Trigonometric Equation 1€¦ · E The general solution should be given unless the solution is...

12
NARAYANA IIT ACADEMY, CP3, Indra Vihar, Talwandi, KOTA324005 Rajasthan, Ph.No.: 07443200119, Website : www.narayanaiitkota.com Trigonometric Equation 1 1. TRIGONOMETRIC EQUATIONS An equation involving one or more trigonometrical ratios of unknown angle is called trigonometric equation e.g. cos 2 x – 4 sinx = 1. It is to be noted that a trigonometrical identity is satisfied for every value of the unknown angle whereas, trigonometric equation is satisfied only for some values (finite or infinite in number) of unknown angle. e.g. sin 2 x + cos 2 x = 1 is a trigonometrical identity as it is satisfied for every value of x ˛ R. 2. SOLUTION OFATRIGONOMETRIC EQUATION A value of the unknown angle which satisfies the given equation is called a solution of the equation e.g. 6 / p = q is a solution of sin q = 2 1 . 3. GENERAL SOLUTION Since trigonometrical functions are periodic functions, solutions of trigonometric equations can be generalized with the help of the periodicity of the trigonometrical functions. The solution consisting of all possible solutions of a trigonometric equation is called its general solution. We use the following formulae for solving the trigonometric equations: ) I n ( ˛ sinq = sinaq =np + (– 1) n a, where a p p ˛ - L N M O Q P ˛ 2 2 , ,n I . cosq = cosaq = 2np – a, where a p ˛ ˛ 0, ,n I . tanq = tanaq =np + a, where a p p ˛ - F H G I K J ˛ 2 2 , ,n I . sin 2 q = sin 2 a q =np–a, where a p ˛ L N M O Q P ˛ 0 2 , ,n I . cos 2 q = cos 2 a q =np–a, where a p ˛ L N M O Q P ˛ 0 2 , ,n I . tan 2 q = tan 2 aq =np–a, where a p ˛ L N M I K J ˛ 0 2 , ,n I . Note: (For these type of equations students must use these solution to get correct answers) sin q =0 q =np, cos q =0 q = (2n + 1) 2 p , tan q =0 q =np, sinq =1 q = (4n + 1) 2 p sinq = –1 q = (4n – 1) 2 p

Transcript of Trigonometric Equation 1€¦ · E The general solution should be given unless the solution is...

  • NARAYANA IIT ACADEMY, CP3, Indra Vihar, Talwandi, KOTA324005 Rajasthan, Ph.No.: 07443200119, Website : www.narayanaiitkota.com 

    Trigonometric Equation  1 

    1.  TRIGONOMETRIC EQUATIONS An equation involving one or more trigonometrical ratios of unknown angle is called trigonometric equation e.g. cos 2 x – 4 sinx = 1. It is to be noted that a trigonometrical identity is satisfied for every value of the unknown angle whereas, trigonometric equation is satisfied only for some values (finite or infinite in number) of  unknown angle. e.g. sin 2 x + cos 2 x = 1 is a trigonometrical identity as it is satisfied for every value of  x∈R. 

    2.  SOLUTION OFATRIGONOMETRIC EQUATION A value of the unknown angle which satisfies the given equation is called a solution of the equation 

    e.g.  6 / π = θ  is a solution of sinθ =  2 1 . 

    3.  GENERAL SOLUTION Since trigonometrical functions are periodic functions, solutions of trigonometric equations can be generalized with the help of the periodicity of the trigonometrical functions. The solution consisting of all possible solutions of a trigonometric equation is called its general solution. We use the following formulae for solving the trigonometric equations:  ) I n ( ∈

    Ø  sinθ = sinα ⇒ θ = nπ + (– 1) n α, where α π π

    ∈ − L N M O Q P ∈ 2  2 ,  , n  I . 

    Ø  cosθ = cosα ⇒ θ = 2nπ ± α, where α π ∈ ∈ 0,  , n  I . 

    Ø  tanθ = tanα ⇒ θ = nπ + α, where α π π

    ∈ − F H G I K J ∈ 2  2 ,  , n  I . 

    Ø  sin 2 θ = sin 2 α ⇒ θ = nπ ± α, where α π ∈ L N M O Q P ∈ 0  2 ,  ,n  I . 

