Tropical forest understorey riparian and upland ...

10
Appl Veg Sci. 2021;24:e12603. | 1 of 10 https://doi.org/10.1111/avsc.12603 Applied Vegetation Science wileyonlinelibrary.com/journal/avsc Received: 19 January 2021 | Revised: 2 July 2021 | Accepted: 12 July 2021 DOI: 10.1111/avsc.12603 RESEARCH ARTICLE Tropical forest understorey riparian and upland composition, structure, and function in areas with different past land use Tamara Heartsill-Scalley 1,2,3 | Todd A. Crowl 1,2,4 © 2021 International Association for Vegetation Science 1 Ecology Center and Watershed Science Department, Utah State University, Logan, Utah, USA 2 El Verde Field Station, University of Puerto Rico, Río Grande, Puerto Rico 3 USDA Forest Service, International Institute of Tropical Forestry, Río Piedras- San Juan, Puerto Rico 4 Department of Biological Sciences & Institute of Environment, Florida International University, Miami, Florida, USA Correspondence Tamara Heartsill-Scalley, USDA Forest Service, International Institute of Tropical Forestry, 1201 Calle Ceiba, Jardín Botánico Sur, Río Piedras-San Juan, Puerto Rico 00926-1115. Email: [email protected] Funding information The Luquillo Forest Dynamics Plot (LFDP) was established via NSF SGER (BSR- 9015961), NSF and LTER (BSR-9911902 and BSR-8811764) grants to the University of Puerto Rico and USDA Forest Service, International Institute for Tropical Forestry. The Ecology Center and College of Natural Resources, Utah State University, and the Smithsonian Tropical Research Institute's Center for Tropical Forest Science, ForestGEO, provided additional funds. This is contribution number 1028 from the Southeast Environmental Research Center in theInstitute of Environment at Florida International University Co-ordinating Editor: John Morgan Abstract Questions: Although past land-use effects on composition and structure are de- scribed for many forest types, forested riparian areas have been overlooked. Riparian areas may contain unique species and high species richness, as well as contribute basal leaf-litter resources for aquatic fauna. We asked: (a) does past land use alter composition in riparian vs upland areas in wet tropical forest; (b) which vegetation life forms characterize riparian zones; and (c) what is the composition and quantity of leaf litter in riparian zones compared to uplands? Location: Riparian and upland locations in tropical wet forest, Luquillo Forest Dynamics Plot (LFDP), Luquillo Experimental Forest, Puerto Rico. Methods: Stratified random sampling was conducted in riparian and upland areas of LFDP with high and low past land use. Understorey vegetation life form composi- tion and cover were sampled in plots. Leaf-litter species composition and compo- nents were estimated with collecting baskets placed throughout riparian zones and uplands. Results: Ferns and lianas were more abundant in riparian areas than uplands. Ordination of species composition groups was distinct for riparian and upland areas with different past land use when based on leaf litter, but this ordination pattern was not as clear in plot vegetation. Conclusion: Characterized by greater presence of ferns and lianas, riparian zones had higher species richness values and greater leaf litter biomass. Distinct leaf-litter species composition within riparian and upland areas may result from a combination of different land-use histories, various plant types, and environmental conditions. Although riparian areas are proportionally a small component of the forested land- scape, they are significant contributors to ecosystem process, terrestrial and aquatic linkages, and plant community composition. KEYWORDS composition, ferns, land use, leaf fall, leaf litter, lianas, riparian, secondary forest, species, stream, tropical, understorey

Transcript of Tropical forest understorey riparian and upland ...

Page 1: Tropical forest understorey riparian and upland ...

Appl Veg Sci. 2021;24:e12603.  | 1 of 10https://doi.org/10.1111/avsc.12603

Applied Vegetation Science

wileyonlinelibrary.com/journal/avsc

Received:19January2021  |  Revised:2July2021  |  Accepted:12July2021DOI: 10.1111/avsc.12603

R E S E A R C H A R T I C L E

Tropical forest understorey riparian and upland composition, structure, and function in areas with different past land use

Tamara Heartsill- Scalley1,2,3  | Todd A. Crowl1,2,4

©2021InternationalAssociationforVegetationScience

1EcologyCenterandWatershedScienceDepartment,UtahStateUniversity,Logan,Utah,USA2ElVerdeFieldStation,UniversityofPuertoRico,RíoGrande,PuertoRico3USDAForestService,InternationalInstituteofTropicalForestry,RíoPiedras-SanJuan,PuertoRico4DepartmentofBiologicalSciences&InstituteofEnvironment,FloridaInternationalUniversity,Miami,Florida,USA

CorrespondenceTamaraHeartsill-Scalley,USDAForestService,InternationalInstituteofTropicalForestry,1201CalleCeiba,JardínBotánicoSur,RíoPiedras-SanJuan,PuertoRico00926-1115.Email:[email protected]

Funding informationTheLuquilloForestDynamicsPlot(LFDP)wasestablishedviaNSFSGER(BSR-9015961),NSFandLTER(BSR-9911902andBSR-8811764)grantstotheUniversityofPuertoRicoandUSDAForestService,InternationalInstituteforTropicalForestry.TheEcologyCenterandCollegeofNaturalResources,UtahStateUniversity,andtheSmithsonianTropicalResearchInstitute'sCenterforTropicalForestScience,ForestGEO,providedadditionalfunds.Thisiscontributionnumber1028fromtheSoutheastEnvironmentalResearchCenterintheInstituteofEnvironmentatFloridaInternational University

Co-ordinating Editor: John Morgan

AbstractQuestions: Although past land-use effects on composition and structure are de-scribedformanyforesttypes,forestedriparianareashavebeenoverlooked.Riparianareasmaycontainunique speciesandhigh species richness, aswell as contributebasal leaf-litterresourcesforaquaticfauna.Weasked: (a)doespast landusealtercompositioninriparianvsuplandareasinwettropicalforest;(b)whichvegetationlifeformscharacterizeriparianzones;and(c)whatisthecompositionandquantityofleaflitterinriparianzonescomparedtouplands?Location: Riparian and upland locations in tropical wet forest, Luquillo ForestDynamicsPlot(LFDP),LuquilloExperimentalForest,PuertoRico.Methods: StratifiedrandomsamplingwasconductedinripariananduplandareasofLFDPwithhighand lowpast landuse.Understoreyvegetation life formcomposi-tionandcoverwere sampled inplots. Leaf-litter species compositionandcompo-nentswereestimatedwithcollectingbasketsplacedthroughoutriparianzonesanduplands.Results: Ferns and lianas were more abundant in riparian areas than uplands.Ordinationofspeciescompositiongroupswasdistinctforripariananduplandareaswithdifferentpastlandusewhenbasedonleaflitter,butthisordinationpatternwasnot as clear in plot vegetation.Conclusion: Characterized by greater presence of ferns and lianas, riparian zoneshadhigherspeciesrichnessvaluesandgreaterleaflitterbiomass.Distinctleaf-litterspeciescompositionwithinripariananduplandareasmayresultfromacombinationof different land-use histories, various plant types, and environmental conditions.Althoughriparianareasareproportionallyasmallcomponentoftheforestedland-scape,theyaresignificantcontributorstoecosystemprocess,terrestrialandaquaticlinkages,andplantcommunitycomposition.

K E Y W O R D S

composition,ferns,landuse,leaffall,leaflitter,lianas,riparian,secondaryforest,species,stream, tropical, understorey

Page 2: Tropical forest understorey riparian and upland ...

