rotor Structure Interaction Simulation Centrifugal Chiller

© 2008 ANSYS, Inc. All rights reserved. 23 ANSYS, Inc. Proprietary

Questions?

Thank You