    Ø  cos 2 θ = cos 2 α ⇒θ = nπ ± α, where α π ∈ L N M O Q P ∈ 0  2 ,  ,n  I . 

    Ø  tan 2 θ = tan 2 α ⇒ θ = nπ ± α, where α π ∈ L N M I K J ∈ 0  2 ,  ,n  I . 

    Note:  (For these type of equations students must use these solution to get correct answers) 

    Ø  sin θ = 0 ⇒ θ = nπ, 

    Ø  cos θ = 0 ⇒ θ = (2n + 1) 2 π , 

    Ø  tan θ = 0 ⇒ θ = nπ, 

    Ø  sinθ = 1 ⇒ θ = (4n + 1) 2 π

    Ø  sinθ = –1 ⇒ θ = (4n – 1) 2 π

  • NARAYANA IIT ACADEMY, CP3, Indra Vihar, Talwandi, KOTA324005 Rajasthan, Ph.No.: 07443200119, Website : www.narayanaiitkota.com 

    2  Trigonometric Equation 

    Ø  cosθ = 1 ⇒ θ = 2nπ

    Ø  cosθ = –1 ⇒ θ = (2n + 1)π

    Ø  sinθ = sinα and cosθ = cosα ⇒ θ = 2nπ + α 

    Note: 

    E  Everywhere in this chapter n is taken as an integer, if not stated otherwise. 

    E  The general solution should be given unless the solution is required in a specified interval or range. 

    DRILL EXERCISE  1 

    Solve the following trigonometric equation 

    1.  tan θ + cot θ = –2  2.  sin θ =  2 1 and cos θ = 

    2 3

    − 

    3.  cos 2 θ – sin θ –  4 1 = 0  4.  sin  sin  sin θ θ θ + = 5  3  , where 0 ≤ ≤ θ π 

    5.  sin  cos 2  1 4

    θ θ − =  , where 0  2 ≤ ≤ θ π  6.  tan 4 θ – 2 tan 2 θ – 3 = 0 

    4.  TYPES OFTRIGONOMETRIC EQUATIONS : 

    (a)  Solution of equations by factorising.Consider the equation ; (2 sin x  cos x) (1 + cos x) = sin 2 x. 

    (b)  Solutions of equations reducible to quadratic equations. Consider the equation ; 3 cos 2 x  10 cos x + 3 = 0 

    (c)  Solving equations by introducing an Auxilliary argument. Consider the equation ; 

    sin  cos x  x + =  2  and  3  2 cos  sin x  x + =  . 

    (d)  Solving equations by Transforming a sum of Trigonometric functions into a product. Consider the example ; sin 5 x + sin 2 x  sin 4x = 0 

    (e)  Solving equations by transforming a product of trigonometric functions into a sum. Consider the equation ; sin 5x . cos 3x = sin 6x . cos 2x. 

    (f)  Solving equations by a change of variable : 

    (i)  Equations  of  the  form  P  sin  cos  ,sin  .cos x  x  x  x ± = b  g  0 ,  where  P(x,  z)  is a  polynominal  ,   can  be  solved  by  the  change.cos  x ±  sin  x  =  t ⇒ 1± 2sin x.cos x = t 2 . Consider the equation ; sin x + cos x = 1 + sin x . cos x .

  • NARAYANA IIT ACADEMY, CP3, Indra Vihar, Talwandi, KOTA324005 Rajasthan, Ph.No.: 07443200119, Website : www.narayanaiitkota.com 

    Trigonometric Equation  3 

    (ii)  Equation of the form of a .sin x + b . cos x + d = 0, where a ; b and d are real numberes and  a  b , ≠ 0  can  be solved by  changing  sin  x  and cos  x  into  their corresponding tangent of half the angle.Consider the equation 3cos x + 4 sin x = 5. 

    (iii)  Many equations can be solved by introducing a new variable e.g. the equation 

    sin 4 2x + cos 4 2x = sin 2x. cos 2x changes to  2  1 1 2 

    0 (  ) y  y +  F H G I K J =  by substituting, 

    sin 2x . cos 2x = y. 

