Tribonacci and Tribonacci-Lucas Hybrinomials

12
Journal of Mathematics Research; Vol. 13, No. 5; October 2021 ISSN 1916-9795 E-ISSN 1916-9809 Published by Canadian Center of Science and Education 32 Tribonacci and Tribonacci-Lucas Hybrinomials Yasemin TaลŸyurdu 1 & Yunis Emre Polat 2 1 Department of Mathematics, Faculty of Science and Art, Erzincan Binali Yฤฑldฤฑrฤฑm University, Erzincan, Turkey 2 Department of Mathematics, Graduate School of Natural and Applied Sciences, Erzincan Binali Yฤฑldฤฑrฤฑm University, Erzincan, Turkey Correspondence: Yasemin TaลŸyurdu, Department of Mathematics, Faculty of Science and Art, Erzincan Binali Yฤฑldฤฑrฤฑm University, 24100 Erzincan, Turkey. Received: May 10, 2021 Accepted: August 25, 2021 Online Published: September 29, 2021 doi:10.5539/jmr.v13n5p32 URL: https://doi.org/10.5539/jmr.v13n5p32 Abstract In this paper, we introduce Tribonacci and Tribonacci-Lucas hybrinomials and derive these hybrinomials by the matrices. We present Binet formulas, generating functions, exponential generating functions and summation formulas, some properties of these hybrinomials. Moreover, we obtain relationship between the Tribonacci and Tribonacci-Lucas hybrinomials. Keywords: Tribonacci polynomial, Tribonacci-Lucas polynomial, Tribonacci hybrinomial, Tribonacci-Lucas hybrinomial 2010 Mathematics Subject Classification: 11B83, 11B37, 05A15 1. Introduction A recursive sequence, also known as a recurrence sequence, is usually defined by a recurrence procedure; that is, any term of this sequence is the sum of preceding terms and generated by solving a recurrence equation. Fibonacci sequence, which is a sequence of integers, is the most famous second order sequence in all science with interesting properties. In particular, many various generalizations of this sequence have been studied in the literature. (see, for example, McCarty, 1981; Pethe, 1988; Koshy, 2001; Gupta et al, 2012a; TaลŸyurdu, 2016). The Tribonacci and Tribonacci-Lucas sequences, which are the well-known generalizations of Fibonacci sequences, are third order recurrence sequences. In 1963, Feinberg originally studied the Tribonacci sequence (Feinberg, 1963). For โ‰ฅ3, the Tribonacci sequence { } โ‰ฅ0 is defined by = โˆ’1 + โˆ’2 + โˆ’3 with inital conditions 0 = 0, 1 = 1, 2 =1 and the Tribonacci-Lucas sequence { } โ‰ฅ0 is defined by = โˆ’1 + โˆ’2 + โˆ’3 with inital conditions 0 = 3, 1 = 1, 2 =3. The Tribonacci and Tribonacci-Lucas sequences have many interesting properties and applications in many fields of science. Several authors presented the Binet formulas, generating functions, exponential generating functions, summation formulas and matrix representation of the Tribonacci and Tribonacci-Lucas sequences (see, for example, Scott et al, 1977; Shannon, 1977; Spickerman, 1981; Bruce, 1984; TaลŸyurdu, 2019a; Soykan, 2020). In (Hoggatt & Bicknell, 1973), the Tribonacci polynomials were introduced in 1973 by Hoggatt and Bicknell. For any integer โ‰ฅ3, the recurrence relation of the Tribonacci polynomials is as follows () = 2 โˆ’1 () + โˆ’2 () + โˆ’3 () (1) where 0 () = 0, 1 () = 1, 2 () = 2 . Obviously, (1) = where is the th classical Tribonacci number. The recurrence relation of the Tribonacci-Lucas polynomials is defined by () = 2 โˆ’1 () + โˆ’2 () + โˆ’3 () (2) where 0 () = 3, 1 () = 2 , 2 () = 4 + 2.

Transcript of Tribonacci and Tribonacci-Lucas Hybrinomials

Page 1: Tribonacci and Tribonacci-Lucas Hybrinomials

Journal of Mathematics Research; Vol. 13, No. 5; October 2021

ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

32

Tribonacci and Tribonacci-Lucas Hybrinomials

Yasemin TaลŸyurdu1 & Yunis Emre Polat2

1 Department of Mathematics, Faculty of Science and Art, Erzincan Binali Yฤฑldฤฑrฤฑm University, Erzincan, Turkey

2 Department of Mathematics, Graduate School of Natural and Applied Sciences, Erzincan Binali Yฤฑldฤฑrฤฑm University,

Erzincan, Turkey

Correspondence: Yasemin TaลŸyurdu, Department of Mathematics, Faculty of Science and Art, Erzincan Binali Yฤฑldฤฑrฤฑm

University, 24100 Erzincan, Turkey.

Received: May 10, 2021 Accepted: August 25, 2021 Online Published: September 29, 2021

doi:10.5539/jmr.v13n5p32 URL: https://doi.org/10.5539/jmr.v13n5p32

Abstract

In this paper, we introduce Tribonacci and Tribonacci-Lucas hybrinomials and derive these hybrinomials by the

matrices. We present Binet formulas, generating functions, exponential generating functions and summation formulas,

some properties of these hybrinomials. Moreover, we obtain relationship between the Tribonacci and Tribonacci-Lucas

hybrinomials.

Keywords: Tribonacci polynomial, Tribonacci-Lucas polynomial, Tribonacci hybrinomial, Tribonacci-Lucas

hybrinomial

2010 Mathematics Subject Classification: 11B83, 11B37, 05A15

1. Introduction

A recursive sequence, also known as a recurrence sequence, is usually defined by a recurrence procedure; that is, any term

of this sequence is the sum of preceding terms and generated by solving a recurrence equation. Fibonacci sequence, which

is a sequence of integers, is the most famous second order sequence in all science with interesting properties. In particular,

many various generalizations of this sequence have been studied in the literature. (see, for example, McCarty, 1981; Pethe,

1988; Koshy, 2001; Gupta et al, 2012a; TaลŸyurdu, 2016). The Tribonacci and Tribonacci-Lucas sequences, which are the

well-known generalizations of Fibonacci sequences, are third order recurrence sequences. In 1963, Feinberg originally

studied the Tribonacci sequence (Feinberg, 1963). For ๐‘› โ‰ฅ 3, the Tribonacci sequence {๐‘‡๐‘›}๐‘›โ‰ฅ0 is defined by

๐‘‡๐‘› = ๐‘‡๐‘›โˆ’1 + ๐‘‡๐‘›โˆ’2 + ๐‘‡๐‘›โˆ’3

with inital conditions ๐‘‡0 = 0, ๐‘‡1 = 1, ๐‘‡2 = 1 and the Tribonacci-Lucas sequence {๐พ๐‘›}๐‘›โ‰ฅ0 is defined by

๐พ๐‘› = ๐พ๐‘›โˆ’1 + ๐พ๐‘›โˆ’2 + ๐พ๐‘›โˆ’3

with inital conditions ๐พ0 = 3, ๐พ1 = 1, ๐พ2 = 3. The Tribonacci and Tribonacci-Lucas sequences have many interesting

properties and applications in many fields of science. Several authors presented the Binet formulas, generating functions,

exponential generating functions, summation formulas and matrix representation of the Tribonacci and

Tribonacci-Lucas sequences (see, for example, Scott et al, 1977; Shannon, 1977; Spickerman, 1981; Bruce, 1984;

TaลŸyurdu, 2019a; Soykan, 2020).

In (Hoggatt & Bicknell, 1973), the Tribonacci polynomials were introduced in 1973 by Hoggatt and Bicknell. For any

integer ๐‘› โ‰ฅ 3, the recurrence relation of the Tribonacci polynomials is as follows

๐‘‡๐‘›(๐‘ฅ) = ๐‘ฅ2๐‘‡๐‘›โˆ’1(๐‘ฅ) + ๐‘ฅ๐‘‡๐‘›โˆ’2(๐‘ฅ) + ๐‘‡๐‘›โˆ’3(๐‘ฅ) (1)

where ๐‘‡0(๐‘ฅ) = 0, ๐‘‡1(๐‘ฅ) = 1, ๐‘‡2(๐‘ฅ) = ๐‘ฅ2 . Obviously, ๐‘‡๐‘›(1) = ๐‘‡๐‘› where ๐‘‡๐‘› is the ๐‘› th classical Tribonacci

number. The recurrence relation of the Tribonacci-Lucas polynomials is defined by

๐พ๐‘›(๐‘ฅ) = ๐‘ฅ2๐พ๐‘›โˆ’1(๐‘ฅ) + ๐‘ฅ๐พ๐‘›โˆ’2(๐‘ฅ) + ๐พ๐‘›โˆ’3(๐‘ฅ) (2)

where ๐พ0(๐‘ฅ) = 3, ๐พ1(๐‘ฅ) = ๐‘ฅ2, ๐พ2(๐‘ฅ) = ๐‘ฅ4 + 2๐‘ฅ.

Page 2: Tribonacci and Tribonacci-Lucas Hybrinomials

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 5; 2021

33

Table 1. The first few Tribonacci and Tribonacci-Lucas polynomials are

๐‘› ๐‘‡๐‘›(๐‘ฅ) ๐พ๐‘›(๐‘ฅ)

0 0 3

1 1 ๐‘ฅ2

2 ๐‘ฅ2 ๐‘ฅ4 + 2๐‘ฅ

3 ๐‘ฅ4 + ๐‘ฅ ๐‘ฅ6 + 3๐‘ฅ3+ 3, 4 ๐‘ฅ6 + 2๐‘ฅ3 + 1 ๐‘ฅ8 + 4๐‘ฅ5 + 6๐‘ฅ2

5 ๐‘ฅ8 + 3๐‘ฅ5 + 3๐‘ฅ2 ๐‘ฅ10 + 5๐‘ฅ7 + 10๐‘ฅ4 + 5๐‘ฅ

6 ๐‘ฅ10 + 4๐‘ฅ7 + 6๐‘ฅ4 + 2๐‘ฅ ๐‘ฅ12 + 6๐‘ฅ9 + 15๐‘ฅ6 + 14๐‘ฅ3 + 3,

7 ๐‘ฅ12 + 5๐‘ฅ9 + 10๐‘ฅ6 + 7๐‘ฅ3 + 1 ๐‘ฅ14 + 7๐‘ฅ11 + 21๐‘ฅ8 + 28๐‘ฅ5 + 14๐‘ฅ2 8 ๐‘ฅ14 + 6๐‘ฅ11 + 15๐‘ฅ8 + 16๐‘ฅ5 + 6๐‘ฅ2 ๐‘ฅ16 + 8๐‘ฅ13 + 28๐‘ฅ10 + 48๐‘ฅ7 + 38๐‘ฅ4 + 8๐‘ฅ

