Transformation from 3D modelling to building information modelling

86
Transformation from 3D modelling to building information modelling The implementation of BIM in an engineering organization Master thesis by R.G.A. Prinsze Construction Management and Engineering Delft University of Technology November 2014

Transcript of Transformation from 3D modelling to building information modelling

Page 1: Transformation from 3D modelling to building information modelling

 

Transformation from 3D modelling to building information modelling

The implementation of BIM in an engineering organization

Master  thesis  by  R.G.A.  Prinsze  

Construction  Management  and  Engineering  Delft  University  of  Technology  

November  2014  

     

   

 

   

Page 2: Transformation from 3D modelling to building information modelling

II Building information modelling  

 

   

Page 3: Transformation from 3D modelling to building information modelling

Building information modelling   I I I  

Colophon

Document  title   Transformation   from  3D  modelling   to   building   information  modelling:  the  implementation  of  BIM  in  an  engineering  organization  

 Location  and  date     Delft,  November  2014        Author         R.G.A.  (Rolph)  Prinsze    Student  number       4011333    Email         [email protected]    Master  track       Construction  Management  and  Engineering  (CME)    Faculty         Civil  Engineering  and  Geosciences  (CEG)    University       Delft  University  of  Technology  (TU  Delft)    Graduation  committee     Prof.dr.ir.  M.J.C.M.  (Marcel)  Hertogh    

Faculty  of  Civil  Engineering  and  Geosciences  Department  of  Infrastructure  Design  and  Management    

        Dr.ir.  G.A.  (Sander)  van  Nederveen    Faculty  of  Civil  Engineering  and  Geosciences  Department  of  Design  and  Construction  Process    

        Dr.ir.  J.C.  (Hans)  Hubers  Faculty  of  Architecture  and  the  built  environment  Department  of  Design  Informatics    

        Ir.  S.  (Sander)  Stolk  MBA                 Tebodin  The  Hague  

Department  of  Civil,  Architectural  &  Building  Services            Delft  University  of  Technology  Faculty  of  Civil  Engineering  and  Geosciences  Stevinweg  1,    2628  CN  Delft  Tel:  015-­‐2789802  www.tudelft.nl      Tebodin  West  B.V.  Laan  van  Nieuw  Oost-­‐Indië  25  2593  BJ  The  Hague  Tel:  070-­‐3480911  www.tebodin.com/nl          

Page 4: Transformation from 3D modelling to building information modelling

IV Building information modelling  

 

   

Page 5: Transformation from 3D modelling to building information modelling

Building information modelling   V  

Preface

This   research   is  performed  at   the   faculty  of  Civil  Engineering  and  Geosciences  of   the  Delft  University  of  Technology.  The  subject  is  related  to  the  master  track  Construction  Management  and  Engineering  (CME).      The  research  started  in  fact  during  the  study  tour  the  CME  dispute  organized  to  Russia  in  November  2013.  During   this   trip  we  went   to   the  main  office  of  Tebodin   in  Moscow  and  watched  a  small  presentation  of  their   businesses.   A   coincidence   or   not,   this   presentation   passed   the   subject   of   building   information  modelling  (BIM).  Back  home  in  Delft,  preparing  for  graduation  the  search  ended  up  with  Tebodin   in  The  Hague.  They  were  interested  in  the  implementation  of  BIM  in  their  design  process  and  the  research  was  linked  to  a  case  study.  This  case  study  “the  Mountain  project”  for  Royal  Friesland  Campina  was  to  provide  insight   into  the  design  process   in  order  to  give  advice  regarding  the   implementation  of  BIM.  Therefore  I  would  like  to  thank  all  the  lead  engineers  and  the  project  manager  from  Tebodin  who  contributed  to  the  interviews   concerning   the   case   study.   This   also   applies   to   the   representatives   on   behalf   of   Friesland  Campina,   Pieters   Bouwtechniek   and  GEA.   Besides   the   interviews   concerning   the   case   study,   the   expert  meetings  were  of  great  value   for   the  validation  of   this   research.  Therefore   I  would   like   to   thank  all   the  experts:  on  behalf  of  Tebodin,  Revit  Opleidingen,  Valstar  Simonis  and  BAM.      In  addition,   I  want  to  thank  my  supervisors  from  the  TU  Delft  and  Tebodin:  Marcel  Hertogh,  Sander  van  Nederveen,   Hans   Hubers   and   Sander   Stolk.   Thank   you   for   the   useful   discussions  we   have   had   and   the  advice  you  gave  me.      Furthermore,  I  would  like  to  thank  my  family  and  friends  who  supported  me  during  this  research  and  my  entire   study   time.   Especially   my   parents,   who   have   ensured   I   would   not  miss   anything   and   who   have  always  allowed  me  to  study.      Delft,  November  2014    Rolph  Prinsze  

Page 6: Transformation from 3D modelling to building information modelling

VI Building information modelling  

 

 

Page 7: Transformation from 3D modelling to building information modelling

Building information modelling   VI I  

Abstract

Building   information  modelling   (BIM)   is  mentioned   as   one   of   the  most   promising   developments   in   the  Architecture,   Engineering   and  Construction   (AEC)   industry.  Up   to  now  almost  one  out  of   five   (medium)  large  construction  companies  are  using  BIM  in  their  construction  process.  This  means  the  vast  majority  of  these   firms   will   change   their   traditional   design   method   towards   BIM.   However,   to   change   the   design  method  will   cause   a   change  within   roles   and   activities   on   a  workplace.   Therefore   the   objective   of   this  research  is  to  develop  recommendations  for  the  implementation  of  building  information  modelling  at  an  engineering  and  consultancy  company  (in  this  case  Tebodin).  The  formulation  of  the  problem  statement  and  the  research  objective  leads  to  the  formulation  of  the  following  research  question:  

 What  needs  to  be  changed  in  the  work  processes  of  an  engineering  company  to  move  from  3D  modelling  

towards  building  information  modelling  in  the  design  phase?      Literature  study  The   traditional   design  process  of   the   construction   industry   is   described  by   the  Royal   Institute  of  British  Architects’   (RIBA)  Plan  of  Work.   It  consists  of  several  steps  that  are  taken   in  each  project:  based  on  the  demand  of  the  client,  requirements  are  clarified  and  defined;  the  functions  are  determined  and  then  the  solution  principles  are  developed.   If  the  other  disciplines  or  the  client  approves  this  solution,  the  design  solution  is  further  developed  into  a  detailed  design.  Often  other  project  partners  develop  the  detail  design  into  specifications  for  construction.  This  widely  accepted  sequential  method  is  also  known  as  the  over  the  wall   approach   (the   principle   that   every   discipline   passes   through   its   design   to   another).   This   method  involves   little   time   loss   on   consultation   and   a   clear   separation  of   tasks;   however   by   passing   the  design  through   from   discipline   to   discipline   many   misunderstandings   arise.   The   fragmentation   leads   also   to  design  clashes,  the  occurrence  of  late  and  costly  design  changes.  The  over  the  wall  approach  also  leads  to  the   inability   to   maintain   a   competitive   edge   in   a   changing   marketplace   and   to   design   confusion   and  wasted  effort.      The   traditional   way   of   designing   and   BIM   are   different   in   multiple   ways.   But   to   describe   it   in   short:  designing  with  a  BIM  program  goes  beyond  a  3D  model  by  the  use  of  dynamic,  parametric  objects,  with  additional  data  attached.  Building  information  modelling  is  a  concept  that  contains  many  definitions  and  one  (from  NBIMS)  that  is  often  used  is:      “Building  information  modelling  (BIM)  is  a  digital  representation  of  physical  and  functional  characteristics  of  a  facility.  A  BIM  is  a  shared  knowledge  resource  for  information  about  a  facility  forming  a  reliable  basis  

for  decisions  during  its  life  cycle;  defined  as  existing  from  earliest  conception  to  demolition.”    BIM  can  integrate  every  phase  of  construction  projects,  from  the  concept  design  to  facility  management.  It  can  be  described  as  a  process  that  generates  and  maintains  the  data  of  a  construction  project  during  its  whole   lifecycle.  All  actors   in   the  process,   from  start   to   finish,   can  use   the   information   that   is   (centrally)  available  concerning  a  construction  object.  BIM  is  not  software  and  it   is  much  more  than  a  3D  model.  A  building  information  model  has  lots  of  information  (e.g.  smart  objects)  and  it  is  also  an  option  to  connect  information   to   the  model   from   documents.   Thus   BIM   is   not   only   a  model,   but   it   is   also   a   process   and  information  system.      BIM   encourages   collaboration:   integrated   design.   Concurrent   engineering   and   multidisciplinary   design  both  try  to  get  a  constant  cycle  of  offering,  evaluating  and  redesigning  between  designers  and  executors,  engineers  and/or  contractors.  The  purpose  of  it  (of  a  multidisciplinary  design  and  concurrent  engineering)  is   to   realise   lower   costs   downstream,   a   shorter   lead-­‐time   and   a   better   quality   of   the   entire   process.   It  implies  involving  the  executor,  contractor  and/or  engineer  more  into  the  design  process.  To  achieve  this,  interoperability  has  to  be  created,  which  means  that  all  the  information  the  different  parties  create  with  different   software   can   be   transferred   correctly.   This   is   also   the   biggest   challenge   to   overcome  

Page 8: Transformation from 3D modelling to building information modelling

VIII Building information modelling  

 

implementing  BIM.  The  data  exchange  between  different  software  packages  is  not  fully  reliable  and  leaves  room  for  improvement.      Case  study  The  case  study   for   this   research   is  a  milk  powder  plant  of  Royal  Friesland  Campina  called   the  Mountain  project.  Within  this  project  Tebodin  has  an  EPCm  contract,  which  means  they  are  responsible  for  the  basic  engineering   phase,   supporting   the   client   during   the   procurement,   and   the   management   of   the  construction   phase.   The   basic   engineering   phase   means   to   develop   the   design   up   to   the   level   of  development  of  300  (LOD  300).  The  following  specialists  (contractors  and  suppliers)  have  developed  the  detail-­‐engineering  phase:      • GEA  is  responsible  for  the  part  process  • Cofely  is  responsible  for  the  part  utilities  • Jorritsma  is  responsible  for  the  part  building  and  is  divided  into  

• Above  zero  –  however  they  outsourced  it  to  Pieters  Bouwtechniek  (PBT)  • Sub  zero  –  however  they  outsourced  it  to  Pieters  Bouwtechniek  (PBT)  

• Imtech  is  responsible  for  the  part  • Electrical  • HVAC  

 To   be   familiar  with   the   project   and   to   be   able   to   determine   the   design   process,   interviews  were   held.  These  interviews  consisted  of  open  and  closed  questions  that  focus  on  the  roles  and  responsibilities,  the  forms  of  collaboration  that  took  place,  multidisciplinary  design  and  the  expectations  towards  BIM.  These  subjects   were   covered   with   the   project   managers   of   Tebodin,   GEA,   PBT,   the   main   lead   engineers   of  Tebodin   and   the  process   technologist   of   Friesland  Campina.   The   variety  of   disciplines   and  actors   in   the  process  outlines  a  complete  overview  of  the  project.      Out  of   this   case   study  appears  an  early   collaboration  within   the  discipline  of  Tebodin,  but  not  with   the  project  partners  previously  described.  The  disciplines  of  Tebodin  were  all  directly   involved   in   the  design  process  although  some  of  the  disciplines  had  not  had  experience  with  3D  modelling.  The  study  also  shows  that  some  of   these  partners  did  not  have  the  capabilities  and  capacity  to   further  develop  the  design  (in  3D),   and   were   using   eye   blinkers   (they   were   only   busy   with   their   own   design   and   not   the   BIM).   The  collaboration  sometimes  was  affected  by  the  lack  of  experience  with  BIM,  which  is  shown  in  the  tenacity  to  the  Revit  model.  Revit  is  BIM  software.  This  Revit  model  became  too  heavy  and  was  not  the  best  option  for  every  actor  in  the  process.  Navisworks,  other  BIM  software,  was  the  remedy  for  this  problem.      Implementation  The  most  important  findings  of  the  literature  study  and  case  study  are  brought  together  in  the  synthesis.  To   establish   the   current   status   of   the   design   method,   a   BIM  maturity   schedule   is   used;   this   schedule  contains  three  stages  to  fully  implement  BIM  as  shown  in  Figure  1.  The  design  process  of  Tebodin  that  is  established   through   analysing   the  Mountain   project   can   be   characterized   as   BIM   stage   1.   The  maturity  scheme  functions  as  a  checklist  to  determine  in  which  stage  a  company  is  located,  but  also  which  aspects  of  BIM  could  be  covered  in  the  future.  The  analysis  shows  that  Tebodin  manages  to  model  3D,  exchange  this  model,  and  use  clash  detection.  These  aspects  of  BIM  clearly  are  related  to  3D  modelling.  In  the  future  Tebodin   could   reach   further   BIM   stages   by   controlling   the   fourth,   fifth,   sixth   and   nth   dimension.   These  future   stages   of   BIM   are   related   to   costs,   time,   sustainability,   constructability,   operation   and  maintenance.  However  there  are  also  other  aspects  of  BIM  to  consider  such  as  liability,  software  related  issues  and  implementation  costs.      The  SWOT  analysis  is  based  on  the  gap  that  emerges  in  the  BIM  maturity  model  and  the  results  of  the  case  study.  The  strengths  of  Tebodin  are  the  3D  modelling  skills  and  their  multidisciplinary  design  environment.  Tebodin  should  exploit  the  multidisciplinary  design  environment  that  BIM  offers.  The  aspects  future  BIM  stages   include  are  part  of   the  opportunities.   These  opportunities  will   be  developed  as   time  progresses,  more  BIM  projects  will  be  done  and  more  experience  will  be  developed.  By  evaluation  of   the  Mountain  project  (and  the  future  projects)  problems  come  forward.  Handling  these  problems,  the  weaknesses  are  

Page 9: Transformation from 3D modelling to building information modelling

Building information modelling   IX    

remedied  and  changed   into  opportunities  or  strengths.  The  threats  are  not  so  much  a  specific   threat   to  Tebodin  but  these  are  threats  in  general.    

 Figure 1: BIM maturity stages in BIM implementation (for the complete figure see Figure 25)

Conclusion  In  order   to  meet   the  objective  of   this   research   to  develop   recommendations   for   the   implementation  of  building  information  modelling  at  an  engineering  and  consultancy  company,  the  research  question  should  be  answered.  To  structure  the  changes  in  the  work  process  of  an  engineering  company  and  to  move  from  3D   modelling   towards   BIM   in   the   design   phase,   are   divided   into   three   groups:   people,   process   and  platform.    People  –   the   implementation  of  BIM  needs   to   take  place   from  bottom  up  and  top  down   in  order   to  be  successful.    Besides  the  recognition  of  the  importance  of  BIM,  knowledge  is  important.  This  can  be  gained  by   training   and   education   in   software   and   study   cases   of   collaboration.   Next   to   that   the   current  knowledge  can  be  supplemented  by  new  external  knowledge;  hiring  or  attracting  new  employment  where  the  existing  staff  falls  short.  Next  to  commitment  within  your  own  company,  commitment  is  also  required  from   the   other   project   partners:   the   client,   contractor   and   supplier.   The   engineering   firms   can   initiate  BIM,  or  it  can  be  demanded  by  the  client  or  the  engineering  firm  from  the  project  partners.    Process  –  building  information  modelling  is  about  integrated  design.  BIM  enables  to  work  in  a  parallel  way  with   different   disciplines   and/or   with   different   project   partners.   Concurrent   engineering   and  multidisciplinary  design  stimulate  to  start  with  advanced  information  and  reduce  or  eliminate  non-­‐value-­‐adding   activities.   Each   project   has   to   be   structured   in   a   different   way:   the   most   important   (leading)  discipline  starts  to  develop  a  design  from  their  discipline  and  the  other  disciplines  join  quickly.  From  this  point  they  can  worked  simultaneously.  The  collaboration  does  not  stop  at  the  borders  of  the  engineering  company;   the   project   partners   should   be   involved   as   soon   as   necessary   to   take   advantage   of   their  knowledge.      Platform   –   besides   collaboration,   software   is   very   important   to   implement   BIM   successfully.   But   to  implement   the   software   successfully   a   working   group   needs   to   develop   a   certain   strategy   using   BIM  related   aspects.   These   recommendations   need   to   be   recognized   and   understood   by   the   board   of   the  company,   after   which   the   policy   can   be   implement   in   the   company.   The   software   should   match   the  demands   of   a   design   discipline.   For   each   project   a   choice   can   be   made:   a   homogeneous   software  environment   or   a   plural   software   environment.   The   choice   depends   on   the   amount   and   type   of  disciplines;  is  it  possible  to  collaborate  with  a  central  data  repository  or  should  this  shared  data  repository  be  based  on  an  open  data  model   like   IFC   (an   ISO  standard   for  data  exchange)?  This  can  depend  on   the  type  of  project  and  the   involvement  of  partners   in   the  project.  There  should  be  a  clear  agreement  with  regard  to  the  products  to  be  delivered  (type  of  format  and  files)  otherwise  BIM  is  useless.      Recommendations  The   recommendations   are   based   on   the   main   findings   that   came   forward   out   of   this   research.   The  recommendations  to  the  address  of  engineering  firms  and  Tebodin  who  are  located  in  BIM  maturity  stage  1  are  as  follow:    • Install  and  compose  a  working  group  to  further  implement  BIM  into  the  organization;  • Create  an  integrated  collaboration  within  the  organization  and  project  team;  • Make  sure  somebody  is  liable  and  responsible  for  the  building  information  modelling  process;  • Make  sure  the  right  software  is  available  and  interoperability  is  possible;    • Create  a  clear  structure  within  the  organization  and  a  clear  structure  for  project  teams.    The  conclusions  and  recommendations  show  that  implementing  BIM  is  often  seen  as  just  a  software  tool.  But   the   fact   that   these  basic   recommendations  have   to  be  mentioned   shows   that   implementing  BIM   is  changing  the  working  processes  in  a  firm  to  create  a  clear  basis  from  which  BIM  can  be  used.      

