Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are...

128
Transport Layer 3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking: A Top Down Approach Featuring the Internet , 2nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002. (copyright 1996-2002 J.F Kurose and K.W. Ross, All Rights Reserved)

Transcript of Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are...

Page 1: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-1

Reti di calcolatori e Sicurezza-- Transport Layer ---

Part of these slides are adapted from the slides of the book:Computer Networking: A Top Down Approach Featuring the Internet,

2nd edition. Jim Kurose, Keith Ross

Addison-Wesley, July 2002. (copyright 1996-2002

J.F Kurose and K.W. Ross, All Rights Reserved)

Page 2: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-2

Chapter 3: Transport LayerOur goals: understand

principles behind transport layer services: multiplexing/

demultiplexing reliable data

transfer flow control congestion control

learn about transport layer protocols in the Internet: UDP: connectionless

transport TCP: connection-oriented

transport TCP congestion control

Page 3: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-3

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Page 4: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-4

Transport services and protocols provide logical

communication between app processes running on different hosts

transport protocols run in end systems send side: breaks app

messages into segments, passes to network layer

rcv side: reassembles segments into messages, passes to app layer

more than one transport protocol available to apps Internet: TCP and UDP

application

transportnetworkdata linkphysical

application

transportnetworkdata linkphysical

networkdata linkphysical

networkdata linkphysical

networkdata linkphysical

networkdata linkphysicalnetwork

data linkphysical

logical end-end transport

Page 5: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-5

Transport vs. network layer

network layer: logical communication between hosts

transport layer: logical communication between processes relies on, enhances,

network layer services

Household analogy:12 kids sending letters

to 12 kids processes = kids app messages =

letters in envelopes hosts = houses transport protocol =

Ann and Bill network-layer protocol

= postal service

Page 6: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-6

Internet transport-layer protocols reliable, in-order

delivery (TCP) congestion control flow control connection setup

unreliable, unordered delivery: UDP no-frills extension of

“best-effort” IP

services not available: delay guarantees bandwidth guarantees

application

transportnetworkdata linkphysical

application

transportnetworkdata linkphysical

networkdata linkphysical

networkdata linkphysical

networkdata linkphysical

networkdata linkphysicalnetwork

data linkphysical

logical end-end transport

Page 7: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-7

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Page 8: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-8

Un primo servizio

Network = trasferimento di dati tra host della rete Host identificato in modo univoco da un

indirizzo IP Come si fa a traferire i dati ricevuti ai

processi che li hanno richiesti? Multiplexing -- demultiplexing

Page 9: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-9

Porte e processi

Porta identifica in modo univoco un processo in esecuzione su di un host Porte di “sistema”: 0 – 1023 FTP – 21, HTTP – 80, RFC 1700

Applicazioni di rete Porte maggiori di 1024

Page 10: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-10

applicationtransportnetwork

MP2

applicationtransportnetwork

Multiplexing/demultiplexingsegment – unità di

trasferimento di dati delle entità coinvolte al livello del trasporto

TPDU: transport protocol data unit receiver

HtHn

Demultiplexing: invio dei segmenti ricevuti ai processi

segment

segment Mapplicationtransportnetwork

P1M

M MP3 P4

segmentheader

application-layerdata

Page 11: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-11

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

Inviare i msg ricevuti al socketcorretto

Demultiplexing (host recezione):Raccogliere i dati, Inviarli in rete con l’indirizzo corretto

Multiplexing (host invio):

Page 12: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-12

Demultiplexing: modalità di funzionamento host riceve un msg IP (datagrams)

Ogni datagram è caratterizzato da una coppia di indirizzi IP (mittente, destinatario)

ogni datagram come paylod ha un msg di trasporto

Msg del trasporto ha le informazioni dulle porte del mittente e del destinatario

Indirizzi IP & porte sono utilizzate per inviare il msg al socket corretto

source port # dest port #

32 bits

applicationdata

(message)

other header fields

TCP/UDP segment format

Page 13: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-13

Connectionless demultiplexing Creazione del socket (in

unqualche modo)

Socket UDP sono identificati da:

(dest IP address, dest port number)

Alla recezione del segmento UDP: Si contralla la porta di

destinazione Invia il segmento al

socket in ascolto su quella porta

datagrams con IP e porta del mittente diverse possono essere inviati allo stesso socket.

Page 14: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-14

Connectionless demux

DatagramSocket serverSocket = new DatagramSocket(6428);

ClientIP:B

P3

client IP: A

P1P1P3

serverIP: C

SP: 6428

DP: 9157

SP: 9157

DP: 6428

SP: 6428

DP: 5775

SP: 5775

DP: 6428

Page 15: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-15

Connection-oriented demux

TCP socket sono identificati source IP address source port number dest IP address dest port number

Host in recezione utilizza queste quattro informazioni per inviare il msg a destinazione

Server puo’ operare in modalità multithreading (pertanto sono attivi diversi socket) Ogni socket attivo è

identificato in modo univoco da quadrupla di valori

Page 16: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-16

Connection-oriented demux (cont)

ClientIP:B

P3

client IP: A

P1P1P3

serverIP: C

SP: 80

DP: 9157

SP: 9157

DP: 80

SP: 80

DP: 5775

SP: 5775

DP: 80

P4

Page 17: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-17

Multiplexing/demultiplexing

host A server Bsource port: xdest. port: 23

source port:23dest. port: x

telnet app

Web clienthost A

Webserver B

Web clienthost C

Source IP: CDest IP: B

source port: x

dest. port: 80

Source IP: CDest IP: B

source port: y

dest. port: 80

Web server

Source IP: ADest IP: B

source port: x

dest. port: 80

Page 18: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-18

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Page 19: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-19

UDP: User Datagram Protocol [RFC 768]

Protocollo di trasporto essenziale

Servizio di tipo “best effort”

Segmenti UDP : perdere senza ordine

connectionless: no handshaking Ogni segmento UDP è

gestito in modo totalmente independente dagli altri segmenti

Quando è necessario utilizzare UDP?