2 of 10  |    Applied Vegetation Science

HEARTSILL- SCALLEY And CROWL

1  | INTRODUC TION

Worldwide,andparticularlyinthetropics,secondaryforestsaresignif-icantcontributorstocarbonsequestration,speciesconservation,andecosystemservices(Chazdonetal.,2009;Nordenetal.,2009;Poorteretal.,2016).Riparianareasoftropicalsecondaryforestscanbepromi-nentfeaturesinfragmentedlandscapes,fromcloudforeststosemi-aridhighlands(Schmittetal.,2019;Hernández-Dávilaetal.,2020;Villamarínetal.,2020).However,inmontanesecondaryforestswithuniformtreecanopy,riparianareasofheadwaterstreamsmayappeartobehiddeninplainsightasthesedonotstandoutfromtherestoftheforestland-scape.Long-termstudiesontreecommunitiesfrommontanewetfor-esthaveidentifiedassociationstopastlanduse,topography,andsoils,butnottoriparianareas(Thompsonetal.,2002;Heartsill-Scalleyetal.,2009;Hoganetal.,2016).Organicmatterfromriparianvegetationisanimportantenergysourceandstructuralcomponentinforeststreams,whereitisefficientlyprocessedandintegratedintoaquaticandterres-trialfoodwebs(Wallaceetal.,1997;Rosasetal.,2020).Riparianveg-etationprovidesdirectandlateralinputsofcoarseparticulateorganicmattervialeaflitterthatreachesstreamecosystems(Fisheretal.,2004;Mbakaetal.,2015;Molinero,2019).

Foresttypesandvegetationassociationsareknowntomarkedlychangealonglarge-scalegradients.Intropicalforestsystems,thereisaclearunderstandingand focuson those longitudinalgradientswhichmaybefoundinmountainswhere,forexample,elevationandrainfall increase and different forest types occur (Weaver, 1991;Gonzálezet al.,2013).However, lateral (topographicalorgeomor-phological) gradients canexistwithina forest type, suchas thoseobservedinriparianvsuplandareas(Scatena&Lugo,1995;Decocq,2002).Therearedocumenteddifferencesinindividualtreespeciesdistributions among ridges, slopes, upland, and riparian areas in tropicalmontanewetforests.However,moststudiesfocusonfine-scale variations in abiotic factors, for example, soil moisture andaccumulationoforganicmaterialsfromlitterfallandwoodydebris,notontheresultinginfluencesonvegetationstructureandcompo-sition(Weaver,1991;Basnet,1992;Scatena&Lugo,1995;Heartsill-Scalleyetal.,2009).

Riparian vegetation composition and diversity are related to a variety of environmental factors including elevation, flooding fre-quency,andlightavailabilityinthetransitionbetweenterrestrialandaquatic systems (Naiman&Décamps,1997; Lyon&Sagers, 1998;Tabacchietal.,1998;Decocq,2002). Inmontanestreams,surfacewaterflowandstormeventsmoveorganicmatterfromuplandareasalongriparianzones(Gomietal.,2002;Fisheretal.,2004;Liuetal.,2020). Vegetation life forms that quickly colonize or re-establishundertheseconditionsoftendominateriparianzones.Riparianveg-etationstructureandcompositionaffectaquaticfaunaandserveascorridors for faunamovementandplantdispersal (Kinnaird,1992;Andersson et al., 2000; Honnay et al., 2001; Funch et al., 2002;Iwataetal.,2003;deSouzaetal.,2013;Yeungetal.,2017;Calle&Holl,2019;Schmittetal.,2019;Hernández-Dávilaetal.,2020).

Vegetationcompositionandstructureoftropicalriparianzonesoftenfocusonindividualvegetationlifeforms,suchasherbs,ferns,

ortrees,andischaracterizedintermsofdistancetostreamchan-nels(Drukeretal.,2008;Heartsill-Scalleyetal.,2009;Paixãoetal.,2013).Riparianareasaredescribedashavinghigherratesofpro-ductivity anddiversityof vegetation life forms thannon-riparianareas(Gregoryetal.,1991;Naiman&Décamps,1997;Martinetal.,2004).Itisexpectedthatchangesinspeciesrichnessandvegeta-tionstructureassociatedwithpast landusewouldalsobe foundin riparian areas. Identifying and understanding riparian vegeta-tionisanimportantcomponentofforestmanagement,especiallyinforeststhatharborahighdensityofstreamsprovidingperma-nentlyflowingwaterandaquaticresources(Lowe&Likens,2005;Alexanderetal.,2007;Meyeretal.,2007;Bleichetal.,2014).

Tree species associations can be the dominant vegetation lifeforms in riparian areas in temperate, savanna, and arid systems(Kinnaird,1992;Kellman&Tackaberry,1993;Metzgeretal.,1997;Pabst&Spies,1999;Beschta,2003). Inapreviousanalysisof thisforestlandscape,however,particulartreespecieswerenotfoundtobeuniquelyorexclusivelyassociatedwithriparianareas,atleastnotintermsofthedistributionoftreeswithstems>10 cm in diameter (Heartsill-Scalleyetal.,2009).Thesuggestionhasbeenmadethatintree-dominatedriparianlandscapes,distributionoftreespeciesisnotnecessarilyrelatedtothedistributionofothervegetationforms(Lyon&Sagers,1998;Scatena,1990).Studiesthatintegrateriparianvegetation community composition with past land use are needed tounderstandthelegacyeffectsonriparianvegetationandexplorepotentialramificationsforstreamsandaquaticresources.

Weinvestigatedstream-sideriparianvegetationcomponentsofwetmontaneforesttodetermineiftheyaredifferentfromuplandforestareas.Further,weidentifyforestareaswithcontrastingpastlandusetounderstandtheireffectsonriparianvegetation.Thegoalof this studywas toanswer the followingquestions: (a)doespastland use alter composition in riparian vs upland areas in wet tropical forest; (b)which vegetation life forms characterize riparian zones;and(c)whatisthespeciescompositionandquantityofleaflitterinriparianzonescomparedtouplands,anddoesthisvarydependinguponpastlanduse?Wehypothesizedthattheriparianareasinwettropicalforestswouldbecharacterizedbynon-treevegetationlifeforms,andthatleaflitterwouldbehigherinriparianareas.Pastlanduseisexpectedtomaskoralterdifferencesbetweenriparianandup-landvegetationcharacteristics.Toaddressthesequestions,vegeta-tiondistributionpatternswereanalyzedinuplandandriparianareasoftwopermanentlyflowingstreamswithinatropicalwetforestsitewhere past land use, natural disturbance regime, tree community structure,andspeciescompositionarewellknown(Thompsonetal.,2002;Uriarteetal.,2012;Hoganetal.,2016).

2  | METHODS

2.1 | Study area

ThestudyareaiswithintheLuquilloExperimentalForestlocatedinnortheasternPuertoRico(Zimmermanetal.,2021).The16-haLFDP

Page 3: Tropical forest understorey riparian and upland ...

     |  3 of 10Applied Vegetation Science

HEARTSILL- SCALLEY And CROWL

Luquillo Forest Dynamics Plot (Figure 1; LFDP; southwest corner18°20′N, 65°49′W) is part of the Luquillo LongTermEcologicalResearchprogramandtheCenterforTropicalForestScience,nowForestGeo global network (Anderson-Teixeira et al., 2015). TheLFDPisdividedintoquadrats,markedwithcoordinatesevery5mina500m×320mgrid.Theforestisclassifiedassubtropicalwetforest in theHoldridge life zonesystem (Ewel&Whitmore,1973)andtropicalmontaneinWalsh’s(1996)tropicalclimatesystem.TheLFDP ranges in elevation from 333m to 428m above sea level,withanannualmeanprecipitationof3,500mm(Harrisetal.,2012).Two perennial second-order streams, Quebrada Prieta (QP) andQuebradaToronja (QT), flowthrough theLFDPfromeast towest(Figure1);averagestreamchannelwidthis3mandaveragedepthis0.5m.Thesearehighgradientstreams,withincisedbanksthatlimitover-bankfloodingandlargefloodplaindevelopment.Bothstreamsarelinedwithbouldersandbedrockandcarrynegligibleamountsofsilt,clay,andsand(Ahmadetal.,1993).DisturbancesintheLuquilloMountains and the LFDP include tree falls, landslides, droughts,and hurricanes (Scatena et al., 2012; Gutierrez et al., 2020). Theforest type in theplot isknownas “tabonuco”after thedominanttree, Dacryodes excelsa,whichoccursbelow600m in theLuquilloMountains.Taylor (1994)describedthedominant life formsof thevascularfloweringvegetation (byapproximatequantityofspecies)intheLFDPstudyareaas:44%woodyself-supportingshrubsandtrees(172species),44%herbaceousplantsincludinglargemonocotsandgraminoids(170species),and12%vinesandlianas(48species).Inaddition,80speciesofpteridophytes,fernsandfern-likevegeta-tion,havebeenidentified(Taylor,1994;Thompsonetal.,2002).

