Trappinghot(quasiparticlesin( a(high(power ...jonckhee/VietnamPresentations/HNguyen_Quy… ·...

9
Trapping hot quasiparticles in a high power superconducting cooler Hung Q. Nguyen , M. Meschke, J.P. Pekola O.V. Lounasmaa Lab, Aalto University, Finland C.B. Winkelmann, H. Courtois Institut Néel, CNRS, Grenoble, France Hung Nguyen, Quy Nhon 2013

Transcript of Trappinghot(quasiparticlesin( a(high(power ...jonckhee/VietnamPresentations/HNguyen_Quy… ·...

Trapping  hot  quasiparticles  in  a  high  power  superconducting  cooler

Hung  Q.  Nguyen,  M.  Meschke,  J.P.  PekolaO.V.  Lounasmaa  Lab,  Aalto  University,  Finland

C.B.  Winkelmann,  H.  CourtoisInstitut  Néel,  CNRS,  Grenoble,  France

Hung Nguyen, Quy Nhon 2013

Basic of cooling using superconducting junctions

Giazotto et.al. RPM, 2006, figure 26Hung Nguyen, Quy Nhon 2013

Two methods to make SINIS coolers

Clark et.al., APL 2004 Lowell et.al., APL 2013

•Photolithography•SINIS  with  AlMn/Al•Great  demonstrations  on  cooling  bulk  objects

•E-­‐beam  lithography•Mostly  Cu/Al•Great  studies  about  physics.

Dolan, APL 1977(adapted from Rajauria’s thesis)

Pekola et.al., PRL 2004

Hung Nguyen, Quy Nhon 2013

Our method to make the coolers

Nguyen et.al., APL 2012

Junction  size 70x8  µmRN ~1  Ω

Optimum  current ~10  µACooling  power ~1  nW

•Single  vacuum  deposition•Trilayer,  2  tunnel  barriers•2  steps  photolithography•Chemical  wet  etch  Al  and  Cu•Suspended  cooled  Cu  island

DrainSuperconductor

Trap Cooled island

cooler barrier

drain barrier

resist

AlCu

V

10µm

I

CuAl

AlMn

heat  current charge  current

Hung Nguyen, Quy Nhon 2013

The role of the drain barrierCooler  barrier Drain  barrier500  Ωµm2 N/A  (no  AlMn)500  Ωµm2 1mbar500  Ωµm2 0.2mbar500  Ωµm2 0  mbar

Nguyen et.al., NJP 2013

200 nm

Cooled island200 nm100 nm

V(µV)

IRN

(µA!

)

−300 −200 −100 0 100 200 300−20

−10

0

10

20

T (mK)

T (m

K)

0 100 200 300 4000

100

200

300

400 Ts

Tn

AlAlMn

Cu

Hung Nguyen, Quy Nhon 2013

N1N2 STS1

Dx

S2 z

y

RN

RD

S1 : dSr.(SrTS) = INIS(V, TS , TN , RN )V � PNIS(V, TS , TN , RN )

�PNIS(0, TS , TD, RD)

S2 : dSr.(SrTS) = �PNIS(0, TS , TD, RD)� PNIS(0, TS , TST , RN )

N1 : NdNr2TN = �PNep(TN )

N2 : NdNr2TN = PNIS(V, TS , TN , RN )� PNep(TN )

D : DdDr2TD = PNIS(0, TS , TD, RD)� PDep(TD)

ST : NdNr2TST = PNIS(0, TS , TST , RN )� PSTep (TST ).

A thermal model

Nguyen et.al., NJP 2013Hung Nguyen, Quy Nhon 2013

A thermal modelCooler  barrier Drain  barrier500  Ωµm2 no  AlMn,  no  TD  term500  Ωµm2 500  Ωµm2

500  Ωµm2 10  Ωµm2

Hung Nguyen, Quy Nhon 2013

x (µm)T

(mK)

0 20 40 60 80 100300

350

400

450

500

Ts

TD

V (µV)

T N (m

K)

�� �� �� � ��� ��� ������

���

���

���

TN (mK)

P NIS

(nW

)

0 100 200 3000

0.2

0.4

0.6

0.8

1

Tbath (mK)

T N (m

K)

0 100 200 3000

100

200

300

200 nm

Cooled island200 nm60 nm

Cooler  barrier Drain  barrier500  Ωµm2 0.2mbar2500  Ωµm2 0.2mbar5000  Ωµm2 0.2mbarAl

AlMn

Coldest  T:    30  mK

Cu

The role of the cooler barrier

Q̇ep = ⌃⌦(T 5N � T 5

ph)

Q̇NIS =1

e2RN

ZdE(E � eV )nS(E)[fN (E � eV )� fS(E)]

T phN < Tbath

Hung Nguyen, Quy Nhon 2013

Conclusion

Al AlMn

CuWith good quasiparticle trapping, the SINIS coolers cool from 200 mK to 50 mK at 400 pW per device!

But there are still quasiparticles to trap.

TN (mK)

V opt/!

0 100 200 3000.65

0.7

0.75

0.8

0.85

0.9

0.95

1

V

IRN

−400 −200 0 200 400−20

−10

0

10

20

no  qps  draingood  drain  barriergood  cooling  barrierTheory

(µV)

(µAΩ)

Hung Nguyen, Quy Nhon 2013