Transport properties in graphene and graphene...

27
Transport properties in graphene and graphene bilayer Mikito Koshino (Tohoku Univerisity) Tsuneya Ando (Tokyo Institute of Techonology) Kentaro Nomura (RIKEN) Shinsei Ryu (UC Berkley) Acknowledgments

Transcript of Transport properties in graphene and graphene...

Page 1: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Transport properties in graphene and graphene bilayer

Mikito Koshino (Tohoku Univerisity)

Tsuneya Ando (Tokyo Institute of Techonology)Kentaro Nomura (RIKEN)Shinsei Ryu (UC Berkley)

Acknowledgments

Page 2: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Graphenes

Graphene: single-layer graphite

Manchester’s web page

10 micron 20 micron

Manchester’s web page

Experiments:Novoselov et al.,Science 306, 666 (2004)Novoselov et al., Nature 438, 197 (2005)Zhang et al., Nature 438, 201 (2005)

Page 3: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

EF

V(x)

n np

Electrons on graphene

v

v

v

-- Constant velocity -- Klein Tunneling

Relativistic 2D Dirac electronsK’K

K

K’

K’

px

py

E

px

py

E

K

Page 4: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Outlines

Tsuneya Ando (Tokyo Institute of Techonology)Kentaro Nomura (RIKEN)Shinsei Ryu (UC Berkley)

Acknowledgments

Electronic transport and localization effectof graphene / bilayer graphene

Graphene: “massless Dirac electron”

Bilayer graphene: “massive and gapless”

Page 5: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Band structure of graphene

K’K

K

K

K’

K’

A B

Velocity:

Effective Hamiltonian: “massless Dirac Fermion”

Atomic structure

0 = 3 eV

a = 0.246nm

McClure, Phys. Rev. 104, 666 (1956).

A, B: “pseudospin degree of freedom”

Band structure: gapless & linear

Dirac point

Page 6: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Zero-gap semiconductor or metal?

Conductivity of usual metal

D : Density of statesvF : Fermi velocity : Scattering time

Graphene

EF

EF

… Is conductivity zero or finite?

Dirac point:

--- Finite velocity

--- Zero density of states

Page 7: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Self-consistent Born approximation Shon and Ando, JPSJ, 67, 2421 (1998)

Self energy

Conductivity

Hamiltonian:

Disorder potential:

Self-consistent Born approximation:

Page 8: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

1/ WConductivity of graphene(Short-range scatterers)

Shon and Ando, JPSJ, 67, 2421 (1998)

Fermi energy

Clean

Dirty

--- At Dirac point

independent of disorder

--- Off Dirac point

Cf. Long-range scatterersNoro, Koshino, Ando JPSJ, 79, 094713 (2011)

Self-consistent Born approximation

Page 9: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Bilayer graphene

Hamiltonian

Effective mass:

McCann and Fal’ko, PRL 96, 086805 (2006)

A1 B1 A2 B2 0 ~ 3 eV

Interlayer1 ~ 0.4 eV

0.334nm

Massive chiral particle(near E=0)

A1 B2

“AB-stacking”

“Massive, but still zero gap”

Page 10: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Conductivity of bilayer graphene

Conductivity 0.03

0.08

0.15

1

MK and Ando, PRB 73, 245403 (2006)MK, New J. Phys., 11, 095010 (2009)

( ~ 10.1k)

Experiment (suspended bilayer):Feldman et al, Nature Physics 5, 889 (2009)

Dirac point of bilayer:

--- Finite density of states

Self-consistent Born approximation

Conductivity at Dirac point:

--- Zero velocity

Page 11: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Absence of back-scattering

Direction of pseudo spin

Hamiltonian: V(r) : Disorder potential (scalar)

V(r) cannot flippseudo-spin

Cf. Absence of localization in metallic carbon nanotubeAndo and Nakanishi, JPSJ. 67, 1704 (1998)Ando, Nakanishi, and Saito, ibid. 67, 2857 (1998)

Page 12: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Localization in graphene

Conductivity (Thouless number)

SCBA

g (in

log

scal

e)

Conductivity increasesas L increases

L =6,8,10,12,14

Hamiltonian:

Fermi Energy

“Symplectic”

EF

Disorder potential

Page 13: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Beta function Nomura, Koshino, Ryu, PRL 99 (2007)

Hikami, Larkin, Nagaoka (1980)

2D (conventional)

Beta function(Kubo-formula conductivity)

symplectic

orthogonal

(g)

0

0

g

Scaling theory

Graphene(anti-localizaton)

System size

Conductance

Beta function

L L+dL

2DEG withspin-orbit coupling

(anti-localizaton)(localizaton)

Page 14: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

How to tell localized / extended?