Past landuse in thearea includes subsistenceagriculture, cut-over tree removal for plywood production, and selective logging,

all of which have been found to affect tree species composition(Thompsonetal.,2002;Uriarteetal.,2012;Hoganetal.,2016).TheUnitedStatesDepartmentofAgricultureForestServicepurchasedthelandthatincludestheLFDPin1934;conductinginitiallyselec-tive logging and timber stand improvement activities in the area, but it has remained under forest cover ever since (for details seeThompsonetal.,2002,andsourceswithin).Theplot’snorthernsec-tionsarecomprisedofthreezonesofsecondaryforestofdiffering,buthigh,past landuseasallthreeareashad≤80%forestcoverin1936aerialphotographs.Inthisstudy,thenorthernplotzoneswerecombinedtodelineateoneareaofyoungersecondaryforestiden-tifiedaspasthighland-usethathadclearedareasandloggingpriorto 1934 (Figure 1). In contrast, the plot's southern third containsconserved tabonuco forest subjected to minor selective loggingandwith80–100%canopycover.Inthisstudy,land-useareasintheLFDPare delimitedby thepermanently flowing streamQP in theplot’ssouthernend(Figure1).TheripariananduplandareassouthofQPhadthegreatest(>80%)canopycover,whiletheuplandareanorthofQThadhighpastlanduseandless(<80%)canopycoverinthe1936aerialphotos(Thompsonetal.,2002).

ThetropicalmontanewetforestLFDPwasdividedintofoursitesbasedonhistoryofland-useintensity(highorlow)andgeomorphicsetting(riparianorupland).Thefoursitesare:(1)pasthighland-usenorthupland(HIGH);(2)riparianareawithpasthighland-useQT;(3)riparianareawithpast low land-useQP;and (4)past low land-usesouthupland (LOW).Uplandareas (HIGHandLOW)weredefinedas≥60maway from the streamchanneledgebasedonHeartsill-Scalleyetal.’s(2009)findingsthatatdistances<50mfromstreamstherewasariparianorstream-side“edgeeffect”onspeciescompo-sitionoftrees>10cmindiameter,andthereforetoavoidanysuch

F I G U R E 1  The16-haLuquilloForestDynamicsPlot(LFDP),withintheLuquilloExperimentalForest(LEF),innortheasternPuertoRico.Relativelocationsofsampledvegetationplotsareidentifiedforillustrative purposes

Page 4: Tropical forest understorey riparian and upland ...

4 of 10  |    Applied Vegetation Science

HEARTSILL- SCALLEY And CROWL

effectsweextendedourdefinitionofuplandto60m.Riparianareas(QTandQP)were≤5mawayfromthewetstreamchannel.

2.2 | Vegetation composition

StratifiedrandomvegetationsamplingwasusedineachofthefoursamplingsiteswithintheLFDP;nine5m×5mplots(25m2),foratotalof36,wererandomlyselected.Plotlocationwasrecordedusingthecolumnandrownumbersoftheexistinggridsystem(Thompsonetal.,2002).Allvegetation≥25cm inheightwithin theplotswascountedandidentifiedtospeciesorthelowesttaxonomiclevelpos-sible (nomenclature follows https://plants.sc.egov.usda.gov/ andhttp://floraelverde.catec.upr.edu/).Specieswerethenclassifiedbylifeform:grass,herb,fern,liana(thetermincludesallclimbers:vineor liana), shrub, tree,orpalm.Fieldworkwas conducted in2004.VouchersamplesweretakenforvegetationnotidentifiedtospeciesinthefieldandwereidentifiedatElVerdeFieldStationfacilities.

2.3 | Leaf litter components

Leaf-litterbiomasswascharacterizedbyplacing15collectionbas-ketsineachofthefoursitesintheLFDP,foratotalof60collectionbaskets,followingtheestablishedprotocoldescribedbyZimmermanandetal.(2007).Plasticlitterbasketswereplaced80–100cmabovetheground, linedwith fine (~1mm)plastic screenmesh.Thebas-ket sampling area was 0.25 m2. All accumulated basket contentswerecollectedeverytwoweeks,fromApril2003toApril2004(i.e.,25samplingsperbasketfromeachof60baskets).Plantpartslargerthan the samplingbasket found lyingacross thebasketat timeofcollection (e.g.,palmor fern fronds, large inflorescences)werecuttorepresenttheareaofthebasket.Samplesfromeachbasketwerecollectedonthesamedayandtakentothelaboratorywheretheywere air-dried using a dehumidifier and constant temperature of~32°C.Littersamplesweresortedbyplantparts:leaves,wood(onlymaterial <3 cm diameter), reproductive parts (flowers and fruits),andmiscellaneous.Allleavesinsampleswereidentifiedtospecies.Petiolesandrachiseswereweighedasleavesifstillattachedtoleafbladesorseparatedbutclearlyidentifiable.Miscellaneousmaterialincluded all vegetative parts too small to identify with certainty.Afterward,allsortedlitterwasoven-driedat65°Cforaminimumofseven days to constant weight.

2.4 | Statistical analyses and ordinations

Multivariateanalysisofvariance (MANOVA)wasused tocomparethe density, richness, and diversity values (H′) of vegetation lifeformsamongthefoursamplingsites intheLFDP.Univariatepost-hoctestsofmeandifferenceswereconductedforeachvegetationlifeformwithintheMANOVAmodeltoassesswhichlifeformsweredifferentamongsites.Repeated-measuresMANOVAwasusedfor

comparing the four sampling sites in the LFDPwith the responsevariablesoftotallitter(sumofalllittercomponents)andpereachoftheleaf-littercomponentsofleaves,wood,andreproductiveparts.Univariatepost-hoctestsofmeandifferenceswereconductedforeachleaf-littercomponentandfortotallitterwithintheMANOVAmodeltoassessdifferencesamongsites.Tofocusonthelowpastland-useuplandandripariansitesthehighpastland-useuplandsitewasexcluded,andanalysesrepeatedonasubsetofthedata.Allsta-tisticswereconductedwithanalphaof0.05,andcomputedintheprogramSAS(Version9,SASInstitute,2004).

Speciescompositionamongsiteswasexploredusingnon-metricmultidimensional scaling (NMS) based on a Bray–Curtis distancematrix:onewithspeciesabundanceper36plotsandanotherwithleafmassperspeciesin100litter-fallcollections(PC-Ord7.08,WildBlueberryMediaLLC,Corvallis,USA).Bothdistancematriceswererelativizedbymaximumvaluesofspeciesperplotandfinalordina-tionfitstressvalueswere<12,whichiswellunderthevalueof20for acceptable algorithm optimization criteria and interpretationoftheresultingordinations(McCune&Grace,2002;Dexteretal.,2018).FollowingMcCuneandMefford(2018)correlationsbetweendistances in the ordination space and distances in the original data spaceforeachordinationaxisarereportedaspercent(%)proportionvariancerepresentedbyeachaxis.Pearsoncorrelations(r)ofspeciestoNMSordinationaxeswithvalues≥20 (positiveornegative)arereported in the Results section.WeselectedNMSasamethod tovisuallyexplorecommunitycompositionasitisrobustforheteroge-neous community data sets and does not assume linear relationships amongvariables(McCune&Mefford,2018).

