Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

29
Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine

Transcript of Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Page 1: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Trauma Resuscitation

Yael Moussadji, R3

Emergency Medicine

Page 2: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

“resuscitare”…

Latin – to reanimate or revive Refers to the diagnostic and therapeutic

maneuvers used to treat trauma patients Defines restoration of physiologic parameters Reversal of shock

Page 3: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Objectives

To review how to improve your efficiency in a trauma resuscitation

To review the pathophysiology of trauma and the keys to stabilizing your patient

To discuss (briefly) the controversies around fluid resuscitation

To discuss pre-hospital considerations and the trauma system at large

Page 4: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Epidemiololgy and the Trauma System

Trauma is a disease of the young and is the No. 1 cause of death in people aged 1-37

Among fatal MVCs, 38% are associated with alcohol and drug use, and only 37% were wearing seatbets

Regionalization of trauma care first came about in the 1970s with the creation of the first trauma centre at the University of Maryland

Now regional planning with designated trauma centres is essential, and involves ambulance destination polices and quality assurance programs to monitor patient outcomes

Page 5: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Prehospital Considerations

The appropriate management of patients in the prehospital setting has been complicated by well intentioned traditional attempts to simplify it

The controversial issues most impact patients with post-traumatic internal hemorrhage and post-traumatic circulatory arrest

Page 6: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Tenants of Prehospital Trauma Care

Prevention of additional injury Careful extrication, spinal immobilization, spliting

Rapid transport Advance notification to trauma facility Field interventions

Spinal immobilization, airway management, restoration of circulating volume

Page 7: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Post-traumatic hemorrhage

In 1994, a large prospective controlled clinical trial comparing immediate prehospital and ED fluid resuscitation with delayed resuscitation until arrival in the O.R. found that hypotensive patients with penetrating torso injuries did worse if they received early resuscitation with crystalloids (higher mortality, more post-op complications)

It is postulated that elevated SBP results in mechanical disruption of soft clot and dilution of clotting factors, accelerating ongoing hemorrhage

No studies have correlated fluid resuscitation with increased survival Key factors in the survival of critically injured patients are limited to

rapid transport to an appropriate facility and aggressive airway control

Page 8: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Guidelines for fluid administration

Despite the recent evidence, the American College of Surgeons recommendations for trauma resuscitation still maintain that an initial infusion of LR or NS is the standard of care for the initial treatment of hemorrhagic shock

It may be prudent however to undertake a moderate resuscitation for patients with uncontrolled vascular injuries of the torso (with the exception of the moribund patient)

Page 9: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Trauma-associated circulatory arrest

Implies that although the patient may be pulseless and apneic, the heart may still be beating (hypovolemia, tamponade, pneumo)

Survival is associated with younger age, single organ involvement, less than 10 min to surgical intervention, rapid prehospital ETI with slow (6-8 breaths/min) controlled ventilations (aggressive ventilation can severely impair cardiac output)

“Scoop & Treat” vs “Scoop & Run”

Page 10: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Conducting a Resuscitation

The trauma bay Resuscitation physicians Paradigms of

resuscitation Horizontal resuscitation –

one physician performs the primary and secondary surveys in their entirety

A second physician performs procedures as they come up

Page 11: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

The Trauma Team

Success of a horizontal resuscitation depends on each member of the team understanding and executing her role while the identified team leader (YOU!) keeps control and makes treatment decisions

For all Level 1 traumas in our trauma system, EP’s act as the assessment physician and conduct the initial primary +/- secondary surveys; stand to the patients right near the head and verbalize your findings loudly

If a procedure physician is available, he or she is positioned on the patients left and may need to perform chest thoracostomy, central line insertion, splinting etc

Trauma nurses are positioned on each side of the patient and are responsible for ECG monitoring, vital signs, labs, IV access and fluid administration

Page 12: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Hemorrhage and Shock

Page 13: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Goals

Securing the airway, maintaining ventilation, controlling hemorrhage and reversing shock

Trauma deaths show a trimodal distribution; immediately, within the first 24 hours, in the next 3-4 weeks; MOF is the leading cause of mortality in patients who survive the initial resuscitation and surgical intervention

Failure to adequately resuscitate in the ER can lead to acidosis, hypothermia, and coagulopathy, resulting in MOF and death

ISS, age, platelet count on admission, and lactate at 12 hours are all predictors of the development of MOF

Page 14: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Shock

Basic cellular derangement involves an imbalance of oxygen utilization

SIRS and MOF is on the far end of a continuum initated and perpetuated by inflammation and inflammatory mediators

Acute hemorrhage causes decreased CO and pulse pressure, resulting in tachycardia, vasoconstriction and redistribution of blood flow away from non-vital organs and initiating a multi-hormonal response

Aim is to stabilize and reverse these derangements before damage is done to individual organ systems

Base deficit is an indirect measure of lactate production and a reliable indicator of shock; lactate correlates with depth of shock and is a predictor of mortality

Page 15: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Priorities in Management

Assess and manage the airway and ventilation simultaneously (ETI, CXR, thoracostomy)

Control external hemorrhage with manual pressure, obtain vascular access, and begin volume resuscitation with crystalloids +/- blood

Identify source of hemorrhage: ongoing blood loss causing hypotension can usually be found in the chest, abdomen, or retroperitoneum

Conduct of thorough exam with frequent reassessments of the ABCs; incorporate the X-rays of the chest and pelvis and the FAST into your primary survey