Page 10: Transformation from 3D modelling to building information modelling

X Building information modelling  

 

   

Page 11: Transformation from 3D modelling to building information modelling

Building information modelling   XI    

Table of contents

Colophon  ...............................................................................................................................................  III  Preface  ...................................................................................................................................................  V  Abstract  ...............................................................................................................................................  VII  Introduction  ...........................................................................................................................................  1  Research  design  .....................................................................................................................................  3  2.1      Project  context  .....................................................................................................................  3  2.2      Relevance  .............................................................................................................................  4  2.3      Problem  statement  ..............................................................................................................  4  2.4      Research  objective  ...............................................................................................................  5  2.5      Research  question  ................................................................................................................  6  2.6      Scope  and  limitations  ...........................................................................................................  7  2.7      Research  approach  ...............................................................................................................  7  Theoretical  analyses  ..............................................................................................................................  11  3.1      Traditional  design  process  .................................................................................................  11  

3.1.1      What  does  the  design  phase  look  like?  .......................................................................  12  3.1.2      Two-­‐dimensional  modelling  ........................................................................................  13  3.1.3      Three-­‐dimensional  modelling  ......................................................................................  14  

3.2      Building  information  modelling  ..........................................................................................  14  3.2.1      Definition  of  BIM  .........................................................................................................  14  3.2.2      What  is  building  information  modelling?  ...................................................................  15  3.2.3      Functions  of  building  information  modelling  ..............................................................  16  3.2.4      Benefits  of  BIM  ............................................................................................................  17  3.2.5      Disadvantages  of  BIM  .................................................................................................  18  

3.3      Integral  design  ....................................................................................................................  19  3.3.1      Multidisciplinary  design  ..............................................................................................  20  3.3.2      Concurrent  engineering  ..............................................................................................  20  3.3.3      Interoperability  ...........................................................................................................  21  

3.4      Wrap-­‐up  .............................................................................................................................  24  Case  study  .............................................................................................................................................  25  4.1      Company  profile  .................................................................................................................  25  4.2      Case  description  .................................................................................................................  26  

4.2.1      Project  description  ......................................................................................................  26  4.2.2      Project  structure  .........................................................................................................  27  4.2.3      BIM  protocol  ...............................................................................................................  30  4.2.4      Background  information  .............................................................................................  30  

4.3      Objective  ............................................................................................................................  31  4.3.1      Interview  design  ..........................................................................................................  31  4.3.2      Interview  content  ........................................................................................................  31  4.3.3      Interview  participants  .................................................................................................  31  

4.4      Interviews  results  ...............................................................................................................  32  4.4.1      Collaboration  ..............................................................................................................  32  4.4.2      Design  software  ..........................................................................................................  33  4.4.3      Expectations  ................................................................................................................  34  4.4.4      Internal  design  model  .................................................................................................  34  

Page 12: Transformation from 3D modelling to building information modelling

XII Building information modelling  

 

4.4.5      External  design  model  .................................................................................................  35  4.5      Relation  to  literature  ..........................................................................................................  36  4.6      Wrap-­‐up  ..............................................................................................................................  37  Synthesis  &  future  perspective  ..............................................................................................................  39  5.1      Synthesis  .............................................................................................................................  39  5.2      Future  perspective  ..............................................................................................................  41  5.3      Wrap-­‐up  ..............................................................................................................................  44  Implementation  of  BIM  .........................................................................................................................  47  6.1      SWOT  analysis  .....................................................................................................................  47  6.2      Strengths  .............................................................................................................................  47  6.3      Weaknesses  ........................................................................................................................  48  6.4      Opportunities  ......................................................................................................................  49  6.5      Threats  ................................................................................................................................  49  6.6      Wrap-­‐up  ..............................................................................................................................  50  Answering  the  research  questions,  conclusion  &  recommendations  ......................................................  53  7.1      Research  questions  .............................................................................................................  53  

7.1.1      What  does  a  traditional  design  process  of  an  engineering  firm  look  like?  ..................  53  7.1.2      What  does  the  BIM  design  process  look  like  of  an  engineering  company?  .................  54  7.1.3      How  does  building  information  modelling  influence  the  traditional  design  process  

these  days  and  in  the  future?  ......................................................................................  56  7.1.4      What  are  the  main  challenges  to  fight  while  implementing  BIM  in  the  project  context  

of  an  engineering  organization?  .................................................................................  57  7.2      Conclusion  ..........................................................................................................................  58  7.3      Recommendation  ...............................................................................................................  60  

7.3.1      Recommendations  to  the  construction  industry  ..........................................................  60  7.3.2      Implications  Tebodin  ...................................................................................................  60  7.3.3      Recommendations  for  further  research  ......................................................................  62  

Literature  ..............................................................................................................................................  65  Appendices  ...........................................................................................................................................  69  Appendix  A    Abbreviations  .........................................................................................................  69  Appendix  B    List  of  figures  ..........................................................................................................  70  Appendix  C    List  of  tables  ...........................................................................................................  71  Appendix  D    Software  applications  ............................................................................................  72  Appendix  E    Interviews  ...............................................................................................................  74    

Page 13: Transformation from 3D modelling to building information modelling

Building information modelling   1    

 

Chapter 1

Introduction According   to   Eastman  et   al.   (2008)   “building   information  modelling   (BIM)   is   one  of   the  most   promising  developments   in   the   Architecture,   Engineering   and   Construction   (AEC)   industry.”   BIM   is   a   popular  buzzword   used   by   clients,   building   firms   and   software   developers.   Within   these   conversations   many  different  definitions  are  used  of  what  BIM  technology  actually  is.  One  representative  definition  of  BIM  by  the  National  Building  Information  Model  Standard  (NBIMS)  Project  Committee  is  as  follows:    “Building  information  modelling  (BIM)  is  a  digital  representation  of  physical  and  functional  characteristics  of  a  facility.  A  BIM  is  a  shared  knowledge  resource  for  information  about  a  facility  forming  a  reliable  basis  

for  decisions  during  its  life  cycle;  defined  as  existing  from  earliest  conception  to  demolition  (National  Institute  of  Building  Sciences,  2014).”  

 BIM  uses  software  that  can  be  used  by  every  single  party   in  the  entire  construction  process,  from  initial  concept  phase  to  construction  until  demolition.  BIM  can  improve  each  phase  of  the  construction  process  and  will  reduce  problems  associated  with  the  traditional  construction  design  method.  “Intelligent  use  of  BIM,   however,   will   also   cause   significant   changes   in   the   relationships   of   project   participants   and   the  contractual   agreements   between   them”   (Eastman   et   al.,   2008).   Switching   from   the   traditional   design  method   (2D-­‐3D  CAD)   to  BIM   is  not  so  easy  and  therefore   it  acquires  much  more   than  software   training  and   updating   hardware.   The   implementation   of   BIM   into   the   process   needs   to   be   executed  with   great  care.      The  vast  majority  of   the  construction   firms  have   to   take   the   first   step   in   terms  of  BIM   implementation.  Research   of   Snoei   and   Beliaeva   (2012)   reveals   that   nineteen   per   cent   of   the   (medium)   large   Dutch  construction   firms   uses   BIM   in   their   construction   process.   One   of   these   companies   is   Tebodin.   This  research  will  focus  on  the  implementation  of  BIM  in  an  engineering  company.  Because  BIM  is  applicable  to  every  phase  of  the  construction  process,  the  main  focus  of  this  research  will  be  on  the  design  phase.  This   is  due   to   the   fact   that  engineering  and  consultancy   companies  are  mostly  active  during   the  design  phase  due  to  their  expertise  and  technical  advice  concerning  construction  projects.  To  analyse  the  design  phase  (of  in  this  case  Tebodin)  the  current  state  of  the  affairs  (the  starting  point)  will  be  established.  This  point  will  be  used  to  indicate  how  BIM  can  be  implemented  within  the  design  process  of  an  engineering  company.        To  analyse  the  design  process  that  takes  place  within  Tebodin  will  be  very  difficult,  because  Tebodin  is  a  very   diversified   company  with  many   different   construction   projects   in   its   portfolio.   Therefore   a   recent  project  is  chosen  to  analyse.  This  project  is  called  the  Mountain  project  and  is  in  fact  a  milk  powder  plant.  This  plant  is  designed  for  Royal  Friesland  Campina  (RFC).  Friesland  Campina  is  investing  135  million  euro  in  this  milk  powder  plant   in  order  to  meet  the   increasing  demand  (Friesland  Campina,  2014).   In  the  future  there   will   also   be   an   infant   nutrition   production   line.   The   design   process   of   the   Mountain   project   is  executed  mainly  at  the  Tebodin  West  Office  and  the  office  at  Deventer.  Where  the  engineers  previously  and   sometimes   still   are  designing  with  2D  and   rarely  with  3D  programs,   this   project  was  done  with  3D  modelling  programs,  primarily   in  Revit.  They  would   like  to   improve  the  3D  modelling  process  and  at  the  

Page 14: Transformation from 3D modelling to building information modelling

2 Building information modelling  

 

same  time  implement  BIM  in  their  design  process.  They  wonder  what  needs  to  be  changed  in  their  design  process   to   implement   BIM   successfully.   This   was   the   first   project   where   the   building   department   of  Tebodin  West  worked  in  the  3D  modelling  program  called  Revit.      Within  this  multidisciplinary  project,  multiple  department  and  multiple  offices  were  working  together.  By  analysing  their  design  process  at  an  existing  and  currently  executed  project,  their  current  design  process  is  mapped   out.   This   will   be   the   basis   from   which   Tebodin   will   depart   towards   BIM.  With   this   Mountain  project  engineered  and  executed   for  Friesland  Campina,   the  current  way  of  working  will   come   forward,  next   to  that   the   future  perspective  will  be  sketched  done  by  a   literature  study.  Combining  these  results  within  the  synthesis  will  establish  the  current  design  process  according  to  the  literature.  Finally  the  road  towards  the  current  situation  and  the  ideal  future  perspective  will  be  outlined  in  the  form  of  conclusions  and  recommendations.        

Page 15: Transformation from 3D modelling to building information modelling

Building information modelling   3    

 

Chapter 2

Research design After  an  introduction  to  the  research,  the  subject  and  the  company,  this  chapter  will  discuss  the  design   of   the   research.   First   the   project   context   is   described,   and   then   the   relevance   of   the  research  is  explained.  Next  to  that  the  reason  why  the  research  is  executed  is  given  as  a  problem  statement,  followed  by  the  objective  of  this  research.  Then  the  research  question  is  formulated  that  will  be  answered   in  the  final  part  of  this  report.  Finally  the   limitations  of  the  research  are  given   and   the   research   approach   will   be   discussed.   This   chapter   should   illustrate   the   main  research  structure  and  will  form  the  basis  of  the  further  report.    

2 . 1 Project context The   project   context  will   describe   the   cohesion   in  which   the   research   occurs.   The   context   in   relation   to  other  relevant  research  project  will  be  mentioned,  as  well  as  the  relation  to  the  academic  perspective  and  the  perspective  of  the  company.    Related  research    Radu   Panaitescu   publishes   some   recent   related   work   (Panaitescu,   2014).   He   also   did   research   to   a  structured   implementation   process   of   building   information   modelling   (BIM)   in   an   engineering  organization.   There   are   a   number   of   surfaces   on   which   the   two   studies   are   distinguished.   The   most  important  differences  are  that  first  of  all  Panaitescu  did  research  at  the  infrastructure  department  of  an  engineering  company,   instead  of  the  building  department.  Secondly,  his  research  focussed  on  the  entire  construction  process  (instead  of  the  design  phase)  with  the  result  of  a  management  strategy.      Company  environment    Tebodin   (The  Hague)   is  at   the  start  of  an   important  new  path  they  want  to   follow:  building   information  modelling.   In   The   Hague   many   departments   are   working   in   different   software   packages.   The   building  department  worked  with   two-­‐dimensional   (2D)   software   such  as  AutoCAD  and   to   illustrate   the  projects  they   used  Google   Sketchup.   In  Deventer   the   architecture   department   just   finished   a   three-­‐dimensional  (3D)   project   modelled   in   Revit.   Tebodin   understands   the   importance   of   BIM   and   is   interested   in   the  possibilities  this  model  offers  and  how  they  are  able  to  use  it  in  the  future.  The  Mountain  project  can  be  seen   as   the  most   innovative   project   that   is   designed   so   far,   which  makes   it   highly   appropriate   to   use  within   this   research.  Within   Tebodin   there   is   a   SMART   engineering   group   established   consisting   of   all  people  from  Tebodin  and  subsidiaries  of  Bilfiinger.  This  group  explores  various  options  for  the  future,  and  building  information  modelling  is  one  of  them.  3D  modelling  has  been  brought  forward  from  bottom  up  and  is  now  supported  from  top  down.      Academic  perspective  This   graduation  project   connects   to   the   academic  perspective  of   the  master  Construction  Management  and  Engineering  (CME)  at  the  Delft  University  of  Technology.  It  should  fulfil  the  standards  for  the  master  thesis  graduation.  The  research  project  will  combine  theory  and  practice  to  draw  a  comparison  through  a  literature  and  a  case  study.  This  will  be  combined  in  the  synthesis  and  an  advice  will  follow  concerning  the  implementation   of   BIM   and   recommendations   towards   Tebodin.   The   committee   that  will   overlook   this  

Page 16: Transformation from 3D modelling to building information modelling

4 Building information modelling  

 

research  project  consists  of  Prof.dr.ir.  M.J.C.M.  (Marcel)  Hertogh  and  Dr.ir.  G.A.  (Sander)  van  Nederveen  both   from  the   faculty  of  Civil   Engineering  and  Geosciences,  Dr.ir.   J.C.   (Hans)  Hubers   from  the   faculty  of  Architecture  and  the  Built  Environment  and  the  attendant  on  behalf  of  Tebodin  Ir.  S.  (Sander)  Stolk  MBA  department  manager  of  Civil,  Architectural  and  Building  Services.    