3  | RESULTS

3.1 | Vegetation structure, community metrics and composition

Relative density of understorey vegetation per life form var-ied (F = 3.00, p = 0.0008) among sites; however, all understoreyvegetation life formswere observed in each of the four samplingsites (Figure 2). In post-hoc analyses (Figure 2), the highest den-sityofgrasses (F3,32 =5.35,p =0.0042) and shrubs (F3,32 =6.77,p =0.0012)wasfoundinthehighland-useuplandrelativetothelowland-useuplandandbothripariansites.Thehighestdensityoffernswas observed in the low land-use QP riparian area (F3,32 = 3.26, p =0.0342).Whenexcludingthehighland-useupland,therewerenooveralldifferencesamongsites(F =1.71,p =0.1167)inrelationtoallunderstoreyvegetationlifeforms.However,post-hocanalysisofmeanssuggeststhatfernsandlianaswerehighestintheQPripariansite(F2,24 = 4.60, p = 0.0204; F2,24 = 4.10, p =0.0295respectively).

Thehighestdensityofindividualplantswas160per25m2 plot in boththehighpastland-useuplandandthelowpastland-useripar-ianQP,whiletheminimumwas17inthehighpastland-useriparianQT.Thegreatestnumberofspeciesper25m2 plot was 42 in the low pastland-useriparianQP,andthelowest,9,inthehighpastland-use

Page 5: Tropical forest understorey riparian and upland ...

     |  5 of 10Applied Vegetation Science

HEARTSILL- SCALLEY And CROWL

riparianQT.Thehighestspeciesdiversity(H′)wasinriparianareaswithlowpastlanduse;pasthighland-useuplandhadthelowestval-ues(Figure3).Vegetationdensity(F3,32 =4.53,p =0.0093)andspe-ciesdiversity(F3,32 = 3.34, p =0.0313)weredifferentamongsites.However,therewasnodifferenceinspeciesrichnessamongsites.Inthepost-hocanalysisofmeans,thelowestspeciesdiversityandthehighestdensityofvegetationwereinthehighpastland-useup-land.ThehighestspeciesdiversitywasobservedintheQPriparianzone.Excludingthehighpastland-useuplandyieldednodifferencesindensityamongsites.However,thereweresignificantdifferencesamongsitesforspeciesrichness(F2,24 = 4.60, p =0.0204)andspe-ciesdiversity(F2,24 =3.74,p =0.0385).Theanalysisofmeanswhichexcludesthehighpastland-useuplandpresentsthehighestvaluesforspeciesrichnessanddiversityinthelowpastland-useQPripar-ian site.

The ordination analysis with plot-based species compositionplaced all the plots from the past high land-use upland site dis-tant fromothersites in theordinationspace (Figure4a).Speciescompositioninhighandlowpastland-useripariansitesoverlappedwiththelowpastland-useuplandsiteintheordination(Figure4a).TwoNMSaxesintheordinationrepresentacumulativeproportionof50%ofthevariance(33%inaxis1and17%inaxis2).Speciescorrelated with the low past land-use upland and riparian sitesincludedolder-growth trees (Manilkara bidentata, Tetragastris bal-samifera, and Eugenia stahlii) andvarious fern andorchid species(Figure 4a). Species correlated to the negative horizontal axis,where the plots from the high past land-use upland site are lo-cated, includedgrasses (Pharus latifolius, Ichnanthus pallens),vari-ousshrubs(Piperspp.)andherbs(Commelinaspp.).Theverticalaxishad positive correlations to understorey species including grasses (Olyra latifolia), lianas(Rourea surinamensis, Heteropterys laurifolia),shrubs (Gonzalagunia hirsuta), and trees (Casearia arborea); whiletheverticalaxishadnegativecorrelationstovariousolder-growthtreespecies(Sloanea berteriana, Dacryodes excelsa, Ocoteaspp.).

3.2 | Leaf litter characterization and composition

Totalleaflitter(leaves,wood,plantreproductivecomponents)ratesweredifferentamongsites(F3,1491 = 4.23, p =0.005),withthehighestratesfoundinhighpastland-useupland.Theleaf-fallcomponentwasalsogreatestinhighpastland-useupland(F3,1491 = 2.6, p =0.0510).Plantreproductivecomponents,flowersandfruits,weregreaterintheQTripariansite.Nodifferencewasobservedintheamountof

F I G U R E 2  MeanabundanceandstandarderrorofvegetationlifeformsinuplandandripariansitesoftheLuquilloForestDynamicsPlot,LuquilloExperimentalForest,PuertoRico.Barsrepresentmeansofnine25-m2 plots per site

F I G U R E 3  Meanvaluesandonestandarderrorbarsfordensity,speciesanddiversity(H’),pernine25-m2plotsineachofthefourLuquilloForestDynamicsPlotsites

Page 6: Tropical forest understorey riparian and upland ...

6 of 10  |    Applied Vegetation Science

HEARTSILL- SCALLEY And CROWL

wood leaf-littercomponentamongsites.Whenexcludingthehighpastland-useupland,totalleaflitterwashigherinQTandQPripar-iansitesthaninlowpastland-useupland(F2,1118 =5.25,p =0.005).Leaf-fallratewasalsohigherinQTandQPripariansitescomparedwiththelowpastland-useupland(F2,1118 =2.89,p =0.0558).PlantreproductivecomponentswerehigherinQTriparianthaninQPri-parianandthelowpastland-useupland(F2,1118 =9.54,p =0.0001).Total litter, leaves, and reproductive parts were overall higher inbothriparianareaswhencomparedtothelowpastland-useupland.

Theanalysiswithleaf-fallspeciescompositionseparateduplandsitesfromripariansites intheNMSordination (Figure4b).Uplandsiteswithdifferentpast landusehad lessoverlap inspeciescom-position,whiletherewasmoreoverlapbetweenripariansites.Thefirst twoNMS axes in the ordination represent a cumulative pro-portionof69.1%ofthevariance (41.62%axis1and27.5%axis2).Theareaoccupiedmainlybylowpastland-useuplandandripariansitesinthepositivesidehorizontalaxiswascorrelatedtothetreesDacryodes excelsa, Hirtella rugosa, Matayba domingensis, Cyrilla race-miflora, Ixora ferrea, Guettarda valenzuelana, and liana species Rourea surinamensis.Theareaoccupiedbypasthighland-useuplandandri-pariansitesinthenegativesideofthehorizontalaxiswascorrelatedto the tree species Inga vera, Cecropia schreberiana, Ormosia krugii, and Buchenavia tetraphylla. The positive vertical axis area wheremost riparian plots were located was correlated to the palm Prestoea acuminata var. montana; to tree species Miconia tetrandra, Inga lau-rina, Casearia arborea, and Homalium racemosum; the lianas Rourea surinamensis, Marcgravia rectiflora, Hippocratea volubilis, and the oftenepiphytictreeClusia clusioides;andvariousfernsspecies.Thenegativeverticalaxisareawheremostuplandplotsaredistributed

is correlated with the trees Croton poecilanthus, Guarea guidonia, Oxandra laurifolia, and Alchorneopsis floribunda.

