Transport processes in nano-structured materials by non-linear time-resolved spectroscopy

27
Transport processes in nano- Transport processes in nano- structured materials by non-linear structured materials by non-linear time-resolved spectroscopy time-resolved spectroscopy R. Torre LENS e Dip. di Fisica , Università di Firenze INFM CRS Soft, c/o Universita’ La Sapienza Dip. di Fisica, Univ. di Firenze

description

Dip. di Fisica, Uni v. di Firenze. Transport processes in nano-structured materials by non-linear time-resolved spectroscopy R. Torre LENS e Dip. di Fisica , Università di Firenze INFM CRS Soft, c/o Universita’ La Sapienza. Transport Processes. - PowerPoint PPT Presentation

Transcript of Transport processes in nano-structured materials by non-linear time-resolved spectroscopy

Page 1: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Transport processes in nano-structured materials Transport processes in nano-structured materials by non-linear time-resolved spectroscopy by non-linear time-resolved spectroscopy

R. Torre

LENS e Dip. di Fisica , Università di Firenze INFM CRS Soft, c/o Universita’ La Sapienza

Dip. di Fisica, Univ. di Firenze

Page 2: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Transport Processes

These transport phenomena are relevant both for

fundamental physics and for technological applications.

Among them, the design of innovative materials for sound

and heat control.

• Acoustic waves propagation in nano-structured matter

• Flow of liquids in micro/nano pores

• Heat diffusion in heterogeneous media

Page 3: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Nano-structured materials

Nano-porous glasses filled with liquids

Colloidal suspensions

Gel-forming Mixtures

Random Structures

Ordered Structures

2D Fononic Crystals

Page 4: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Nano-porous glasses

Porous silica produced by sol-gel techniques.

These materials can be “easily” filled by liquids.

The physic models for these phenomena are still an open question .

The sound propagation in this materials shows extraordinary phenomena, as the

existence of a second slow longitudinal acoustic wave.

The flow processes are strongly modified by the porous dimension and surfaces.

Page 5: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Spectroscopic Techniques and Facilities

at the European Lab. for Non-Linear Spectroscopy (LENS)

Transient Grating Spectroscopy

Ultrafast Optical Kerr Effect Spectroscopy

Continuous Tech.

Time-Resolved Tech.

Light Scattering, Raman-Brilluoin Spectroscopy

Microscope for single-particle fluorescence

Time-Domain Tera Hertz Spectroscopy

Page 6: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Transient Grating Spectroscopy

DOE:Phase Grating LA2

APD

DigitalOscilloscope

Sample

CW Probe

Pulsed Excitation

InterferenzialFilter

LA1

El

Eso

Phase Control Neutral Filter

Chopper

SD

Eec

Eec

Eso

=532 nm

=1064 nm, t=20 ps

El+ES

LC

Nd-Yag mode-locked Laser

CW single-mode Laser

Page 7: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

100 101 102 103 104

Data Fit

HD

-TG

sig

nal

(arb

.un.)

Time (ns)

T = 20 °C, q = 1.00 m-1

Damped acoustic oscillations, Cs and s

Thermal diffusion, tViscous flow, v

tvS tttS

TGHD CeBeetqCAS // sin

Transient Grating Exp. on Vycor glass with WaterR. Cucini, A.Taschin, P.Bartolini e R.Torre

Vycor 7930 (Corning), porous diameter 4 nmFilled with bi-distilled water

Eur. Phys. J. ST, 141, 133–136 (2007) ; Philos. Mag., 87, 715-722 (2007)Phys. Rev. Lett., submitted

100 101 102 103 104

T = 90 °C T = 80 °C T = 70 °C T = 60 °C T = 50 °C T = 40 °C T = 30 °C T = 20 °C T = 10 °C T = 4 °C T = 0 °C T = -5 °C T = -10 °C

HD

-TG

sig

nal

(ar

b.u

n.)

Time (ns)

Page 8: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

-10 0 10 20 30 40 50 60 70 80 90

3.96

3.98

4.00

4.02

4.04

4.06

4.08

4.10

4.12

4.14

Cs

(Km

/sec

)

Temperature (°C)

Biot prediction

data q=1.00 m-1

-10 0 10 20 30 40 50 60 70 80 90

30

40

50

60

2000

4000

6000

8000

10000

Aco

usti

c re

laxa

tion

tim

e (n

s)

Temperature (°C)

data q = 1 m-1

Biot prediction

Transport Processes vs Biot model M. A. Biot, J. Acoust. Soc. Am., 28, 168 (1956).M. A. Biot, J. Acoust. Soc. Am., 28, 179 (1956).