    (g)  Solving equations with the use of the Boundness of the functions sin x and cos x. Consider 

    the equation ; sin  cos  sin  sin  cos  .cos x x  x  x  x  x 4 

    2  1 4 

    2  0 − F H G I K J + + − F H G  I K J =  . 

    5.  SOME IMPORTANTPOINTS TO REMEMBER Ø  While solving a trigonometric equation, squaring the equation at any step should be avoided 

    as far as possible. If squaring is necessary, check the solution for extraneous values. Ø  Never cancel terms containing unknown terms on the two sides, which are in product. It 

    may cause loss of genuine solution. 

    Ø  The answer should not contain such values of angles, which make any of the terms undefined. 

    Ø  Domain should not be changed. If it is changed, necessary corrections must be incorporated. 

    Ø  Check that the denominator is not zero at any stage while solving equations. 

    Ø  Some times you may find that your answers differ from those in the package in their notations. This may be due to the different methods of solving the same problem. Whenever you come across such situation, you must check their authenticity. This will ensure that your answer is correct. 

    Ø  While solving trigonometric equations you may get same set of solution repeated in your 

    answer. It is necessary for you to exclude these repetitions, e.g. nπ + 2 π ,  ) I n ( ∈  forms a 

    part of  I k , 10 5 k

    ∈ π

    + π 

    the second part of the second set of solution (you can check by 

    putting k = 5 m + 2 (m∈I).  Hence the final answer is  I k , 10 5 

    k ∈

    π +

    π . 

    Ø  Some times the two solution set consist partly of common values. In all such cases the common part must be presented only once. Now we present some illustrations for solving the different forms of trigonometric equations. Which will highlight the importance of above mentioned points.

  • NARAYANA IIT ACADEMY, CP3, Indra Vihar, Talwandi, KOTA324005 Rajasthan, Ph.No.: 07443200119, Website : www.narayanaiitkota.com 

    4  Trigonometric Equation 

    DRILL EXERCISE  2 

    Solve the folloiwng trigonometric equations 1.  cos  sin  cos  sin θ θ θ θ + = + 2  2  2.  sin 5x + sin 3x = sin 4x 

    3.  sin 2 x + cos 4 x – 16 13 

    = 0  4.  4 sin 4 x + 12 cos 2 x = 7 

    5.  (  tan  )(  sin  )  tan 1  1  2  1 − + = + θ θ θ  6.  sin x + sin 2x + sin 3 x = 1 2  2 cot x  . 

    7.  2 cos 2x =  32  4 2 

    .  cos  x −  .  8.  sin 6 2x + cos 6 2x = 7/16. 

    9.  sin 2 x + sin 2 2x = 1 

    Illustration 1: Solve:   7cos 2 θ + 3sin 2 θ = 4 

    Solution: Given 7cos 2 θ + 3sin 2 θ = 4 or,  7cos 2 θ + 3 (1 – cos 2 θ) = 4 or,  4cos 2 θ = 1

    ∴  cos 2 θ = 2 

    2 1

    =

    π 3 

    cos 2

    ⇒ θ = 3 n π ± π I n∈ ∀

    Illustration 2: Solve:    3tan (θ  15 0 ) = tan (θ + 15 0 ) 

    Solution: Given, 3tan (θ  15 0 ) = tan (θ + 15 0 ) 

    or, ( ) ( )  1 

    3 15 – tan 15 tan 

    0

    = θ

    + θ 

    or, ( ) ( ) ( ) ( )  2 

    4 15 tan 15 tan 15 tan 15 tan 

    0 0 

    0 0

    = − θ − + θ

    − θ + + θ (By componendo and dividendo) 

    or ( ) ( )  2 15 15 sin 

    15 15 sin 0 0 

    0 0

    = + θ − + θ

    − θ + + θ 

    or,  2 sin2θ = 2  or   sin2θ = 1 = sin 2 π

    ⇒  2θ = nπ + (1) n 2 π

    ∴ θ = 2 nπ 

    + ( 1) n 4 π , ∀  I n∈

  • NARAYANA IIT ACADEMY, CP3, Indra Vihar, Talwandi, KOTA324005 Rajasthan, Ph.No.: 07443200119, Website : www.narayanaiitkota.com 

    Trigonometric Equation  5 

    Illustration 3: 