4  | DISCUSSION

4.1 | Past land use and riparian versus upland vegetation

Inthisstudy,distributionpatternsofsomevegetationlifeformswereassociatedwith natural upland and riparian features and previousland-usepractices in the forest landscape.Thehighpast land-useupland site had the lowest overall species diversity and highest den-sityofgrassesandshrubsintheforest.Trees≥10cmdiameterhadlowerstemdensityandspeciesdiversity inhighpast land-useup-landwhencomparedtoareaswithminimalpastlanduse(Thompsonetal.,2002).Ourfindings inhighpast land-useuplandmaybeas-sociated to the lower tree density that allows more light to reach the forestunderstoreyandfavorsgrassesandshrubs.

Inriparianareas,higherdensityoffernsand lianasandhighervaluesofoverallspeciesdiversitywereobservedcomparedtoup-landareas.Fernsarecommon inclosed-canopyforestsandripar-ianzones,butarealsopresent inopen-canopyforestsandthrivein disturbed areas, thus contributing to a high proportion species richness in tropical forests (Gentry, 1990; Russell-Smith & Lee,1992;Heartsill-Scalley&Aide,2003;Mehltreteretal.,2010,Royoet al., 2011).Various fern speciesareprobablymoreabundant inriparianzonesduetothehigherlightandmoisturefoundintheseareas, combined with their ability to establish and grow in eroded

F I G U R E 4  SpeciescompositionamonguplandandripariansiteswithdifferentpastlanduseintheLFDP,LuquilloExperimentalForest,PuertoRico.(a)Plot-basedunderstoreyspeciescomposition(n =9persite);(b)leaflitter-basedspeciescomposition(n =25persite)

Page 7: Tropical forest understorey riparian and upland ...

     |  7 of 10Applied Vegetation Science

HEARTSILL- SCALLEY And CROWL

soils (Lugo & Scatena 1995). Niklas (1994) suggested that fernsand lianas have analogous growth habits, ferns support horizon-talsectionswithrhizomatousshoots,whilelianassupportverticalsectionsofshootgrowth.However, lianasmaybemoresuscepti-bletowaterstressthanothervegetationlifeformsduetonarrowstemsinrelationtotheirheight.InseasonalAmazonianrainforest,Restom andNepstead (2004) observed that lianas tend to avoidwater stress by deeply rooting in soils. Even though our study area does not currently have a prolonged dry season, lianas were more abundant along riparian areas. Lianashave an affinity for greaterlightavailabilityatforestedges,toareaswithhighwateravailabilityand soil fertility (DeWalt et al., 2006), and also toparticular treespecies and larger treeswhichmay characterize the forest areaswithrelativelylowdisturbance(Riceetal.,2004).Inthisstudy,ferndensity was also positively associated with riparian areas, and due totheirrhizomatousgrowthhabit,fernsmaynotbenegativelyaf-fectedbythehighquantitiesofleaflitterfallintheseareas(Chinea,1999;Drucker,etal.,2008;Nilssonetal.,1999;Paixãoetal.,2013).Riparianzones in thisstudyarepronetosurfacewater flowwithlitteroftenaccumulatingtowardthestreamchannelduringstormevents.Fernsandlianasarepresentinareaswithanaccumulationoflitter-fallinthesoilsubstrateandmaysustaingrowthafterstormfloweventsmoreeffectivelythanotherunderstoreyvegetationlifeforms.

Inriparianzonesofwetforestlandscapes,differentvegetationlayers do not necessarily have similar responses to environmental conditionsandabioticfactors.Interactionamongvegetationlayersmay affect density and composition of riparian vegetation. Lowerdensity and differences in species composition of tree seedlingswere foundwhen comparing a fern-dominated understorey to anunderstoreywithexperimentallyremovedferns(George&Bazzaz,1999).Thepresenceofanunderstoreywithhighferndensitycouldaffectrecruitmentdynamicsinriparianareas,astherewasgreaterspeciesrichnessintheriparianzone.

Similar to our findings where non-tree vegetation was moreabundant and had different species composition in riparian areas,analysesoftrees,shrubs,andherbsconductedinarangeofdiffer-ent riparian to upland landscapes concluded that each vegetation lifeformsrespondsdifferentlytoenvironmentalconditionsofripar-ianareas(Decocq,2002;Lyon&Sagers,1998;Drukeretal.,2008;Paixãoetal.,2013).ThosestudieshighlightwhatVanColleretal.(2000)describeascomplexenvironmentalgradientsthatexistawayfrom and along streams. In amostly forested landscapewith lowintensity forestry landuse (Decocq,2002)and ina forest reserve(Lyon&Sagers,1998) studiesalso found fewsimilaritiesbetweenspeciescompositionofherbs,shrubs,andtreesofriparianareastothoseofuplands.Distinctriparianunderstoreyfern.

composition and greater species richness were observed in a fragmentedforestlandscape(Paixiãoetal.,2013),whileuniqueherbspecieswerefoundinanarrowbufferafewmetersfromstreamsina forest reserve (Drukeretal.,2008),and thesestudies identifiedpatterns dependent on the size of the streamvalley anddistancefromstreams.

4.2 | Riparian and upland leaf- litter species based on past land use

Riparianforestsingeneralhavebeenobservedtohavehigherratesofproductivitythanuplandforests,suggestingthatriparianforestsmay not be limited by factors related towater or nutrient availa-bility (Hansonet al., 1994; Lugoet al., 1990;Naiman&Décamps,1997).Leaf-litterproductivitywashighest in theuplandareawithprevious land use, and lowest in the minimally disturbed upland area.However,whenexcludingthehighpastland-useupland,ripar-ian areas had higher productivity rates as compared to minimally disturbed upland. Lianas are known to contribute large quantitiesof leafbiomassto litter-fall,morethantreesperunitofbasalarea(Hegarty,1991;Phillipsetal.,2005).Thegreaternumberof lianasobserved in riparian areas may be important contributors to the higherleaf-litterproductionfoundintheseareas,aswellasthepres-enceofspeciessuchasthepalmPrestoea acuminata, and the trees Inga spp., Manilkara bidentata, and Cecropia schreberiana which pro-ducerelativelylargefruits(Lugo&Frangi,1993;Wunderle,1999).

Basedonobservedpatternsofhigher leaf litterandtotal litterinriparianareas,theseriparianareascontainfactorscontributingtohighproductivity: frequent small-scaledisturbancesdue tohighertree turnover rates (Scatena&Lugo,1995),accumulatedmaterialsduetodownslopetransferandstormflows(Coxetal.,2002;Scatena&Lugo,1995),andlikelyhigherlightavailabilityduetothepartiallyopencanopyabovestreamchannels(MacDougall&Kellman,1992).Inareviewoncontrolsofprimaryproductivityinthemontaneland-scapeoftheLuquilloMountains,Waideetal.(1998)suggestacom-bination of nutrient availability, disturbance, and competition forlightarethemajorfactorscontrollingprimaryproductivity.Riparianareasmayharborgreater soilhumidityand, in timesofdecreasedrainfall,non-treevegetation,suchaslianas,maycapitalizeonthisre-sourcecontributingtocarbonsequestrationandforestproductivity(Schnitzer&Bongers,2002;DeWaltetal.,2006).Riparianareaspro-videanenvironmentaltemplatethatisconducivetohigherlitterfall,whichisabasalenergyresourceforheadwaterstreamsunderthecanopyoftheseforests(Wallaceetal.,1997;Rosasetal.,2020).Inareasdominatedbysecondaryforests,riparianareasprovidemanyessential resources and services despite their low proportion in the forestlandscape(Calle&Holl,2019;Dybalaetal.,2019).

4.3 | Concluding remarks

Althoughthereisclearevidencethatsomevegetationpatternsresultfromanthropogeniceffectsandtheintensityofpreviousland-useprac-tices(García-Montiel&Scatena,1994;Heartsill-Scalley&Aide,2003;Hoganetal.,2016),whenexcludingthehighpastland-useuplandsite,differences in vegetation structure, composition, and function wereevidentbetweenthegeomorphicsettingsofuplandandriparianareas.Theeffectofpastlanduseonriparianareasdirectlyaffectedspeciesrichnessandcompositionbutdidnoteliminateriparianvsuplanddif-ferences.Thevegetationinriparianareasindicatesadifferentrangeof

Page 8: Tropical forest understorey riparian and upland ...