2 .2 Relevance With   the   arrival   of   computers   and   Computer   Aided   Design   (CAD)   software   the   conventional   design  method   transformed   into  a  computing  process.  The   results  were  unchanged  however   the  precision  and  speed  the  computers  brought  to  the  development  of  the  drawings  was  accelerated.  With  the  rise  of  the  Internet,  it  became  easy  to  share  design  files  and  “the  AEC  industry  has  become  fairly  efficient  during  the  design   phase”   (Pramod   Reddy,   2012).   However  with   this   2D   communication   platform   it   was   clear   that  “there  would  be  gaps  in  information  that  would  be  subject  to  interpretation.  The  phrase  “do  not  see  the  movie,  read  the  book  instead  has  been  heard  many  times  by  most  individuals.  The  book  leaves  so  much  for   our   own   individual   interpretation   and   imagination   that   reading   becomes   a   highly   individualized  experience”   (Pramod  Reddy,  2012).  This   is  also   the  case  with  designing  a   construction  project.  With  2D  designing  the  translation  from  2D  drawings  into  our  3D  world,  our  imagination  knows  no  boundaries.  With  highly  complex  constructions  the  last  thing  a  client  wants  is  uncertainty  about  a  detail.  With  3D  modelling  these   problems   are   solved   for   a   large   part,   but   it   is   still   up   to   the   human  mind   to   see   all   the   possible  problems  that  come  forward  within  a  3D  design.    Not   just   the   literature   mentions   the   relevance   of   implementing   BIM,   also   from   practice   the  implementation   becomes   relevant.   In   many   countries   the   government   make   it   mandatory   to   execute  public   building   projects   in   3D   BIM,   among   them   the   United   Kingdom   (British   Institute   of   Facilities  Management,   2012).   Also   in   the  Netherlands   the   Rijksgebouwendienst   (Rgd)  will   influence   the   form  of  collaboration.  By  prescribing  BIM  as  integrated  contracts,  the  Rgd  is  attempting  to  reduce  the  failure  costs  (chain   supply   in   construction   and   efficiency   in   the   construction   process)   and   achieve   appropriate  management  of   the  building  and  building  stock   (Jägers,  2011).  This  new   line   in   the  policy  of  authorities  stems  from  the  fact  that  clients  demand  enhanced  quality  and  productivity.  To  accomplish  that  the  most  important  sub  processes  (creation  and  evaluation)  should  be  better  and  more  efficient.  Most  influence  in  cost-­‐quality  ratio  lies  in  the  conceptual  design  phase.  BIM  is  a  good  instrument  to  stimulate  an  early  form  of  collaboration.  Therewith  the  number  of  problems  associated  with  the  conventional  method  decreases  by  this  improved  design  process.  BIM  is  not  only  changing  the  quality  and  efficiency  of  the  design  process,  but   implementing   BIM   within   engineering   firms   will   cause   a   change   within   roles   and   activities   on   a  workplace  (Eastman  et  al.,  2008;  Hubers,  2007).  Most  literature  about  BIM  is  written  from  the  viewpoint  of  an  architect  or  contractor.  The  role  of  an  engineer   is  different,  the  specialty  of  Tebodin   is  completely  different   and   also   their   interest   in   adopting   BIM.   Tebodin   is   a   specialist   in   the   process   industry,   while  architects  and  contractors  are  interested  in  the  aesthetic  and  quality.  Next  to  that  Tebodin  (and  also  other  engineering  companies)  are  highly  interested  in  two  phases  of  a  construction  process,  namely  the  design  and  operate  and  maintenance  phase.  Clients  are  using  the  knowledge  of  these  specialists  to  create  a  good  design  and  engineering  companies  are  interested  in  whether  their  design  actually  works  (the  process)  and  function  as  they  though  it  would.    In   summary,   BIM   is   mentioned   as   “one   of   the   most   promising   developments   in   the   AEC   industry”  (Eastman  et  al.,  2008).  Up  to  now  almost  one  out  of  five  (medium)  large  construction  companies  are  using  BIM  in  their  construction  process  (Snoei  &  Beliaeva,  2012),  which  means  the  vast  majority  of  these  firms  will   change   their   traditional   design  method   towards   BIM.   However,   to   change   the   design  method   will  cause  a  change  within  roles  and  activities  on  a  workplace  (Eastman  et  al.,  2008;  Hubers,  2007).    

2 .3 Problem statement Implementing  BIM  into  a  company  or  construction  process  will  cause  some  changes  as  mentioned  before.  Employees  need  to  be  able  to  work  with  different  software,  such  as  Revit,  ArchiCAD,  Navisworks  or  Solibri.  Training  enables  them  to  use  these  software  programmes.  This  does  not  mean  they  are  fully  capable  to  use   all   the   facilities   BIM  offers   to   its   users.   As  Deutsch   (2011)   says   “anyone   can   load   a   single   software  license  and  be  up  and  running  with  a  program.  Implementing  BIM  is  different”.  Hardin  (2009)  adds  to  this  that  BIM  is  not  just  software;  it  is  a  process  and  software.  Companies  have  to  realize  that  they  not  can  sit  in  front  of  a  computer  and  just  model  with  3D  software  but  they  have  to  implement  a  new  way  of  thinking  BIM   entails.   This   new   way   of   thinking   should   lead   to   more   collaboration,   effectively   deploying,   and  

Page 17: Transformation from 3D modelling to building information modelling

Building information modelling   5    

 

utilizing  data  multidisciplinary  and  throughout  the  building  life  cycle  (Adamu,  2014).  As  shown  in  Figure  2,  there   are   many   steps   in   a   process   of   adopting   BIM.   Until   recently   designing   happens   to   be   two-­‐dimensional.   Designers   designed   in   2D   surfaces   (horizontally   and   vertically)   the   construction   object.  Where  2D  designing  contains  no  consistency,  3D  modelling  offers  the  possibility  to  design  parametrically.  Every  design  change  is  synchronized  in  every  dimension.  BIM  continues  by  adding  more  dimensions  to  it  as   is  shown  in  Figure  2.  Besides  that  the  model  becomes  an   information  exchange   instrument.  All   these  possibilities  that  BIM  contains  makes  it  a  complex  piece  of  software.  Owning  the  software  is  a  big  task,  but  owning   the   process   is   even  more   difficult.   According   to   Eastman   et   al.   (2008)   there   are   at   least   three  challenges  to  fight  to  implement  BIM  successfully:    • Challenges  with  collaboration  and  teaming  • Legal  changes  to  documentation  ownership  and  production  • Changes  in  practice  and  use  of  information    Tebodin  is  also  experiencing  problems  how  to  implement  BIM  into  the  design  process.  Currently  they  are  designing  projects  in  3D  modelling  programs  and  they  are  at  the  start  of  adopting  BIM.  These  days  they  try  to  design   integral  with   two  departments,  but  with   the  help  of  BIM  they  want   to  collaborate  efficient   in  multidisciplinary   teams.  Because  a   lack  of  vision  of  BIM   it   is  difficult   to   find  out  what   they  are   trying   to  achieve  using  BIM.  Because  of  a  lack  of  vision  and  the  diversity  of  designing  programs,  all  three  challenges  mentioned  above  are  applicable  to  Tebodin.  It  is  important  that  Tebodin  creates  a  vision  about  BIM.  From  this   point   of   view   they   can   develop   a   strategy   how   they   can   handle   the   changes   and   challenges   BIM  involves   in   terms   of   collaboration   and   teaming,   legal   changes,   and   practical   changes.   The   different  departments  at  the  office  are  using  different  design  tools.  In  terms  of  3D  modelling  this  is  not  a  problem,  but   collaboration  with   these  programs,  as   the   intention  of  BIM   is,   is  quite  another   story.  Therefore   the  problem  statement  can  be  formulated  as  follows:    In  the  engineering  and  consultancy  business  building  information  modelling  (BIM)  is  a  new  phenomenon  that  could  improve  the  design  process.  There  is  already  a  complete  new  form  of  collaboration  with  3D  

modelling.    Learning  to  understand  the  3D  modelling  software  and  implementing  BIM  at  the  same  time  is  a  process  that  requires  lots  of  time  and  effort.  Especially  when  there  is  uncertainty  what  the  vision  of  the  

company  is  and  what  the  starting  point  is  from  which  the  company  starts.    

   Figure 2: BIM adaption continuum (Deutsch, 2011)

2 .4 Research object ive As   mentioned   in   the   problem   statement,   learning   and   implementing   BIM   in   the   organization   and  construction  process  could  be  a  problem.  When  companies  are  using  BIM,  but  do  not  change  anything  in  the  process  of  working,  the  possibilities  of  BIM  are  neglected.  In  this  way  the  possibilities  that  BIM  offers  are  not  optimally  used  and  BIM  is  just  like  a  normal  3D  design  tool.  Therefore  some  steps  have  to  be  taken  to  implement  BIM  successfully,  as  is  shown  in  Figure  2.  The  first  one  is  to  find  out  what  the  vision  of  the  company  (in  this  case  the  Tebodin  West  Office)  actually  is  and  otherwise  finding  out  what  the  vision  will  be.  Together  with  this  the  current  state  of  development  related  to  BIM  must  be  discovered  (this  will  be  done  by  analysing  the  Mountain  project).  This  can  be  compared  with  the  ideal  image  in  which  BIM  is  fully  

Page 18: Transformation from 3D modelling to building information modelling

6 Building information modelling  

 

integrated  in  the  company  and  optimally  used.  The  gap  between  these  situations  is  the  road  a  company  must   travel   to   succeed   their   ideals   (illustrated   in   Figure   3).   The   objective   of   this   research   is   to   bring  forward  some  recommendations  and  offer  handles  to  which  Tebodin  can  move  forward   into  the  future,  according  to  the  GAP  analysis  principle  (GAP  analysis  –  a  reasonable  goal,  which  is  set  in  measures  that  the  people  must  do  to  control  the  work,  can  also  serve  to  motivate  them  toward  closing  the  performance  gap  (Chevalier,  2010)).    The  main  objective  for  this  research  is  as  follow:    The  objective  is  to  develop  recommendations  for  the  implementation  of  building  information  modelling  at  

an  engineering  and  consultancy  company  (e.g.  Tebodin).    

 Figure 3: research visualization

2 .5 Research quest ion The   formulation   of   the   problem   statement   and   the   research   objective   lead   to   the   formulation   of   the  following  research  question:  

 What  needs  to  be  changed  in  the  work  processes  of  an  engineering  company  to  move  from  3D  modelling  

towards  building  information  modelling  in  the  design  phase?      To  answer  this  main  research  question  the  following  sub  questions  have  to  be  answered:    • What  does  a  traditional  design  process  in  an  engineering  firm  look  like?  The  traditional  design  process  will  be  outlined  in  chapter  3.  The  design  process  of  Tebodin  that  is  analysed  in  chapter  4  will  be  compared  to  this  outcome.  The  answer  will  be  discussed  in  chapter  7.    • What  does  a  BIM  design  process  look  like  in  an  engineering  company?  The  analysis  of  the  BIM  design  process  should  offer  a  view  what  the  ideal  design  process  with  BIM  looks  like.  This  design  process  will  be  compared  to  the  current  design  process  of  Tebodin.  Based  on  their  current  position  the  future  perspective  can  be  sketched,  which  is  described  in  chapter  7.    • What   are   the   potential   benefits   and   disadvantages   of   implementing   BIM   in   a   design   process   of   an  

engineering  organization?  The  potential  benefits  and  disadvantages  should  give  an  idea  what  BIM  includes  and  what  aspects  of  BIM  have  to  be  taken  into  account.  The  question  will  be  answered  in  chapter  3  and  will  be  part  of  the  answer  to  the  question  what  the  main  challenges  are  while  implementing  BIM.    • How  does  building   information  modelling   influence  the  traditional  design  process  these  days  and   in  

the  future?  From  the  problem  statement  it  appears  to  be  that  BIM  will  influence  the  current  design  process,  but  what  will  the  influence  look  like,  is  it  already  visible  or  will  it  be  visible  in  the  future?  This  research  should  give  an  answer  to  that  in  chapter  7.    • What   are   the   main   challenges   to   fight   while   implementing   BIM   in   the   project   context   of   an  

engineering  organization?  From  the  previous  question  it  should  become  clear  how  BIM  influence  the  traditional  design  process  and  this   research  will  give  an  answer   to  what   the  main  challenges  are  while   implementing  BIM.  The  answer  will  be  given  in  chapter  7.  

Current  Design  Process

“BIM  Utopia”  Design  Process  

How  to  achieve  this?

Page 19: Transformation from 3D modelling to building information modelling

Building information modelling   7    

 

2 .6 Scope and l im itat ions To  make  sure  the  research  is  possible  to  execute  in  the  given  amount  of  time  and  have  a  satisfying  result  the   scope   and   limitations   have   to   be   defined.   It   is   limited   in   the   single   but  most   representing   project  currently  executed  design  by  Tebodin.  Next  to  that,  not  the  entire  construction  process  will  be  viewed  but  only  a  part  of  it,  and  the  main  focus  will  be  on  the  design  process.  Next  to  that  the  software  and  actors  are  restricting  the  scope.    Royal  Friesland  Campina  milk  plant    The  research  that  will  be  executed  at  Tebodin  will  depend  on  the  “Mountain  project”  Tebodin  is  doing  for  Friesland  Campina.  The  design  process  will  be  analysed  and  according  to  the  methods  used  in  this  project,  the  design  process  is  mapped  out.  Within  this  project  many  different  disciplines  are  working  together  and  therefore  the  participation  of  different  departments  will  be  analysed  within  Tebodin.    Design  phase  BIM   is   applicable   in   every   industry,   in   every   stage   of   a   construction   process.   From   concept   phase   to  construction   and   operating   and  maintenance   until   demolition   of   a   building,   BIM   is   applicable   to   every  phase.  To  make  it  tangible,  this  research  emphasizes  the  design  phase  of  the  construction  process.  This  is  the   first   stage   of   the   whole   process   and   within   this   an   engineering   and   consultancy   firm   often   gets  involved  at  the  design  process.  From  this  stage  it  can  use  BIM  to  develop  the  design  through  all  the  stages  in  the  process  it  is  involved  in.    Software    There  are  many  different  software  programmes  that  are  suitable  to  module  and  are  capable  to  work  with  BIM.   Autodesk   Revit,   Graphisoft’s   ArchiCAD,   Bentley   BIM   (MicroStation),   and   Tekla   Structures   are  internationally  the  most  primary  software  applications  used  (Eastman  et  al.,  2008).    At  Tebodin  they  are  using  AutoCAD  to  design  2D  and  Revit  and  PDMS  to  design  3D,  the  Mountain  project  is   designed   in   Revit   at   the   building   department   and   Plant   3D   at   the   Piping   department.   Primarily  everything   is   designed   in   Revit   and  merged   together   to   visualize   in   Navisworks.   Because   this   research  focuses   on   BIM,   the   software   will   be   limited   by   3D   modelling   software,   only   focussing   on   Revit   and  Navisworks.    Actors  In   a   construction   process   many   different   actors   are   involved.  Within   this   research   only   the   actors   are  involved  that  are  directly  relevant  to  the  design  process  of  the  Mountain  project.  Here  can  be  thought  off  different  design  departments  within  Tebodin,  the  client  and  the  main  and  interesting  contractors.        People,  process  and  platform  The  AEC   industry   is   changing.   For  a  better  understanding,   the   functions  of  an  organization  are  grouped  into  three  areas:  people,  process,  and  platform  (Pramod  Reddy,  2012):    • People  are  considered  the  employees  of  an  organization  or  the  members  of  a  project  team  • The  process  is  the  steps  an  organization  takes  to  complete  task  and  projects  • The  platform,  in  most  cases,  is  the  network  infrastructure,  desktops,  and  laptops.      These  areas  will  function  as  a  guideline  to  describe  the  research  conclusions  and  make  it  easy  to  work  in  a  structured  way.  

2 .7 Research approach In   order   to   achieve   the   research   goal,   the   research  will   be   done   in   a   structured   and   organized  way.   A  schedule   shows  at  a  glance  how   the   research   is  based   (Verschuren  &  Doorewaard,  2003).  The   research  approach  is  schematically  shown  in  Figure  4  and  it  consists  of  five  parts.    Part  A:  Research  context  This   part   is   the   introduction   of   the   research;   the   context   of   the   research   is   described.   It   gives   an  introduction  to  the  subject,  it  points  out  the  relevance  of  the  research,  followed  by  the  research  problem,  objective,  questions  and  scope.  It  will  be  concluded  with  the  methodology  of  this  research.    