    Solve: cosθ cos2θ cos3θ = 4 1 

    Solution: 4cosθ cos2θ cos3θ = 1 or,  (2cos3θ cosθ) 2cos2θ = 1 or,  (cos4θ + cos2θ) 2cos2θ  1 = 0 or,  2cos4θ cos2θ + 2cos 2 2θ  1 = 0 or,  2cos4θ cos2θ + cos4θ = 0 or,  cos4θ [2cos2θ + 1] = 0 

    If  cos4θ = 0, 4θ =  (2n + 1) 2 π

    ⇒ θ = (2n + 1) 8 π 

    If  2cos2θ + 1 = 0 

    or,  cos2θ = – 2 1 = cos  3 

    2 m 2 2 3 2 π

    ± π = θ ⇒ π

    ∴ θ = mπ ± 3 π 

    Hence, θ = (2n + 1)  3 m or 

    8 π

    ± π π 

    where n,  I m∈

    Illustration 4: Solve: tanx + tan2x + tan3x = 0. 

    Solution: tanx + tan2x + tan3x = 0 or,  tanx + tan2x + tan (x + 2x) = 0 

    or,  tanx + tan2x +  0 x 2 tan x tan 1 x 2 tan x tan

    = −

    or,  (tanx + tan2x)  0 x 2 tan x tan 1 1 1 =

    If  tanx + tan2x = 0, tanx = – tan2x or,  tanx = tan(–2x) ⇒ x = nπ + (–2x)   or,  3x = nπ

    ∴  x = 3 nπ 

    If  1 + x 2 tan x tan 1 

    1 − 

    = 0 then, 1 – tanx tan2x = – 1 

    or,  tanx tan2x = 2  or,  tanx ⋅  2 x tan 1 

    x tan 2 2 = − 

    or,  tan 2 x = 1 – tan 2 x 

    or,  2tan 2 x = 1  or,  tan 2 x = 2 1 

    or,  tanx = ±  2 1 

    or  x = 2 1 tan m  1 − ± π

  • NARAYANA IIT ACADEMY, CP3, Indra Vihar, Talwandi, KOTA324005 Rajasthan, Ph.No.: 07443200119, Website : www.narayanaiitkota.com 

    6  Trigonometric Equation

    ⇒  x = mπ + β 

    Hence  x =  , 2 1 tan m or 

    3 n  1

    ± π

    π −  I m , n ∈

    Illustration 5 : Solve: 2sin 2 x – 5sinx cosx – 8cos 2 x = – 2. 

    Solution: In such problems we divide both sides by cos 2 x. This converts the given equation in a quadratic equation in tanx, which can be easily solved. Clearly, cosx ≠ 0  For if cosx = 0, then 2sin 2 x = – 2 ⇒ sin 2 x = – 1 which is impossible. Given equation is 2sin 2 x – 5sinx cosx – 8cos 2 x = – 2 or,  2tan 2 x – 5tanx – 8 = –2sec 2 x                 [dividing both sides by cos 2 x] or,  2tan 2 x – 5tanx – 8 + 2 (1 + tan 2 x) = 0 or,  4 tan 2 x –5tanx – 6 = 0 or,  4tan 2 x – 8tanx + 3tanx – 6 = 0 or,  4tanx (tanx –2) + 3 (tanx – 2) = 0 or,  (tanx – 2) (4tanx + 3) = 0 ∴  either tanx – 2 = 0 ⇒  tanx = 2 = tanα (suppose) ⇒  x = nπ + α = nπ + tan –1 2 

    or,  4tanx + 3 = 0 ⇒  tanx = 4 3 − = tanβ (suppose)

    ⇒  x = nπ + β = mπ + tan –1

    − 4 3 .  where  I m , n ∈ 

    6.  SOLVINGSIMULTANEOUS EQUATIONS Here we will discuss problems related to the solution of two equations satisfied simultaneously. We may divide the problems in two categories. (i)  Two equations in one unknown (ii)  Two equations in two unknowns. 

    Illustration 6: Find all values ofθ lying between 0 and 2π, satisfying the following equations, rsinθ =  3  and r + 4sinθ = 2 (  3  + 1) 

    Solution: Given equations are, 

    rsinθ=  3  ... (i) 

    and  r + 4sinθ = 2(  3  + 1)  ... (ii) To find the value ofθ, we must eliminate r. 