• Very Good agreement on Cs A relatively simple theory based on continuum model

predicts correctly the high frequency (1.3 GHz) sound velocities in nano-structured materials.

• Very Poor predictions on s The model fails completely the sound damping.

Acoustic Propagation Temperature Dependence

Page 9: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Viscous Flow of the water inside the nano-porous

Thermal Diffusion in the nano-structured material

Temperature Dependence

-10 0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

v & t (

s)

Temperature (°C)

fit

v

t

Biot model

Transport Processes vs Biot model

• Very Good agreement on v The water flow can be correctly described as the

diffusive wave predicted by Biot Model.

• No predictions on t ?

Page 10: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Wave-Vector Dependence

0.5 1.0 1.5 2.0 2.5

3.6

3.8

4.0

4.2

4.4

CS (

km/s

)

q (m-1)

T = 40 °C T = -10 °C

Sound Velocities

Transport Processes vs Biot model

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.03

0.06

0.09

0.12

0.15

0.18

S (

ns-1

)

q1.2

T = -10 °C T = 40 °C

Damping of Sound

0 1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T = 40 °C T= -10 °C

v (s

-1)

q2 (m-2)

Diffusion Rate of the Liquid

• Cs does not depend on q Very weak acoustic dispersion effect

s=1/s qx , with x ≈ 1.2 Anomalous sound damping

v=1/v q2 Simple diffusion process

Page 11: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

2D Fononic Crystals

preliminary test

Ordered micro-Structures in Polymeric Films by Holographic Patterning.

100 m

2 m

1 m

Image from Optical Microscope

I. Malfanti, A.Taschin, P.Bartolini and R.Torre,

F.Simoni and F.Vita, Univ. Polit. Marche.

Epi-fluorescence image from a dye filled sample

Intensity profile in a selected direction

40 50 60 70 80 90 100

-0.5

0

0.5

1

1.5 Transient Grating preliminary results

Longitudinal Acoustic Phonon propagating in the 2D Lattice

Time nsec

Page 12: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Final Remarks

Non-linear time-resolved spectroscopy enables accurate and

precise investigations of the transport phenomena, covering a

particularly wide dynamic range.

Physics of transport phenomena in micro/nano-structured media

is a fundamental topic of material science.

Transient grating studies of filled nano-porous glasses show that

the Biot elastic model is able to predict correctly several transport

processes in a nano-structured medium. Nevertheless, some clear

limitations of the model are present.

Page 13: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Structured Glasses and Fluids

Group@LENS

• Permanent staff

R. Eramo

P. Bartolini

R. Torre

• Postdocs

A. Taschin

M. Plazanet

• PhD students

R. Cucini

I. Malfanti

LENS is an European FacilityEuropean Researchers can use the labs submitting a proposal.

www.lens.unifi.it

Page 14: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

R

>> R,

Onde acustiche vs mezzi eterogenei

Le onde propagano in un mezzo efficace

R

Le onde vengono diffuse

Effetti di multiple scatteringTeorie mezzo-effettivo

risonante

Teorie di omogenizzazioneMezzo-effettivo non risonanteModello di Biot

~ R,

Page 15: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Mezzi eterogenei solido-liquido

Topologia• Sfere di vetro/silice in liquidi• Colloidi

• Sfere consolidate con liquidi• Vetri porosi Percolativa

Mezzo effettivo

Modello di Biot

Non-Percolativa

Page 16: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Sistemi non percolativi, mezzo-efficace

1 sola onda longitudinale che propaga con velocità efficace

Onde acustiche in sistemi solido-liquido

),,,(1 2

1

ls

ls

fKK

c

, porosità, , tortuosità

Ks, Kl , moduli elastici

s, l, densità

Sistemi percolativi, modello Biot

2 onde longitudinali che propagano con velocità diverse

),,,,,,(

),,,,,,(

22

11

fslsm

fslsm

KKKfc

KKKfc

Km , modulo elastico del solido percolante senza liquido

Page 17: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Teoria di Biot sulla propagazione acustica nei mezzi porosi (1956) (1)

c

2

2

aρl

lc

(1) M.A.Biot, J.Acoust. Soc. Am., 28, 168, (1956)

La teoria di Biot prevede l’esistenza di due onde acustiche longitudinali di prima e

seconda specie, corrispondenti al moto del liquido e della matrice rispettivamente in fase ed in controfase.