Non c’è la necessità di stabilire una connessione

Applicazioni semplici: non abbiamo bisogno di informazioni di stato

Header dei segmenti piccoli

Nessun controllo per evitare i problemi di congestione

Page 20: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-20

UDP

Multimedia Possono permettersi

una perdita di informazione

Chi utilizza UDP DNS

Aggiungere un meccanismo di affidabilità ad UDP error recover al livello

delle applicazioni

source port # dest port #

32 bits

Applicationdata

(message)

UDP segment format

length checksumLength, in

bytes of UDPsegment,including

header

Page 21: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-21

UDP checksum

Sender: Segmenti sono visti

come sequenze di interi di 16-bit

checksum: complemento ad 1 della somma di tutti gli interi che compongono il segmento

Checksum-value viene inserito nel campo del segmento denominato checksum

Receiver: Calcola il valore di checksum

del segmento Controlla se il valore calcolato

corrisponde al valore memorizzato nel campo checksum del segmento: NO - error detected YES - no error detected. Potrebbero essere presenti

altri errori

Obiettivo: scoprire eventuali errori di trasmissione

Page 22: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-22

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Page 23: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-23

Trasferimento affidabilke Punto importante nei livelli app., transport, link. Una delle problematiche piu’ importanti del networking

Page 24: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-24

Reliable data transfer: RDT

sendside

receiveside

rdt_send(): invocata dal livellodelle applicazioni

udt_send(): trasferire pacchetti su di un canale

non affidabilerdt_rcv(): chiamata al

momentodella recezione dei pacchetti

deliver_data(): invia i dati ai livelli superiori

Page 25: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-25

Automi e trasferimento affidabile

Trasferimento di dati (unidirezionale) Ma con meccanismi di controllo del flusso.

Sender e receiver sono specificati da automi a stati finiti.

state1

state2

event causing state transitionactions taken on state transition

state: when in this “state” next state

uniquely determined by next event

eventactions

Page 26: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-26

Rdt1.0: reliable transfer over a reliable channel

Il canale di trasmissione è affidabile no bit erros no loss of packets

Sender e receiver (fanno le ovvie cose!!)

Wait for call from above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)deliver_data(data)

Wait for call from

below

rdt_rcv(packet)

sender receiver

Page 27: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-27

Rdt2.0: channel with bit errors Il canale puo’ modificare il valore dei bit presenti nei

pacchetti UDP checksum

Come vengono determinati questi errori di trasmissione: acknowledgements (ACKs): receiver invia al sender un

messaggio di recezione (senza errori) del pacchetto negative acknowledgements (NAKs): receiver invia al sender un

messaggio di errore Sender trasmette nuovamente il pacchetto quando riceve un

messaggio NAK

Novità (protocolli ARQ) error detection receiver feedback (ACK,NAK) Ritrasmissione

Page 28: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-28

rdt2.0: la specifica (FSM)

Wait for call from above

snkpkt = make_pkt(data, checksum)udt_send(sndpkt)

extract(rcvpkt,data)deliver_data(data)udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for ACK or

NAK

Wait for call from

belowsender

receiverrdt_send(data)

Page 29: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-29

rdt2.0: assenza di errori

Wait for call from above

snkpkt = make_pkt(data, checksum)udt_send(sndpkt)

extract(rcvpkt,data)deliver_data(data)udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for ACK or

NAK

Wait for call from

below

rdt_send(data)

Page 30: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-30

rdt2.0: Scenario con errore

Wait for call from above

snkpkt = make_pkt(data, checksum)udt_send(sndpkt)

extract(rcvpkt,data)deliver_data(data)udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for ACK or

NAK

Wait for call from

below

rdt_send(data)

Anche detti protocolli Stop-and-Wait

Page 31: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-31

rdt2.0 ha un fatal flaw!

Cosa succede quando I messaggi ACK/NAK sono corrotti?

sender non è in grado di sapere cosa è successo al receiver

Si possono duplicare i messaggi trasmessi

Come rimediare? sender ACKs/NAKs e

receiver’s ACK/NAK? Cosa accade in caso di perdita del sender ACK/NAK?