    Now, from (i), r = θ sin 3

  • NARAYANA IIT ACADEMY, CP3, Indra Vihar, Talwandi, KOTA324005 Rajasthan, Ph.No.: 07443200119, Website : www.narayanaiitkota.com 

    Trigonometric Equation  7 

    Substituting the value of r in (ii), we get, 

    ) 1 3 ( 2 sin 4 sin 3

    + = θ + θ 

    or,  4sin 2 θ – 2  3 sinθ – 2sinθ +  3  = 0 

    or,  2sinθ (2sinθ –  3 ) – 1 (2sinθ –  3 ) = 0 

    or,  (2sinθ –  3 ) (2sinθ – 1) = 0 

    If 2sinθ –  3  = 0, sin θ =  2 3  = sin 

    3 π

    ⇒ θ = nπ + (–1) n 3 π 

    If 2sinθ – 1 = 0, sinθ = 2 1 = sin ⇒

    π 6

    θ = nπ + (–1) n 6 π 

    Values of θ lying between 0 and 2π are 6 5 , 

    3 2 ,

    3 ,

    6 π π π π

    Illustration 7: Find the smallest positive values of x and y satisfying 

    x – y =  ,4 π 

    and  cotx + coty = 2 Solution: 

    Given  x – y = 4 π 

    ... (i) cotx + coty = 2  ... (ii) 

    From (ii), sin(x + y) = 2sinx.siny = cos (x – y) – cos(x + y) 

    = cos 4 π – cos (x + y)

    ⇒  sin (x + y) + cos (x + y) = cos  2 1 

    4 =

    π

    ⇒  2 1 

    sin (x + y) +  2 1 

    cos (x + y) = 2 1

    ⇒  cos (x + y –  )4 π 

    = cos 3 π

    ⇒  x + y – 4 π = 2nπ ± 

    3 π

    ⇒  x + y = 2nπ ± 4 3 π

    + π 

    …. (iii) 

    for n = 0, x + y =  ) 0 y , x ce (sin 12 7

    > π 

    …. (iv) 

    From (i) and (iv), x = 6 

    y , 12 5 π

    = π 

    Hence least positive values of x and y are 12 5π 

    and 6 π respectively. .

  • NARAYANA IIT ACADEMY, CP3, Indra Vihar, Talwandi, KOTA324005 Rajasthan, Ph.No.: 07443200119, Website : www.narayanaiitkota.com 

    8  Trigonometric Equation 

    DRILL EXERCISE  3 

    Solve the following simultaneous equations 

    1.  sin x sin y =  4 1 and cos x cos y =  4 

    3 2.  y – x =  4 

    1 and cos (πx) cos (πy) = 

    2 2 

    3.  cos (x – y) =  2 1 and cos (x + y) = –  2 

    1 4.  sin x + cos y = 1 and x + y =  3

    π 

    5.  tan x + tan y = 2 and cos x cos y =  2 1 

    7.  TRIGONOMETRIC INEQUATIONS To solve trigonometric inequation of the type f(x) ≤ a, or f(x) ≥ a where f(x) is some trigonometric ratio we take following steps. (i)  Draw the graph of f(x) in a interval length equal to fundamental period of f(x). (ii)  Draw the line y = a. (iii)  Take the portion of the graph for which inequation is satisfied. (iv)  To generalise add pn (n∈ I) and take union over set of integers , where p is fundamental 

    period of f(x). 

    Illustration 8: Find the solution set of the inequation sin x > 1/2. 

    Solution: When sinx = 1/2, the two values of x between 0 and 2π are π/6 and 5π/6.