Using standard techniques for solving recurrence relations, the roots of the characteristic equation ๐œ†3 โˆ’ ๐‘ฅ2๐œ†2 โˆ’ ๐‘ฅ๐œ† โˆ’ 1 =0 of equations (1) and (2) are ๐›ผ1(๐‘ฅ), ๐›ผ2(๐‘ฅ) and ๐›ผ3(๐‘ฅ) such that

๐›ผ1(๐‘ฅ) =๐‘ฅ2

3+ โˆš๐‘ฅ6

27+

๐‘ฅ3

6+

1

2+ โˆš๐‘ฅ6

37+

7๐‘ฅ3

54+

1

4

3

+ โˆš๐‘ฅ6

27+

๐‘ฅ3

6+

1

2โˆ’ โˆš๐‘ฅ6

37+

7๐‘ฅ3

54+

1

4

3

,

๐›ผ2(๐‘ฅ) =๐‘ฅ2

3+ ๐œ” โˆš๐‘ฅ6

27+

๐‘ฅ3

6+

1

2+ โˆš

๐‘ฅ6

37+

7๐‘ฅ3

54+

1

4

3

+ ๐œ”2 โˆš๐‘ฅ6

27+

๐‘ฅ3

6+

1

2โˆ’ โˆš

๐‘ฅ6

37+

7๐‘ฅ3

54+

1

4

3

,

๐›ผ3(๐‘ฅ) =๐‘ฅ2

3+ ๐œ”2 โˆš๐‘ฅ6

27+

๐‘ฅ3

6+

1

2+ โˆš

๐‘ฅ6

37+

7๐‘ฅ3

54+

1

4

3

+ ๐œ” โˆš๐‘ฅ6

27+

๐‘ฅ3

6+

1

2โˆ’ โˆš

๐‘ฅ6

37+

7๐‘ฅ3

54+

1

4

3

,

with ๐œ” =โˆ’1+๐‘–โˆš3

2. Then, the Binet formulas for the Tribonacci and Tribonacci-Lucas polynomials are given by

๐‘‡๐‘›(๐‘ฅ) =๐›ผ1

๐‘›+1(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๐›ผ2๐‘›+1(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๐›ผ3๐‘›+1(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ)) (3)

and

๐พ๐‘›(๐‘ฅ) = ๐›ผ1๐‘›(๐‘ฅ) + ๐›ผ2

๐‘›(๐‘ฅ) + ๐›ผ3๐‘›(๐‘ฅ) (4)

respectively. Note that we have the following identities

๐›ผ1(๐‘ฅ) + ๐›ผ2(๐‘ฅ) + ๐›ผ3(๐‘ฅ) = ๐‘ฅ2

๐›ผ1(๐‘ฅ)๐›ผ2(๐‘ฅ)๐›ผ3(๐‘ฅ) = 1.

Many authors have studied the generalized Fibonacci and Tribonacci polynomials and their properties (Gupta et al,

2012b; Gรผltekin & TaลŸyurdu, 2013; Kose et al, 2014; Ramirez & Sirvent 2014). For ๐‘› โ‰ฅ 2, the following relation

between Tribonacci polynomials and Tribonacci-Lucas polynomials is introduced

๐พ๐‘›(๐‘ฅ) = ๐‘ฅ2๐‘‡๐‘›(๐‘ฅ) + 2๐‘ฅ๐‘‡๐‘›โˆ’1(๐‘ฅ) + 3๐‘‡๐‘›โˆ’2(๐‘ฅ). (5)

The generating functions of the Tribonacci and Tribonacci-Lucas polynomials are given by

๐บ(๐‘ก) = โˆ‘ ๐‘‡๐‘›(๐‘ฅ)๐‘ก๐‘› =

โˆž

๐‘›=0

๐‘ก

1 โˆ’ ๐‘ฅ2๐‘ก โˆ’ ๐‘ฅ๐‘ก2 โˆ’ ๐‘ก3

๐‘…(๐‘ก) = โˆ‘ ๐พ๐‘›(๐‘ฅ)๐‘ก๐‘› =

โˆž

๐‘›=0

3 โˆ’ 2๐‘ฅ2๐‘ก โˆ’ ๐‘ฅ๐‘ก2

1 โˆ’ ๐‘ฅ2๐‘ก โˆ’ ๐‘ฅ๐‘ก2 โˆ’ ๐‘ก3

where ๐‘‡๐‘›(๐‘ฅ) is the ๐‘›th Tribonacci polynomial and ๐พ๐‘›(๐‘ฅ) is the ๐‘›th Tribonacci-Lucas polynomial. For ๐‘ฅ = 1, we

obtain the generating functions of the Tribonacci and Tribonacci-Lucas numbers, respectively.

On the other hand, hybrid numbers which are a new generalization of complex, hyperbolic and dual numbers have

Page 3: Tribonacci and Tribonacci-Lucas Hybrinomials

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 5; 2021

34

applications in different areas of mathematics. Moreover, these numbers have been extensively used in science,

engineering and theoretical physics. ร–zdemir (ร–zdemir, 2018) introduced a new non-commutative number system called

hybrid numbers. The hybrid number system can be considered as a generalization of the complex, hyperbolic and dual

number systems. The set of hybrid numbers, denoted by ๐•‚, is defined as

๐•‚ = {๐‘Ž + ๐‘๐‘– + ๐‘๐œ€ + ๐‘‘โ„Ž: ๐‘Ž, ๐‘, ๐‘, ๐‘‘ โˆˆ โ„, ๐‘–2 = โˆ’1, ๐œ€2 = 0, โ„Ž2 = 1, ๐‘–โ„Ž = โˆ’โ„Ž๐‘– = ๐œ€ + ๐‘–}.

Let ๐‘1 = ๐‘Ž + ๐‘๐‘– + ๐‘๐œ€ + ๐‘‘โ„Ž and ๐‘2 = ๐‘ฅ + ๐‘ฆi + ๐‘ง๐œ€ + ๐‘กh be any two hybrid numbers. The equality, addition, substraction

and multiplication by scalar are defined as follows

Equality: ๐‘1 = ๐‘2 only if ๐‘Ž = ๐‘ฅ, ๐‘ = ๐‘ฆ, ๐‘ = ๐‘ง, ๐‘‘ = ๐‘ก

Addition: ๐‘1 + ๐‘2 = (๐‘Ž + ๐‘ฅ) + (๐‘ + ๐‘ฆ)๐‘– + (๐‘ + ๐‘ง)๐œ€ + (๐‘‘ + ๐‘ก)โ„Ž

Substraction: ๐‘1 โˆ’ ๐‘2 = (๐‘Ž โˆ’ ๐‘ฅ) + (๐‘ โˆ’ ๐‘ฆ)๐‘– + (๐‘ โˆ’ ๐‘ง)๐œ€ + (๐‘‘ โˆ’ ๐‘ก)โ„Ž

Multiplication by scalar ๐œ† โˆˆ โ„: ๐œ†๐‘1 = ๐œ†๐‘Ž + ๐œ†๐‘๐‘– + ๐œ†๐‘๐œ€ + ๐œ†๐‘‘โ„Ž.

Table 2. The multiplication of hybrid units of ๐•‚

ร— 1 i ๐œ€ h

1 1 i ๐œ€ h

i i โˆ’1 1 โˆ’ h ๐œ€ + i ๐œ€ ๐œ€ 1 + h 0 โˆ’ ๐œ€

h h โˆ’๐œ€ โˆ’ i ๐œ€ 1

The Table 2 present that (๐•‚, +) is an Abelian group. This implies that the multiplication of hybrid numbers has the

property of associativity. But it is not commutative. Addition of the hybrid numbers is both associative and commutative.

Zero is the null element. The additive inverse of a hybrid number ๐‘ is โˆ’๐‘ = โˆ’๐‘Ž โˆ’ ๐‘๐‘– โˆ’ ๐‘๐œ€ โˆ’ ๐‘‘โ„Ž. The readers can find

more detailed information about the hybrid numbers in (ร–zdemir, 2018).

Many researchs activities can be seen in resent years studies on special type of hybrid numbers. For example,

Szynal-Liana and Wloch considered the Fibonacci hybrid numbers, the Pell and Pell-Lucas hybrid numbers and the

Jacosthal and Jacosthal-Lucas.hybrid numbers and obtained some properties of these numbers, respectively.

(Szynal-Liana & Wloch, 2018; 2019a; 2019b). In (Szynal-Liana, 2018) Szynal-Liana generalized their results and defined

the Horadam hybrid numbers. In (Cerda-Morales, 2018), Cerda-Morales defined the ๐‘›th hybrid (๐‘, ๐‘ž)-Fibonacci and

๐‘›th hybrid (๐‘, ๐‘ž)-Lucas numbers, respectively. Polatlฤฑ defined hybrid numbers with the Fibonacci and Lucas hybrid

number coefficients (Polatlฤฑ, 2020). Also, hybrid numbers were applied to third order recurrence sequences. Tasyurdu

(TaลŸyurdu, 2019b) and YaฤŸmur (YaฤŸmur, 2020) introduced the Tribonacci and Tribonacci-Lucas hybrid numbers and

expressed many various properties besides the known properties for sequences of these hybrid numbers. The ๐‘›th

Tribonacci hybrid number, โ„๐‘‡๐‘› and ๐‘›th Tribonacci-Lucas hybrid number, โ„๐พ๐‘› are defined by

โ„๐‘‡๐‘› = ๐‘‡๐‘› + ๐‘‡๐‘›+1๐‘– + ๐‘‡๐‘›+2๐œ€ + ๐‘‡๐‘›+3โ„Ž

โ„๐พ๐‘› = ๐พ๐‘› + ๐พ๐‘›+1๐‘– + ๐พ๐‘›+2๐œ€ + ๐พ๐‘›+3โ„Ž

where ๐‘‡๐‘› is the ๐‘›th Tribonacci number and ๐พ๐‘› is the ๐‘›th Tribonacci-Lucas number, respectively. Then new

generalizations of the hybrid numbers were introduced, called hybrinomial sequences. In (Liana & Szynal-Liana, 2019;

Szynal-Liana & Wล‚och, 2020a; 2020b) the authors introduced the Pell hybrinomials, the Fibonacci and Lucas

hybrinomials and generalized Fibonacci-Pell hybrinomials, respectively. Also, KฤฑzฤฑlateลŸ defined the Horadam

hybrinomials and gave some special cases of these hybrinomials (KฤฑzฤฑlateลŸ, 2020).

The aim of this study is to present a new generalization of the Tribonacci and Tribonacci-Lucas hybrid numbers, called

as, Tribonacci and Tribonacci-Lucas hybrinomials, that is, polynomials, which are a generalization of the Tribonacci

hybrid numbers and Tribonacci-Lucas hybrid numbers, respectively.