Gestione dei messaggi duplicati:

sender aggiunge ad ogni pacchetto il sequence number

receiver non trasmette alle applicazioni i pacchetti duplicati

Sender sends one packet, then waits for receiver response

stop and wait

Page 32: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-32

rdt2.1: sender, handles garbled ACK/NAKs

Wait for call 0 from

above

sndpkt = make_pkt(0, data, checksum)udt_send(sndpkt)

rdt_send(data)

Wait for ACK or NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) ||isNAK(rcvpkt) )

sndpkt = make_pkt(1, data, checksum)udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) ||isNAK(rcvpkt) )

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt)

Wait for call 1 from

above

Wait for ACK or NAK 1

Page 33: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-33

rdt2.1: receiver, handles garbled ACK/NAKs

Wait for 0 from below

sndpkt = make_pkt(NAK, chksum)udt_send(sndpkt)

rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt)

extract(rcvpkt,data)deliver_data(data)sndpkt = make_pkt(ACK, chksum)udt_send(sndpkt)

Wait for 1 from below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt)

extract(rcvpkt,data)deliver_data(data)sndpkt = make_pkt(ACK, chksum)udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)udt_send(sndpkt)

rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)udt_send(sndpkt)

Duplicato!!!!

Page 34: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-34

rdt2.1

Sender: Pacchetti con

numero di sequenza (basta un solo bit di informazione)

Stati: In ogni stato si deve

ricordare il numero di sequenz (0 o 1)

Receiver: Deve controllare se il

pacchetto è duplicato Ogni stato mantiene

informazione su quale numero di sequenza si attende

Page 35: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-35

rdt2.2: Protocollo NAK-free

Come rdt 2.1 ma ... Invece di inviare un msg NAK, il receiver invia un msg di

ACK per l’ultimo pacchetto ricevuto correttamente Informazioni di stato “receiver must explicitly include seq # of pkt being ACKed”

ACK duplicato (lato sender) = NAK: ristrasmissione del pkt corrente

Page 36: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-36

rdt2.2: sender e receiver (in pillole)

Wait for call 0 from

above

sndpkt = make_pkt(0, data, checksum)udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isACK(rcvpkt,1) )

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,0)

Wait for ACK

0

sender FSMfragment

Wait for 0 from below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt)

extract(rcvpkt,data)deliver_data(data)sndpkt = make_pkt(ACK0, chksum)udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) || has_seq1(rcvpkt))

sndpkt = make_pkt(ACK1, chksum) udt_send(sndpkt)

receiver FSMfragment

Page 37: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-37

rdt3.0: Canali con errori e perdita di pacchetti

Ipotesi aggiuntive: Il canale di trasmissione puo’ perdere pacchetti (dati o ACK) checksum, seq. #, ACK,

sono sufficienti?

Come si gestisce la perdita di pacchetti? sender attende un certo

periodo di tempo prima di trasmettere nuovamente l’informazione

Una possibile soluzione: sender rimane in attesa per un periodo di tempo ragionevole

I pkt vengono trasmessi nuovamente se non viene ricevuto un ACK in questo periodo di tempo

Se la consegna del pkt (ACK) è solo ritardata (non avviene perdita) Duplicazione: gestita

tramite il # di sequenza receiver specifica il # di

sequenza del pkt ricevuto countdown timer

Page 38: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-38

rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)udt_send(sndpkt)start_timer

rdt_send(data)

Wait for

ACK0

rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) ||isACK(rcvpkt,1) )

Wait for call 1 from

above

sndpkt = make_pkt(1, data, checksum)udt_send(sndpkt)start_timer

rdt_send(data)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,0)

rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) ||isACK(rcvpkt,0) )

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,1)

stop_timerstop_timer

udt_send(sndpkt)start_timer

timeout

udt_send(sndpkt)start_timer

timeout

rdt_rcv(rcvpkt)

Wait for call 0from

above

Wait for

ACK1

rdt_rcv(rcvpkt)

Page 39: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-39

rdt3.0: esempio

Page 40: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-40

rdt3.0: esempio

Page 41: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-41

rdt3.0

rdt3.0 funziona correttamente ma esibisce dei problemi di efficienza relativi all’uso della banda di trasmissione

Page 42: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-42

rdt3.0: stop-and-wait

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arriveslast packet bit arrives, send ACK

ACK arrives, send next packet, t = RTT + L / R

U sender

= .008

30.008 = 0.00027

microseconds

L / R

RTT + L / R =

Page 43: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-43

Pipeline

Pipelining: il mittente invia un certo numero di pacchetti senza attendere il relativo ACK Operare correttamente con i # di sequenza Buffer (mittente e destinatario)

Due tipi di protocolli: go-Back-N, selective repeat

Page 44: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-44

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arriveslast packet bit arrives, send ACK

ACK arrives, send next packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACKlast bit of 3rd packet arrives, send ACK

U sender

= .024

30.008 = 0.0008

microseconds

3 * L / R

RTT + L / R =

Increase utilizationby a factor of 3!

