Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko,...

20
Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb, Croatia M. Jakšić Institute Ruđer Bošković, Zagreb, Croatia P. Lunkenheimer, A. Loidl University of Augsburg, Germany
  • date post

    22-Dec-2015
  • Category

    Documents

  • view

    218
  • download

    2

Transcript of Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko,...

Page 1: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

Tuning charge density wave glass transition by introducing lattice disorder

ECRYS 2011

D. Dominko, K. Biljaković, D. StarešinićInstitute of Physics, Zagreb, CroatiaM. JakšićInstitute Ruđer Bošković, Zagreb, CroatiaP. Lunkenheimer, A. LoidlUniversity of Augsburg, Germany

Page 2: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

Scope

introduction glass transition sample preparation transport properties dielectric response discussion conclusion

Page 3: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

Introduction- pinning Friedel oscillations around

impurity site pin CDW phase domain structure

Plot 1 r

CDW

Friedel

CDW phase bends to minimise pinning energy on two neighbour impurity sites

change of wave vector q~p-ntwo degenerate polarisations around impurity site simplified scheme:

Page 4: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

Introduction- response to external field overdamped response two (three) processes

- high T ~ freezes at 40 K determines glass

transition temperature - below 60 K both relaxation times

follow resistivity polarisation change

governed by free carriers?

~~viscosity?

1/T (1/K)0.00 0.01 0.02 0.03 0.04 0.05

(s

)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

D

C (

m)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

DC

TaS3

E=800 K

E=300 K

Page 5: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

Introduction- freezing criterionFree carrier number follows activation law

increase of viscosity process slows down and freeze when reaches 100 s

(TG determined by fit)when exactly does it happen?

Tke

BelenTn /0)(

domain density: 1015 cm-3

atat T Tgg

1 e1 e per per domdomainain

freezing criterion?

ne(Tg )~1015 e/cm3

QTSD~1015

electrons/cm3 if so - polarisation is governed by free carriers screening tested by reducing domain size

Page 6: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

Sample preparation

irradiation by H+ ions sample thickness <10 m 2 MeV, Van der Graaf at IRB mainly just vacancies and

interstitials uniform up to 10 m (range: 30 m) recombination (annealing)?

assumption: number of long living defects is proportional to the number right at the beginning

Page 7: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

1/T (1/K)

0.003 0.005 0.007 0.009 0.011 0.013

R/R

RT

1

10

100

1000

72240110440

defects (ppm)

1/T (1/K)0.004 0.005

R/R

RT

1

10

T (K)

60 80 100 120 140 160 180 200E

T (

V/c

m)

1

10

72240110440

Results - transport transition smearing el unchanged minimum in ET is

disappearing limiting curve for

high dosage

Page 8: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

103

104

105

106

107

108

0.01

0.02

0.03

0.04

0.05

Results – dielectric response

’’(f,T)

pure

Page 9: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

Results – dielectric response

’’(f,T)

104

105

106

107

108

109

0.0060.008

0.0100.012

0.0140.016

0.0180.020

0.022

2.2 ppm

Page 10: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

Results – dielectric response

104

105

106

107

108

109

0.0060.008

0.0100.012

0.0140.016

0.0180.020

0.022

’’(f,T)

67 ppm

Page 11: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

Results – dielectric response

1e+4

1e+5

1e+6

1e+7

1e+8

1e+9

0.0060.008

0.0100.012

0.0140.016

0.0180.020

0.022

’’(f,T)

220 ppm

Page 12: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

101

102

106

107

doping (ppm)

190 K110 K50 K

1/n

Results – dielectric response higher domain

density reduction of

proces amplitude hi T: ~ 1/n process

unchanged0 50 100 150 200 250

105

106

107

T [K]

6.7

22.3

4067

220

440

proces proces

100 kHz

Page 13: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

Results – dielectric response

1/T (1/K)

0.003 0.006 0.009 0.012 0.015

(s

)

10-9

10-8

10-7

10-6

10-5

2.2 ppm22 ppm67 ppm220 ppm

1/T (1/K)

0.006 0.008 0.010 0.012 0.014 0.016

(s

)

10-8

10-7

10-6

10-5

2.2 ppm22 ppm67 ppm220 ppm

a)

at high T- minimum in pure ones –

flattening activation energy

increases

Page 14: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

0 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

10-10

10-5

100

1/T (1/K)

(s

)

2.213.567220fit 2.2fit 13.5fit 67fit 220

Tg

Eact increases above el

100

101

102

103

800

900

1000

1100

1200

defects (ppm)

Eac

t (K

)

100

101

102

103

10-12

10-11

10-10

defects (ppm)

0 (

s)

Discussion – fit parameters

1/n

0 reaches phonon frequencies

=0(n)e-(n)/T, (TG)=100 s

Page 15: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

Tg increases electron density

increases 2 orders of magnitude on interval Tg(ni)

consistent with radiation level!

100

101

102

103

30

32

34

36

38

40

defects (ppm)

Tg (

K)

Discussion – fit parameters- TG

1/Tg (1000/K)26 27 28 29 30 31 32 33 34

n (p

pm)

1

10

100

1000

n~exp(-700/TG)

n-1/Tg has activational behavior with =el!

electron

n

nTn

i

Gfc 1)(

GB

el

TkGfc eTn

~)(

Page 16: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

Discussion - threshold low T part of ET “spoons” detaches from

the most irradiated sample (~e-T/50 K) higher dosage -> higher the crossover

temperature Tcross

exponential ET cross ~ e-Tcross/T0 with T0=18 K same T0 as found for ET(T) bellow 100 K in

pure samples* *Itkis, Nad and Monceau, JPCM 1990

T (K)

60 80 100 120 140 160 180 200

ET (

V/c

m)

1

10

72240110440

Page 17: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

process insensitive to doping level is not governed by the carrier number alone any

more – domain cooperativity slows it down even more?

TG tuned by defect number having one electron per domain activation temperature for ni(TG) is 700 K- follows

electron count n(T)! high T minimum in appears after irradiation pinning resonance increases? at high T- ET insensitive to doping level, at low T it

increases

Conclusions – glass

Page 18: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

Attention!

Thank you for your attention!

Page 19: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

Low temperature state- Coulomb stiffening prefers constant phase- only local distortions allowed

- CDW chain cut with topological defects (solitons)

- TLS - like - bound e- states at impurity

Bound states

Tutto, Zawadowski PRL ‘85

Page 20: Tuning charge density wave glass transition by introducing lattice disorder ECRYS 2011 D. Dominko, K. Biljaković, D. Starešinić Institute of Physics, Zagreb,

Results - transport

defects (ppm)

10 100

ET (

V/c

m)

1

10

180 K150 K110 K80 K

0.430.52

0.16

ET-n power low, but weaker than ~n