2. The Tribonacci and Tribonacci-Lucas Hybrinomials

In this section, we define the Tribonacci and Tribonacci-Lucas hybrinomials and give recurrence relations of these

hybrinomials. Then we present the Binet formulas for the ๐‘› th Tribonacci hybrinomial and ๐‘› th Tribonacci-Lucas

hybrinomial. We introduce the generating functions and exponential generating functions of these hybrinomials.

Moreover, we obtain the summation formulas, some properties, matrix representation and relation between the Tribonacci

and Tribonacci-Lucas hybrinomials.

Definition 2.1. The ๐‘›th Tribonacci hybrinomial, ๐‘‡๐‘›โ„‹(๐‘ฅ) and ๐‘›th Tribonacci-Lucas hybrinomial, ๐พ๐‘›โ„‹(๐‘ฅ) are defined

by

๐‘‡๐‘›โ„‹(๐‘ฅ) = ๐‘‡๐‘›(๐‘ฅ) + ๐‘–๐‘‡๐‘›+1(๐‘ฅ) + ๐œ€๐‘‡๐‘›+2(๐‘ฅ) + โ„Ž๐‘‡๐‘›+3(๐‘ฅ) (6)

Page 4: Tribonacci and Tribonacci-Lucas Hybrinomials

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 5; 2021

35

๐พ๐‘›โ„‹(๐‘ฅ) = ๐พ๐‘›(๐‘ฅ) + ๐‘–๐พ๐‘›+1(๐‘ฅ) + ๐œ€๐พ๐‘›+2(๐‘ฅ) + โ„Ž๐พ๐‘›+3(๐‘ฅ) (7)

where ๐‘‡๐‘›(๐‘ฅ) is the ๐‘›th Tribonacci polynomial, ๐พ๐‘›(๐‘ฅ) is the ๐‘›th Tribonacci-Lucas polynomial and hybrid units ๐‘–, ๐œ€, โ„Ž

satisfy the the equations ๐‘–2 = โˆ’1, ๐œ€2 = 0, โ„Ž2 = 1, ๐‘–โ„Ž = โˆ’โ„Ž๐‘– = ๐œ€ + ๐‘–.

The Tribonacci and Tribonacci-Lucas hybrinomials satisfy a linear recurrence of degree three. Now present the recurrence

relations of the Tribonacci hybrinomial sequence, {๐‘‡๐‘›โ„‹(๐‘ฅ)}๐‘›โ‰ฅ0 and Tribonacci-Lucas hybrinomial sequence

{๐พ๐‘›โ„‹(๐‘ฅ)}๐‘›โ‰ฅ0.

Theorem 2.1. For ๐‘› โ‰ฅ 3, the following recurrence relations holds

๐‘‡๐‘›โ„‹(๐‘ฅ) = ๐‘ฅ2๐‘‡๐‘›โˆ’1โ„‹(๐‘ฅ) + ๐‘ฅ๐‘‡๐‘›โˆ’2โ„‹(๐‘ฅ) + ๐‘‡๐‘›โˆ’3โ„‹(๐‘ฅ) (8)

๐พ๐‘›โ„‹(๐‘ฅ) = ๐‘ฅ2๐พ๐‘›โˆ’1โ„‹(๐‘ฅ) + ๐‘ฅ๐พ๐‘›โˆ’2โ„‹(๐‘ฅ) + ๐พ๐‘›โˆ’3โ„‹(๐‘ฅ) (9)

with

๐‘‡0โ„‹(๐‘ฅ) = ๐‘– + ๐œ€๐‘ฅ2 + โ„Ž(๐‘ฅ4 + ๐‘ฅ),

๐‘‡1โ„‹(๐‘ฅ) = 1 + ๐‘–๐‘ฅ2 + ๐œ€(๐‘ฅ4 + ๐‘ฅ) + โ„Ž(๐‘ฅ6 + 2๐‘ฅ3 + 1),

๐‘‡2โ„‹(๐‘ฅ) = ๐‘ฅ2 + ๐‘–(๐‘ฅ4 + ๐‘ฅ) + ๐œ€(๐‘ฅ6 + 2๐‘ฅ3 + 1) + โ„Ž(๐‘ฅ8 + 3๐‘ฅ5 + 3๐‘ฅ2)

and

๐พ0โ„‹(๐‘ฅ) = 3 + ๐‘–๐‘ฅ2 + ๐œ€(๐‘ฅ4 + 2๐‘ฅ) + โ„Ž(๐‘ฅ6 + 3๐‘ฅ3 + 3),

๐พ1โ„‹(๐‘ฅ) = ๐‘ฅ2 + ๐‘–(๐‘ฅ4 + 2๐‘ฅ) + ๐œ€(๐‘ฅ6 + 3๐‘ฅ3 + 3) + โ„Ž(๐‘ฅ8 + 4๐‘ฅ5 + 6๐‘ฅ2),

๐พ2โ„‹(๐‘ฅ) = ๐‘ฅ4 + 2๐‘ฅ + ๐‘–(๐‘ฅ6 + 3๐‘ฅ3 + 3) + ๐œ€(๐‘ฅ8 + 4๐‘ฅ5 + 6๐‘ฅ2) + โ„Ž(๐‘ฅ10 + 5๐‘ฅ7 + 10๐‘ฅ4 + 5๐‘ฅ),

respectively.

Proof. Using the equations (1) and (6), we obtain

๐‘‡๐‘›โ„‹(๐‘ฅ) = ๐‘‡๐‘›(๐‘ฅ) + ๐‘–๐‘‡๐‘›+1(๐‘ฅ) + ๐œ€๐‘‡๐‘›+2(๐‘ฅ) + โ„Ž๐‘‡๐‘›+3(๐‘ฅ)

= ๐‘ฅ2๐‘‡๐‘›โˆ’1(๐‘ฅ) + ๐‘ฅ๐‘‡๐‘›โˆ’2(๐‘ฅ) + ๐‘‡๐‘›โˆ’3(๐‘ฅ) + ๐‘–(๐‘ฅ2๐‘‡๐‘›(๐‘ฅ) + ๐‘ฅ๐‘‡๐‘›โˆ’1(๐‘ฅ) + ๐‘‡๐‘›โˆ’2(๐‘ฅ))

+๐œ€(๐‘ฅ2๐‘‡๐‘›+1(๐‘ฅ) + ๐‘ฅ๐‘‡๐‘›(๐‘ฅ) + ๐‘‡๐‘›โˆ’1(๐‘ฅ)) + โ„Ž(๐‘ฅ2๐‘‡๐‘›+2(๐‘ฅ) + ๐‘ฅ๐‘‡๐‘›+1(๐‘ฅ) + ๐‘‡๐‘›(๐‘ฅ))

= ๐‘ฅ2(๐‘‡๐‘›โˆ’1(๐‘ฅ) + ๐‘–๐‘‡๐‘›(๐‘ฅ) + ๐œ€๐‘‡๐‘›+1(๐‘ฅ) + โ„Ž๐‘‡๐‘›+2(๐‘ฅ))

+๐‘ฅ(๐‘‡๐‘›โˆ’2(๐‘ฅ) + ๐‘–๐‘‡๐‘›โˆ’1(๐‘ฅ) + ๐œ€๐‘‡๐‘›(๐‘ฅ) + โ„Ž๐‘‡๐‘›+1(๐‘ฅ))

+๐‘‡๐‘›โˆ’3(๐‘ฅ) + ๐‘–๐‘‡๐‘›โˆ’2(๐‘ฅ) + ๐œ€๐‘‡๐‘›โˆ’1(๐‘ฅ) + โ„Ž๐‘‡๐‘›(๐‘ฅ)

= ๐‘ฅ2๐‘‡๐‘›โˆ’1โ„‹(๐‘ฅ) + ๐‘ฅ๐‘‡๐‘›โˆ’2โ„‹(๐‘ฅ) + ๐‘‡๐‘›โˆ’3โ„‹(๐‘ฅ).

Similarly, we can obtain ๐พ๐‘›โ„‹(๐‘ฅ) = ๐‘ฅ2๐พ๐‘›โˆ’1โ„‹(๐‘ฅ) + ๐‘ฅ๐พ๐‘›โˆ’2โ„‹(๐‘ฅ) + ๐พ๐‘›โˆ’3โ„‹(๐‘ฅ) using the equations (2) and (7).

โˆŽ

Using Teorem 2.1, it can be easily shown that the Tribonacci and Tribonacci-Lucas hybrinomial sequences can be

extended to negative subscripts by the recurrence relations as follows

๐‘‡โˆ’๐‘›โ„‹(๐‘ฅ) = โˆ’๐‘ฅ๐‘‡โˆ’(๐‘›โˆ’1)โ„‹(๐‘ฅ) โˆ’ ๐‘ฅ2๐‘‡โˆ’(๐‘›โˆ’2)โ„‹(๐‘ฅ) + ๐‘‡โˆ’(๐‘›โˆ’3)โ„‹(๐‘ฅ)

๐พโˆ’๐‘›โ„‹(๐‘ฅ) = โˆ’๐‘ฅ๐พโˆ’(๐‘›โˆ’1)โ„‹(๐‘ฅ) โˆ’ ๐‘ฅ2๐พโˆ’(๐‘›โˆ’2)โ„‹(๐‘ฅ) + ๐พโˆ’(๐‘›โˆ’3)โ„‹(๐‘ฅ)

for ๐‘› โ‰ฅ 1, respectively.

2.1 The Binet Formulas and Generating Functions of the Tribonacci and Tribonacci-Lucas Hybrinomials

The Tribonacci and Tribonacci-Lucas hybrinomials can be obtained by using the Definition 2.1 and Theorem 2.1. The

Binet formula known as the general formula can be used instead of both definition and theorem. Now, we produce the

Binet formulas for the Tribonacci and Tribonacci-Lucas hybrinomials.