Page 45: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-45

Protocolli “sliding window”

Page 46: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-46

Go-Back-NSender: Header; k-bit per memorizzare i numeri di sequenza dei pkt. Si permette di avere una “finestra fino ad N”, di pkt consecutivi in

cui non è stato ricevuto il relativo ack

ACK(n): ACK cumulativo dei pkt con # minore di n timer per i pkt in trasmissione timeout(n): trasmettere il pkt n e tutti i pkt nella parte superiore della

finestra di trasmissione

Page 47: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-47

GBN: lato sender

Wait start_timerudt_send(sndpkt[base])udt_send(sndpkt[base+1])…udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) { sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum) udt_send(sndpkt[nextseqnum]) if (base == nextseqnum) start_timer nextseqnum++ }else refuse_data(data)

base = getacknum(rcvpkt)+1If (base == nextseqnum) stop_timer else start_timer

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

base=1nextseqnum=1

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Page 48: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-48

GBN: lato receiver

ACK viene inviato per i pkt corretti aventi il piu’ slto numero seq # ACK duplicati Variabile di stato: expectedseqnum

out-of-order pkt: discard -> no buffering! ACK pkt con il piu’ alto seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt) && notcurrupt(rcvpkt) && hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)deliver_data(data)sndpkt = make_pkt(expectedseqnum,ACK,chksum)udt_send(sndpkt)expectedseqnum++

expectedseqnum=1sndpkt = make_pkt(expectedseqnum,ACK,chksum)

Page 49: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-49

GBN inaction

Page 50: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-50

Selective Repeat

receiver invia ACK di tutti i pkt ricevuti correttamente. Buffer per gestire l’ordine dei pacchetti Sender invia nuovamente i pkt senza ACK Sender attiva timer per ogni pkt senza ACK

La finestra del sender: N # di sequenza consecutivi Limite superiore alla dimensione della finestra

Page 51: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-51

Selective repeat: sender, receiver windows

Page 52: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-52

Selective repeat

data from above : if next available seq # in

window, send pkt

timeout(n): resend pkt n, restart

timer

ACK(n) in [sendbase,sendbase+N]:

mark pkt n as received if n smallest unACKed

pkt, advance window base to next unACKed seq #

senderpkt n in [rcvbase, rcvbase+N-

1]

send ACK(n) out-of-order: buffer in-order: deliver (also

deliver buffered, in-order pkts), advance window to next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

ACK(n)

otherwise: ignore

receiver

Page 53: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-53

Selective repeat

Page 54: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-54

Selective repeat

seq #’s: 0, 1, 2, 3 window size=3

receiver non riesce a discriminare i due comportamenti

Window di dimensione inferiore allo spazio dei numeri di sequenza

Page 55: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-55

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Page 56: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-56

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

full duplex data: bi-directional data flow

in same connection MSS: maximum

segment size

connection-oriented: handshaking (exchange

of control msgs) init’s sender, receiver state before data exchange

flow controlled: sender will not

overwhelm receiver

point-to-point: one sender, one

receiver

reliable, in-order byte stream: no “message

boundaries”

pipelined: TCP congestion and flow

control set window size

send & receive bufferssocketdoor

T C Psend buffer

T C Preceive buffer

socketdoor

segm ent

applicationwrites data

applicationreads data

Page 57: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-57

TCP segment structure

source port # dest port #

32 bits

applicationdata

(variable length)

sequence number

acknowledgement numberReceive window

Urg data pnterchecksum

FSRPAUheadlen

notused

Options (variable length)

URG: urgent data (generally not used)

ACK: ACK #valid

PSH: push data now(generally not used)

RST, SYN, FIN:connection estab(setup, teardown

commands)

# bytes rcvr willingto accept

countingby bytes of data(not segments!)

Internetchecksum

(as in UDP)

Page 58: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-58

Il segment TCP Connessione:

(SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

window + flow control acknowledgment, SequenceNum, RcvdWinow

Flags SYN, FIN, RESET, PUSH, URG, ACK

Checksum pseudo header + TCP header + data

Sender

Data (SequenceNum)

Acknowledgment +RcvdWindow

Receiver

Page 59: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-59

TCP seq. #’s and ACKsSeq. #’s:

byte stream “number” of first byte in segment’s data

ACKs: seq # of next byte

expected from other side

cumulative ACKQ: how receiver handles

out-of-order segments A: TCP spec doesn’t

say, - up to implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Usertypes

‘C’

host ACKsreceipt

of echoed‘C’

host ACKsreceipt of

‘C’, echoesback ‘C’

timesimple telnet scenario

Page 60: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-60

TCP Round Trip Time and TimeoutQ: how to set TCP

timeout value? longer than RTT

but RTT varies too short: premature

timeout unnecessary

retransmissions too long: slow

reaction to segment loss

Q: how to estimate RTT? SampleRTT: measured time

from segment transmission until ACK receipt ignore retransmissions

SampleRTT will vary, want estimated RTT “smoother” average several recent

measurements, not just current SampleRTT

Page 61: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-61

TCP Round Trip Time and TimeoutEstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

Exponential weighted moving average influence of past sample decreases exponentially fast typical value: = 0.125

Page 62: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-62

Example RTT estimation:RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RTT

(mill

isec

onds

)

SampleRTT Estimated RTT

Page 63: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-63

TCP Round Trip Time and TimeoutSetting the timeout EstimtedRTT plus “safety margin”

large variation in EstimatedRTT -> larger safety margin first estimate of how much SampleRTT deviates from EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically, = 0.25)

Then set timeout interval:

Page 64: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-64

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Page 65: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-65