Page 20: Transformation from 3D modelling to building information modelling

8 Building information modelling  

 

Part  B:  Theoretical  analysis    The   literature   study   will   provide   the   basis   for   this   theoretical   analysis.   The   analysis   will   focus   on   the  traditional  construction  process  (primarily  the  design  part)  and  on  building   information  modelling  (BIM).  Besides  that  different   forms  of   integral  design  will  be  outlined.  These  three  subjects  will  be  the  basis  of  the  case  study  of  part  C.  The  analysis  will  provide  the  scientific  view  of  the  three  main  subjects  and  the  practical  analysis  (case  study)  will  be  compared  with  this  scientific  view.  The  literature  study  will  also  be  used  to  formulate  questions  that  will  be  used  in  the  interviews  of  the  case  study  (part  C).    Part  C:  Practical  analysis    This  part  will  contain  the  analysis  of  the  current  way  of  working  of  Tebodin  within  the  Friesland  Campina  case.  By   interviewing  workers   related   to   this  project  about   the  current  way  of  working,   their  vision  and  thoughts  of  BIM,  an  analysis  can  be  made  of  the  current  state  of  development  and  the  future  perspective  of  them.  The  interviews  should  yield  a  great  source  of   information  that   is  not  available  through  another  way.   The   attendees   (10)   of   the   interviews   will   be   the  main   lead   engineers   of   Tebodin   (5),   the   project  manager   and   BIM   coordinator,   the   client   and   two   main   contractors   of   this   project   to   find   out   their  expectations  or  experiences  of  3D  modelling  and  BIM,  and   the  collaborations   this  method  entails.  With  this  case  study  the  current  design  phase  of  Tebodin  can  be  mapped  out  and  shown,  and  provide  the  basis  to  answer  what  a  traditional  design  process  or  BIM  design  process  looks  like.  It  will  serve  as  a  base  of  part  D.  To  conclude  this  part,  experts  will  validate  the  design  process.  These  experts  include  a  combination  of  people  from  external  companies  and  from  Tebodin  (see  appendix  E  for  a  list  of  attendees).    Part  D:  Implementation  In   this   part   a   couple   of   things   happen.   First   in   the   synthesis   part   B   and   C   are   brought   together.   By  combining  the  theory  and  practice  of  Tebodin  a  good  image  can  be  sketched  of  the  current  state  of  affair.  To  give  any  scale  what  the  current  state  of  their  design  process  is  it  will  be  measured  according  to  a  BIM  maturity  model.  This  framework  gives  a  view  what  the  current  BIM  stage  is  and  what  the  future  stage  of  BIM  includes.      The  difference  that  emerges  of  the  current  stage  and  the  desired  stages  can  be  defined  as  a  gap,  which  will  be  the  basis  of  the  second  part  of  part  D.  From  this  point  the  GAP  analysis  can  be  made  based  on  the  strengths,  weaknesses,  opportunities  and  threats  the  SWOT  analysis  brought  forward.  With  this  analysis  a  direction  can  be  outlined  to  where  Tebodin  will  be  moving.      Part  E:  Conclusion    The   last   part   of   the   report   exists   of   the   conclusions   and   recommendations.   The   chapter   will   begin   to  answer   the   (sub)   research   questions   that   will   be   part   of   the   main   question.   The   most   important  conclusions  will   be   part   of   the   answer   of   the  main   research   question.   This   part  will   be   concluded  with  recommendations   in   general   (for   the   construction   industry),   regarding   further   research   and   towards  Tebodin.  The  limitations  of  this  research  will  be  explained,  so  the  readers  know  the  scope  of  the  research  and   therefore   the   benefits   related   to   this   research.   To   give   extra   meaning   to   this   research   the   main  conclusions  and  recommendations  will  be  validated  by  experts.      

Page 21: Transformation from 3D modelling to building information modelling

Building information modelling   9    

 

 Figure 4: research method

   

Page 22: Transformation from 3D modelling to building information modelling

10 Building information modelling  

 

   

Page 23: Transformation from 3D modelling to building information modelling

Building information modelling   1 1    

Chapter 3

Theoretical analyses In   order   to   do   a   case   study   of   a   current   project   that   will   serve   as   basis   for   further   advice  concerning   building   information   modelling   (BIM)   and   how   to   implement   it   into   the   design  process  within   the  company,   the  basis  must  be  well  defined.  Therefore   this  chapter  will   cover  three  important  aspects  that  are  necessary  to  understand  before  continuing  to  implement  BIM.  First   the   traditional   construction  process  will   be   viewed.   It  will   be  elaborated  what   this  phase  looks  like  in  two-­‐dimensional  and  three-­‐dimensional  design.  Then  BIM  will  be  analysed.  A  clear  definition  will  be  given,  the  answer  to  what  BIM  actually  is,  and  the  benefits,  disadvantages  and  functions   of   BIM   will   come   forward.   Finally   the   chapter   will   be   concluded   with   the   subject  integral   design.   To   implement   BIM   in   a   proper   way,   some   changes   must   happen   to   make   it  successful.   Therefore  multidisciplinary   design,   concurrent   engineering   and   interoperability   are  discussed  because  these  terms  might  be  beneficial  to  implementing  BIM.    

3 . 1 Tradit ional des ign process This  part  of  the  chapter  will  discuss  the  traditional  design  process  of  a  construction  project  in  general.  The  design  phase  will  be  sketched  and  a  general  process  will  be  visualized.  Next  to  that  the  traditional  method  will  be  divided  into  two-­‐dimensional  (2D)  and  three-­‐dimensional  modelling  (3D).  Both  subjects  will  be  set  out  and  positive  and  negative  points  will  be  discussed.      The  Royal  Institute  of  British  Architects’  (RIBA)  Plan  of  Work  described  the  traditional  method  of  designing  (RIBA,  1997).  The  model  became  a  widely  accepted  model  throughout  the  building  industry  (Kagioglou  et  al.,   1998).   This   sequential   method   in   the   construction   industry   is   also   known   as   the   “over   the   wall”  approach   (Evbuomwan   &   Anumba,   1998;   RIBA,   1997).   This   approach   contains   the   principle   that   every  discipline  passes  through  its  design  to  another.  The  architect  produces  a  design;  these  drawings  are  given  to  the  structural  engineer.  He  is  completing  the  structural  aspect  of  the  design  and  send  it  to  the  next  one.  This  will   continue  until   the  project   is   passed  on   to   the   contractor.  An  advantage  of   this  method   is   that  there  is  little  time  spent  on  consultation.  Another  benefit  includes  that  there  is  a  clear  separation  of  tasks,  which  can  be  useful  when  a  part  depends  on  another  part  (Aouad,  Wu,  Lee,  &  Onyenobi,  2012).  However,  according  to  Anumba  et  al.  (2002)  there  are  some  disadvantages  of  this  approach,  these  includes:

 Figure 5: over the wall approach (Evbuomwan & Anumba, 1998)

Page 24: Transformation from 3D modelling to building information modelling

12 Building information modelling  

 

3 . 1 . 1 What does the des ign phase look l ike? Designing  is  about  creating  things  and  this  can  be  done  in  many  different  ways.  Designing  is  about  finding  solutions   to   problems   that   emerge.   According   to   Lawson   (1997)   “there   are   however   an   exhaustible  number  of  different  solutions”.  A  design  process  is  therefore  not  easy  to  describe  because  it  is  an  endless  process  that  has  no  prescribed  manner  on  how  to  design.  Besides  “the  process  involves  finding  as  well  as  solving  problems”  (Lawson,  1997).  Nevertheless  these  difficulties   in  the  design  process  will  be  described  according  to  the  literature.    Hanssen  Creating  an  object  begins  with  a   set  of   requirements   from  the  client  before   the  designer  can  start  with  designing.  The  design  process  of  civil  engineering  differs  from  a  building  process,  but  in  essence  the  design  process   is  an   iterative  cyclic  process.  According  to  VDI-­‐Richtlinie  2221  (1993)  and  Pahl,  Beitz,  Feldhusen,  and  Grote  (2007)  a  design  process  exists  of  seven  steps  (Hanssen,  2000):    1) Analysing   the   set   of   requirements   of   (potential)   clients.   This  

will   result   in   a   set   of   functional   demands   that   the   product  should  satisfy.  

2) Define  the  functions  that  the  product  must  fulfil  to  succeed  to  the   functional   requirements.   A   function   of   a   product   is  defined   as   a   transformation   of   energy,   material   and  information  this  product  must  be  realisable.  

3) Development   of   solutions   that   are   capable   to   realise   the  functions.   This   occurs   by   combining   the   desired   output   of   a  function   and   the  decisions   of   geometry   and  materials   of   the  product  to  be  designed.    

4) Translation   of   the   function   and   corresponding   solutions   into  product   modules.   This   is   a   collection   of   interdependent  products  that  implement  one  of  more  solutions.  The  result  of  this  step  is  a  collection  of  product  modules  and  their  technical  interfaces.  This  is  called  the  product  architecture.  

5) Global   design   product  modules.   In   this   step   every  module   is  globally   defined   into   geometrical   and   material   aspects.   It  results  in  a  global  design.  

6) Detailed  design  of  product  modules.  For  every  module  and  its  product  parts  are  the  geometric  and  material  aspect  specified  in   detail.   The   result   is   a   set   of   technical   drawings   and   list   of  materials.  A  complete  technical  drawing  contains  information  of   the   structure,   shape,   materials,   dimensions,   surface   and  tolerance  of  the  product  (Andreasen  &  Hein,  1987).  

7) Establish   production   requirements.   In   this   step   the   product  and  assembly  requirements  are  established.    

 However,  when  dependent  (design)  tasks  within  a  development  process  are  executed  sequential  (as  is  the  case  in  Figure  7),  this  means  the  executors  of  the  design  tasks  only  share  information  with  the  executors  of   downstream   tasks   (for   example   the   service,   construction   or   tender).   Furthermore,   the   downstream  tasks  are  initiated  after  the  design  tasks  are  completely  finished.  This  often  results  in  higher  downstream  

• The   fragmentation  of   the  different  participants   in   the   construction  project,   leading  to  misconceptions   and  misunderstandings.  

• The  fragmentation  of  design  and  construction  data,  leading  to  design  clashes,  omissions  and  errors.  • The  occurrence  of  late  and  costly  design  changes  and  unnecessary  liability  claims,  occurring  as  a  result  of  the  

above.  • The  lack  of  true  life-­‐cycle  analysis  of  the  project,  leading  to  an  inability   to  maintain  a  competitive  edge   in  a  

changing  marketplace.  • Lack  of  communication  of  design  rationale  and  intent,  leading  to  design  confusion  and  wasted  effort.  

Figure 6: disadvantages according to (Anumba, Baugh, & Khalfan, 2002; Barlish & Sullivan, 2012)  

Figure 7: design process civil/process industry (left) Hanssen, 2000) and building industry (right) Hertogh & Bosch-Rekveldt, 2013)  

Page 25: Transformation from 3D modelling to building information modelling

Building information modelling   13    

costs  and  a  decrease  of  the  quality  of  the  development  of  the  product.  A  decrease  of  this  process  results  in  an  increase  of  processing  time,  costs  and  a  difficult  controllable  development  process.      The  characteristics  of   the  product,  which  are  determined  during   the  design,  have  a   large   impact  on   the  way  this  product  is  produced,  assembled  and  maintained.  The  design  phase  determines  thus  whether  the  product  is  easy  to  produce,  assemble  or  maintain.  This  process  determines  also  the  costs  that  are  involved  with   this.   However,   the   designers   do   not   always   have   the   knowledge   about   the   consequences   their  decisions  have  at  previous  mentioned  aspects.  This  knowledge  is  available  to  the  executors  of  these  tasks.  The  likelihood  that  the  designers  share  insufficient  information  with  the  executors  of  downstream  tasks  is  large,  which  according  to  Hanssen  (2000)  leads  to  high  production  and  maintenance  costs,  and  many  hard  or   impossible  producible,   composable  or  maintainable  design   results.  The  amount  and  consequences  of  these  design  iterations  are  hard  to  predict,  what  makes  sequential  executing  of  these  tasks  hard  to  control  (Hanssen,  2000).    Hertogh  and  Bosch-­‐Rekveldt  According  to  Hertogh  and  Bosch-­‐Rekveldt  (2013)  the  design  process  is  a  creative  and  cyclic  process.  This  means   looking   forward,   think,   decide,   act/do,   control,   change   and   give   feedback.   The   essential   design  process  can  be  structured  in  the  following  way:    • Analysis:  criteria  are  developed  in  case  of  the  next  design  step  in  this  cycle;  • Synthesis:  possible  outcomes  are  elaborated;  • Simulation:  investigation  of  the  elaborations  is  effective  and  the  associated  costs  are  determined;  • Evaluation:  the  hierarchy  of  the  developed  elaborations  are  determined;  • Decisions:  determine  which  elaboration  developed  on  the  next  level  of  detail.  

 The  feedback  takes  place  through  the  analysis  and  the  synthesis.   If  the  solution  is  not  sufficient  enough,  new  (and  better)  criteria  are  developed  in  the  analysis.  Another  possibility  arises,  when  the  elaborations  do  not  meet  the  requirements,  new  elaborations  are  generated.  This  cyclic  process  repeats   itself  during  the  following  design  phases  according  to  Hertogh  and  Bosch-­‐Rekveldt  (2013):    • Concept   design:   the   demands   and   requirements   are  

listed  in  the  program  of  requirement.  Often  a  number  of  concepts  are  made.  

• Preliminary   design:   in   the   preliminary   design   phase   a  (sketch/concept)   design   is   further   elaborated.   In   this  phase  there   is  design  to  scale,  dimensions  might  change  and  calculations  are  often  limited.  

• Final   design:   the   design   in   this   phase   is   based   on  main  calculations.  As  the  name  implies  this   is  the  final  design,  dimensions  will  not  change  anymore.    

• Specifications:   based   on   the   final   design   the  specifications  can  be  written.  Everything  that  is   included  in  the  final  design  is  further  developed  and  specifications  will   be   added,   allowing   the   contractor   to   give   a   fixed  price  for  the  work.    

• Detail   design:   in   this   phase   the   drawings   serve   as  implantation   design.   These   drawings   are   made   to   be  used  at  the  construction  site.    

This  cyclic  process  is  drawn  by  several  authors,  and  Dym  and  Little  (2004)  have  illustrated  it  according  to  Figure  8.  

3 . 1 .2 Two-d imens ional model l ing Architects  and  engineers  used  hand  or   technical   (2D)  drawings   to  present   their   ideas   for  ages.  Until   the  1980s   these  2D  drafting  methods  remained   largely  unaltered.  With   the   introduction  of  Computer  Aided  Drafting  (CAD)  the  2D  drafting  on  paper  changed  to  digital  designing.      

Figure 8: design process (Dym & Little, 2004)  

Page 26: Transformation from 3D modelling to building information modelling

14 Building information modelling  

 

Analogue  drafting  Although  hand  drafting  can  be  seen  as  a  beautiful  form  of  art,  mostly  it  is  a  repetitive  and  tedious  form  of  work.  With  every  decision  or  modification  every  set  of  drawings  has  to  be  changed  or  even  redrawn  on  a  new  sheet  of  paper.  Also  the  process  of  designing  can  be  very  dynamic.  The  architect  or  engineer  switches  back  and  forth  between  different  models  or  different  views.  With  every  modification  every  view  needs  to  correspond  with   the  new  design.   This  process   is   a   very   time   consuming  process.  Besides   that   the  hand  drafting  method  causes  a  problem  due  to  its  inaccuracy.    But   in   1983   the   first   step   towards   CAD   was   made   with   pin-­‐bar   drafting.   This   was   a   drafting   method  whereby   architects   or   engineers   used  multiple   sheets   of   paper   (some   of  which  were   transparent)   that  contains   pins   allowing   all   sheets   to   be   aligned   correctly.   Every   sheet   contains   a   different   aspect   of   the  whole  product,   and  combined   the   sheets   show   the   full   complexity  of   the  construction  object.  Although  the  costs  of   integrating  the  pin-­‐bar  drafting  method  into  the  work  process  were  more  than  the  reduced  labour  costs,  the  pin-­‐bar  method  resulted  in  an  increase  of  the  accuracy  and  quality  of  the  work  (Epstein,  2012).      Digital  drafting  The   biggest   change   from   analogue   to   digital   drafting   is   the   fact   that   designing   takes   place   behind   a  computer,  a  digital   format.  The  project  data  can  be  modified,  manipulated  and  electronically  shared.  As  with   pin-­‐bar   drafting,   working   with   CAD,   building   information   can   be   isolated   using   layers.   Repetitive  elements   such  as  doors  and  windows  can  be  accurate  and  quickly   copied  within   the  drawings.  Another  advantage   compared   to   analogue   is   the   fact   that   modification   or   corrections   can   easily   be   changed  without  distorting  the  design  data  (Epstein,  2012).      