Theorem 2.2. Let ๐‘› โ‰ฅ 0 be an integer and ๐›ผ1(๐‘ฅ), ๐›ผ2(๐‘ฅ) and ๐›ผ3(๐‘ฅ) are the roots of the characteristic equation

๐œ†3 โˆ’ ๐‘ฅ2๐œ†2 โˆ’ ๐‘ฅ๐œ† โˆ’ 1 = 0. Then the Binet formulas for the Tribonacci and Tribonacci-Lucas hybrinomials are given by

๐‘‡๐‘›โ„‹(๐‘ฅ) =๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1

๐‘›+1(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2๐‘›+1(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3๐‘›+1(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ)) (10)

๐พ๐‘›โ„‹(๐‘ฅ) = ๐›ผ1(๐‘ฅ)๐›ผ1๐‘›(๐‘ฅ) + ๐›ผ2(๐‘ฅ)๐›ผ2

๐‘›(๐‘ฅ) + ๐›ผ3(๐‘ฅ)๐›ผ3๐‘›(๐‘ฅ) (11)

respectively, where ๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ) = 1 + ๐‘–๐›ผ1(๐‘ฅ) + ๐œ€๐›ผ12(๐‘ฅ) + โ„Ž๐›ผ1

3(๐‘ฅ) , ๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ) = 1 + ๐‘–๐›ผ2(๐‘ฅ) + ๐œ€๐›ผ22(๐‘ฅ) + โ„Ž๐›ผ2

3(๐‘ฅ), ๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ) =1 + ๐‘–๐›ผ3(๐‘ฅ) + ๐œ€๐›ผ3

2(๐‘ฅ) + โ„Ž๐›ผ33(๐‘ฅ). Moreover,

Page 5: Tribonacci and Tribonacci-Lucas Hybrinomials

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 5; 2021

36

๐›ผ1(๐‘ฅ) =๐‘ฅ2

3+ โˆš๐‘ฅ6

27+

๐‘ฅ3

6+

1

2+ โˆš๐‘ฅ6

37+

7๐‘ฅ3

54+

1

4

3

+ โˆš๐‘ฅ6

27+

๐‘ฅ3

6+

1

2โˆ’ โˆš๐‘ฅ6

37+

7๐‘ฅ3

54+

1

4

3

,

๐›ผ2(๐‘ฅ) =๐‘ฅ2

3+ ๐œ” โˆš๐‘ฅ6

27+

๐‘ฅ3

6+

1

2+ โˆš

๐‘ฅ6

37+

7๐‘ฅ3

54+

1

4

3

+ ๐œ”2 โˆš๐‘ฅ6

27+

๐‘ฅ3

6+

1

2โˆ’ โˆš

๐‘ฅ6

37+

7๐‘ฅ3

54+

1

4

3

,

๐›ผ3(๐‘ฅ) =๐‘ฅ2

3+ ๐œ”2 โˆš๐‘ฅ6

27+

๐‘ฅ3

6+

1

2+ โˆš

๐‘ฅ6

37+

7๐‘ฅ3

54+

1

4

3

+ ๐œ” โˆš๐‘ฅ6

27+

๐‘ฅ3

6+

1

2โˆ’ โˆš

๐‘ฅ6

37+

7๐‘ฅ3

54+

1

4

3

,

with ๐œ” =โˆ’1+๐‘–โˆš3

2.

Proof. By considering the Binet formula for the ๐‘›th Tribonacci polynomial given in equation (3) and equation (6), we

have

๐‘‡๐‘›โ„‹(๐‘ฅ) = ๐‘‡๐‘›(๐‘ฅ) + ๐‘–๐‘‡๐‘›+1(๐‘ฅ) + ๐œ€๐‘‡๐‘›+2(๐‘ฅ) + โ„Ž๐‘‡๐‘›+3(๐‘ฅ)

=๐›ผ1

๐‘›+1(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๐›ผ2๐‘›+1(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๐›ผ3๐‘›+1(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))

+๐‘– (๐›ผ1

๐‘›+2(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๐›ผ2๐‘›+2(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๐›ผ3๐‘›+2(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ)))

+๐œ€ (๐›ผ1

๐‘›+3(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๐›ผ2๐‘›+3(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๐›ผ3๐‘›+3(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ)))

+โ„Ž (๐›ผ1

๐‘›+4(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๐›ผ2๐‘›+4(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๐›ผ3๐‘›+4(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ)))

=(1+๐‘–๐›ผ1(๐‘ฅ)+๐œ€๐›ผ1

2(๐‘ฅ)+โ„Ž๐›ผ13(๐‘ฅ))๐›ผ1

๐‘›+1(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

(1+๐‘–๐›ผ2(๐‘ฅ)+๐œ€๐›ผ22(๐‘ฅ)+โ„Ž๐›ผ2

3(๐‘ฅ))๐›ผ2๐‘›+1(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))

+(1+๐‘–๐›ผ3(๐‘ฅ)+๐œ€๐›ผ3

2(๐‘ฅ)+โ„Ž๐›ผ33(๐‘ฅ))๐›ผ3

๐‘›+1(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))

=๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1

๐‘›+1(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2๐‘›+1(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3๐‘›+1(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))

and using the Binet formula for the ๐‘›th Tribonacci-Lucas polynomial given in equation (4) and equation (7), we have

๐พ๐‘›โ„‹(๐‘ฅ) = ๐พ๐‘›(๐‘ฅ) + ๐‘–๐พ๐‘›+1(๐‘ฅ) + ๐œ€๐พ๐‘›+2(๐‘ฅ) + โ„Ž๐พ๐‘›+3(๐‘ฅ)

= ๐›ผ1๐‘›(๐‘ฅ) + ๐›ผ2

๐‘›(๐‘ฅ) + ๐›ผ3๐‘›(๐‘ฅ) + ๐‘–(๐›ผ1

๐‘›+1(๐‘ฅ) + ๐›ผ2๐‘›+1(๐‘ฅ) + ๐›ผ3

๐‘›+1(๐‘ฅ))

+๐œ€(๐›ผ1๐‘›+2(๐‘ฅ) + ๐›ผ2

๐‘›+2(๐‘ฅ) + ๐›ผ3๐‘›+2(๐‘ฅ)) + โ„Ž(๐›ผ1

๐‘›+3(๐‘ฅ) + ๐›ผ2๐‘›+3(๐‘ฅ) + ๐›ผ3

๐‘›+3(๐‘ฅ))

= (1 + ๐‘–๐›ผ1(๐‘ฅ) + ๐œ€๐›ผ12(๐‘ฅ) + โ„Ž๐›ผ1

3(๐‘ฅ))๐›ผ1๐‘›(๐‘ฅ)

+(1 + ๐‘–๐›ผ2(๐‘ฅ) + ๐œ€๐›ผ22(๐‘ฅ) + โ„Ž๐›ผ2

3(๐‘ฅ))๐›ผ2๐‘›(๐‘ฅ)

+(1 + ๐‘–๐›ผ3(๐‘ฅ) + ๐œ€๐›ผ32(๐‘ฅ) + โ„Ž๐›ผ3

3(๐‘ฅ))๐›ผ3๐‘›(๐‘ฅ)

= ๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1๐‘›(๐‘ฅ) + ๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2

๐‘›(๐‘ฅ) + ๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3๐‘›(๐‘ฅ)

where

๐›ผ1(๐‘ฅ) = 1 + ๐‘–๐›ผ1(๐‘ฅ) + ๐œ€๐›ผ12(๐‘ฅ) + โ„Ž๐›ผ1

3(๐‘ฅ),

๐›ผ2(๐‘ฅ) = 1 + ๐‘–๐›ผ2(๐‘ฅ) + ๐œ€๐›ผ22(๐‘ฅ) + โ„Ž๐›ผ2

3(๐‘ฅ),

๐›ผ3(๐‘ฅ) = 1 + ๐‘–๐›ผ3(๐‘ฅ) + ๐œ€๐›ผ32(๐‘ฅ) + โ„Ž๐›ผ3

3(๐‘ฅ).

Page 6: Tribonacci and Tribonacci-Lucas Hybrinomials

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 5; 2021

37

which ends the proof.

โˆŽ

As it is known, the generating functions are one of the most powerful techniques for solving linear recurrence relations.

Now, we give the generating functions for the Tribonacci and Tribonacci-Lucas hybrinomials. We know that the power

series of the ordinary generating function for {๐‘Ž0, ๐‘Ž1, ๐‘Ž3 โ€ฆ } are follows

๐‘”(๐‘ก) = ๐‘Ž0 + ๐‘Ž1๐‘ก + ๐‘Ž2๐‘ก2 + โ‹ฏ + ๐‘Ž๐‘›๐‘ก๐‘› + โ‹ฏ = โˆ‘ ๐‘Ž๐‘›๐‘ก๐‘›

โˆž

๐‘›=0

.

Theorem 2.3. The generating functions for the Tribonacci and Tribonacci-Lucas hybrinomial sequences are

๐‘”(๐‘ก) = โˆ‘ ๐‘‡๐‘›โ„‹(๐‘ฅ)๐‘ก๐‘› =

โˆž

๐‘›=0

๐‘‡0โ„‹(๐‘ฅ) + (๐‘‡1โ„‹(๐‘ฅ) โˆ’ ๐‘ฅ2๐‘‡0โ„‹(๐‘ฅ))๐‘ก + ๐‘‡โˆ’1โ„‹(๐‘ฅ)๐‘ก2

1 โˆ’ ๐‘ฅ2๐‘ก โˆ’ ๐‘ฅ๐‘ก2 โˆ’ ๐‘ก3

๐‘Ÿ(๐‘ก) = โˆ‘ ๐พ๐‘›โ„‹(๐‘ฅ)๐‘ก๐‘› =

โˆž

๐‘›=0

๐พ0โ„‹(๐‘ฅ) + (๐พ1โ„‹(๐‘ฅ) โˆ’ ๐‘ฅ2๐พ0โ„‹(๐‘ฅ))๐‘ก + ๐พโˆ’1โ„‹(๐‘ฅ)๐‘ก2

1 โˆ’ ๐‘ฅ2๐‘ก โˆ’ ๐‘ฅ๐‘ก2 โˆ’ ๐‘ก3

respectively.

Proof. Let ๐‘”(๐‘ก) = โˆ‘ ๐‘‡๐‘›โ„‹(๐‘ฅ)๐‘ก๐‘›โˆž๐‘›=0 be the generating function for the Tribonacci hybrinomial sequence. Then

๐‘”(๐‘ก) = โˆ‘ ๐‘‡๐‘›โ„‹(๐‘ฅ)๐‘ก๐‘›โˆž๐‘›=0

= ๐‘‡0โ„‹(๐‘ฅ) + ๐‘‡1โ„‹(๐‘ฅ)๐‘ก + โˆ‘ ๐‘‡๐‘›โ„‹(๐‘ฅ)๐‘ก๐‘› โˆž๐‘›=2

= ๐‘‡0โ„‹(๐‘ฅ) + ๐‘‡1โ„‹(๐‘ฅ)๐‘ก + โˆ‘ (๐‘ฅ2๐‘‡๐‘›โˆ’1โ„‹(๐‘ฅ) + ๐‘ฅ๐‘‡๐‘›โˆ’2โ„‹(๐‘ฅ) + ๐‘‡๐‘›โˆ’3โ„‹(๐‘ฅ))๐‘ก๐‘› โˆž๐‘›=2

= ๐‘‡0โ„‹(๐‘ฅ) + ๐‘‡1โ„‹(๐‘ฅ)๐‘ก + ๐‘ฅ2๐‘ก โˆ‘ ๐‘‡๐‘›โ„‹(๐‘ฅ)๐‘ก๐‘›โˆž๐‘›=0 โˆ’ ๐‘ฅ2๐‘‡0โ„‹(๐‘ฅ)๐‘ก

+๐‘ฅ๐‘ก2 โˆ‘ ๐‘‡๐‘›(๐‘ฅ)โ„‹๐‘ก๐‘›โˆž๐‘›=0 + ๐‘ก3 โˆ‘ ๐‘‡๐‘›โ„‹(๐‘ฅ)๐‘ก๐‘›โˆž

๐‘›=0 + ๐‘‡โˆ’1โ„‹(๐‘ฅ)๐‘ก2

= ๐‘‡0โ„‹(๐‘ฅ) + ๐‘‡1โ„‹(๐‘ฅ)๐‘ก + ๐‘ฅ2๐‘ก๐‘”(๐‘ก) โˆ’ ๐‘ฅ2๐‘‡0โ„‹(๐‘ฅ)๐‘ก + ๐‘ฅ๐‘ก2๐‘”(๐‘ก) + ๐‘ก3๐‘”(๐‘ก) + ๐‘‡โˆ’1โ„‹(๐‘ฅ)๐‘ก2

and we obtain that

(1 โˆ’ ๐‘ฅ2๐‘ก โˆ’ ๐‘ฅ๐‘ก2 โˆ’ ๐‘ก3)๐‘”(๐‘ก) = ๐‘‡0โ„‹(๐‘ฅ) + ๐‘‡1โ„‹(๐‘ฅ)๐‘ก โˆ’ ๐‘ฅ2๐‘‡0โ„‹(๐‘ฅ)๐‘ก + ๐‘‡โˆ’1โ„‹(๐‘ฅ)๐‘ก2.