Vycor+CCl4

L’onda di seconda specie non si propaga

Frequenza caratteristica c: funzione della viscosità l, della densità del liquido l e del diametro medio dei pori a.

c Propagazione dell’onda di seconda specie

c 75 GHz

Mp200nm+CCl4 c 30 MHz 3 GHz

Page 18: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

l

l2

a

aδc Rc

Il fluido è viscosamente agganciato alla matrice solida e si muove in fase con esso: propagazione di una sola onda acustica.

Solamente uno strato di liquido è viscosamente agganciato alla matrice. Il resto del liquido si disaccoppia: propagazione di una seconda onda con velocità prossima a quella del liquido di bulk.

Matrice

Porzione di liquido agganciata

Parte del liquido disaccoppiata

Page 19: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

100 101 102 103 104-1.0

-0.5

0.0

0.5

1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

1.5

100 101 102

-0.1

0.0

0.1

PM-CCl4, q = 0.997 m-1, T = 293 K

HD

-TG

sig

nal [

Arb

.Un.

]

Vycor-CCl4, q = 0.997 m-1, T = 293 K

PM-CCl4, q = 0.997 m-1, T = 293 K

HD

-TG

sig

nal [

Arb

.Un.

]

data fit

Time [s]

residues

Time [ns]

Vycor + CCl4

PM200 + CCl4

Page 20: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

3.68

3.70

3.72

3.74

3.76

240 260 280 300 320 340

0.8

1.2

1.6

2.0

2.4

3.98

4.00

4.02

4.04

q = 2.09 m-1 Biot, f >> fc

q = 1.39 m-1

q = 1.00 m-1

CS [

Km

/s]

PM

Temperature [K]

effective medium Vyvor-CCl4

effective medium PM-CCl4

CCl4, q = 1 m-1

Biot, f << fc

Vycor

Page 21: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

20

40

60

80

100

120

140

60

80

100

120

30006000

240 260 280 300 320 34040

50

60

70

80

90

q = 2.09 m-1

q = 1.39 m-1

q = 1.00 m-1

Biot theory predictions

Sq1.5

S [ns

] Sq2

Temperature [K]

Vycor + CCl4

Page 22: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

369

12151821

260 270 280 290 300 310 320 330 340

11

12

13

14

15

16

48

1216

40

60

80

q = 2.09 m-1, q = 1.39 m-1, q = 1.00 m-1

Sq1.

5 S

[ns

]

Temperature [K]

Sq0.

5

Biot theory predictions

PM200 + CCl4

Page 23: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Modello Biot vs mezzo-efficace

s

mm NK

)1(34

Veloc. long. solido percolante

l

lK

Velocità long.

liquido percolante

Onda veloce

Onda lenta

c

mm NK3

4

Parametro di rigidità della matrice solida0

Non

per

cola

tivo

per

cola

tivo

Sfere di silicein acqua

Sfere di silice consolidate in acqua

Page 24: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Fluidi elettroreologici

+

-

+

-

Sospensioni colloidali di particelle polarizzabili in solventi non-polarizzabili

Sfere di silice, con o senza coatings, in liquidi molecolari

Page 25: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Fluidi elettroreologici rappresentano mezzi eterogenei con caratteristiche strutturali e dinamiche controllabili

Aumento della shear viscosity

Ordine colonnare indotto

Sistema non-percolativo

percolativo

Page 26: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

c

Parametro di rigidità del sistema

Non percolativo

Percolativo

Campo elettrico

Come varia la propagazione acustica in funzione del campo elettrico ?

mutiple scattering e localizzazione ?

effetti di bandgap fononiche ?

• Anistropia di percolazione• Fase solida con ordine cristallino delle nanosfere

Onda veloce ?

Onda lenta ?

R << RR

Page 27: Transport processes  in nano-structured materials by non-linear time-resolved spectroscopy

Misure di equilibrio in funzione della geometria e di E

Prop. planareom

eotropica

Misure di non-equilibrio in funzione del tempo

( misure strutturali e dinamiche dopo rapida accensione di E)

E

tempo