TCP: Sender

00 sendbase = initial_sequence number 01 nextseqnum = initial_sequence number 0203 loop (forever) { 04 switch(event) 05 event: data received from application above 06 create TCP segment with sequence number nextseqnum 07 start timer for segment nextseqnum 08 pass segment to IP 09 nextseqnum = nextseqnum + length(data) 10 event: timer timeout for segment with sequence number y 11 retransmit segment with sequence number y 12 compute new timeout interval for segment y 13 restart timer for sequence number y 14 event: ACK received, with ACK field value of y 15 if (y > sendbase) { /* cumulative ACK of all data up to y */ 16 cancel all timers for segments with sequence numbers < y 17 sendbase = y 18 } 19 else { /* a duplicate ACK for already ACKed segment */ 20 increment number of duplicate ACKs received for y 21 if (number of duplicate ACKS received for y == 3) { 22 /* TCP fast retransmit */ 23 resend segment with sequence number y 24 restart timer for segment y 25 } 26 } /* end of loop forever */

Pseudo Codice

Page 66: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-66

TCP reliable data transfer

TCP creates rdt service on top of IP’s unreliable service

Pipelined segments Cumulative acks TCP uses single

retransmission timer

Retransmissions are triggered by: timeout events duplicate acks

Initially consider simplified TCP sender: ignore duplicate acks ignore flow control,

congestion control

Page 67: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-67

TCP sender events:data rcvd from app: Create segment with

seq # seq # is byte-stream

number of first data byte in segment

start timer if not already running (think of timer as for oldest unacked segment)

expiration interval: TimeOutInterval

timeout: retransmit segment

that caused timeout restart timer Ack rcvd: If acknowledges

previously unacked segments update what is known

to be acked start timer if there are

outstanding segments

Se scade un timer, lo rifaccio ripartire con valore di time-out

doppio.Se ok, risettato al valore

ottenuto con estimatedRTT e devRTT

Page 68: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-68

TCP sender(simplified)

NextSeqNum = InitialSeqNum SendBase = InitialSeqNum

loop (forever) { switch(event)

event: data received from application above create TCP segment with sequence number NextSeqNum if (timer currently not running) start timer pass segment to IP NextSeqNum = NextSeqNum + length(data)

event: timer timeout retransmit not-yet-acknowledged segment with smallest sequence number start timer

event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer }

} /* end of loop forever */

Comment:• SendBase-1: last cumulatively ack’ed byteExample:• SendBase-1 = 71;y= 73, so the rcvrwants 73+ ;y > SendBase, sothat new data is acked

Page 69: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-69

TCP: retransmission scenarios

Host A

Seq=100, 20 bytes data

ACK=100

timepremature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Seq=

92

tim

eout

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim

eout

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

Seq=

92

tim

eout

SendBase= 100

SendBase= 120

SendBase= 120

Sendbase= 100

Page 70: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-70

TCP retransmission scenarios (more)

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim

eout

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase= 120

Page 71: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-71

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment withexpected seq #. All data up toexpected seq # already ACKed

Arrival of in-order segment withexpected seq #. One other segment has ACK pending

Arrival of out-of-order segmenthigher-than-expect seq. # .Gap detected

Arrival of segment that partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500msfor next segment. If no next segment,send ACK

Immediately send single cumulative ACK, ACKing both in-order segments

Immediately send duplicate ACK, indicating seq. # of next expected byte

Immediate send ACK, provided thatsegment startsat lower end of gap

Page 72: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-72

Fast Retransmit

Time-out period often relatively long: long delay before

resending lost packet

Detect lost segments via duplicate ACKs. Sender often sends

many segments back-to-back

If segment is lost, there will likely be many duplicate ACKs.

If sender receives 3 ACKs for the same data, it supposes that segment after ACKed data was lost: fast retransmit: resend

segment before timer expires

Page 73: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-73

event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } else { increment count of dup ACKs received for y if (count of dup ACKs received for y = 3) { resend segment with sequence number y }

Fast retransmit algorithm:

a duplicate ACK for already ACKed segment

fast retransmit

Page 74: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-74

Commenti

ACK comulativi Sender

Sendbase = piu’ piccolo numero di sequenza dei segmenti trasmessi ma di cui non si è ancora ricevuto ACK

Nextseqnum = numero di sequenza del prossimo dato da inviare

Page 75: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-75

TCP vs GBN

Sender invia i segmenti 1, 2, …, N. Assumiamo che i segmenti arrivino correttamente al destinatario.

ACK(n) viene perduto (unico ACK perduto)

GBN trasmette nuovamente i segmenti ??

TCP trasmette nuovamente i segmenti ??

Page 76: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-76

TCP vs GBN

Sender invia i segmenti 1, 2, …, N. Assumiamo che i segmenti arrivino correttamente al destinatario.

ACK(n) viene perduto (unico ACK perduto)

GBN trasmette nuovamente i segmenti n, n+1 , …, N

TCP trasmette nuovamente al piu’ il segmento n (se il timeout di n scatta prima dell’arrivo di ACK(n+1))

Page 77: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-77

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Page 78: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-78

TCP Flow Control

receive side of TCP connection has a receive buffer:

speed-matching service: matching the send rate to the receiving app’s drain rate app process may be

slow at reading from buffer

sender won’t overflow

receiver’s buffer bytransmitting too

much, too fast

flow control

Page 79: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-79

TCP Flow control: how it works

(Suppose TCP receiver discards out-of-order segments)

spare room in buffer= RcvWindow

= RcvBuffer-[LastByteRcvd - LastByteRead]