Always protect the C-spine; obtain X-rays once stable

Page 16: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Resuscitation Fluid

Page 17: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Colloid vs Crystalloid

A large evidence based review of more than 82 studies comparing crystalloid to colloid resuscitation was published by the McMaster group in 1999 (Crit Care Med); there was no overall difference in mortality, pulmonary edema, or length of stay, but there was a trend toward better survival in trauma patients with crystalloid use (poor confidence intervals)

In order to show a significant difference in mortality, an RCT would have to enroll more then 9000 patients

In a systematic review of 30 studies with 1419 patients, albumin has been shown to increase risk of death

Overall the greatest difference is the exhorbitant cost of colloids compared to crystalloids

Therefore, colloid resuscitation cannot be recommended for routine use in the resuscitation of patients with hemorrhagic shock

Page 18: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

NS or LR

The non-anion gap acidosis that has been noted with NS use is not secondary to hyperchloremia, but in fact a lactic acidosis secondary to hypoperfusion

LR improves this acidosis because the lactate isomer is converted to bicarb, which acts as a buffer

Adequate resuscitation returns the pH to normal regardless of which fluid is used

NS is preferred in patients with TBI because of the slight hypertonicity (154mmol/L)

Page 19: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Blood

The decision to transfuse is made after consideration of mechanism of injury, hemodynamic status, response to crystalloid infusion, and pre-morbid status

In general, all trauma patients should receive a 2 L crystalloid infusion first

If they remain hemodynamically unstable or have had significant blood loss, begin transfusing immediately; 2 units of O neg (O pos in men) wide open through a fluid warmer

Page 20: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Transfusion Triggers

One large multicentre RCT showed that receving transfusions to a Hg threshold of 90 conferred no physiologic benefit compared to 70, and in younger patients with less severe illness the mortality was higher (some benefit noted for patients with AMI and UA)

Patients with massive transfusions are at a higher risk of dying from their injuries; independent predictors of mortality include persistent hypotension, inotrope requirements intra-operatively, and need for cross clamping of the aorta; interestingly, the amount of units of blood transfused was not an independent predictor of a bad outcome

Therefore massive transfusion requirements cannot be used as an indicator to discontinue resuscitation efforts

Page 21: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Other Blood Products

During large volume transfusions of PRBCs, other blood products must be given

As a guideline, give 2 units FFP for every 4-6 units of PRBCs (and when INR is elevated)

Platelet counts <100 are common in severe trauma; patients with ongoing bleeding should receive 6-10 units of platelets

Page 22: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Approach to the Secondary Survey

Neurologic exam LOC, pupils, H/N, CNs, TMs, spinal cord function, peripheral nerve exam Ability to move extremities and sense pain indicates intact cord

Thoracic exam Always remember to inspect and feel the chest wall for contusions, bony

crepitus, flail segments, SC emphysema

Abdominal exam Insertion of OG and foley, urine for R+M

Cardiac exam ECG

MSK exam Identify deformity, swelling, tenderness; check pulses

Page 23: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Diagnostic Imaging in Trauma

For the critically ill patient, incorporate X-rays of the chest and pelvis into your primary survey; C-spine series early for the stable moderately injured patient

FAST can also be incorporated into the primary survey for the detection of hemoperitoneum and the identification of patients who need immediate laparotomy

Assesses heptorenal recess, splenorenal recess, and rectovesicular recess for free fluid; false negative scans commonly involve bowel perfs, contained liver or spleen lacs

Also evaluates for pericardial fluid Stable patients can be further assessed by CT, which is the gold

standard in identifying location and extent of solid organ injury, presence of aortic or thoracic injury

Page 24: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Special Situations

Page 25: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Closed Head Injury

Hemorrhagic shock with CHI portends a poor prognosis; persistent hypotension is one of the worst prognostic indicators for recovery

Treatment aimed at restoring BP, controlling bleeding, assuring adequate CPP

Diagnosis and treatment of hypotension always takes precedence over the head injury

Defer head CT in patients with evidence of intra-abdominal bleeding and hypotension – they need a laparotomy

Do not withhold fluids for fear of cerebral edema; consider HTS as a resuscitation fluid

Page 26: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Spinal Cord Injury

Neurologic shock and hemorrhagic shock can occur simultaneously; treat first as presumed blood loss

Both are treated with aggressive fluid resuscitation If bleeding has been excluded, vasopressors are

indicated after adequate volume loading Patients in neurogenic shock are inappropriately

vasodilated and often bradycardic due to a loss of sympathetic tone

Dopamine is the drug of choice for its chronotropic, inotropic, and vasoconstrictive effects

Page 27: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

The Elderly

Age alone is not a predictor or morbidity and mortality in trauma

However, elderly patients have less physiologic reserve, more premorbid conditions, and less ability to compensate for injury

Vascular compliance, myocardial reserve, and bone strength are compromised

Heart disease is the leading premorbid condition that puts elderly patients are higher risk of complications

Consider medications (beta-blockers, coumadin)

Page 28: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

The Pediatric Patient

The majority of pediatric blunt trauma patients can be resuscitated and treated non-operatively with great success

All grades of liver, spleen, and kidney injuries can be managed non-operatively

Laparotomy has been shown to increase blood loss and transfusion requirements over successful non-operative management

Therefore children should be treated based on their response to resuscitation, not their injury

Page 29: Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine.

Conclusion

Preparation is key! Own the room. Become comfortable and

efficient as a team leader. Rapid resuscitation and stabilization is where

we can have the most impact on our patients