3 . 1 .3 Three-d imens ional model l ing Initially  3D  modelling  was  not  as  sophisticated  as   it   is  now.  When  drafting  programs  were  developed,   it  created   2D   documentation   and   3D  models   separately.   Besides   that,   these   programs   were   not   able   to  share   the   data   and   therefore   every   change   had   to   be  modified   in   both   programs.   This   design  method  required   a   very   close   cooperation   of   team  members,   which  was   very   difficult   and   prone   to   error.   The  design  team  had  to  maintain  and  coordinate  not  one  database  but  two  separate  systems.    With  the  introduction  of  3D  models,  construction  projects  were  still  designed  in  2D  programs.  3D  models  were   only   used   for   design   studies   and   renderings.   These  models   are   also   called   surface  models.   These  models   consist  of   surfaces  only  and  can   just   look   solid.  A   surface  model  only  has   to   look  correct  and   is  therefore   ideal   for   presentation   and   communication.   The   multifunctional   3D   construction   models   are  called  virtual  models  or  solid  models.  Architects  and  engineers  can  switch  through  the  different  windows  to  test  and  develop  their  ideas.  Modifying  the  design  is  only  a  matter  of  synchronizing  the  model  database  from   this   database   renderings,   perspectives,   in-­‐house   studies   and   other   3D   views   can   be   generated  automatically.   It   can   also  be  used   to   communicate   ideas  with  owners,   end-­‐users   and   consultants.  With  only  one  database   that   synchronizes  every  modification  between  all   the  views,   inconsistency  errors  are  eliminated.    Also  alternative  studies  can  be  created  in  less  time  and  costs  (Epstein,  2012;  Kymmell,  2008).    

3 .2 Bui ld ing informat ion model l ing The   traditional   way   of   designing   and   BIM   are   different   in   multiple   ways.   But   to   describe   it   briefly:  designing   with   a   BIM   program   or   software   tool   goes   beyond   a   3D   model   by   adding   the   possibility   to  include  data  to  it  and  use  dynamic,  parametric  objects.    

3 .2 . 1 Def in i t ion of BIM The  definition  of  BIM  mentioned   in   the   introduction  of   this   report  by   the  National  Building   Information  Model  Standard  (NBIMS)  Project  Committee  is  generally  accepted,  but  was  does  this  definition  mean?    “Building  information  modelling  (BIM)  is  a  digital  representation  of  physical  and  functional  characteristics  of  a  facility.  A  BIM  is  a  shared  knowledge  resource  for  information  about  a  facility  forming  a  reliable  basis  

for  decisions  during  its  life  cycle;  defined  as  existing  from  earliest  conception  to  demolition  (National  Institute  of  Building  Sciences,  2014).“  

 BIM  can  be  seen  as  an  instrument  that  integrates  every  phase  of  construction  projects,  from  the  concept  design  to  facility  management.  BIM  is  an  abbreviation  of  building  information  modelling  and  sometimes  it  is  used  as  building  information  model.  It  can  be  described  as  a  process  that  generates  and  maintains  the  data  of  a  construction  project  during  its  whole  lifecycle.  All  actors  in  the  process,  from  start  to  finish,  can  

Page 27: Transformation from 3D modelling to building information modelling

Building information modelling   15    

use  the  information  that  is  centrally  available  concerning  a  construction  object.  BIM  is  not  software  and  it  is  much  more  than  a  3D  model:  it  is  also  possible  to  add  time  (4D)  and  costs  (5D).  A  building  information  model   has   lots   of   information  e.g.   smart   objects   and   it   is   also   an  option   to   connect   information   to   the  model   from  documents.   Thus  BIM   is   not   only   a  model,   but   it   is   also   a   process   and   information   system  (Visser,  de  Boer,  &  van  der  Voet,  2013).    

3 .2 .2 What is bu i ld ing informat ion model l ing? BIM   is   a   term   that   is   often   used   by   software   developers   and   construction   companies   to   describe   their  capabilities   they  offer.   The  definition  of   BIM   leaves   room   for   interpretation  but   also   creates   confusion.  Therefore  it  could  be  useful  to  mention  what  BIM  technology  does  not  include  (Eastman  et  al.,  2008):  

As   mentioned   before,   BIM   is   more   than   just   3D   modelling;   it   is   about   3D,   4D,   5D,   6D   and   even   xD  modelling.  This  seems  to  be  a  bit  strange,  to  talk  about  multiple  dimensions,  therefore  Fox  and  Hietanen  (2007)  mention  the  term  domains.  A  domain  can  be  seen  as  a  discipline  or  field  of  study.  This  makes  the  appellation  as  costs  and  time  much  more  suitable.      • Schedule   (4D):   the   fourth   dimension   relates   to   time,   this   domain   is   about   the   scheduling.   In   this  

manner   it   is   possible   to   simulate   the   construction   order   with   the   help   of   additional   software.   By  linking   for   example   MS   Project   or   Primavera   with   Autodesk   Revit   or   Primavera   with   Gehry  Technologies  Digital  Project  scheduling  information  is  possible.  It  is  also  possible  to  link  MS  Project  to  Navisworks  by  using  similar  names   in  both  programs  and   link  these  files.  The  time  dimension  offers  the  opportunity   to   simulate   the  construction  order  and  evaluate  variants.   In   fact   the  whole  project  can  be  constructed  virtually  before  it  actually  is  built  on  site  (Ashcraft,  2008;  Autodesk,  2007b).    

• Costs  (5D):  the  fifth  domain  refers  to  costs.  Costs  can  be  linked  to  the  model,  or  to  the  corresponding  elements   in   the   model.   This   makes   it   possible   to   execute   a   financial   analysis   or   monitor   the  construction  costs.  Because  the  bill  of  quantities  and  dimensions  can  be  extracted  out  of  the  model,  this  information  is  always  consistent  to  this  model.  Quantities  and  materials  can  be  exported  of  Revit  into  an  Excel  sheets,  but  it  is  also  possible  to  link  it  to  a  calculations  program  of  for  example  Innovaya  (Ashcraft,  2008;  Autodesk,  2007a).    

• Sustainability   (6D):   the   sixth   dimension   is   about   sustainability.   This   domain   should   take   care   of  accurate   estimating   of   the   energy   consumption.   By   performing   this   analysis   early   in   the   process   it  should  improve  the  reduction  of  energy  consumption.  During  occupancy  of  the  building  it  should  also  be  possible  to  perform  measurements  and  verification,   thus  allowing  to   improve  the  process  of   the  energy  consumption  (Impararia,  2014).  

• Operations  (xD  or  nD):  the  last  dimension  is  called  the  x  or  n  dimension  and  refers  to  operations.  This  domain  makes  it  possible  to  get  all  the  data  managers  need  during  the  operations  and  maintenance  phase  of  a  facility.  During  its  life  cycle  it  is  possible  for  participants  to  track  and  extract  relevant  data,  for   example  operations   and  maintenance  manuals,   specifications,   status  of   a   component.  With   the  use   of   xD   technology   life   cycle   management   or   asset   management   will   be   optimized   (Impararia,  2014).  

 While  the  traditional  2D  design  method  knows  inter  alia  preliminary  design  and  final  design,  working  with  a  3D  program  or  BIM  introduces  LOD  100,  200  up  to  LOD  500  (SmartRevit.com,  2012).  LOD  does  not  mean  Level   of   Detail   but   it   means   Level   of   Development.   Level   of   Development   involves   the   extent   of  development  to  which  a  model  component  is  developed.  

• Models   that   contain   3D   data   only   and   no   object   attributes.   These   are  models   that   can   only   be   used   for  graphic  visualization  and  have  no   intelligence  at  the  object  level.  They  are  fine  for  visualization  but  provide  no  support  for  data  integration  and  design  analysis.  

• Models  with  no  support  of  behaviour.  These  models  are  models  that  define  objects  but  cannot  adjust   their  positioning  or  proportions  because  they  do  not  utilize  parametric  intelligence.  This  makes  changes  extremely  labour  intensive  and  provides  no  protection  against  creating  inconsistent  or  inaccurate  views  of  the  model.    

• Models  that  are  composed  of  multiple  2D  CAD  reference  files  that  must  be  combined  to  define  the  building.  It   is   impossible   to   ensure   that   the   resulting   3D  model  will   be   feasible,   consistent,   countable,   and   display  intelligence  with  respect  to  the  objects  contained  within  it.  

• Models  that  allow  changes  to  dimensions  in  one  view  that  are  not  automatically  reflected  in  other  views.  This  allows  for  errors  in  the  model  that  are  very  difficult  to  detect.    

Figure 9: what BIM technology not includes (Eastman, Teicholz, Sacks, & Liston, 2008)  

Page 28: Transformation from 3D modelling to building information modelling

16 Building information modelling  

 

• LOD   100   –   the   conceptual   design   and  master   planning:   this  phase   is  about   creating  mass  models.  During  this  concept  phase  an  overall   indication  is  given  of  the  area,  volume,  height,  orientation  and  location   of   the   facility.   The   mass   model   can   be   used   to   estimate   the   costs   based   on   the   current  available  data.   It   can  also  be  used   for  project  phasing,   the  overall  duration  or  analysing   the  energy  consumption  (The  American  Intstitute  of  Architects,  2008).    

• LOD   200   –   schematic   design   and   design   development:   the  mass   study   changes   into   “generalized  systems   or   assemblies   with   approximately   quantities,   size,   shape,   location   and   orientation”.   The  analyses’  made  are  now  more  accurate  compared   to  LOD  100,  mass  models  change   into  schematic  elements  (The  American  Intstitute  of  Architects,  2008).    

• LOD   300   –   construction   documents   and   shop   drawings:   elements   are   modelled   “as   specific  assemblies  accurate   in  terms  of  quantity,  size,  shape,   location  and  orientation”.  These  drawings  are  now  suitable  to  serve  as  construction  documents.  Because  of  the  high  degree  of  detail  (still  not  100  per  cent  accurate),  time  and  cost  estimation  can  now  be  performed  with  a  reasonable  accuracy  (The  American  Intstitute  of  Architects,  2008).      

• LOD  400  –  fabrication  and  assembly:  this  level  of  development  goes  further  into  detail  then  LOD  300.  In  this  phase  the  “complete  fabrication,  assembly,  and  detailing  information”  is  added.  The  model  is  now   a   virtual   reality   model,   it   is   complete   and   ready   to   construct.   The   analysis   represents   the  construction  planning  and  costs.  This  is  normally  not  achieved  by  the  architects  or  engineers,  but  by  the  fabricators  or  manufacturers  (The  American  Intstitute  of  Architects,  2008).    

• LOD  500  –  facility  management:  this  phase  represents  the  “I”  of  (information)  in  building  information  modelling.   This  model   is   also   known  as   the  as-­‐built  model   and   it   can   therefore  be  used  during   the  operations  and  maintenance  phase  of  the  facility  for  e.g.  warrantee  information,  model  number,  who  installed  a  specific  element,  supplier  contact  info,  or  any  specific  information.    

3 .2 .3 Funct ions of bu i ld ing informat ion model l ing Above   is   explained  what  BIM  contains   and  what  BIM   is  not.  But   to   get   a  better  understanding  of  what  building   information   actually   is,   the   functions   of   BIM   are   explained   below   (Eastman   et   al.,   2008;  Papadonikolaki,  Koutamanis,  &  Wamelink,  2013):    • Visualization:  it  becomes  very  easy  to  create  3D  renderings,  but  it  is  also  possible  to  make  animation  

movies  that  could  support  the  sales  of  the  project.  • Fabrication:    BIM  could  support  generating  shop  or  fabrication  drawings  for  all  kind  of  systems  and  

objects.  For  example,  a  sheet  that  includes  the  entire  metal  ductwork  drawings  can  be  produced  and  then  handled  by  the  manufacturer.  

• Integration:   because   every   actor   or   partner   in   the   construction   process   could   have   (simultaneous)  access  to  the  model,   the  model  becomes  a  multidimensional   integrated  database  for  all  partners   in  the  project.    

• Facility  management:  the  BIM  enables  facilities  management  departments  to  consult  the  model  for  space  planning,  maintenance  operations  and  renovations.    

• Cost  estimating:  with  the  help  of  cost  estimating  features,  BIM  software  makes  it  possible  to  extract  quantities   and   costs,   which   are   always   up-­‐to-­‐date   because   the   modifications   are   automatically  updated  throughout  the  entire  model.    

• Schedule:   the  model   can  be  used   to  generate  material  and   fabrication  ordering,  delivery   schedules  for   all   the   building   elements   and  make   a   real   time   scheduling  model   that   shows   the   construction  sequence.    

• Clash   detection:   because   BIM   models   could   be   a   combination   of   multiple   different   models,  everything  has  to  correspond  to  make  it  a  proper  model.  Interference,  collision,  conflict  or/and  clash  detection   determine   whether   there   are   any   intersections.   Because   everything   is   combined   in   one  model,  it  is  also  possible  to  check  visually  for  any  interference.    

• Energy:  with  the  help  of  special  software  programs,  it  is  possible  to  make  environmental  calculations  and  execute  energy  simulations.  Therefore  it  can  improve  the  sustainability  of  the  building.  

• Monitoring:  the  model  makes  it  possible  to  monitor  the  budget  and  schedule  during  the  construction  process.    

• Accessibility:  BIM  can  be  used  during  the  complete  lifecycle  of  an  object.  Adding  information  in  the  early  stage  of  the  process,  e.g.  the  design  phase,  make  it  possible  to  extract  information  later  in  the  

Page 29: Transformation from 3D modelling to building information modelling

Building information modelling   17    

process,  for  example  during  the  maintenance  phase.  A  BIM  generates  consistent  2D  and  3D  drawings.  This  model  also  makes  the  large  documentation  unnecessary,  such  as  technical  specifications.    

3 .2 .4 Benef i ts of BIM BIM   technology   makes   it   possible   to   improve   many   aspects   of   the   construction   process.   Although    Eastman  et  al.  (2008)  mention  that  BIM  is  still   in  the  early  days  within  the  architecture,  engineering  and  construction   and   facility   management   (AEC/FM)   industry,   already   significant   improvements   have   been  realized.  Some  of  these  advantages  are  listed  below;  others  are  for  the  (near)  future.  These  benefits  are  also  part  of   the  answer  to  the  research  question  “What  are  the  potential  benefits  and  disadvantages  of  implementing  BIM  in  a  design  process  of  an  engineering  organization?”    

 Figure 10: preconstruction benefits to owner (Barlish & Sullivan, 2012; Eastman et al., 2008; Fernandes, 2013; Straatman, Pel, & Hendriks, 2012)

 Figure 11: design benefits (Barlish & Sullivan, 2012; Eastman et al., 2008; Fernandes, 2013; Straatman et al., 2012)

 

Preconstruction  benefits  to  owner    • “Concept,  feasibility  and  design  benefits.”  It  is  necessary  for  owners  to  find  out  whether  the  project  goals  are  

actually  achievable  for   the  given  budget  in  the  early  concept  phase.  BIM  makes   it  possible   to  provide  a  3D  visualization  that   quantifies   space   and  materials,   and  herewith   it   is   possible   to   check   the   feasibility   of   the  project  early  on  in  the  project.  

• “Increased  building  performance  and  quality.”  By  creating  a  design  model  and  alternatives  using  analysis  or  simulation  tools  to  evaluate,  the  overall  quality  of  the  building  will  increase.  

Design  benefits    • “Earlier  and  more  accurate  visualization  of  a  design.”  From  early  on  a  3D  model  is  generated  to  correspond  

with   the   BIM   software.   At   any   stage   of   the   process   this  model   can   visualize   the   design   rather   than   it   is  generated  from  multiple  2D  views.  

• “Automatic  low-­‐level  corrections  when  changes  are  made  to  design.”  With  a  building  information  model  the  design   is   controlled  by  parametric   rules.   These   rules   ensure  a  proper   alignment   and  decrease   the  need   to  manage  design  changes  for  the  user.  With  2D  drawings  every  change  made  in  the  design  allows  extra  work  to  apply  in  different  drawings  that  are  applicable  to  these  changes.  

• “Generate  accurate  and  consistent  2D  drawings  at  any  stage  of  the  design.”  At  any  time  during  the  project,  accurate  and  consistent  drawings  can  be  produced.   If   there  are  any  changes  made  to  the  design,   new  and  fully  consistent  drawings  can  be  produced  as  soon  as  the  modifications  are  set.  This  reduces  time  and  errors  that  are  related  to  creating  all  construction  drawings  for  all  specific  disciplines.    

• “Earlier   collaboration   of  multiple   design   disciplines.”   By   collaborating   early   on   in   the   design   process,   it   is  prevented  that  the  input  from  an  engineer  is  applied  after  the  major  design  decisions  are  made.  By  working  simultaneously  with  multiple  design  disciplines  the  amount  of  design  errors  and  omissions  are  significantly  reduced.    

•  “Extract  cost  estimates  during  the  design  stage.”  It  is  possible  with  the  help  of  BIM  technology  to  extract  a  list  of  spaces  and  quantities,  which  can  be  used  for  a  cost  estimation.  As   the   level  of  detail  progresses,   the  more  accurate  the  cost  estimation  will  be.    