So the generating function for the Tribonacci hybrinomial sequence is

๐‘”(๐‘ก) =๐‘‡0โ„‹(๐‘ฅ) + (๐‘‡1โ„‹(๐‘ฅ) โˆ’ ๐‘ฅ2๐‘‡0โ„‹(๐‘ฅ))๐‘ก + ๐‘‡โˆ’1โ„‹(๐‘ฅ)๐‘ก2

1 โˆ’ ๐‘ฅ2๐‘ก โˆ’ ๐‘ฅ๐‘ก2 โˆ’ ๐‘ก3.

and similarly, it can easily prove the generating function for the Tribonacci-Lucas hybrinomial sequence as follows

๐‘Ÿ(๐‘ก) =๐พ0โ„‹(๐‘ฅ) + (๐พ1โ„‹(๐‘ฅ) โˆ’ ๐‘ฅ2๐พ0โ„‹(๐‘ฅ))๐‘ก + ๐พโˆ’1โ„‹(๐‘ฅ)๐‘ก2

1 โˆ’ ๐‘ฅ2๐‘ก โˆ’ ๐‘ฅ๐‘ก2 โˆ’ ๐‘ก3.

โˆŽ

Theorem 2.4. For ๐‘š โ‰ฅ 2, the generating functions for the the Tribonacci hybrinomial sequence {๐‘‡๐‘›+๐‘šโ„‹(๐‘ฅ)}๐‘›โ‰ฅ0 and

Tribonacci-Lucas hybrinomial sequence {๐พ๐‘›+๐‘šโ„‹(๐‘ฅ)}๐‘›โ‰ฅ0 are

โˆ‘ ๐‘‡๐‘›+๐‘šโ„‹(๐‘ฅ)๐‘ก๐‘› =

โˆž

๐‘›=0

๐‘‡๐‘šโ„‹(๐‘ฅ) + (๐‘ฅ๐‘‡๐‘šโˆ’1โ„‹(๐‘ฅ) โˆ’ ๐‘‡๐‘šโˆ’2โ„‹(๐‘ฅ))๐‘ก + ๐‘‡๐‘šโˆ’1โ„‹(๐‘ฅ)๐‘ก2

1 โˆ’ ๐‘ฅ2๐‘ก โˆ’ ๐‘ฅ๐‘ก2 โˆ’ ๐‘ก3

โˆ‘ ๐พ๐‘›+๐‘šโ„‹(๐‘ฅ)๐‘ก๐‘› =

โˆž

๐‘›=0

๐พ๐‘šโ„‹(๐‘ฅ) + (๐‘ฅ๐พ๐‘šโˆ’1โ„‹(๐‘ฅ) โˆ’ ๐พ๐‘šโˆ’2โ„‹(๐‘ฅ))๐‘ก + ๐พ๐‘šโˆ’1โ„‹(๐‘ฅ)๐‘ก2

1 โˆ’ ๐‘ฅ2๐‘ก โˆ’ ๐‘ฅ๐‘ก2 โˆ’ ๐‘ก3

respectively.

Page 7: Tribonacci and Tribonacci-Lucas Hybrinomials

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 5; 2021

38

Proof. By using the Binet formula for the ๐‘›th Tribonacci hybrinomial given in equation (10), we get

โˆ‘ ๐‘‡๐‘›+๐‘šโ„‹(๐‘ฅ)๐‘ก๐‘› =โˆž๐‘›=0 โˆ‘ (

๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1๐‘›+๐‘š+1(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2๐‘›+๐‘š+1(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3๐‘›+๐‘š+1(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ)))โˆž

๐‘›=0 ๐‘ก๐‘›

=๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1

๐‘š+1(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))โˆ‘ (๐›ผ1(๐‘ฅ)๐‘ก)๐‘›โˆž

๐‘›=0

+๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2

๐‘š+1(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))โˆ‘ (๐›ผ2(๐‘ฅ)๐‘ก)๐‘›โˆž

๐‘›=0

+๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3

๐‘š+1(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))โˆ‘ (๐›ผ3(๐‘ฅ)๐‘ก)๐‘›โˆž

๐‘›=0

=๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1

๐‘š+1(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))(

1

1โˆ’๐›ผ1(๐‘ฅ)๐‘ก)

+๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2

๐‘š+1(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))(

1

1โˆ’๐›ผ2(๐‘ฅ)๐‘ก)

+๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3

๐‘š+1(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(

1

1โˆ’๐›ผ3(๐‘ฅ)๐‘ก)

=1

(1โˆ’๐›ผ1(๐‘ฅ)๐‘ก)(1โˆ’๐›ผ2(๐‘ฅ)๐‘ก)(1โˆ’๐›ผ3(๐‘ฅ)๐‘ก)[(

๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)(๐›ผ1๐‘š+1(๐‘ฅ)โˆ’๐›ผ1

๐‘š+1(๐‘ฅ)๐›ผ3(๐‘ฅ)โˆ’๐›ผ1๐‘š+1(๐‘ฅ)๐›ผ2(๐‘ฅ)+๐›ผ1

๐‘š(๐‘ฅ))

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ)))

+ (๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)(๐›ผ2

๐‘š+1(๐‘ฅ)โˆ’๐›ผ2๐‘š+1(๐‘ฅ)๐›ผ3(๐‘ฅ)โˆ’๐›ผ2

๐‘š+1(๐‘ฅ)๐›ผ1(๐‘ฅ)+๐›ผ2๐‘š(๐‘ฅ))

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ)))

+ (๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)(๐›ผ3

๐‘š+1(๐‘ฅ)โˆ’๐›ผ3๐‘š+1(๐‘ฅ)๐›ผ2(๐‘ฅ)โˆ’๐›ผ3

๐‘š+1(๐‘ฅ)๐›ผ1(๐‘ฅ)+๐›ผ3๐‘š(๐‘ฅ))

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ)))]

If we rearrange the last equation using the equations ๐›ผ1(๐‘ฅ) + ๐›ผ2(๐‘ฅ) + ๐›ผ3(๐‘ฅ) = ๐‘ฅ2, ๐›ผ1(๐‘ฅ)๐›ผ2(๐‘ฅ)๐›ผ3(๐‘ฅ) = 1, then we

get

โˆ‘ ๐‘‡๐‘›+๐‘šโ„‹(๐‘ฅ)๐‘ก๐‘› =โˆž๐‘›=0

1

1โˆ’๐‘ฅ2๐‘กโˆ’๐‘ฅ๐‘ก2โˆ’๐‘ก3[(

๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1๐‘š(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2๐‘š(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3๐‘š(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ)))

+ (๐‘ฅ (๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1

๐‘šโˆ’1(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2๐‘šโˆ’1(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3๐‘šโˆ’1(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ)))

+ (๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1

๐‘šโˆ’2(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2๐‘šโˆ’2(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3๐‘šโˆ’2(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ)))) ๐‘ก

+ (๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1

๐‘šโˆ’1(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2๐‘šโˆ’1(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3๐‘šโˆ’1(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))) ๐‘ก2]

=๐‘‡๐‘šโ„‹(๐‘ฅ) + (๐‘ฅ๐‘‡๐‘šโˆ’1โ„‹(๐‘ฅ) โˆ’ ๐‘‡๐‘šโˆ’2โ„‹(๐‘ฅ))๐‘ก + ๐‘‡๐‘šโˆ’1โ„‹(๐‘ฅ)๐‘ก2

1 โˆ’ ๐‘ฅ2๐‘ก โˆ’ ๐‘ฅ๐‘ก2 โˆ’ ๐‘ก3

and similarly, using the Binet formula for the ๐‘›th Tribonacci-Lucas hybrinomial given in equation (11) we have

โˆ‘ ๐พ๐‘›+๐‘šโ„‹(๐‘ฅ)๐‘ก๐‘› =

โˆž

๐‘›=0

๐พ๐‘šโ„‹(๐‘ฅ) + (๐‘ฅ๐พ๐‘šโˆ’1โ„‹(๐‘ฅ) โˆ’ ๐พ๐‘šโˆ’2โ„‹(๐‘ฅ))๐‘ก + ๐พ๐‘šโˆ’1โ„‹(๐‘ฅ)๐‘ก2

1 โˆ’ ๐‘ฅ2๐‘ก โˆ’ ๐‘ฅ๐‘ก2 โˆ’ ๐‘ก3 .

So proof is completed.

โˆŽ

Theorem 2.5. For ๐‘› โ‰ฅ 0, the exponential generating functions for the Tribonacci and Tribonacci-Lucas hybrinomial

Page 8: Tribonacci and Tribonacci-Lucas Hybrinomials

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 5; 2021

39

sequences are

โˆ‘ ๐‘‡๐‘›โ„‹(๐‘ฅ)๐‘ก๐‘›

๐‘›!=โˆž

๐‘›=0๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1(๐‘ฅ)๐‘’๐›ผ1(๐‘ฅ)๐‘ก

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2(๐‘ฅ)๐‘’๐›ผ2(๐‘ฅ)๐‘ก

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3(๐‘ฅ)๐‘’๐›ผ3(๐‘ฅ)๐‘ก

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))

โˆ‘ ๐พ๐‘›(๐‘ฅ)โ„‹๐‘ก๐‘›

๐‘›!=โˆž

๐‘›=0 ๐›ผ1(๐‘ฅ)๐‘’๐›ผ1(๐‘ฅ)๐‘ก + ๐›ผ2(๐‘ฅ)๐‘’๐›ผ2(๐‘ฅ)๐‘ก + ๐›ผ3(๐‘ฅ)๐‘’๐›ผ3(๐‘ฅ)๐‘ก

respectively.