Rcvr advertises spare room by including value of RcvWindow in segments

Sender limits unACKed data to RcvWindow guarantees receive

buffer doesn’t overflow

Page 80: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-80

Sliding Window

Sending side LastByteAcked < = LastByteSent

LastByteSent < = LastByteWritten

buffer bytes between LastByteAcked and LastByteWritten

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

Receiving side LastByteRead < NextByteExpected

NextByteExpected < = LastByteRcvd +1

buffer bytes between NextByteRead and LastByteRcvd

Page 81: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-81

TCP Flow Control: variabili di stato

Send buffer size: MaxSendBuffer Receive buffer size: MaxRcvBuffer Receiving side

LastByteRcvd - LastByteRead < = MaxRcvBuffer AdvertisedWindow = MaxRcvBuffer - (NextByteExpected -

NextByteRead) Sending side

LastByteSent - LastByteAcked < = AdvertisedWindow EffectiveWindow = AdvertisedWindow - (LastByteSent -

LastByteAcked) LastByteWritten - LastByteAcked < = MaxSendBuffer block sender if (LastByteWritten - LastByteAcked) + y > MaxSenderBuffer

Page 82: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-82

TCP Controllo del flusso: azioni Inviare ACK all’arrivo di segmenti

Se ho finito di spedire e ho AdvertisedWindow = 0? Problema: il ricevente non sapra’ mai se ho

di nuovo spazio nel buffer il ricevente se ha AdvertisedWindow = 0

continua a spedire ack fino a che si libera il buffer

Page 83: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-83

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Page 84: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-84

TCP Connection Management

Recall: TCP sender, receiver establish “connection” before exchanging data segments

initialize TCP variables: seq. #s buffers, flow control info

(e.g. RcvWindow) client: connection initiator Socket clientSocket = new

Socket("hostname","port

number"); server: contacted by client Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP SYN segment to server specifies initial seq # no data

Step 2: server host receives SYN, replies with SYNACK segment

server allocates buffers specifies server initial

seq. #Step 3: client receives SYNACK,

replies with ACK segment, which may contain data

Page 85: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-85

TCP Connection Management (cont.)

Closing a connection:

client closes socket: clientSocket.close();

Step 1: client end system sends TCP FIN control segment to server

Step 2: server receives FIN, replies with ACK. Closes connection, sends FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

tim

ed w

ait

Page 86: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-86

TCP Connection Management (cont.)

Step 3: client receives FIN, replies with ACK.

Enters “timed wait” - will respond with ACK to received FINs

Step 4: server, receives ACK. Connection closed.

Note: with small modification, can handle simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

tim

ed w

ait

closed

Page 87: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-87

TCP Connection Management (cont)

TCP clientlifecycle

TCP serverlifecycle

Page 88: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-88

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Page 89: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-89

Principles of Congestion Control

Congestion: informally: “too many sources sending too

much data too fast for network to handle” different from flow control! manifestations:

lost packets (buffer overflow at routers) long delays (queueing in router buffers)

a top-10 problem!

Page 90: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-90

Le caratteristiche del problema

Risorse allocate per evitare la congestione Controllo della congestione se (e quando) si manifesta

Implementazione Host (protocolli del livello di trasporto) Router (politiche per la gestione delle code)

Quale modello di servizio best-effort (Internet) QoS quality of service (Futuro)

Destination1.5-Mbps T1 link

Router

Source2

Source1

100-Mbps FDDI

10-Mbps Ethernet

Page 91: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-91

Contesto

Sequenze di pacchetti che viaggiono nella rete Router hanno poca informazione sullo stato della

rete

Router

Source2

Source1

Source3

Router

Router

Destination2

Destination1

Page 92: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-92

Causes/costs of congestion: scenario 1

two senders, two receivers

one router, infinite buffers

no retransmission

large delays when congested

maximum achievable throughput

unlimited shared output link buffers

Host Ain : original data

Host B

out

Page 93: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-93

Troughput per la connessione

Throughput per la connessione = numero di byte al secondo al receiver in funzione della velocità di spedizione

Grandi ritardi quando la velocità dei pacchetti in arrivo è prossima alla capacità del router

Page 94: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-94

Causes/costs of congestion: scenario 2

one router, finite buffers sender retransmission of lost packet

finite shared output link buffers

Host A in : original data

Host B

out

'in : original data, plus retransmitted data

Page 95: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-95

Congestione La velocità del sender è uguale al carico

offerto dalla rete Sender deve ristramettere pacchetti per

compensare le perdite

Costo della congestione: Maggiore carico per la trasmissione dei pacchetti

Page 96: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-96

Cause della Congestione Quattro sender multihop Timeout + ritrasmissione

Cosa succede quando aumenta il carico offerto dalle rete?

Quando il carico offerto a B è elevato

il troughput della connessione A-C

risulta zero: il buffer in R2 è sempre pieno

Page 97: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-97

Costo della Congestione

Quando un pacchetto è perso lungo un percorso la capacità di trasmissione dei router lungo il percorso è sprecata!!

Page 98: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-98

Causes/costs of congestion: scenario 3

Another “cost” of congestion: when packet dropped, any “upstream transmission capacity

used for that packet was wasted!