• “Improve  energy  efficiency  and  sustainability.”  The  possibility  to  link  the  model  to  various  types  of  tools  that  can  analyse  the  project  to  improve  the  quality  of  it  (e.g.  the  energy  use).  This  is  already  possible  during  the  early  stages  of  design,  whereas  using  2D  drawings  and  their  associated  tools  require  a  complete  design.    

Page 30: Transformation from 3D modelling to building information modelling

18 Building information modelling  

 

 Figure 12: construction and fabrication benefits (Barlish & Sullivan, 2012; Eastman et al., 2008; Fernandes, 2013; Straatman et al., 2012)

 Figure 13: post construction benefits (Barlish & Sullivan, 2012; Eastman et al., 2008; Fernandes, 2013; Straatman et al., 2012)

3 .2 .5 D isadvantages of BIM Building  information  modelling  is  not  just  honey  and  pie;  there  are  also  some  barriers  to  implement  BIM.  Whether   these   barriers   outweigh   the   benefits   of   BIM  will   follow   out   of   chapter   6.   In   this   chapter   the  SWOT   analysis   will   use   these   disadvantages   and   determine   whether   it   is   a   weakness,   opportunity   or  threat.  In  chapter  2.3  three  challenges  came  forward  to  successfully  implement  BIM,  these  disadvantages  are  divided  according  to  these  three  challenges  and  are  also  part  of  the  answer  to  the  research  question  “What   are   the   potential   benefits   and   disadvantages   of   implementing   BIM   in   a   design   process   of   an  engineering  organization?”    Challenges  with  collaboration  and  teaming  (composed  of  (Barlish  &  Sullivan,  2012;  Eastman  et  al.,  2008;  Straatman  et  al.,  2012)):  • Involvement:  to  optimally  use  the  possibilities  of  BIM,  external  actors  should  be  involved  early  on  in  

the  process  and  be  aligned  to  each  other.    • Interoperability:   interoperability   could   be   seen   as   a   benefit   of   BIM,   however   it   can   also   be   a  

disadvantage.   At   the   current   stage   of   development   the   interoperability   between   the   different  software   programs   is   not   fully   developed.   This   allows   a   gap   between   the   collaboration   of   some  disciplines  or  actors  in  the  process  who  are  using  different  software  that  do  not  support  each  other.    

• Integral   cooperation:   BIM   demands   a   new   way   of   collaboration   and   communication   in   a   project  team.  To  optimally  use  the  opportunities  BIM  offers,  the  current  way  of  working  needs  to  be  changed  into  a  BIM-­‐prove  way.    

• Workload:  the  centre  of  gravity  of  the  workload  currently  lies  at  execution  phase  but  with  the  use  of  BIM   this   workload   will   shift   towards   the   design   phase   as   is   shown   in   Figure   14.   This   means   the  construction   process   needs   to   be   adapted   to   these   changes,   otherwise   it   is   not   achievable   at   the  desired  amount  of  time  and  quality.  It  could  also  be  explained  as  a  benefit  of  BIM,  because  ability  to  influence  the  project  is  much  larger  than  later  on  in  the  process  and  the  costs  of  design  changes  are  much  lower.  

Construction  and  fabrication  benefits    • “Synchronize  design  and  construction  planning.”  It  can  simulate  the  entire  construction  process  and  show  the  

project   at   any   point   in   the   construction   project.   At   the   same   time   it   can   show   potential   problems   and  improvement  opportunities.  It  can  also  provide  temporary  construction  objects  linked  to  schedule  activities.    

• “Discover   design   errors   and   omissions   before   construction   (clash   detection).”   This   eliminates   every   design  error  caused  by  2D  drawings  that  are  inconsistent.  Systems  and  designs  from  different  disciplines  are  brought  together  and  checked  systematically  and  visually.  This  method  identifies  conflicts  in  the  design  phase  before  they  are  detected  in  the  field.    

• “React   quickly   to   design  or   site   problems.”   If   there   are   any  problems   in   the   suggested   design   alternatives,  changes   can   be  entered   to   the  design  model.   This   building  model   will   update  every   change  automatically  based  on  established  parametric  rules.  The  consequences  can  be  viewed  and  resolved  immediately.    

• “Use  design  model  as   basis   for   fabricated   components.”   Because   all   the  components   are   already  designed  and   defined   in   a   3D   model,   the   automated   fabrication   can   produce   with   large   exactness   components.  Because  of   the  accuracy  of  BIM,  components  can  be  fabricated  even  larger  offsite   than  using  2D  drawings.  This  is  due  to  the  likelihood  that  onsite  changes  take  place.  

• “Better   implementation   and   lean   construction   techniques.”   BIM   makes   it   possible   to   provide   accurate  information  of   the  quantities  for  all  segments  of  the  work.  It  can  also  provide  the  planning  and  schedule  of  the  subcontractors.  All  together  it  can  provide  a  much  leaner  production  process,  which  means  less  costs  and  a  better  collaboration  at  the  job  site.    

• “Synchronize  procurement  with  design  and  construction.”  A  building  information  model  (that  is  complete)  can  provide  an  accurate  view  of  the  quantities  of  materials  that  are  contained  in  the  design.  This  information  can  be  used  to  produce  the  materials  needed  for  the  project.    

Post  construction  benefits    • “Better   manage   and   operate   facilities.”   The   model   contains   information   (graphics   and   specifications)   for  

every  system  used  in  the  construction  project.  • “Integrate   with   facility   operation   and   management   systems.”   An   up-­‐to-­‐date   building   information   model,  

complete  with  all  spaces  and  systems,  can  provide  a  natural  interface  that  supports  monitoring  of  real-­‐time  control  systems.  This  is  ideal  to  sensors  and  remote  operating  management  of  facilities.    

Page 31: Transformation from 3D modelling to building information modelling

Building information modelling   19    

• New   skills:   it   requires   new   knowledge   and   communication   skills   and   leads   to   new   functions,   for  example  a  BIM  manager.  It  costs  money  to  train  or  hire  these  people.      

Legal   changes   to   documentation   ownership   and   production   (composed   of   (Barlish   &   Sullivan,   2012;  Eastman  et  al.,  2008;  Straatman  et  al.,  2012)):  • Liability:  multiple  questions  exist  at  the  subject  who  is  responsible  for  the  model.  Often  it  is  not  clear  

who   the   owner   of   the  model   is,   who   is   responsible   for   controlling   any   changes,   who   pays   for   the  model   and   which   information   can   be   shared   by   the   owner?   These   questions   often   remain  unanswered.    

• Transparency:   working   with   a   BIM   demands   a   certain   degree   of   transparency.   Because   it   is   one  shared  model,  other  actors  have  a  view  in  possible  valuable  information  of  a  company.      

Changes  in  practice  and  use  of  information  (composed  of  (Barlish  &  Sullivan,  2012;  Eastman  et  al.,  2008;  Straatman  et  al.,  2012)):  • Applicability:   BIM   is   less   suitable   for   smaller  projects,   because  of   the   time  and   costs   ratio.  Besides  

BIM  is  not  particular  relevant  for  engineering  companies  who  only  design  a  construction  object  and  who  are  not  involved  later  on  in  the  project.  In  this  case  the  company  invests  much  time  and  effort  in  developing  a  model,  without  having  the  benefits  of  it.    

• Start-­‐up  costs:  BIM  requires  a  large  investment.  First  of  all  appropriate  software  must  be  purchased.  Next   to   that   the   staff   needs   to   be   trained,   and   the  working   environment   needs   to   be   adapted   or  replaced  to  BIM  which  means  computers  and  attachments  should  be  changed.    

• Equipment:   the   capacity   of   the   computers   is   a   thorny   issue.   As   mentioned   at   the   start-­‐up   costs  computers  could  have  problems  running  smoothly  with  large  models.  Having  a  computer  or  hardware  that  is  not  capable  to  handle  too  large  data  a  model  entails,  neglect  the  benefits  of  BIM.  

• Changeableness:   within   a   building   information  model   elements   can   be   changed   and   synchronized  within   a   blink  of   an   eye.   This   is   a   benefit   of   BIM,  however   it   turns  out   to  be   a   disadvantage   if   the  ordering  process  of  materials  is  delayed  by  continuous  changes.  

• Reliability:  elements  can  be  absent  or  doubled  in  case  through  bad  management.      

 Figure 14: project effort and impact (Eastman et al., 2008)

3 .3 Integral des ign The  fact  that  the  transformation  from  traditional  designing  to  building  information  modelling  could  have  some  difficulties   is  due   to   the   fact   that   the  working  processes  change.  The  design  process   is   faced  with  inter   alia   more   direct   collaboration,   different   kind   of   collaboration   forms   and   other   design   methods.  Within  the  traditional  design  phase  the  different  design  disciplines  and  actors  were  in  a  more  serial  way  involved  which  each  other.  BIM  brings  a  different  form  of  collaboration  along  with  it.  With  BIM  the  form  

1.Ability  to  impact  cost  and  functional  capabilities  

2. Cost  of  design  changes  3. Traditional  design  process  4. Preferred  design  process    PD:  Pre-­‐design  SD:  Schematic  design  DD:  Design  development  CD:  Construction  documents  PR:  Procurement  CA:  Construction  administration  OP:  Operation  

Page 32: Transformation from 3D modelling to building information modelling

20 Building information modelling  

 

of  collaboration  between  different  disciplines  must  be  more  parallel  to  make  BIM  successful.  In  this  part  of   the   chapter   three   terms   will   be   analysed   that   are   closely   related   to   BIM,   namely   multidisciplinary  design,   concurrent   engineering   and   interoperability.   These   three   terms   will   cover   the   variety   of   terms  related   to   integrated   design,   such   as   collaborative   design.   Collaborative   design   largely   corresponds   to  multidisciplinary  design  and  is  therefore  left  out  of  this  analysis.    

3 .3 . 1 Mult id isc ip l inary des ign Multidisciplinary   design   can   be   considered   as   an   association   of   different   tasks   working   together.   For  example  when  the  executor  of  downstream  tasks/engineer  is  involved  during  the  design  phase.  Executors  of  downstream  tasks/engineers  normally  are  hardly  involved  in  the  design  process,  which  causes  a  chain  of   separate  actions.  Through  multidisciplinary  design   it   is  attempted   to  get  a   constant   cycle  of  offering,  evaluating  and  redesigning  between  designers  and  executors,  engineers  and/or  contractors.  The  purpose  of  it  (of  a  multidisciplinary  design)  is  to  realise  lower  costs  downstream,  a  shorter  lead-­‐time  and  a  better  quality  of  the  entire  process.  It  is  attempted  to  achieve  this  by  involving  the  executor,  contractor  and/or  engineer  more   into   the   design   process   (Corbett,   1991;   Nevins   &  Whitney,   1990;   Syan,   1994;  Whitney,  1989).   They   need   to   exchange   information   about   the   object   in   question   and   when   this   information  exchange  needs  to  take  place.    This  form  of  designing  will  cause  an  increase  of  design  iterations;  also  the  design  process  will  be  more  difficult   to  control  comparing  the  sequential  design  process.  However,  with  this  method  it  is  attempted  to  eliminate  the  design  iterations  during  producing  or  maintaining  the  object  (Carter  &  Baker,  1992).  This  should  result  in  a  simplified  total  process.  Besides  the  costs  and  lead-­‐time  of  design   iterations  during   the  design  process  are   less   compared   to  design   iterations  during   the  executing  phase.    It   is   therefore   a   trade-­‐off   between   additional   effort   that   takes   place   during   the   design   phase   and   the  intended  benefits  during  the  downstream  process  (Eppinger,  1991;  Eppinger,  Whitney,  Smith,  &  Gebala,  1994).   To   realise   a  multidisciplinary   design   process,   at   the   beginning   of   the   design   phase   it   should   be  thought   about   when   and   which   executor,   contractor   and/or   engineer   of   downstream   tasks   should   be  involved  at  which  part  of  the  design  process  (Hanssen,  2000).    

3 .3 .2 Concurrent eng ineer ing In  chapter  3.1  the  main  disadvantages  of  the  current  traditional  approach  within  the  construction  industry  are  described.  To  address  these   issues,  adopting  concurrent  engineering  (CE)  could  be  the  solution.  This  new   paradigm   has   the   aim   to   integrate   the   function   disciplines   at   the   beginning   of   the   construction  project  (Evbuomwan  &  Anumba,  1998).      Concurrent  engineering  was  developed  as  counterpart  of  sequential  engineering.  CE  has  been  defined  in  many  different  ways  by  different  authors;  the  following  definition  of  concurrent  engineering  is  an  often-­‐used  definition  by  Winner,  Pennell,  Bertrend,  and  Slusarczuk  (1988):    

“A  systematic  approach  to  the  integrated,  concurrent  design  of  products  and  their  related  processes,  including  manufacture  and  support.  This  approach  is  intended  to  cause  the  developers,  from  the  outset,  to  consider  all  elements  of  the  product  life  cycle  from  conception  through  disposal,  including  quality,  cost,  

schedule,  and  user  requirements.”    CE  (also  called  parallel  engineering  or  simultaneous  engineering)  consists  of  eight  basic  elements  that  are  divided  into  two  groups  by  Khalfan  and  Anumba  (2000):    1) Managerial  and  human  aspect  

• The  use  of  cross-­‐functional,  multidisciplinary  teams  to  integrate  the  design  of  products  and  their  related  processes.  

• The  adoption  of  a  process-­‐based  organisational  philosophy.  • Committed  leadership  and  support  for  this  philosophy.  • Empowered  teams  to  execute  the  philosophy.  

2) Technological  aspect  • The   use   of   computer   aided   design,   manufacturing   and   simulation   methods   to   support   design  

integration  through  shared  product  and  process  models  and  databases.  

Page 33: Transformation from 3D modelling to building information modelling

Building information modelling   21    

• The  use  of   various  methods   to  optimise   a   product’s   design   and   its  manufacturing   and   support  process.  

• The  use  of  information  sharing,  communication  and  coordination  systems.  • The  development  and/or  adoption  of  common  protocol,  standards,  and  terms  within  the  supply  

chain.      As   one   of   the   nicknames   of   CE   suggest,   CE   is   about   simultaneous   or   parallel   engineering,   instead   of  sequential   (traditional  process).  However,   it   is  also  about   integrating  all  parties   involved   in   the  process,  from   client   to   contractor   and   suppliers.   This   is   also   known   as   multidisciplinary   teams   (Evbuomwan   &  Anumba,  1998).  Parallel  or  simultaneous  engineering  means  that  during  the  design  of  the  design  process  must   be   determined   which   tasks   intersect   and   which   tasks   must   be   executed   parallel.   To   create  simultaneity  in  the  task  performance,  literature  mentions  the  following  ways  (Love  &  Gunasekaran,  1997;  McCord  &  Eppinger,  1993):    • Parallel  designing  of  product  parts:   this  means  that  every  part  a  product  consists  of,   is  clustered  in  

groups  in  such  a  way  parallel  execution  is  possible.    • Multidisciplinary  design:  as  described  before,  multidisciplinary  design  is  about  integrating  the  wishes  

and  demands  of  downstream  engineers  during  the  design  phase.  Multidisciplinary  design  is  a  form  of  intersecting  the  design  tasks.    

• Starting   with   advanced   information:   this  means   tasks   are   not   being   started   based   on   information  that  is  complete  and  definitive,  but  based  on  pieces  of  advanced  information.  There  is  an  attempt  to  start  downstream  tasks  before  upstream  tasks  are  finished.    

• Reducing  or  eliminating  non-­‐value-­‐adding  activities:  by  reducing  or  eliminating  the  non-­‐value  added  activities,  only   the  valuable  activities  will   remain.  These  valuable  activities  will  be   the  core  business  that  forms  the  main  part  of  the  project.    