Proof. By using the Binet formulas for the Tribonacci and Tribonacci-Lucas hybrinomials given in equations (10) and

(11), we get

โˆ‘ ๐‘‡๐‘›โ„‹(๐‘ฅ)๐‘ก๐‘›

๐‘›!=โˆž

๐‘›=0 โˆ‘ (๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1

๐‘›+1(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2๐‘›+1(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))โˆž๐‘›=0 +

๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3๐‘›+1(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ)))

๐‘ก๐‘›

๐‘›!

= (๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))) โˆ‘

(๐›ผ1(๐‘ฅ)๐‘ก)๐‘›

๐‘›!โˆž๐‘›=0 + (

๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))) โˆ‘

(๐›ผ2(๐‘ฅ)๐‘ก)๐‘›

๐‘›!โˆž๐‘›=0

+ (๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))) โˆ‘

(๐›ผ3(๐‘ฅ)๐‘ก)๐‘›

๐‘›!โˆž๐‘›=0

=๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1(๐‘ฅ)๐‘’๐›ผ1(๐‘ฅ)๐‘ก

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2(๐‘ฅ)๐‘’๐›ผ2(๐‘ฅ)๐‘ก

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3(๐‘ฅ)๐‘’๐›ผ3(๐‘ฅ)๐‘ก

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))

and

โˆ‘ ๐พ๐‘›โ„‹(๐‘ฅ)๐‘ก๐‘›

๐‘›!=โˆž

๐‘›=0 โˆ‘ (๐›ผ1(๐‘ฅ)๐›ผ1๐‘›(๐‘ฅ) + ๐›ผ2(๐‘ฅ)๐›ผ2

๐‘›(๐‘ฅ)โˆž๐‘›=0 +๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3

๐‘›(๐‘ฅ))๐‘ก๐‘›

๐‘›!

= ๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ) โˆ‘(๐›ผ1(๐‘ฅ)๐‘ก)๐‘›

๐‘›!โˆž๐‘›=0 + ๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ) โˆ‘

(๐›ผ2(๐‘ฅ)๐‘ก)๐‘›

๐‘›!โˆž๐‘›=0 + ๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ) โˆ‘

(๐›ผ3(๐‘ฅ)๐‘ก)๐‘›

๐‘›!โˆž๐‘›=0

= ๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐‘’๐›ผ1(๐‘ฅ)๐‘ก + ๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐‘’๐›ผ2(๐‘ฅ)๐‘ก + ๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐‘’๐›ผ3(๐‘ฅ)๐‘ก .

So proof is completed.

โˆŽ

3.2 Some Properties of the Tribonacci and Tribonacci-Lucas Hybrinomials

In this section, we give the summation formulas, some properties and relation between the Tribonacci and

Tribonacci-Lucas hybrinomials. Also, we derive the matrix representation of the Tribonacci hybrinomials.

Theorem 2.6. The summation formulas for the Tribonacci and Tribonacci-Lucas hybrinomials are as follows

โˆ‘ ๐‘‡๐‘–โ„‹(๐‘ฅ) =

๐‘›

๐‘–=0

๐‘‡๐‘›+2โ„‹(๐‘ฅ) + (1 โˆ’ ๐‘ฅ2)๐‘‡๐‘›+1โ„‹(๐‘ฅ) + ๐‘‡๐‘›โ„‹(๐‘ฅ) + ๐‘ฅ2๐‘‡0โ„‹(๐‘ฅ) โˆ’ ๐‘‡1โ„‹(๐‘ฅ) โˆ’ ๐‘‡0โ„‹(๐‘ฅ) โˆ’ ๐‘‡โˆ’1โ„‹(๐‘ฅ)

๐‘ฅ + ๐‘ฅ2

โˆ‘ ๐พ๐‘–โ„‹(๐‘ฅ) =

๐‘›

๐‘–=0

๐พ๐‘›+2โ„‹(๐‘ฅ) + (1 โˆ’ ๐‘ฅ2)๐พ๐‘›+1โ„‹(๐‘ฅ) + ๐พ๐‘›โ„‹(๐‘ฅ) + ๐‘ฅ2๐พ0โ„‹(๐‘ฅ) โˆ’ ๐พ1โ„‹(๐‘ฅ) โˆ’ ๐พ0โ„‹(๐‘ฅ) โˆ’ ๐พโˆ’1โ„‹(๐‘ฅ)

๐‘ฅ + ๐‘ฅ2

respectively, for ๐‘ฅ โˆˆ โ„ โˆ– {0, โˆ’1}.

Proof. Using the equation (8), we can get the following relations:

๐‘ฅ๐‘‡0โ„‹(๐‘ฅ) = ๐‘‡2โ„‹(๐‘ฅ) โˆ’ ๐‘ฅ2๐‘‡1โ„‹(๐‘ฅ) โˆ’ ๐‘‡โˆ’1โ„‹(๐‘ฅ)

๐‘ฅ๐‘‡1โ„‹(๐‘ฅ) = ๐‘‡3โ„‹(๐‘ฅ) โˆ’ ๐‘ฅ2๐‘‡2โ„‹(๐‘ฅ) โˆ’ ๐‘‡0โ„‹(๐‘ฅ)

๐‘ฅ๐‘‡2โ„‹(๐‘ฅ) = ๐‘‡4โ„‹(๐‘ฅ) โˆ’ ๐‘ฅ2๐‘‡3โ„‹(๐‘ฅ) โˆ’ ๐‘‡1โ„‹(๐‘ฅ)

โ‹ฎ

๐‘ฅ๐‘‡๐‘›โˆ’2โ„‹(๐‘ฅ) = ๐‘‡๐‘›โ„‹(๐‘ฅ) โˆ’ ๐‘ฅ2๐‘‡๐‘›โˆ’1โ„‹(๐‘ฅ) โˆ’ ๐‘‡๐‘›โˆ’3โ„‹(๐‘ฅ)

Page 9: Tribonacci and Tribonacci-Lucas Hybrinomials

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 5; 2021

40

๐‘ฅ๐‘‡๐‘›โˆ’1โ„‹(๐‘ฅ) = ๐‘‡๐‘›+1โ„‹(๐‘ฅ) โˆ’ ๐‘ฅ2๐‘‡๐‘›โ„‹(๐‘ฅ) โˆ’ ๐‘‡๐‘›โˆ’2โ„‹(๐‘ฅ)

๐‘ฅ๐‘‡๐‘›โ„‹(๐‘ฅ) = ๐‘‡๐‘›+2โ„‹(๐‘ฅ) โˆ’ ๐‘ฅ2๐‘‡๐‘›+1โ„‹(๐‘ฅ) โˆ’ ๐‘‡๐‘›โˆ’1โ„‹(๐‘ฅ).

If we add the equations by side by, we have

๐‘ฅ๐‘‡0โ„‹(๐‘ฅ) + ๐‘ฅ๐‘‡1โ„‹(๐‘ฅ) + โ‹ฏ + ๐‘ฅ๐‘‡๐‘›โ„‹(๐‘ฅ) = ๐‘‡๐‘›โ„‹(๐‘ฅ) + ๐‘‡๐‘›+1โ„‹(๐‘ฅ) + ๐‘‡๐‘›+2โ„‹(๐‘ฅ) โˆ’ ๐‘ฅ2 (โˆ‘ ๐‘‡๐‘–โ„‹(๐‘ฅ)

๐‘›+1

๐‘–=0

โˆ’ ๐‘‡0โ„‹(๐‘ฅ))

โˆ’๐‘‡โˆ’1โ„‹(๐‘ฅ) โˆ’ ๐‘‡0โ„‹(๐‘ฅ) โˆ’ ๐‘‡1โ„‹(๐‘ฅ)

(๐‘ฅ + ๐‘ฅ2) โˆ‘ ๐‘‡๐‘–โ„‹(๐‘ฅ)

๐‘›

๐‘–=0

= ๐‘‡๐‘›โ„‹(๐‘ฅ) + ๐‘‡๐‘›+1โ„‹(๐‘ฅ) + ๐‘‡๐‘›+2โ„‹(๐‘ฅ) โˆ’ ๐‘ฅ2๐‘‡๐‘›+1โ„‹(๐‘ฅ) + ๐‘ฅ2๐‘‡0โ„‹(๐‘ฅ)

โˆ’๐‘‡โˆ’1โ„‹(๐‘ฅ) โˆ’ ๐‘‡0โ„‹(๐‘ฅ) โˆ’ ๐‘‡1โ„‹(๐‘ฅ)

and we obtain that

โˆ‘ ๐‘‡๐‘–โ„‹(๐‘ฅ) =

๐‘›

๐‘–=0

๐‘‡๐‘›+2โ„‹(๐‘ฅ) + (1 โˆ’ ๐‘ฅ2)๐‘‡๐‘›+1โ„‹(๐‘ฅ) + ๐‘‡๐‘›โ„‹(๐‘ฅ) + ๐‘ฅ2๐‘‡0โ„‹(๐‘ฅ) โˆ’ ๐‘‡1โ„‹(๐‘ฅ) โˆ’ ๐‘‡0โ„‹(๐‘ฅ) โˆ’ ๐‘‡โˆ’1โ„‹(๐‘ฅ)

๐‘ฅ + ๐‘ฅ2

and similarly, using the equation (9), we have

โˆ‘ ๐พ๐‘–โ„‹(๐‘ฅ) =

๐‘›

๐‘–=0

๐พ๐‘›+2โ„‹(๐‘ฅ) + (1 โˆ’ ๐‘ฅ2)๐พ๐‘›+1โ„‹(๐‘ฅ) + ๐พ๐‘›โ„‹(๐‘ฅ) + ๐‘ฅ2๐พ0โ„‹(๐‘ฅ) โˆ’ ๐พ1โ„‹(๐‘ฅ) โˆ’ ๐พ0โ„‹(๐‘ฅ) โˆ’ ๐พโˆ’1โ„‹(๐‘ฅ)

๐‘ฅ + ๐‘ฅ2.

So proof is completed.