8 of 10  |    Applied Vegetation Science

HEARTSILL- SCALLEY And CROWL

environmentalconditions thanthosefound inothergeomorphicset-tingswithinthetropicalwetforestlandscape.

Riparianareasintropical,warm,wetclimatesareknowntohar-borsignificantlymorecarbonthanuplandareasandcontainadis-tinct species composition and vegetation structure (Dybala et al.,2019;Liuetal.,2020).Inaddition,riparianareasarecriticalforothertaxonomicgroupsandthereforeimportantforcomprehensiveland-scape management beyond river and riparian conservation (Saboet al., 2005;Dufour et al., 2019). Therefore,managers of riparianareasneedtoconsiderthecharacteristicsthatmakethemunique,includingnon-treevegetationandthepresenceofhigherleaf-litterinputs,comparedtotheuplandwetforestlandscape.Thestructuralheterogeneityandhighproductivityfoundinriparianareasmaybeassociatedtothehigherpresenceoffernsandlianasinthesesites.Tropicalheadwaterriparianzoneswithinsecondaryforestarenat-ural landscape features thatmayeffectivelyconserveavarietyofvegetationlifeformsandecosystemprocesses.

ACKNOWLEDG EMENTSThe NSF Luquillo Long Term Ecological Research program, UPR ElVerdeResearchStation-StreamHouseand theUSDAForestServiceInternationalInstituteforTropicalForestryprovidedlogisticalsupport.WethankM.Aponte,P.Anglada,A.Berberena,Y.Cassidy,R.Agostoand E. Scalley for field and data entry assistance, S.A. Sloan, A.F.Wells,andJ.Thompsonforcommentsonearlydrafts,A.E.LugoandD.E.Ogurcakformanuscriptrevision,T.L.Enzforediting,andOlgaM.RamosGonzálezforassistancewithFigure1.Thefindings,conclusions,andviewsexpressedinthismanuscriptarethoseoftheauthorsanddonotnecessarilyrepresenttheviewsoftheUSDAForestService.

AUTHOR CONTRIBUTIONSBothauthorsdesignedthestudy;TH-Scollectedandanalyzeddataandwrotethefirstdraftofthemanuscript.TACcollaboratedindataanalysesand reviewedmanuscriptdrafts.Bothauthorswroteandapprovedthefinalmanuscript.

DATA AVAIL ABILIT Y S TATEMENTThedatasetscollectedandpreparedasapartofthisstudyareavail-ablefromtheEDIDataPortalunderhttps://doi.org/10.6073/pasta/8fb57bba77e8c9a4bdfa55299bde9d83(Accessed2021–07–16).

ORCIDTamara Heartsill- Scalley https://orcid.org/0000-0003-0550-4147 Todd A. Crowl https://orcid.org/0000-0002-4712-8701

R E FE R E N C E SAhmad,R.,Scatena,F.N.&Gupta,A.(1993)Morphologyandsedimen-

tation inCaribbeanmontane streams: examples from Jamaica andPuertoRico.Sedimentary Geology,85,157–169.

Alexander, R.B., Boyer, E.W., Smith, R.A., Schwarz, G.E. & Moore,R.B. (2007)Theroleofheadwaterstreamsindownstreamwaterquality.Journal of the American Water Resources Association,43(1),41–59.

Anderson-Teixeira,K.J.,Davies,S.J.,Bennett,A.C.,Gonzalez-Akre,E.B.,Muller-Landau, H.C., JosephWright, S. et al. (2015) CTFS-ForestGEO: aworldwide networkmonitoring forests in an era of globalchange. Global Change Biology,21(2),528–549.

Andersson,E.,Nilsson,C.& Johansson,M.E. (2000)Plantdispersal inborealriversanditsrelationtothediversityofriparianflora.Journal of Biogeography,27(5),1095–1106.

Basnet, K. (1992) Effect of topography on the pattern of trees inTabonuco(Dacryodes excelsa)dominatedrainforestofPuertoRico.Biotropica,24(1),31–42.

Beschta,R.L.(2003)Cottonwoods,elk,andwolvesintheLamarvalleyofYellowstoneNationalPark.Ecological Applications,13(5),1295–1309.

Bleich,M.E.,Mortati,A.F.,André,T.&Piedade,M.T.F. (2014)Ripariandeforestationaffectsthestructuraldynamicsofheadwaterstreamsin SouthernBrazilianAmazonia.Tropical Conservation Science, 7(4),657–676.

Calle, A. & Holl, K.D. (2019) Riparian forest recovery following a de-cadeofcattleexclusionintheColombianAndes.Forest Ecology and Management,452,117563.

Chazdon,R.L.,Peres,C.A.,Dent,D.,Sheil,D.,Lugo,A.E.,Lamb,D.etal.(2009)Thepotentialforspeciesconservationintropicalsecondaryforests.Conservation biology,23(6),1406–1417.

Chinea, J.D. (1999) Changes in the herbaceous and vine communi-tiesat theBisleyExperimentalWatersheds,PuertoRico, followingHurricaneHugo.Canadian Journal of Forest Research,29,1433–1437.

van Coller, A.L., Rogers, K.H. & Heritage, G.L. (2000) Riparianvegetation-environmentrelationships:complimentarityofgradientsversus patch hierarchy approaches. Journal of Vegetation Science, 11, 337–350.

Cox,S.B.,Willig,M.R.&Scatena,F.N.(2002)Variationinnutrientchar-acteristicsofsurfacesoilsfromtheLuquilloExperimentalForestofPuertoRico:amultivariateperspective.Plant and Soil,247,189–198.

Decocq,G.(2002)Patternsofplantspeciesandcommunitydiversityatdifferentorganizationlevelsinaforestedriparianlandscape.Journal of Vegetation Science,13,91–106.

DeWalt,S.J.,Ickes,K.,Nilus,R.,Harms,K.E.&Burslem,D.F.R.P.(2006)Liana habitat associations and community structure in a Borneanlowlandtropicalforest.Plant Ecology,186,203–216.

Dexter, E., Rollwagen-Bollens, G. & Bollens, S.M. (2018) The troublewithstress:aflexiblemethodfortheevaluationofnonmetricmul-tidimensional scaling. Limnology and Oceanography: Methods, 16(7),434–443.

Drucker,D.P.,Costa,F.R.C.&Magnusson,W.E.(2008)Howwideistheriparianzoneofsmallstreamsintropicalforests?Atestwithterres-trial herbs. Journal of Tropical Ecology,24(1),65–74.

Dufour, S., Rodríguez-González, P.M. & Laslier, M. (2019) Tracing thescientifictrajectoryofriparianvegetationstudies:Maintopics,ap-proaches and needs in a globally changing world. Science of the Total Environment,653,1168–1185.

Dybala, K.E., Matzek, V., Gardali, T. & Seavy, N.E. (2019) Carbon se-questrationinriparianforests:aglobalsynthesisandmeta-analysis.Global Change Biology,25(1),57–67.

Ewel,J.J.&Whitmore,J.L.(1973)The ecological life zones of Puerto Rico and the U.S. Virgin Islands. Forest Service Research Paper, ITF- 18. Río Piedras,PuertoRico:InternationalInstituteofTropicalForestry.

Fisher,S.G.,Sponseller,R.A.&Heffernan,J.B.(2004)Horizonsinstreambiogeography:flowpathstoprogress.Ecology,85(9),2369–2379.

Funch,L.S.,Funch,R.&Barroso,G.M.(2002)PhenologyofgalleryandmontaneforestintheChapadaDiamantina,Bahia,Brazil.Biotropica, 34(1),40–50.