 Figure 15: concept of concurrent engineering (edited illustration according to (Hanssen, 2000))

3 .3 .3 Interoperab i l i ty Interoperability   appears  when   organisations   and   systems   collaborate.   It  means   that   all   the   information  that   gathered   in   the   different  models  with   different   software   can   be   transferred   correctly.   These   days  there   is   a   partition:   one   group   (the   homogeneous   software   environment   group)   “strongly   believes   in  working  with  a  central  data  repository  based  on  a  single  homogeneous  software  environment”;  the  other  group   (the   plural   software   environment   group)   “believes   in   freedom   for   project   partners   to   choose   its  own  software  tools.  This  group  also  tends  to  believe  in  a  shared  data  repository,  but  finds  this  has  to  be  based  on  an  open  data  model  like  IFC”  (van  Berlo,  Beetz,  Bos,  Hendriks,  &  van  Tongeren,  2012)    Interoperability  amongst  different  modelling  software  tools  is  quite  often  still  the  problem  these  days.  The  software   vendors   take   care  of   the   interoperability   between  multiple   software  programs   they  deliver   to  the  market.   Some  of   the   larger   software   vendors   are   currently   developing   their   software   allowing   that  interoperability   increases   between   each   other   (Grilo   &   Jardim-­‐Goncalves,   2010).   To   achieve  interoperability,   “software   developers   can   agree   to   embed   support   in   their   software   applications   for  open-­‐standard  data  formats,  such  as  the  Industry  Foundation  Classes  (IFCs)  (developed  by  buildingSMART  international)”  (Eastman  et  al.,  2008).  These  standards  make  it  possible  to  exchange  building  information  among  different  software  programs  with  a  variety  of  data  formats.  This   is  also  possible  with  other  open  standards   such   as   CIMSteel   Integration   Standards   (CIS/2)   (developed   by   Computer   Integrated  Manufacturing   for   Construction   Steelwork).   These   two   exchange   formats   “are   the   only   public   and  internationally  recognized  standards  today”  according  to  Eastman  et  al.  (2008).  Other  well  know  exchange  formats   are   eXtensible  Markup   Language   (XML),   Data   eXchange   Format   (DXF)   and   Standard   ACIS   Text  (SAT)  (see  also  Table  1  and  2).  Another  possibility  to  increase  the  interoperability  is  to  make  agreements  

Page 34: Transformation from 3D modelling to building information modelling

22 Building information modelling  

 

between   software   companies   for   information   exchange.   This   is   possible   though   “Applications  Programming  Interfaces  (APIs)  or  proprietary  data  exchange  formats”  (Smith  &  Tardif,  2009).    Table 1: common exchange formats in AEC applications (Eastman et al., 2008)

2D  vector  formats   DXF,  DWG,  AI,  CGM,  EMF,  IGS,  WMF,  DGN  3D  surface  and  shape  formats   3DS,  WRL,  STL,  IGS,  SAT,  DXF,  DWG,  OBJ,  DGN,  PDF(3D),  XGL,  

DWF,  U3D,  IPT,  PTS  3D  object  exchange  formats   STP,  EXP,  CIS/2  XML  formats   AecXML,  Obix,  bcXML,  AGCxml  

 Table 2: data exchange formats (Eastman et al., 2008)

Data  exchange  format   Description   Examples  Direct   proprietary   link  between  two  applications  

A   runtime   or   binary   interface  which   makes   portions   of   the  model   accessible   for   creation,  export,   modifications,   and  deletion  

ArchiCAD’s   GDL,   Bentley’s   MDL,  Revit’s  SDK  

Proprietary  files   A   human   readable   text   format  primarily   dealing   with   geometry  and   interfacing   with  corresponding  applications  

DXF   by   Autodesk,   SAT   by   spatial  technology  

Public  product  model   An  open  standard  product  model  which   in   addition   to   geometry  carries   object,   material  properties,   and   relations  between  objects  

IFC   by   IAI   (later   buildingSMART),  CIS/2  

XML  based   XML   is   extensible   mark-­‐up  language,   and   extension   to  HTML.   The   XML   structure   called  schema,   which   is   suitable   in  exchanging   small   amounts   of  business   data   between   two  applications.  

AecXML,  bcXML  

 Two  aspects  concerning   interoperability  might  be  part  of   the   future  of  BIM.  These  aspects  of  modelling  are  the  Dutch  Revit  Standards  (DRS)  and  Industry  Fountain  Classes.  IFC  is  these  days  very  often  mentioned  in  one  sentence  with  BIM  (e.g.  (Aouad  et  al.,  2012);  buildingSMART  (2014)).  It  is  called  the  solution  for  the  gap  between  different  software  programs.  Because  the  IFC  turns  out  to  be  the  largest  public  standard,  this  will  be  further  elaborated  below.  The  DRS  is  developed  to  create  a  better  interoperability  between  Revit  and  IFC  (Het  Nationaal  BIM-­‐Platform,  2013).      Industry  Foundation  Classes    The   IFC   is   managed   by   buildingSMART,   previously   the   International   Alliance   for   Interoperability   (IAI)  (buildingSMART,  2014).  The  IAI  is  developed  to  make  the  collaboration  among  the  building  industry  easier.  As  mentioned  before  the  IFC  is  a  neutral  and  open  source  standard  for  sharing  information.  To  explain  it  simple,  IFC  is  a  set  of  agreements  that  includes  inter  alia  how  to  describe  walls,  doors,  roofs,  and  windows,  etc.   in   a   text   file.   The   agreement  makes   it   possible   for   software   programs   to   communicate  with   other  programs.      A  particular  problem  IFC  still  have  is  that  there  are  several  methods  to  describe  for  example  a  floor.  This  could  be  done  by  e.g.  as  extrusion,  loft  or  sweep  (way  to  generate  the  object),  nurbs,  solid,  poly  surface,  polygon  mesh  (mathematical  method  to  define  the  object),  as  floor  standard  case,  or  as  floor.  Besides  that  the   shape   of   the   objects   can   be   described   in  many  ways,   which  makes   it   very   difficult   to   support   the  import   of   all   variants.   It   is   sometimes   troublesome   for   unequivocal   exchange  or   sharing   of   information  (BIM  wiki,  2014).  Basically  different  actors  with  different  software  should  be  capable  to  process  the  same  

Page 35: Transformation from 3D modelling to building information modelling

Building information modelling   23    

data.  All  the  actors  involved  in  the  complete  building  life  cycle  should  be  able  to  communicate  with  each  other  using  IFC  without  the  loss  of  data,  provided  that  the  software  supports  IFC.      A  couple  of  problems  IFC  has  in  practice  are  according  to  Postma  and  Punter  (2011):  it  is  not  possible  for  the   user   to   verify   whether   the   IFC   file   does   contain   all   the   information   it   should   entail,   because   the  receiving  side  can  differ  from  the  users  perspective.  It  is  also  unsure  if  the  receiving  side,  which  might  use  different   software,   beholds   the   exact   same   model   after   opening   the   file.   In   both   cases   the   IFC   file   is  correct,   but   with   importing   or   exporting   some   errors   may   have   occurred.   Testing   the   interoperability  between  Revit  and  Tekla  BIMsight,  shows  the  families  and  parts   in  Revit  differs  between  a  Revit  file  and  the  same  IFC  file.  When  this  Revit  file  is  exported  as  IFC  file  to  Tekla  BIMsight  the  families  and  parts  even  differ  between  an  IFC  file  in  Revit  and  in  Tekla  BIMsight.  These  findings  are  also  confirmed  by  Lee,  Smith,  and   Kang   (2011),   Lipman   (2010),   and   Jeong,   Eastman,   Sacks,   and   Kaner   (2007)   who   took   a   broader  perspective   concerning   the   design   software.   This   could   be   explained   by   the   fact   that   many   software  programs  use  different  IFC  translators  (Jeong  et  al.,  2007).    To  find  out  the  difference  between  both  reproductions,  it  can  be  compared  visually,  or  the  objects  can  be  checked   in   the   export   log   or   the   modelling   of   unsuccessfully   exported   objects   can   be   checked   (Tekla,  2013).   Besides   these   methods   also   an   analysis   tool   can   be   used,   such   as   IFC   Web   Server   or   IFC   File  Analyzer.   Several   solutions  have  been  used   to   solve   these  problems,   such   Information  Delivery  Manual  (IDM)  and  Model  View  Definition  (MVD)  that  prescribe  the  documentation  of  “existing  or  new  processes  and  described   the  associated   information   that  have   to  be  exchanged  between  parties”   (Karlshøj,  2011).  However   in  practice   it  appears   to  work   insufficiently.   IFC   is   therefore  as  weak  as   its  weakest   link   in   the  design   team   and   used   software.   Errors   often   emerge   if   the   level   of   detail   will   rise   (Dankers,   2013).  Although  the  data  exchange  of  IFC  will  not  be  hundred  per  cent  correct  and  the  round  trip  will  therefore  never   work   to   its   full   extent,   “the   subset   of   IFC   data   that   is   shared   with   other   partners   seems   to   be  detailed  enough  for  project  partners  to  be  able  to  perform  their  required  engineering  tasks”  (van  Berlo  et  al.,  2012).  Therefore  the  workflow  method  of  “import,  add  data,  export  and  send  to  next  user  is  not  used.  This  gives  the  ability  to  work  parallel”  or  in  a  concurrent  way  (van  Berlo  et  al.,  2012).    

 Figure 16: IFC possibilities (edited illustration according to (Dankers, 2013))

Dutch  Revit  Standards    The  Revit  Gebruikers  Groep  (Revit  GG)  initiated  the  Dutch  Revit  Standards  (DRS)  to  make  a  standard  that  is  available   for  users  and  suppliers.  The  DRS  should  make   it  possible   to  directly  use   the   information  the  supplier  deliver  into  their  project  and  also  it  should  also  be  IFC  compatible.  The  objective  of  the  Revit  GG  is   to   create   a   better   interoperability   between   Revit   en   IFC   and   they   are   trying   to   achieve   this   through  developing  the  DRS.  To  make  this  possible  a  collaboration  is  developed  between  the  experts  of  Autodesk,  ArchiCAD,   Tekla,   Solibri,   buildingSMART  and  Rgd   (Het  Nationaal   BIM-­‐Platform,   2013).   The  DRS  exists   of  (MdR  Advies,  2013):    • Full  documentation  of  the  agreements  made  • A  Revit  project  template  • A  library  that  offers  the  basics  and  fulfils  the  standard  • IFC  compatible  • Integrated  national  building  decree  • Integrated  to  other  worldwide  standards  

Page 36: Transformation from 3D modelling to building information modelling

24 Building information modelling  

 

The  DRS  is  dependable  of  the  information  models  (the  standards)  the  vendors  make  and  deliver.  Also  much  effort  needs  to  be  undertaken  by  the  company  itself  to  optimally  use  the  DRS  and  benefit  from  it.    

3 .4 Wrap-up The   traditional  design  method  has  some  benefits  however   there  are  more  disadvantages   that  outweigh  the  benefits.  The  main  drawback  is  that  it   is  a  concatenation  of  activities  where  information  loss  occurs.  With  the  rise  of  3D  modelling  also  BIM  is  formed.  Building  information  modelling  is  not  only  a  model,  but  it   is  also  a  process  and   information   instrument,  where  collaboration   is  a  keyword.  BIM  should   lead  to  a  better  design  and  construction.  This   is  due  to  the  fact  that  the  design  process  of  BIM  changes   in  such  a  way  more  influence  can  be  exerted  to  the  design  at  lower  costs.  In  theory  BIM  has  many  advantages,  but  it  has  also  some  disadvantages.  The  literature  describes  3D  modelling  (the  visualization,  clash  control,  etc.)  quite  well,  but  the  schedule  aspect  (4D),  costs  (5D),  analyses  (6D)  and  operations  (nD)  are  underexposed.  The  options  these  dimensions  offer  are  mentioned  in  general,  but  the  in  depth  theory  is  lacking.  The  gap  that  originates  after  3D  design  is  what  this  research  will  continue  on.  Alongside  that,  three  integral  design  methods   are   discussed   in   this   chapter:   multidisciplinary   design,   concurrent   engineering   and  interoperability.   These   forms   of   integrated   design   may   be   able   to   contribute   to   the   successful  implementation  of  BIM.  Multidisciplinary  design  and  CE  both  should  lead  to  the  integration  of  the  wishes  and  demands  of  downstream  actors  during  the  design  phase.  To  collaborate   in  such  a  way  this  possible  interoperability  is  crucial.  IFC  should  be  the  instrument  that  creates  interoperability  between  the  different  software  programs.  However  due  to  several  reasons  the  exchange  between  different  tools  is  and  will  not  be  hundred  per  cent  reliable.  The  first  step  that  needs  to  be  taken  are  “BIM  standards  that  define  which  IFC  objects  should  be  used  for  which  building  elements,  and  how  they  should  be  related  to  one  another,  in  each  domain”  (Jeong  et  al.,  2007).  The  knowledge  gained  during  the  literature  study  will  be  included  in  chapter  4  (the  case  study).  In  the  case  study  it  will  become  clear  what  the  design  process  of  Tebodin  looks  like.  By  using  the  literature  study  the  right  questions  can  be  asked  that  should  result  in  useful  information  and  outcome  of  the  case  study.  The  most   important  outcome  of   this  chapter  and  chapter  4   (the  case  study)  will  be  brought   together   in   the  synthesis  (chapter  5).          

Page 37: Transformation from 3D modelling to building information modelling

Building information modelling   25    

Chapter 4

Case study In   this   chapter   the   case   study   is   executed   by   analysing   the   Mountain   project.   This   project  engineered   and   currently   built   for   Royal   Friesland   Campina,   is   modelled   in   a   3D   software  program  (Revit)  and  it  is  a  collaboration  between  multiple  offices  of  Tebodin.  For  some  of  these  disciplines  it  was  their  first  time  designing  3D.  In  other  words,  it  is  quite  a  challenge  to  perform  this   assignment   successfully.   To   understand   the   project,   this   chapter   shall   begin   with   an  introduction  to  Tebodin  and  the  case  description.  The  interview  design,  content  and  participants  will   be   described.   The   outcome  will   describe   the   project   design   phase   of   Tebodin   and  will   be  compared  to  literature,  whether  the  result  corresponds  to  current  design  models  or  whether  it  is   different.   The   result  of   this   chapter  will   be   combined  with   the  outcome  of   chapter  3   in   the  synthesis  of  chapter  5.  Besides  the  comparison  of  the  case  study  with  the  literature,  the  design  process  that  emerges  from  this  chapter  will  be  validated  with  the  experts.  The  validation  experts  are  a  combination  of  external  experts  and   internal  experts.  The  external  ones  are  people  who  have   experience   with   BIM   and   the   internal   experts   are   of   a   high   standard   that   have   certain  knowledge  of  SMART  engineering.    

4.1 Company prof i le Tebodin   is   a   multidisciplinary   consultancy   and   engineering   firm.   They   offer   their   clients   worldwide  knowledge   and   experience   from   approximately   4.900   experts   in   industry,   health  &   nutrition,   oil  &   gas,  chemicals,  infrastructure,  property  and  energy  &  environment.  The  company  has  a  network  of  around  fifty  offices   in   West,   Central   and   Eastern   Europe,   the   Middle   East,   Asia   and   Africa.   Tebodin   is   part   of   the  international  engineering  and  services  company  Bilfinger  SE.  In  the  Netherlands  Tebodin  has  nine  offices,  from  which  the  office  in  The  Hague  is  the  largest  one  and  is  also  their  headquarters.  There  are  225  people  working  in  the  office  in  The  Hague  and  1.100  overall  in  the  Netherlands  (Tebodin,  2014).    Among   their   clients   are   the   industry,   the   business   community   and   governments   in   both   at   home   and  abroad.  They  have  one  shared  goal  in  common:  efficiently  and  successfully  achieving  projects.  Their  range  of   independent  services  covers  consultancy,  project  management,  design  and  engineering,  procurement  and   construction   management,   which   they   offer   either   separately   or   as   an   integrated   package.   The  activities   can   contain   a   complete  project,   from  concept   to   turnkey.   It   is   also  possible   to   limit   to  one  or  more  project  phases  and  Engineering,  Procurement,  Construction  and  management  (EPCm)-­‐contracts  are  also  an  option.  Tebodin  is  active  in  nearly  all  industries  en  market  sectors,  including  oil  and  gas,  chemicals,  pharmaceuticals,  food,  real  estate,  automotive,  environment  and  energy  (Tebodin,  2014).          Through  the  network  of  Tebodin  offices  the  client  benefits  from  short  communication  lines  combined  with  local  and  international  expertise.  Additionally,  the  multidisciplinary  character  of  their  organization  ensures  a   flexible   structure,   providing   the   client   services   which   are   fully   geared   to   their   specific   project  requirements  (Tebodin,  2014).    The   west   office   covers   a   wide   range   of   industries   and   technological   areas:   oil   &   gas,   (petro)   chemical  industry,  buildings,  health  and  nutrition  and  energy.  The  organization  chart  of  Tebodin  West  can  be  seen  in  Figure  17.  During  this  research  the  main  focus  will  be  on  the  Building  department,  however  Tebodin  as  

Page 38: Transformation from 3D modelling to building information modelling

26 Building information modelling  

 

an  engineering  and  consultancy  company  is  often  working  in  integrated  projects  and  therefore  there  will  be  an  overlap  with  other  departments.  This  is  also  the  case  in  the  Mountain  project.      