โˆŽ

Theorem 2.7. For ๐‘› โ‰ฅ 0, we have the following equalities for the Tribonacci and Tribonacci-Lucas hybrinomials

๐‘‡3๐‘›โ„‹(๐‘ฅ) = โˆ‘ โˆ‘ (๐‘›

๐‘–) (

๐‘–

๐‘—)

๐‘–

๐‘—=0

๐‘›

๐‘–=0

๐‘ฅ๐‘–+๐‘—๐‘‡๐‘–+๐‘—โ„‹(๐‘ฅ)

๐พ3๐‘›โ„‹(๐‘ฅ) = โˆ‘ โˆ‘ (๐‘›

๐‘–) (

๐‘–

๐‘—)

๐‘–

๐‘—=0

๐‘›

๐‘–=0

๐‘ฅ๐‘–+๐‘—๐พ๐‘–+๐‘—โ„‹(๐‘ฅ)

Proof. By using the Binet formula for the ๐‘›th Tribonacci hybrinomial given in equation (10), we get

โˆ‘ โˆ‘ (๐‘›

๐‘–) (

๐‘–

๐‘—)

๐‘–

๐‘—=0

๐‘›

๐‘–=0

๐‘ฅ๐‘–+๐‘—๐‘‡๐‘–+๐‘—โ„‹(๐‘ฅ) = โˆ‘ โˆ‘ (๐‘›

๐‘–) (

๐‘–

๐‘—)

๐‘–

๐‘—=0

๐‘›

๐‘–=0

๐‘ฅ๐‘–+๐‘— (๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1

๐‘–+๐‘—+1(๐‘ฅ)

(๐›ผ1(๐‘ฅ) โˆ’ ๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ) โˆ’ ๐›ผ3(๐‘ฅ)))

+ โˆ‘ โˆ‘ (๐‘›๐‘–

) (๐‘–๐‘—)๐‘–

๐‘—=0๐‘›๐‘–=0 ๐‘ฅ๐‘–+๐‘— (

๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2๐‘–+๐‘—+1(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ)))

+ โˆ‘ โˆ‘ (๐‘›๐‘–

) (๐‘–๐‘—)๐‘–

๐‘—=0๐‘›๐‘–=0 ๐‘ฅ๐‘–+๐‘— (

๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3๐‘–+๐‘—+1(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ)))

= (๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))) โˆ‘ (

๐‘›๐‘–

) (๐‘ฅ๐›ผ1(๐‘ฅ) + ๐‘ฅ2๐›ผ12(๐‘ฅ))

๐‘–๐‘›๐‘–=0

+ (๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))) โˆ‘ (

๐‘›๐‘–

) (๐‘ฅ๐›ผ2(๐‘ฅ) + ๐‘ฅ2๐›ผ22(๐‘ฅ))

๐‘–๐‘›๐‘–=0

Page 10: Tribonacci and Tribonacci-Lucas Hybrinomials

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 5; 2021

41

+ (๏ฟฝฬ‚๏ฟฝ3๐›ผ3(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))) โˆ‘ (

๐‘›๐‘–

) (๐‘ฅ๐›ผ3(๐‘ฅ) + ๐‘ฅ2๐›ผ32(๐‘ฅ))

๐‘–๐‘›๐‘–=0

=๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1

3๐‘›+1(๐‘ฅ)

(๐›ผ1(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))(๐›ผ1(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ23๐‘›+1(๐‘ฅ)

(๐›ผ2(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ2(๐‘ฅ)โˆ’๐›ผ3(๐‘ฅ))+

๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ33๐‘›+1(๐‘ฅ)

(๐›ผ3(๐‘ฅ)โˆ’๐›ผ1(๐‘ฅ))(๐›ผ3(๐‘ฅ)โˆ’๐›ผ2(๐‘ฅ))

= ๐‘‡3๐‘›โ„‹(๐‘ฅ)

and using the Binet formula for the ๐‘›th Tribonacci-Lucas hybrinomial given in equation (11), we get

โˆ‘ โˆ‘ (๐‘›๐‘–) (

๐‘–

๐‘—)

๐‘–

๐‘—=0

๐‘›

๐‘–=0

๐‘ฅ๐‘–+๐‘—๐พ๐‘–+๐‘—โ„‹(๐‘ฅ) = โˆ‘ โˆ‘ (๐‘›๐‘–) (

๐‘–

๐‘—)

๐‘–

๐‘—=0

๐‘›

๐‘–=0

๐‘ฅ๐‘–+๐‘—(๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ1๐‘–+๐‘—(๐‘ฅ))

+ โˆ‘ โˆ‘ (๐‘›๐‘–

) (๐‘–๐‘—)๐‘–

๐‘—=0๐‘›๐‘–=0 ๐‘ฅ๐‘–+๐‘—(๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2

๐‘–+๐‘—(๐‘ฅ))

+ โˆ‘ โˆ‘ (๐‘›๐‘–

) (๐‘–๐‘—)๐‘–

๐‘—=0๐‘›๐‘–=0 ๐‘ฅ๐‘–+๐‘—(๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ3

๐‘–+๐‘—(๐‘ฅ))

= ๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ) โˆ‘ (๐‘›๐‘–

) (๐‘ฅ๐›ผ1(๐‘ฅ) + ๐‘ฅ2๐›ผ12(๐‘ฅ))

๐‘–๐‘›๐‘–=0

+๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ) โˆ‘ (๐‘›๐‘–

) (๐‘ฅ๐›ผ2(๐‘ฅ) + ๐‘ฅ2๐›ผ22(๐‘ฅ))

๐‘–๐‘›๐‘–=0

+๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ) โˆ‘ (๐‘›๐‘–

) (๐‘ฅ๐›ผ3(๐‘ฅ) + ๐‘ฅ2๐›ผ32(๐‘ฅ))

๐‘–๐‘›๐‘–=0

= ๏ฟฝฬ‚๏ฟฝ1(๐‘ฅ)๐›ผ13๐‘›(๐‘ฅ) + ๏ฟฝฬ‚๏ฟฝ2(๐‘ฅ)๐›ผ2

3๐‘›(๐‘ฅ) + ๏ฟฝฬ‚๏ฟฝ3(๐‘ฅ)๐›ผ33๐‘›(๐‘ฅ)

= ๐พ3๐‘›โ„‹(๐‘ฅ).

So proof is completed.

โˆŽ

Theorem 2.8. The relation between the ๐‘›th Tribonacci hybrinomial, ๐‘‡๐‘›โ„‹(๐‘ฅ) and ๐‘›th Tribonacci-Lucas hybrinomial,

๐พ๐‘›โ„‹(๐‘ฅ) is

๐พ๐‘›โ„‹(๐‘ฅ) = ๐‘ฅ2๐‘‡๐‘›โ„‹(๐‘ฅ) + 2๐‘ฅ๐‘‡๐‘›โˆ’1โ„‹(๐‘ฅ) + 3๐‘‡๐‘›โˆ’2โ„‹(๐‘ฅ)

where ๐‘› โ‰ฅ 2

Proof: By using the equations (5) and (7), we have

๐พ๐‘›โ„‹(๐‘ฅ) = ๐พ๐‘›(๐‘ฅ) + ๐‘–๐พ๐‘›+1(๐‘ฅ) + ๐œ€๐พ๐‘›+2(๐‘ฅ) + โ„Ž๐พ๐‘›+3(๐‘ฅ)

= ๐‘ฅ2๐‘‡๐‘›(๐‘ฅ) + 2๐‘ฅ๐‘‡๐‘›โˆ’1(๐‘ฅ) + 3๐‘‡๐‘›โˆ’2(๐‘ฅ) + ๐‘–(๐‘ฅ2๐‘‡๐‘›+1(๐‘ฅ) + 2๐‘ฅ๐‘‡๐‘›(๐‘ฅ) + 3๐‘‡๐‘›โˆ’1(๐‘ฅ))

+๐œ€(๐‘ฅ2๐‘‡๐‘›+2(๐‘ฅ) + 2๐‘ฅ๐‘‡๐‘›+1(๐‘ฅ) + 3๐‘‡๐‘›(๐‘ฅ)) + โ„Ž(๐‘ฅ2๐‘‡๐‘›+3(๐‘ฅ) + 2๐‘ฅ๐‘‡๐‘›+2(๐‘ฅ) + 3๐‘‡๐‘›+1(๐‘ฅ))

= ๐‘ฅ2(๐‘‡๐‘›(๐‘ฅ) + ๐‘–๐‘‡๐‘›+1(๐‘ฅ) + ๐œ€๐‘‡๐‘›+2(๐‘ฅ) + โ„Ž๐‘‡๐‘›+3(๐‘ฅ))

+2๐‘ฅ(๐‘‡๐‘›โˆ’1(๐‘ฅ) + ๐‘–๐‘‡๐‘›(๐‘ฅ) + ๐œ€๐‘‡๐‘›+1(๐‘ฅ) + โ„Ž๐‘‡๐‘›+2(๐‘ฅ)

+3(๐‘‡๐‘›โˆ’2(๐‘ฅ) + ๐‘–๐‘‡๐‘›โˆ’1(๐‘ฅ) + ๐œ€๐‘‡๐‘›(๐‘ฅ) + โ„Ž๐‘‡๐‘›+1(๐‘ฅ))

= ๐‘ฅ2๐‘‡๐‘›โ„‹(๐‘ฅ) + 2๐‘ฅ๐‘‡๐‘›โˆ’1โ„‹(๐‘ฅ) + 3๐‘‡๐‘›โˆ’2โ„‹(๐‘ฅ)

which completes the proof.

โˆŽ

Theorem 2.9. The Tribonacci hybrinomials are generated by matrix

Page 11: Tribonacci and Tribonacci-Lucas Hybrinomials

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 5; 2021

42

๐ด(๐‘ฅ) = (๐‘ฅ2 ๐‘ฅ 11 0 00 1 0

)

then

๐‘„๐‘‡โ„‹(๐‘ฅ)

. ๐ด๐‘›(๐‘ฅ) = (

๐‘‡๐‘›+4โ„‹(๐‘ฅ) ๐‘ฅ๐‘‡๐‘›+3โ„‹(๐‘ฅ) + ๐‘‡๐‘›+2โ„‹(๐‘ฅ) ๐‘‡๐‘›+3โ„‹(๐‘ฅ)

๐‘‡๐‘›+3โ„‹(๐‘ฅ) ๐‘ฅ๐‘‡๐‘›+2โ„‹(๐‘ฅ) + ๐‘‡๐‘›+1โ„‹(๐‘ฅ) ๐‘‡๐‘›+2โ„‹(๐‘ฅ)

๐‘‡๐‘›+2โ„‹(๐‘ฅ) ๐‘ฅ๐‘‡๐‘›+1โ„‹(๐‘ฅ) + ๐‘‡๐‘›โ„‹(๐‘ฅ) ๐‘‡๐‘›+1โ„‹(๐‘ฅ)

) (12)

where

๐‘„๐‘‡โ„‹(๐‘ฅ)

= (

๐‘‡4โ„‹(๐‘ฅ) ๐‘ฅ๐‘‡3โ„‹(๐‘ฅ) + ๐‘‡2โ„‹(๐‘ฅ) ๐‘‡3โ„‹(๐‘ฅ)

๐‘‡3โ„‹(๐‘ฅ) ๐‘ฅ๐‘‡2โ„‹(๐‘ฅ) + ๐‘‡1โ„‹(๐‘ฅ) ๐‘‡2โ„‹(๐‘ฅ)

๐‘‡2โ„‹(๐‘ฅ) ๐‘ฅ๐‘‡1โ„‹(๐‘ฅ) + ๐‘‡0โ„‹(๐‘ฅ) ๐‘‡1โ„‹(๐‘ฅ)

)

and ๐‘‡๐‘›โ„‹(๐‘ฅ) is the ๐‘›th Tribonacci hybrinomial.