García-Montiel,D.C.&Scatena,F.N.(1994)TheeffectofhumanactivityonthestructureandcompositionofatropicalforestinPuertoRico.Forest Ecology and Management,63,57–78.

Gentry, A.W. (1990) Floristic similarities and differences betweenSouthern Central America and Upper and Central Amazonia. In:

Page 9: Tropical forest understorey riparian and upland ...

     |  9 of 10Applied Vegetation Science

HEARTSILL- SCALLEY And CROWL

Gentry,A.H.(Ed.)Four Neotropical Rainforests.NewHaven,CT:YaleUniversityPress,pp.141–157.

George,L.O.&Bazzaz,F.A.(1999)Thefernunderstoryasanecologicalfilter:growthandsurvivalofcanopy-treeseedlings.Ecology,80(3),846–856.

Gomi,T.,Sidle,R.C.&Richardson,J.S.(2002)Understandingprocessesanddownstreamlinkagesofheadwatersystems.BioScience,52(10),905–916.

González, G.,Waide, R.B. &Willig,M.R. (2013) Advancements in theunderstandingofspatiotemporalgradientsintropicallandscapes:aLuquillofocusandglobalperspective.In:Gonzalez,G.,Willig,M.R.&Waide,R.B.(Eds.)Ecological gradient analyses in a tropical landscape. Ecological Bulletins 54.Hoboken,NJ:Wiley-Blackwell,pp.245–250.

Gregory, S.V., Swanson, F.J., McKee, W.A. & Cummins, K.W. (1991)An ecosystem perspective of riparian zones. BioScience, 41(8),540–550.

Gutiérrez-Fonseca, P.E., Ramírez, A., Pringle, C.M., Torres, P.J.,McDowell,W.H.,Covich,A.etal.(2020)Whentherainforestdries:DroughteffectsonamontanetropicalstreamecosysteminPuertoRico. Freshwater Science,39(2),39(2),197–212.

Hanson,G.C.,Groffman,P.M.&Gold,A.J.(1994)SymptomsofNitrogensaturation in a riparian wetland. Ecological Applications,4(4),750756.

Harris,N.L.,Lugo,A.E.,Brown,S.&Heartsill-Scalley,T.(2012)Luquillo ex-perimental forest: research history and opportunities. Experimental Forest and Range EFR- 1.Washington,DC:USDAForestService,p.152.

Heartsill-Scalley,T.&Aide,T.M.(2003)Riparianvegetationandstreamconditioninatropicalagriculture-secondaryforestmosaic.Ecological Applications,13(1),225–234.

Heartsill-Scalley,T.,Crowl,T.A.&Thompson,J.(2009)Treespeciesdis-tributionsinrelationtostreamdistanceinamid-montanewetforest,PuertoRico.Caribbean Journal of Science,45(1),52–63.

Hegarty,E.E.(1991)Leaf-litterproductionbylianasandtreesinasub-tropicalAustralianrainforest.Journal of Tropical Ecology,7,201–214.

Hernández-Dávila, O., Laborde, J., Sosa, V.J., Gallardo-Hernández, C.&Díaz-Castelazo,C.(2020)Forestedriparianbeltsasreservoirsofplant species in fragmented landscapesof tropicalmountaincloudforest.Botanical Sciences,98(2),288–304.

Hogan,J.A.,Zimmerman,J.K.,Uriarte,M.,Turner,B.L.&Thompson,J.(2016) Land-use history augments environment–plant communityrelationshipstrengthinaPuertoRicanwetforest.Journal of Ecology, 104(5),1466–1477.

Honnay,O.,Verhaeghe,W.&Hermy,M.(2001)Plantcommunityassem-blyalongdendriticnetworksofsmallborealstreams.Ecology,82(6),1691–1702.

Iwata,T.,Nakano,S.&Inoue,M.(2003)Impactsofpastripariandefor-estationonstreamcommunities inatropicalrainforest inBorneo.Ecological Applications,13(2),461–473.

Kellman,M.&Tackaberry,R. (1993)Disturbance and tree species co-existence in tropical riparian forest fragments.Global Ecology and Biogeography Letters,3,1–9.

Kinnaird, M.F. (1992) Phenology of flowering and fruiting of an EastAfricanriverineforestecosystem.Biotropica,24(2a),187–194.

Liu,X.,Zou,X.,Cao,M.&Luo,T.(2020)OrganicCarbonStorageand14CApparentAgeofUplandandRiparianSoilsinaMontaneSubtropicalMoistForestofSouthwesternChina.Forests,11(6),645.

Lowe,W.H.&Likens,G.E.(2005)Movingheadwaterstreamstotheheadoftheclass.BioScience,55(3),196–197.

Lugo, A.E., Brinson, M.M. & Brown, S. (1990) Forested wetlands. Ecosystems of the world 15.NewYork,NY:Elsevier.

Lugo,A.E.&Frangi,J.L.(1993)FruitfallintheLuquilloexperimentalfor-est,PuertoRico.Biotropica,25(1),73–84.

Lugo, A.E. & Scatena, F.N. (1995) Ecosystem-Level Properties of theLuquilloExperimentalForestwithEmphasisontheTabonucoForest.In: Tropical forests: management and ecology.NewYork,NY:Springer,pp.59–108.

Lyon,J.&Sagers,C.L.(1998)Structureofherbaceousplantassemblagesinaforestedriparianlandscape.Plant Ecology,138,1–16.

MacDougall,A.&Kellman,M. (1992)Theunderstory light regimeandpatternsoftreeseedlingsintropicalriparianforestpatches.Journal of Biogeography,19,667–675.

Martin,P.H.,Sherman,R.E.&Fahey,T.J. (2004)Fortyyearsoftropicalforest recovery from agriculture: structure and floristics of sec-ondaryandold-growthriparianforests intheDominicanRepublic.Biotropica,36,297–317.

Mbaka,J.G.,M'Erimba,C.M.&Mathooko,J.M.(2015)Impactsofbenthiccoarse particulate organic matter variations on macroinvertebrate densityanddiversityintheNjoroRiver,aKenyanhighlandstream.Journal of East African Natural History,103(1),39–48.

McCune, B. & Grace, J.B. (2002) Analyses of Ecological Communities. Oregon,USA:GlenedenBeach,p.300.

McCune, B. &Mefford,M.J. (2018) PC-ORD.MultivariateAnalysis ofEcologicalData.Version7.08.

Mehltreter, K.,Walker, L.R., & Sharpe, J.M. (Eds.) (2010) Fern ecology. Cambridge,MA:CambridgeUniversityPress,p.444.

Metzger,J.P.,Bernacci,L.C.&Goldenberg,R.(1997)Patternoftreespe-ciesdiversity in riparianforest fragmentsofdifferentwidths inSEBrazil.Plant Ecology,133,135–152.

Meyer, J.L., Strayer, D.L., Wallace, J.B., Eggert, S.L., Helfman, G.S. &Leonard,N.E.(2007)Thecontributionofheadwaterstreamstobio-diversity inrivernetworks.Journal of the American Water Resources Association,43(1),86–103.

Molinero,J. (2019)Seasonalityandcompositionofbenthiccoarsepar-ticulateorganicmatterintwocoastaltropicalstreamswithdifferentland uses. Hydrobiologia,838(1),29–43.

Naiman,R.J.&Décamps,H. (1997)Theecologyof interfaces: riparianzones.Annual Review of Ecology and Systematics,28,621–658.

Niklas, K.J. (1994) Comparisons among biomass allocation and spatialdistributionpatterns of somevine, pteridophyte and gymnospermshoots. American Journal of Botany,81(11),1416–1421.