Host A

Host B

o

u

t

Page 99: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-99

Politiche di gestione delle code First-In-First-Out (FIFO)

Non abbiamo alcuna politica di gestione che dipende dalle caratteristiche dei pacchetti

Fair Queuing (FQ) Meccanismi di strutturazione del flusso dei pacchetti Un pacchetto non puo’ mai superare la capacità del

router Code con priorità (WFQ)

Flow 1

Flow 2

Flow 3

Flow 4

Round-robinservice

Page 100: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-100

Approaches towards congestion control

End-end congestion control:

no explicit feedback from network

congestion inferred from end-system observed loss, delay

approach taken by TCP

Network-assisted congestion control:

routers provide feedback to end systems single bit indicating

congestion (SNA, DECbit, TCP/IP ECN, ATM)

explicit rate sender should send at

Two broad approaches towards congestion control:

Page 101: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-101

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Page 102: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-102

TCP: Controllo della Congestione

Idea di base: si controlla la velocità di trasmissione controllando il numero dei segmenti trasmessi ma di cui non si è ancora ricevuto ACK: W

Maggiore è il valore di W maggiore è il throughput della connessione.

Quando si verifica una perdita di segmento allora si diminuisce il valore W

Page 103: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-103

TCP Controllo della congestione Due fasi

slow start (partenza lenta) congestion avoidance (annullamento della

congestione) Valori da considerare:

Congwin threshold: soglia che segnala il passaggio

tra le due fasi

Page 104: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-104

Controllo della congestione

Limite superiore alle trasmissioni dei segmenti

LastByteSent-LastByteAcked

CongWin In formula

CongWin è il valore dinamico della funzione che misura la congestione della rete

rate = CongWin

RTT Bytes/sec

Page 105: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-105

TCP: Controllo della Congestione

La banda di trasmissione è limitata dalla dimensione della finestra di congestione Congwin:

w segmenti di dimensione MSS trasmessi in un RTT:

throughput = w * MSS

RTT Bytes/sec

Congwin

Page 106: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-106

Additive Increase/Multiplicative Decrease (AIMD)

Modificare dinamicamente il carico offerto

Variabile di stato (della connessione): CongestionWindow

increase CongestionWindow when congestion goes down

decrease CongestionWindow when congestion goes up

Informazioni di stato che cambiano in modo dinamico

Page 107: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-107

AIMD Come si manifesta la congestione?

Timeout timeout è il segnale di perdita di qualche

pacchetto. Perso pacchetto decremento

moltiplicativo della finestra Ok incremento additivo della finestra

Page 108: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-108

TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestionwindow

multiplicative decrease: cut CongWin in half after loss event

additive increase: increase CongWin by 1 MSS every RTT in the absence of loss events: probing

Long-lived TCP connection

Page 109: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-109

TCP Slow Start

When connection begins, CongWin = 1 MSS Example: MSS = 500

bytes & RTT = 200 msec

initial rate = 20 kbps

available bandwidth may be >> MSS/RTT desirable to quickly

ramp up to respectable rate

When connection begins, increase rate exponentially fast until first loss event

Page 110: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-110

TCP Slowstart

Incremento esponenziale (in termini del RTT) della finestra

Perdita di pacchetti: timeout (Tahoe TCP), ACK triplicati (Reno TCP)

initialize: Congwin = 1for (each segment ACKed) Congwin++until (loss event OR CongWin > threshold)

Slowstart algorithmHost A

one segment

RTT

Host B

time

two segments

four segments

Page 111: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-111

Un raffinamento del servizio Dopo la ricezione di tre ACK duplicati:

CongWin viene dimezzata La finestra viene fatta crescere in

modo lineare Ma dopo un timeout:

CongWin diventa 1; La finestra cresce

esponenzialmente fino al raggiungimento della soglia.

• 3 ACK dup. sono una indicazione che la rete è in grado di trasmettere segmenti• timeout dopo tre ack duplicati è un evento preoccupante sullo stato della congestione della rete

Idea:

Page 112: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-112

TCP Congestion Avoidance

/* slowstart is over */ /* Congwin > threshold */Until (loss event) { every w segments ACKed: Congwin++ }threshold = Congwin/2Congwin = 1perform slowstart

Congestion avoidance

1

Page 113: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-113

Refinement (more)Q: When should the

exponential increase switch to linear?

A: When CongWin gets to 1/2 of its value before timeout.

Implementation: Variable Threshold At loss event, Threshold

is set to 1/2 of CongWin just before loss event

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round

con

ge

stio

n w

ind

ow

siz

e

(se

gm

en

ts)

threshold

TCP Tahoe

TCP Reno

Page 114: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-114

Conclusione

CongWin ha un volore minore di Threshold, allora in sender è nella fase di slow-start e la finestra cresce in modo esponenziale.

CongWin ha un volore maggiore di Threshold, il sendere è nella fase di congestion-avoidance e la finestra cresce in modo lineare.

Al manifestarsi di ACK triplicato il valore di, Threshold diviene CongWin/2 e CongWin diviene Threshold.

Al manifestarsi di un timeout, Threshold diviene CongWin/2 e CongWin diviene 1 MSS.

Page 115: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-115

Fairness goal: if K TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneckrouter

capacity R

TCP connection 2

TCP Fairness

Page 116: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-116

Why is TCP fair?