Proof: By using induction on ๐‘›, if ๐‘› = 0, then the result is obvious. Now, assume that, equation (12) is true for all

positive integers ๐‘˜, that is

๐‘„๐‘‡โ„‹(๐‘ฅ)

. ๐ด๐‘˜(๐‘ฅ) = (

๐‘‡๐‘˜+4โ„‹(๐‘ฅ) ๐‘ฅ๐‘‡๐‘˜+3โ„‹(๐‘ฅ) + ๐‘‡๐‘˜+2โ„‹(๐‘ฅ) ๐‘‡๐‘˜+3โ„‹(๐‘ฅ)

๐‘‡๐‘˜+3โ„‹(๐‘ฅ) ๐‘ฅ๐‘‡๐‘˜+2โ„‹(๐‘ฅ) + ๐‘‡๐‘˜+1โ„‹(๐‘ฅ) ๐‘‡๐‘˜+2โ„‹(๐‘ฅ)

๐‘‡๐‘˜+2โ„‹(๐‘ฅ) ๐‘ฅ๐‘‡๐‘˜+1โ„‹(๐‘ฅ) + ๐‘‡๐‘˜โ„‹(๐‘ฅ) ๐‘‡๐‘˜+1โ„‹(๐‘ฅ)

)

where ๐‘‡๐‘˜+3โ„‹(๐‘ฅ) = ๐‘ฅ2๐‘‡๐‘˜+2โ„‹(๐‘ฅ) + ๐‘ฅ๐‘‡๐‘˜+1โ„‹(๐‘ฅ) + ๐‘‡๐‘˜โ„‹(๐‘ฅ) from equation (8), for ๐‘˜ โ‰ฅ 0. Then, we need to show that

above equality holds for ๐‘› = ๐‘˜ + 1. Then by induction hypothesis we obtain

๐‘„๐‘‡โ„‹(๐‘ฅ)

. ๐ด๐‘˜+1(๐‘ฅ) = (๐‘„๐‘‡โ„‹(๐‘ฅ). ๐ด๐‘˜(๐‘ฅ)) . ๐ด(๐‘ฅ)

= (

๐‘‡๐‘˜+4โ„‹(๐‘ฅ) ๐‘ฅ๐‘‡๐‘˜+3โ„‹(๐‘ฅ) + ๐‘‡๐‘˜+2โ„‹(๐‘ฅ) ๐‘‡๐‘˜+3โ„‹(๐‘ฅ)

๐‘‡๐‘˜+3โ„‹(๐‘ฅ) ๐‘ฅ๐‘‡๐‘˜+2โ„‹(๐‘ฅ) + ๐‘‡๐‘˜+1โ„‹(๐‘ฅ) ๐‘‡๐‘˜+2โ„‹(๐‘ฅ)

๐‘‡๐‘˜+2โ„‹(๐‘ฅ) ๐‘ฅ๐‘‡๐‘˜+1โ„‹(๐‘ฅ) + ๐‘‡๐‘˜โ„‹(๐‘ฅ) ๐‘‡๐‘˜+1โ„‹(๐‘ฅ)

) (๐‘ฅ2 ๐‘ฅ 11 0 00 1 0

)

= (

๐‘‡๐‘˜+5โ„‹(๐‘ฅ) ๐‘ฅ๐‘‡๐‘˜+4โ„‹(๐‘ฅ) + ๐‘‡๐‘˜+3โ„‹(๐‘ฅ) ๐‘‡๐‘˜+4โ„‹(๐‘ฅ)

๐‘‡๐‘˜+4โ„‹(๐‘ฅ) ๐‘ฅ๐‘‡๐‘˜+3โ„‹(๐‘ฅ) + ๐‘‡๐‘˜+2โ„‹(๐‘ฅ) ๐‘‡๐‘˜+3โ„‹(๐‘ฅ)

๐‘‡๐‘˜+3โ„‹(๐‘ฅ) ๐‘ฅ๐‘‡๐‘˜+2โ„‹(๐‘ฅ) + ๐‘‡๐‘˜+1โ„‹(๐‘ฅ) ๐‘‡๐‘˜+2โ„‹(๐‘ฅ)

)

Hence, the equation (12) holds for all ๐‘› โ‰ฅ 0.

โˆŽ

4. Discussion

In this paper, the Tribonacci and Tribonacci-Lucas hybrinomials, which are a generalization of the Tribonacci hybrid

numbers and Tribonacci-Lucas hybrid numbers are defined and sequences of these hybrinomials are investigated,

respectively. And the recurrence relations and very important properties such as the Binet formulas, generating functions,

exponential generating functions and summation formulas for these sequences are obtained. Also, some properties and

relation between the Tribonacci and Tribonacci-Lucas hybrinomials are given.

Acknowledgments

Authors most grateful to the referees for their useful suggestions. The authors declare that they have no competing

interests.

References

Bruce, I. (1984). A modified Tribonacci sequence. Fibonacci Quarterly, 22(3), 244-246.

Cerda-Morales, G. (2018). Investigation of Generalized Hybrid Fibonacci Numbers and Their Properties. arXiv

preprint, arXiv: 1806.02231v1 (2018).

Feinberg, M. (1963). Fibonacci-Tribonacci. Fibonacci Quarterly, 1, 71-74.

Gupta, V. K., Panwar, Y. K., & Sikhwal, O. (2012a). Generalized Fibonacci Sequences. Theoretical Mathematics &

Applications, 2(2), 115-124.

Page 12: Tribonacci and Tribonacci-Lucas Hybrinomials

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 5; 2021

43

Gupta, V. K., Panwar, Y. K., & Sikhwal, O. (2012b). Generalized Fibonacci-Like Polynomial and its Determinantal

Identities. Int. J. Contemp. Math. Sciences, 7(29), 1415-1420.

Gรผltekin, ฤฐ., & TaลŸyurdu, Y. (2013). On Period of the Sequence of Fibonacci Polynomials Modulo ๐‘š. Discrete

Dynamics in Nature and Society, 2013, 3p. https://doi.org/10.1155/2013/731482

Hoggatt, Jr. V. E., & Bicknell, M. (1973). Generalized Fibonacci Polynomials. Fibonacci Quarterly, 11, 457-465.

KฤฑzฤฑlateลŸ, C. (2020). A Note on Horadam Hybrinomials, preprints. https://doi.org/10.20944/preprints202001.0116.v1

Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications, New York, Wiley-Interscience.

https://doi.org/10.1002/9781118033067

Kose, H., Yilmaz, N., & Taskara, N. (2014). On Properties of Tribonacci-Lucas Polynomials, arXiv: 1409.3710v1

[math.NT] 12 Sep 2014.

Liana, M., Szynal-Liana, A., & Wล‚och, I. (2019). On Pell Hybrinomials, Miskolc Math. Notes, 20(2), 1051-1062.

https://doi.org/10.18514/MMN.2019.2971

McCarty, C. P. (1981). A Formula for Tribonacci Numbers. The Fibonacci Quarterly, 19, 391-393.

ร–zdemir, M. (2018). Introduction to Hybrid Numbers. Advances in Applied Clifford Algebras, 28(11).

https://doi.org/10.1007/s00006-018-0833-3

Pethe, S. (1988). Some Identities for Tribonacci Sequences. The Fibonacci Quarterly, 26, 144-151.

Polatlฤฑ, E. (2020). Hybrid Numbers with Fibonacci and Lucas Hybrid Number Coefficients, preprint, 2020.

Ramirez, J. S. & Sirvent, V. F. (2014). Incomplete Tribonacci Numbers and Polynomials. Journal of Integer Sequences,

17, 1-13.

Scott, A., Delaney, T., & Hoggatt, Jr. V. E. (1977). The Tribonacci Sequence. Fibonacci Quarterly, 15(3), 193- 200.

Shannon, A. (1977). Tribonacci Numbers and Pascalโ€™s Pyramid. Fibonacci Quarterly, 15(3), 268- 275.

Spickerman, W. (1981). Binetโ€™s Formula for the Tribonacci Sequence. Fibonacci Quarterly, 20, 118-120.

Soykan, Y. (2020). Summing Formulas for Generalized Tribonacci Numbers. Universal Journal of Mathematics and

Applications, 3(1) 1-11. https://doi.org/10.32323/ujma.637876

Szynal-Liana, A. (2018). The Horadam Hybrid Numbers. Discuss. Math. Gen. Algebra Appl., 38(1), 91-98.

Szynal-Liana A., & Wloch I., (2018). On Pell and Pell.Lucas Hybrid Numbers, Commentat. Math., 58, 11.17,

(2018a). https://doi.org/10.7151/dmgaa.1287

Szynal-Liana, A., & Wloch I. (2019a). On Jacosthal and Jacosthal.Lucas Hybrid Numbers, Ann. Math. Sil., 33, 276โ€“283.

https://doi.org/10.2478/amsil-2018-0009

Szynal-Liana, A., & Wloch, I., (2019b). The Fibonacci Hybrid Numbers, Utilitas Math., 110, 3.10.

Szynal-Liana, A., & Wloch I., (2020a). Introduction to Fibonacci and Lucas Hybrinomials, Complex Var. Elliptic Equ.,

65(10), 1736-1747. https://doi.org/10.1080/17476933.2019.1681416

Szynal-Liana A., & Wloch, I. (2020b). Generalized Fibonacci-Pell Hybrinomials, Online J. Anal. Comb., 15, 1-12.

TaลŸyurdu, Y., ร‡obanoฤŸlu, N., & Dilmen, Z. (2016). On The a New Family of k-Fibonacci Numbers. Erzincan University

Journal of Science and Technology, 9(1), 95-101. https://doi.org/10.18185/eufbed.01209

TaลŸyurdu, Y. (2019a). On the Sums of Tribonacci and Tribonacci-Lucas Numbers, Applied Mathematical Sciences,

13(24), 1201-1208. https://doi.org/10.12988/ams.2019.910144

TaลŸyurdu, Y. (2019b). Tribonacci and Tribonacci-Lucas Hybrid Numbers. Int. J. Contemp. Math. Sciences, 14(4),

245-254. https://doi.org/10.12988/ijcms.2019.91124

YaฤŸmur, T. (2020). A Note On Generalized Hybrid Tribonacci Numbers. Discussiones Mathematicae General Algebra

and Applications, 40, 187โ€“199. https://doi.org/10.7151/dmgaa.1343

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).