Extended state Localized state

Ene

rgy

Ene

rgy

0

0

E

Thouless number:

Conductivity:

energy sensitive toboundary condition

insensitive

How to tell a localized orextended?

Page 15: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Absense of localization

Graphene 2DEGwith SO-couplingKramers doublets

(time reversal symmetry)

localized phase

Localization prohibitted Localization allowed

Cf. Topological Insulator : Fu and Kane, PRB 76, 045302 (2007)

# of levels crossing at single energy= 1, 3, 5, ….

# of levels crossing at single energy= 0, 2, 4,….

Nomura, Koshino, Ryu, PRL 99 (2007)

Page 16: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Localization in bilayer graphene

SCBA

Monolayer

Koshino, PRB 78, 155411 (2008)

Bilayer

Conductivity increases as L increases Conductivity decays as L increases

SCBA

(localziation)(anti-localziation)

g (in

log

scal

e)

g (in

log

scal

e)

Cf. Weak localization of bilayer: Gorbachev et al, PRL 98, 176805 (2007)Kechedzhi et al, PRL 98, 176806 (2007)

Fermi EnergyFermi Energy

Page 17: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Pseudo-spin and back-scattering

absence ofback-scattering

presence ofback-scattering

anti-localization localization

Monolayer Bilayer

Page 18: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Gap opening in bilayer graphene

Theories:McCann, Phys. Rev. B 74, 161403(R) (2006).Castro et al., Phys. Rev. Lett. 99, 216802 (2007).Nilsson, et al., Phys. Rev. Lett. 98,126801 (2007).

Perpendicular E-fieldopens a band gap

Experiments:Oostinga et al., Nature Mater. 7, 151 (2008).Ohta, et al., Science 313, 951 (2006).

Bilayer graphene:

E

Back gateBilayer

graphene

E-field

Top gate

Page 19: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Single-valley Hall conductivity

--- Non-zero Hall conductivity induced in each single valleys(opposite between K and K’)

Koshino, PRB 78, 155411 (2008)

EFEF

Insulator “Quantum Hall state”

QuantumHall transition

Gapped bilayer graphene:

(related to Berry phase 2)

Page 20: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Quantum Hall transition

Extended Localized

Energy

1 2 3xy = 0

Usual quantum Hall (QH) systems:

Extended states exist between different QH phases

xy

Energy

Page 21: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Conductivity (EF= 0)

Analog of quantum Hall transition

Divergence oflocalization length

Koshino, PRB 78, 155411 (2008)

Gap width Localization lengthg

(in lo

g sc

ale)

Gap width

Single-vally Hall conductivity (EF= 0)

quantum Hall transition

xyK

/(e2 /h

)

2

L: small

large

Page 22: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Phase diagram

EF /

Gap

wid

th

Hall plateau diagramHall conductivity

EF /

A

B

C

D

A

BC

D

States extended only at boundary

Koshino, PRB 78, 155411 (2008)

--- Analog to QH transition controlled by E-field (no B-field)--- Observed as divergence of the localization length

Page 23: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Summary

Graphene (massless Dirac)

--- Metallic at Dirac point--- Absence of localization

(c.f., topological insulator)

Bilayer graphene(massive & gapless)

--- Presence of localization--- Gap opening induced delocalized states

(analog of QH transition)

Electronic transport and localization effectof graphene / bilayer graphene

Page 24: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Conductivity in smooth impurities

Exp: Conductivity measurementNovoselov et al., Nature 438, 197 (2005)

Conductivity at Dirac point

“Missing ”

Theory:(short-range)

Noro, Koshino, Ando JPSJ, 79, 094713 (2011)

Strength of disorder

Minimum conductivity is NOT universal Min

imum

con

duct

ivity long-range

short-range

d (potential range)

electron density

Page 25: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Localization and valley mixing

Suzuura, et al. PRL 89, 26660 (2002)

Disorder potential

Long-range⇒ K,K’ decoupled (Symplectic)

Short-range⇒ K,K’ mixed (Orthogonal)

K K’

short-range

long-range

time-reveral

ky

kx

E

Time reversal symmetry

ky

kx

E

Page 26: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Band structure of cabon nanotube (CNT)

a1

a2

LL

L

armchair

zigzag chiral

L = n1a1 + n2a2Chiral vector:

…. metallic…. semiconducting

metallic semiconducting

Page 27: Transport properties in graphene and graphene bilayerphome.postech.ac.kr/user/ams/workshop_data/loc2011koshino.pdf · Noro, Koshino, Ando JPSJ, 79, 094713 (2011) Strength of disorder

Localization of metallic carbon nanotube

EF

ConductanceNear EF = 0

Absense of back scattering

right-goingleft-going

Conductance never decays,constant atAndo and Nakanishi, JPSJ. 67, 1704 (1998);

Ando, Nakanishi, and Saito, ibid. 67, 2857 (1998).