Nilsson,C.,Xiong,S.,Johansson,M.E.&Vought,L.-B.-M.(1999)Effectsofleaf-litteraccumulationonriparianaccumulationonriparianplantdiversity across Europe. Ecology,80(5),1770–1775.

Norden,N.,Chazdon,R.L.,Chao,A.,Jiang,Y.H.&Vílchez-Alvarado,B.(2009)Resilienceoftropicalrainforests:treecommunityreassemblyinsecondaryforests.Ecology Letters,12(5),385–394.

Pabst,R.J.&Spies,T.A.(1999)StructureandcompositionofunmanagedriparianforestsinthecoastalmountainsofOregon,U.S.A.Canadian Journal of Forest Research,29,1557–1573.

Paixão,E.C.,deNoronha,J.D.C.,daCunha,C.N.&Arruda,R.(2013)Morethanlight:distance-dependentvariationonriparianferncommunityinSouthernAmazonia.Brazilian Journal of Botany,36(1),25–30.

Phillips, O.L., VasquezMartinez, R.,MonteagudoMendoza, A., Baker,T.R. &Nuñez Vargas, P. (2005) Large lianas as hyperdynamic ele-mentsofthetropicalforestcanopy.Ecology,86(5),1250–1258.

Poorter, L., Bongers, F., Aide, T.M., Zambrano, A.M.A., Balvanera, P.,Becknell,J.M.,Boukili,V.,Brancalion,P.H.,Broadbent,E.N.,Chazdon,R.L.&Craven,D.(2016)BiomassresilienceofNeotropicalsecondaryforests.Nature,530(7589),211–214.

Restom, T.G.&Nepstead,D.C. (2004) Seedling growth dynamics of adeeplyrootinglianainasecondaryforestineasternAmazonia.Forest Ecology and Management,190,109–118.

Rice,K.,Brokaw,N.&Thompson,J.(2004)LianaabundanceinaPuertoRicanforest.Forest Ecology and Management,190(1),33–41.

Rosas,K.G.,Colón-Gaud,C.&Ramírez,A.(2020)Trophicbasisofpro-duction intropicalheadwaterstreams,PuertoRico:anassessmentoftheimportanceofallochthonousresourcesinfuelingfoodwebs.Hydrobiologia,847,1961–1975.

Royo, A.A., Heartsill-Scalley, T., Moya, S. & Scatena, F.N. (2011) Non-arborescentvegetationtrajectoriesfollowingrepeatedhurricanedis-turbance: ephemeral versus enduring responses. Ecosphere,2(7),1–18.

Page 10: Tropical forest understorey riparian and upland ...

10 of 10  |    Applied Vegetation Science

HEARTSILL- SCALLEY And CROWL

Russell-Smith,J.&Lee,A.H.(1992)PlantpopulationsandmonsoonrainforestintheNorthernTerritory,Australia.Biotropica,24(4),471–487.

Sabo, J.L., Sponseller,R.,Dixon,M.,Gade,K.,Harms,T.,Heffernan, J.etal.(2005)Riparianzonesincreaseregionalspeciesrichnessbyhar-boringdifferent,notmore,species.Ecology,86(1),56–62.

SASInstitute.(2004)Version 9.Cary,NC:SASInstitute.Scatena,F.N. (1990)Selectionof riparianbuffer zones inhumid tropi-

cal steeplands. Research needs and applications to reduce erosion and sedimentation in tropical steeplands. In Proceedings of the Fiji Symposium,June1990:IASH-AISHPubl.No.192.

Scatena,F.N.,Blanco,J.F.,Beard,K.H.,Waide,R.B.,Lugo,A.E.,Brokaw,N.etal.(2012)Disturbance regime.NewYork,NY:OxfordUniversityPress,pp.164–200.

Scatena,F.N.&Lugo,A.E.(1995)Geomorphology,disturbance,andthesoilandvegetationoftwosubtropicalwetsteeplandwatershedsofPuertoRico.Geomorphology,13,199–213.

Schmitt,C.B.,Kisangau,D.&Matheka,K.W. (2019)Treediversity inahumanmodifiedriparianforestlandscapeinsemi-aridKenya.Forest Ecology and Management,433,645–655.

Schnitzer,S.A.&Bongers,F.(2002)Theecologyoflianasandtheirroleinforests.Trends in Ecology & Evolution,17(5),223–230.

deSouza,A.L., Fonseca,D.G., Libório,R.A.&Tandanaka,M.O. (2013)Influenceof riparian vegetation and forest structure on thewaterquality of rural low-order streams in SE Brazil. Forest Ecology and Management,298,12–18.

Tabacchi,E.,Correll,D.L.,Hauer,R.,Pinay,G.,Planty-Tabacchi,A.M.&Wissmar,R.C.(1998)Development,maintenanceandroleofriparianvegetation in the river landscape. Freshwater Biology,40,497–516.

Taylor, C.M. (1994)Annotated checklist of the flowering plants of the El Verde Field Station, Puerto Rico. Report to the Terrestrial EcologyDivision,UniversityofPuertoRico.RíoPiedras,PuertoRico.

Thompson,J.,Brokaw,N.,Zimmerman,J.K.,Waide,R.B.,Everham,E.M.III,Lodge,D.J.etal.(2002)Landusehistory,environment,andtreecompo-sitioninatropicalforest.Ecological Applications,12(5),13441363.

Uriarte,M.,Clark,J.S.,Zimmerman,J.K.,Comita,L.S.,Forero-Montaña,J.&Thompson,J.(2012)Multidimensionaltrade-offsinspeciesre-sponsestodisturbance:implicationsfordiversityinasubtropicalfor-est. Ecology,93,191–205.

Villamarín,C., Rieradevall,M.&Prat,N. (2020)Macroinvertebratedi-versitypatternsintropicalhighlandAndeanrivers.Limnetica,39(2),677–691.

Waide,R.B.,Zimmerman,J.K.&Scatena,F.N.(1998)Controlsofprimaryproductivity: Lessons from theLuquilloMountains inPuertoRico.Ecology,79(1),31–37.

Wallace, J.B., Eggert, S.L.,Meyer, J.L. &Webster, J.R. (1997)Multipletrophic levels of a forest stream linked to terrestrial litter inputs.Science,277,102–104.

Walsh, R.P.D. (1996) Climate. In: Richards, P.W. (Ed.) The tropical rain forest: an ecological study, 2nd edition. Cambridge, UK: CambridgeUniversityPress,pp.159–205.

Weaver, P.L. (1991) Environmental gradients affect forest compo-sition in the LuquilloMountainsofPuertoRico. Interciencia, 16, 142–151.

Wunderle, J.M. Jr (1999) Pre- and post-Hurricane fruit availability:Implications for Puerto Rican Parrots in the Luquillo Mountains.Caribbean Journal of Science,35(3–4),249–264.

Yeung, A.C., Lecerf, A. & Richardson, J.S. (2017) Assessing the long-termecologicaleffectsofriparianmanagementpracticesonhead-waterstreamsinacoastaltemperaterainforest.Forest Ecology and Management,384,100–109.

Zimmerman, J.K., Wood, T.E., González, G., Ramirez, A., Silver, W.L.,Uriarte,M. et al. (2021)Disturbance and resilience in the LuquilloExperimentalForest.Biological Conservation,253,108891.

Zimmerman, J.K.,Wright, S.J., Calderón, O., Pagan, M.A. & Paton, S.(2007)Floweringandfruitingphenologiesofseasonalandaseasonalneotropicalforests:theroleofannualchangesinirradiance.Journal of Tropical Ecology,23,231–251.

How to cite this article:Heartsill-ScalleyT,CrowlTA.Tropicalforestunderstoreyripariananduplandcomposition,structure,andfunctioninareaswithdifferentpastlanduse.Appl Veg Sci. 2021;24:e12603. https://doi.org/10.1111/avsc.12603