    π/6  5π/6 

    y = 1/2 x 

    From, the graph of y = sin x, it is obvous that, between 0 and 2π 

    sinx > 1/2  for 6 5 x 

    6 π

    < < π 

    Hence sin x > 1/ 2 ⇒  2nπ + π/6  

  • NARAYANA IIT ACADEMY, CP3, Indra Vihar, Talwandi, KOTA324005 Rajasthan, Ph.No.: 07443200119, Website : www.narayanaiitkota.com 

    Trigonometric Equation  9 

    Illustration 9: 

    Find the solution set of –  3 1 

  • NARAYANA IIT ACADEMY, CP3, Indra Vihar, Talwandi, KOTA324005 Rajasthan, Ph.No.: 07443200119, Website : www.narayanaiitkota.com 

    10  Trigonometric Equation 

    Illustration 10: 

    Solve:  2 / x 0 , x x x sin 2 x cos 2  2 2 2 2 π ≤ < + = −

    Solution: In this problem, terms on the  two sides of  the equation are different  in nature, L.H.S.  is  in trigonometric form, whereas R.H.S. is in algebraic form. Hence, we will use boundary conditions. 

    L.H.S. = 2 cos 2  x sin 2 x  2 

    = (1 + cosx) sin 2 x 

  • NARAYANA IIT ACADEMY, CP3, Indra Vihar, Talwandi, KOTA324005 Rajasthan, Ph.No.: 07443200119, Website : www.narayanaiitkota.com 

    Trigonometric Equation  11 

    Answer  Key Drill Exercise  1 

    1. θ = mπ –  4 π ,  n ∈ I  2. θ = 2nπ +  6 

    5π ,  n ∈ I 

    3. θ = nπ + (–1) n

    π 6  , n ∈ I  4. 

    0 6  3 

    2 3 

    5 6 

    ,  ,  ,  ,  & π π π π π 

    5. θ π π

    = 3 

    5 3 

    ,  6. θ = nπ ±  3 π , n ∈ I 

    Drill Exercise  2 

    1. θ π θ π π

    = = + ∈ 2  2 3  6 

    n  or  m  m n  I ,  ,  2.  x =  4 nπ 

    , x = 2mπ ±  3 π ,   n, m∈ I 

    3.  x =  2 nπ 

    ±  6 π 

    4.  x = 2nπ ±  4 π 

    5.  n  or  m  m n  I π π π

    − F H G I K J ∈ 4  ,  ,  6.  x 

    n  n  I = + ∈ 2 7  7

    π π , 

    7.  x  n  n  I = ∈ π,  8.  x n  n  I = ± ∈ π π 4  12 

    9.  (2n + 1)  6 π ,  I n∈

    Drill Exercise  3 

    1.  {(π (6n + 6k – 1)/6, π (6n – 6k – 1)/6), (π (6n + 6k +  1)/6, π(6n – 6k + 1)/6}, (n, k ∈ I). 

    2.  {n, (4n + 1)/4, ((4n – 1)/4, n)} (n∈ I) 

    3.  {(π (6k + 6n ± 1)/6, π (2k – 2n ± 1)/2) , (π (2k + 2n ±  1)/2, π(6k – 6n ± 1)/6}, (k, n ∈ I). 

    4.  n 1 n 1 5 (( 1) sin 2 3 n, ( 1) sin 2 3 n 12 12

    − − π π − − − + π − − − − π  

    , (n∈ I). 

    5.  {(π (4m + 1)/4, π (8n – 4m + 1)/4)}, (n, m∈ I)

  • NARAYANA IIT ACADEMY, CP3, Indra Vihar, Talwandi, KOTA324005 Rajasthan, Ph.No.: 07443200119, Website : www.narayanaiitkota.com 

    12  Trigonometric Equation 

    Drill Exercise  4 

    1.

    π + π

    π + π

    ∈  6 11 n 2 , 

    6 7 n 2 

    I n ∪  2.

    π + π π + π

    ∈  2 n 2 , n 2 

    I n ∪ 

    3.  (4πn, π (12n + 1)/3 ∪ (π (12n + 1)/3, 2π + 4πn), (n ∈ I) 

    4. n I 

    5 2n , 2n 2n , (2n 1) 6 6 ∈

    π π π π + ∪ π + + π ∪  5.  R –

    π  I n , 4 n 

    Drill Exercise  5 

    1.  I n , n 2 x ∈ π + π =  ,  I n ,2 

    n x ∈ π + π =  2.  x = 0 

    3. φ  4.  x = (2n + 1)  2 π , y = mπ, z = (2t + 1)  2

    π ,  (n, m, t ∈ I) 

    5.  x = nπ,  y = (4m + 1)  3 π ,  (n, m∈ I)