Two competing sessions: Additive increase gives slope of 1, as throughout increases multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughputConnect

ion 2

th

roughput

congestion avoidance: additive increaseloss: decrease window by factor of 2

congestion avoidance: additive increaseloss: decrease window by factor of 2

Page 117: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-117

Fairness (more)

Fairness and UDP Multimedia apps

often do not use TCP do not want rate

throttled by congestion control

Instead use UDP: pump audio/video at

constant rate, tolerate packet loss

Research area: TCP friendly

Fairness and parallel TCP connections

nothing prevents app from opening parallel cnctions between 2 hosts.

Web browsers do this Example: link of rate R

supporting 9 cnctions; new app asks for 1 TCP,

gets rate R/10 new app asks for 11 TCPs,

gets R/2 !

Page 118: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-118

Delay modeling

Q: How long does it take to receive an object from a Web server after sending a request?

Ignoring congestion, delay is influenced by:

TCP connection establishment

data transmission delay slow start

Notation, assumptions: Assume one link between

client and server of rate R S: MSS (bits) O: object size (bits) no retransmissions (no loss, no

corruption)

Window size: First assume: fixed congestion

window, W segments Then dynamic window,

modeling slow start

Page 119: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-119

Fixed congestion window (1)

First case:WS/R > RTT + S/R: ACK for

first segment in window returns before window’s worth of data sent

delay = 2RTT + O/R

Page 120: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-120

Fixed congestion window (2)

Second case: WS/R < RTT + S/R: wait

for ACK after sending window’s worth of data sent

delay = 2RTT + O/R+ (K-1)[S/R + RTT - WS/R]

Page 121: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-121

TCP Delay Modeling: Slow Start (1)

Now suppose window grows according to slow start

Will show that the delay for one object is:

R

S

R

SRTTP

R

ORTTLatency P )12(2

where P is the number of times TCP idles at server:

}1,{min KQP

- where Q is the number of times the server idles if the object were of infinite size.

- and K is the number of windows that cover the object.

Page 122: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-122

TCP Delay Modeling: Slow Start (2)

RTT

initia te TCPconnection

requestobject

first w indow= S /R

second w indow= 2S /R

third w indow= 4S /R

fourth w indow= 8S /R

com pletetransm issionobject

delivered

tim e atc lient

tim e atserver

Example:• O/S = 15 segments• K = 4 windows• Q = 2• P = min{K-1,Q} = 2

Server idles P=2 times

Delay components:• 2 RTT for connection estab and request• O/R to transmit object• time server idles due to slow start

Server idles: P = min{K-1,Q} times

Page 123: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-123

TCP Delay Modeling (3)

R

S

R

SRTTPRTT

R

O

R

SRTT

R

SRTT

R

O

idleTimeRTTR

O

P

kP

k

P

pp

)12(][2

]2[2

2delay

1

1

1

th window after the timeidle 2 1 kR

SRTT

R

S k

ementacknowledg receivesserver until

segment send tostartsserver whenfrom time RTTR

S

window kth the transmit totime2 1

R

Sk

RTT

initia te TCPconnection

requestobject

first w indow= S /R

second w indow= 2S /R

third w indow= 4S /R

fourth w indow= 8S /R

com pletetransm issionobject

delivered

tim e atc lient

tim e atserver

Page 124: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-124

TCP Delay Modeling (4)

)1(log

)}1(log:{min

}12:{min

}/222:{min

}222:{min

2

2

110

110

S

OS

Okk

S

Ok

SOk

OSSSkK

k

k

k

Calculation of Q, number of idles for infinite-size object,is similar (see HW).

Recall K = number of windows that cover object

How do we calculate K ?

Page 125: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-125

HTTP Modeling Assume Web page consists of:

1 base HTML page (of size O bits) M images (each of size O bits)

Non-persistent HTTP: M+1 TCP connections in series Response time = (M+1)O/R + (M+1)2RTT + sum of idle

times Persistent HTTP:

2 RTT to request and receive base HTML file 1 RTT to request and receive M images Response time = (M+1)O/R + 3RTT + sum of idle times

Non-persistent HTTP with X parallel connections Suppose M/X integer. 1 TCP connection for base file M/X sets of parallel connections for images. Response time = (M+1)O/R + (M/X + 1)2RTT + sum of

idle times

Page 126: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-126

02468

101214161820

28Kbps

100Kbps

1Mbps

10Mbps

non-persistent

persistent

parallel non-persistent

HTTP Response time (in seconds)RTT = 100 msec, O = 5 Kbytes, M=10 and X=5

For low bandwidth, connection & response time dominated by transmission time.

Persistent connections only give minor improvement over parallel connections.

Page 127: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-127

0

10

20

30

40

50

60

70

28Kbps

100Kbps

1Mbps

10Mbps

non-persistent

persistent

parallel non-persistent

HTTP Response time (in seconds)

RTT =1 sec, O = 5 Kbytes, M=10 and X=5

For larger RTT, response time dominated by TCP establishment & slow start delays. Persistent connections now give important improvement: particularly in high delaybandwidth networks.

Page 128: Transport Layer3-1 Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking:

Transport Layer 3-128

Chapter 3: Summary principles behind transport

layer services: multiplexing,

demultiplexing reliable data transfer flow control congestion control

instantiation and implementation in the Internet UDP TCP

Next: leaving the network

“edge” (application, transport layers)

into the network “core”