 Figure 17: organization chart Tebodin West

4 .2 Case descr ipt ion To  give  a  good  overview  of  what  this  project  includes  in  this  part  of  the  chapter  the  case  will  be  described.  By  the  means  of  a  project  description  (the  basic  project   information   is  given),   the  project  structure  (the  main  organizational  structures  and  the  main  parties  involved  in  the  project  are  given),  the  BIM  protocol  is  described  and  some  background   information   (about   the  objectives,   goal  and   timeframe)   completes   this  case  description.    

4 .2 . 1 Pro ject descr ipt ion Royal  Friesland  Campina  (RFC)  had  decided  to  build  a  new  milk  processing  plant  in  Borculo.  Per  year  this  plant  will  process  750  million  kilos  raw  milk   into  milk  powder  and  milk  concentrate   in  the  first  phase.   In  the  second  phase  at  least  500  million  kilos  raw  milk  will  additionally  be  processed  into  milk  powder.    In   November   2012   Tebodin   had   the   privilege   to   design   a   concept   for   this   plant   intending   to   further  develop  this  concept  into  detail  and  accompany  the  project  as  an  EPCm  contractor  (Gort,  2013).      With   this   Mountain   project   Friesland   Campina   has   got   a   unique   opportunity   to   build   an   optimal   milk  processing  plant.  The  factory  is  being  built  as  a  more  or  less  stand-­‐alone  facility  at  a  Greenfield  location.  Although  the  location  also  has  several  binding  constraints  (particular  noise  and  CO2  emissions),  the  project  offers   sufficient   possibilities   to   organize   the   business   process   and   the   logistic   system.   The   modern  appearance  of  the  complex  will  become  the  business  card  for  Royal  Friesland  Campina  and  will  contribute  to   the  high  quality   level  of   the  organization.  The  project   team  of  Tebodin  has   taken   the  opportunity   to  make  an  integral  thought  out  design  with  all  disciplines  involved.  This  starts  with  the  main  structure  of  the  building.  It  was  decided  to  design  a  clear  structure  with  a  main  process  installation  in  a  logical  line  up.  At  one  side  the  RMR  (raw  milk   reception)   is  placed,  at   this  place  the  raw  milk  enters   the  plant  and  on  the  other   side   the  packing   area,   storage   and  expedition   are  placed.  At   this   latter   side   the  milk  powder  will  leave  the  factory  in  big  bags  and  25  kilos  bags.  The  sub  process  is  designed  according  to  these  thoughts;  only  every  sub  step  will  finish  in  its  own  sub  storages.      Due  to  the  design  of  all  circulation  (hall  ways  and  stairwells)  in  an  elongated  building  section  alongside  the  process   installation,   a   clear   concept   is   created  with  a  head  and  a   tail.  At  one  end  of   this  backbone   the  utility  building   is  connected  and  at  the  other  side  all   the  staff   facilities  are   located.  All  pipes   for  process  and  utilities  are  efficiently  across  this  backbone  through  pipe  racks  at  two  levels.  Due  to  this  method  the  second  phase  can  be  realised  while  the  production  of  phase  one  can  continue  (the  shutdown  period  will  be  kept  minimal  in  this  way).  The  process  that  will  take  place  in  the  factory  can  be  schematized  as  follows  (Gort,  2013):    

Page 39: Transformation from 3D modelling to building information modelling

Building information modelling   27    

 Figure 18: process package (Gort, 2013)

Next  to  that  the  automation  and  hygiene  are  very  important  while  designing  this  factory.  From  the  SMART  factory  concept  the  aim  is  to  run  the  plant,  with  a  minimal  staff  capacity,  efficient  and  reliable.  Because  of  the  required  hygiene  level,  a  strict  zoning  is  applicable  to  the  design.  This  can  be  maintained,  by  creating  a  clear   layout   and   minimizing   the   number   of   change   (or   dress   up)   moments.   Another   important   design  theme  is  sustainability.  Within  the  process  much  effort  will  be  made  to  heat  recovery  and  if  possible  this  residual   heat  will   be   utilized.   In   addition   to   these   technical   and   operational   optimization   solutions,   the  best  costs  effective  solutions  will  be  thought  through.  An  example  of  this  are  the  truck  driving  routes  on  location,  these  should  be  as  short  as  possible  (Gort,  2013).    The   goal   is   to   deliver   an   operational  mechanically   finished   factory   to   Friesland   Campina   at   the   end   of  2014.  To  achieve  this  each  design  choice  will  be  assessed  against  the  impact  on  the  overall  construction  schedule  (Gort,  2013).      

 Figure 19: visualization Mountain project: floor plan (left) and 3D visualization (right)

 Figure 20: longitudinal cross-sections

4 .2 .2 Pro ject structure The  project  is  developed  by  several  large  parties.  The  client  and  Tebodin  are  working  from  start  to  finish  closely  together.  RFC  has   its  own  organogram  as   is  shown   in  Figure  21.  This  project  group  prepared  the  requirement   specifications  of   the  Mountain  project.   The   contact  between  RFC  and  Tebodin   takes  place  between  the  EPC  manager  of  RFC  and  EPCm  manager  of  Tebodin.  The  project  team  of  Tebodin  consists  of  a  procurement  phase   team  and  a   team  of  different  engineering  groups  as   is   shown   in  Figure  22.   In   this  figure   the   important   role   of   the   Revit   coordinator   is   also   shown.   He   is   connected   to   every   design  discipline.  The  engineering  disciplines  consist  of   lead  engineers  and  engineers,  where  the  lead  engineers  were  also  the  contact  person  to  project  partners,  the  design  disciplines  were  responsible  for  the  concept  design  phase  and  basic  engineering  phase  (up  to  LOD  300):    

         

Page 40: Transformation from 3D modelling to building information modelling

28 Building information modelling  

 

• Project  manager  is  responsible  as  EPC  manager  • BIM/Revit  coordinator  is  responsible  for  the  Revit/BIM  model  • Civil  and  Architecture  department  is  responsible  for  the  part  building  • Electrical  and  Instrumentation  department  is  responsible  for  the  part  electrical  • Building  services  (HVAC)  department  is  responsible  for  the  part  HVAC  • Process  department  is  responsible  for  the  part  process  • Structural  department  is  responsible  for  the  part  building  • Utilities  department  is  responsible  for  the  part  utilities  

 Tebodin  and  RFC  initiated  this  project,  and  when  the  main  structure  became  clear,  the  contractors  were  involved   into  the  process.  The  project  manager,  BIM/Revit  manager  and  lead  engineers  remain   involved  to  manage  the  project  and  as  contact  person  for  the  contractors  and  suppliers:      • GEA  is  responsible  for  the  part  process  • Cofely  is  responsible  for  the  part  utilities  • Jorritsma  is  responsible  for  the  part  building  and  is  divided  into  

o Above  zero  –  however  they  outsourced  it  to  Pieters  Bouwtechniek  o Sub  zero  –  however  they  outsourced  it  to  Pieters  Bouwtechniek  

• Imtech  is  responsible  for  the  part  o Electrical  o HVAC  

   

Page 41: Transformation from 3D modelling to building information modelling

Building information modelling   29    

 Figure 21: organogram Royal Friesland Campina (Mountain project)

 Figure 22: organogram Tebodin (Mountain project)

 

Page 42: Transformation from 3D modelling to building information modelling

30 Building information modelling  

 

4 .2 .3 BIM protoco l Tebodin  sets  up  a  BIM  protocol  for  this  project  to  make  the  agreements  of  the  working  methods  clear  for  themselves   as   well   as   for   their   project   partners.   The   objective   of   this   document   is   “to   create   a   clear  picture  of   the  approach   for  all   involved  and  expectations  with   regard   to  deliver   (the  quality)   results   for  each  stage  of   the  process”   (Senci,  2014).  The  protocol   should  benefit  effective  collaboration,  within   the  building   information  model  and  the  exchange  and  management  of   information.   In  this  BIM  protocol  the  basics   of   the   project   are   described   (the   project   partners,   ambitions   and   basic   project   data),   the   BIM  applications  are  described  as  well  as  the  process  of  the  protocol,  how  to  set  up  a  BIM  model  is  explained  and  the  ICT  infrastructure  is  described.  This  document  should  offer  a  fundamental  basis  at  the  start  of  the  project.  The  BIM  coordinator  also  sets  up  a  flow  chart  diagram  that  shows  the  agreements  that  are  made  with  the  contractors.  These  agreements  are  about  the  delivery  of  the  required  software  files.  It  shows  the  integral   aspect   of   this   project.   Five   different   companies   deliver   their   software  model   according   to   the  template   that   is   developed   by   Tebodin.   GEA   can   even   be   divided   in   seven   separate   companies.   The  process  part  in  such  a  complex  design  GEA  therefore  divides  it  into  seven  separate  design  disciplines  that  are  divided  to  seven  different  countries.  This  is  merged  by  one  part  of  GEA  (GEA  NL).    

4 .2 .4 Background informat ion • Objectives  formulated  by  Tebodin  (Perry,  2013):  

• Safety  and  health  of  all  stakeholders;  • Create  a  harmonious  team  together  with  RFC,  other  third  parties  and  Tebodin;  • Make  optimal  use  of  the  individual  knowledge  of  the  team  members;  • Achieve  the  milestones;  • Be  two  per  cent  more  energy  efficient  as  a  comparable  current  production  location  of  RFC;  • Incorporate   industries  best  practice  within  the  design  and  budget,  and  develop  the  new  facility  

with  the  aim  of  fulfilling  all  the  current  business  needs  in  a  more  coherent  and  modern  working  environment;  

• The   facility   has   to   be   sized   correctly   for   the   future   with   the   correct   level   of   flexibility   and  incorporate  sufficient  white  space;  

• Getting  the  project  built  in  time  and  within  budget.    • Time  schedule  

The  project  has  a  very  tight  time  schedule.  The  design  phase  was  very  short,  and  because  of  this  tight  planning  Tebodin  decided  to  design  this  project  in  3D.  Below  some  key  point  of  this  time  schedule  are  listed.  Striking  is  the  fact  that  the  construction  had  already  begun  during  the  engineering  phase.  But  this  will  be  further  elaborated  later  in  this  chapter:    • Overall  project  schedule       from  21-­‐02-­‐13   until  01-­‐04-­‐16  • Basic  engineering  phase  (LOD  300)     from  01-­‐03-­‐13   until  29-­‐11-­‐13  • Detail  engineering  phase  (by  contractor)   from  07-­‐08-­‐13   until  01-­‐04-­‐14    

• Goals  of  applications  of  BIM  in  this  project  include  (Senci,  2014):  • Developing   an   integrated   design,  with   optimal   alignment   of   the   component   systems   (civil   and  

architecture  engineering,  structural,  process  plate  engineering,  building  services),  as  regards  both  the  spatial  integration  and  the  functioning;  

• The  real-­‐time  testing  of  the  space  (amount  of  square  meter  per  function,  respectively  per  room)  to  the  schedule  of  requirements  for  the  design;  

• Reducing   failure   costs   by   minimizing   the   chances   of   miscommunication   between   building  partners,  the  re-­‐use  of  once  entered  data,  generating  consistent  design  documents  and  optimize  the  logistics  implementation  process;  

• Increasing   the  understanding  of   the  client,   future  users  and  engineering  partners   in   the   spatial  quality  of  the  design;  

• Use  each  other’s  models  whereby  doubling  sign  work/pads  can  be  avoided;  • Promoting  innovation  through  collaboration  of  an  integrated  model  of  the  building.    

 

Page 43: Transformation from 3D modelling to building information modelling

Building information modelling   31    

4.3 Object ive Within  this  part  of  the  chapter  the  objective  of  the  interviews  is  elaborated.  The  interviews  are  held  with  a  variety   of   disciplines   and   actors   who   take   part   in   the   process   to   outline   a   complete   overview   of   the  project.    

4 .3 . 1 Interv iew des ign Interviews  can  deliver  a   large  amount  of   information.  Therefore   the   interviews   for   this   research  will  be  semi-­‐structured,   in   order   to   limit   the   amount   of   information.   Which   means   it   revolves   around   a   few  central  questions.  The  research  will  “follow  the  standard  questions  with  one  or  more  individually  tailored  questions  to  get  clarification  or  probe  a  person’s  reasoning”  (Leedy  &  Ormrod,  2001).  The  questions  for  all  the  participants  are  more  or  less  the  same.  In  this  way  the  answers  can  be  compared  with  each  other  and  used  to  get  a  specified  view  to  the  Mountain  project.   If  possible  the  questions  are  formulated   in  such  a  way  that  the  answers   fall  within  a  given  frame.   In  the  next  part  of   this  chapter  the  main  content  of   the  interviews  will  be  described.    

4 .3 .2 Interv iew content The  interviews  will  contribute  to  a  better  understanding  of  the  project.  The  information  the  participants  give   should   contribute   to   their   thoughts   of   the   project,   the   design   method   and   software   tools,   the  collaboration  within  Tebodin  and  with   the  client  and  contractors,   the  expectations  with  respect   to  BIM,  and  their   thoughts  with  respect  to  multidisciplinary  design.  Every   interview   is  designed  specific   for  each  participant   and   its   role   in   the   project.   However   subjects   just   mentioned   form   the   leitmotiv   of   every  interview.      • To  begin  the  interview,  the  participants  have  to  subscribe  their  function  and  role  in  this  project,  which  

design  software  they  have  used,  which  they  are  capable  to  use  apart  from  this  project  and  if  they  are  satisfied  with  this  choice.  Besides  that  they  are  asked  to  give  their  definition  of  what  they  think  BIM  means,   if   they  have  any  experience  with  3D  modelling  or  BIM  and   if   they  do,  what   this  experience  includes.  In  this  way  the  current  level  of  knowledge  can  be  established.  

• Then   the   interview  will   continue  with   the   collaboration   both  within   their   discipline   and  with   other  disciplines  and  even  with  the  contractor  or  client  (if  applicable).  Questions  will  be  about  what  went  well  and  what  not  and  why.  Part  of   the  collaboration   is   the  different  meetings   that  are  held  within  Tebodin,  within   the  company   (GEA,  PBT  and  RFC)  and   together.  How  often  do   these  meetings   take  place   and   what   is   discussed   and   used   during   these   meetings.   These   questions   help   to   find   out  whether  this  form  of  collaboration  is  desirable  or  not  and  what  are  the  reasons  for  that.    

• The  design  software   that   is  used  during   this  project   is  also  part  of   the   interview.  Whether   they  are  satisfied  with  the  choice  of  the  software,  whether  they  are  capable  to  use  it,  whether  they  made  use  of   any   standards   and   the   possibility   to   add   information   to   components   or   spaces.   In   addition,   the  comparison   is   made   between   traditional   2D   projects   and   this   new   3D/BIM   project,   chances   in  efficiency,   speed,  meetings,   detail   level   and   the   applicability.   Because   new   software   is   used,   these  questions  are  to  give  an  indication  whether  the  software  is  paying  off.    

• Because   BIM   implies   a   new   way   of   working,   the   participants   are   confronted   with   integral  collaboration;   the   question   whether   the   project   was   a   multidisciplinary   project   and   if   it   was  necessary.  But  also  what  and   if   there   is  a   relationship  between  BIM  and  multidisciplinary  design.   In  this  way  the  connection  between  BIM  and  integrated  design  is  put  forward.    

• The  interview  will  finish  with  their  opinion  of  the  benefits  and  disadvantages  of  BIM,  whether  it  was  a  success  to  do  the  project  as  it  has  been  done  in  the  design  phase  and  what  could  have  been  better.  Towards  the  future  their  vision   is  asked  to  the  best  design  tool  options,   involvement  of  contractors  and  whether  and  how  BIM  is  applicable  to  Tebodin  in  the  future.    

 With   these   questions,   the   answers   should   contribute   to   a   detailed   view   of   the   project   to   the   given  subjects.  These  subjects  are   important  to  visualize  the  current  design  process  of  Tebodin  and  to  answer  the  research  questions  formulated  in  chapter  2  as  is  shown  in  Appendix  E  table  20.    

4 .3 .3 Interv iew part ic ipants The  purpose  of  the   interviews   is  to  form  a  broad  base  of  the  whole  Mountain  project  process.  Not  only  the  main  persons  from  Tebodin,  but  also  the  people  at  the  front  and  back  of  the  process  are  important.  This   means   that,   next   to   the   lead   engineers,   project   and   BIM   manager,   also   the   client   and   the   main  contractors  are  interviewed.    

Page 44: Transformation from 3D modelling to building information modelling

32 Building information modelling  

 

Table 3: list of interview participants

Company  and  function   Software  program    Royal  Friesland  Campina  process  technologist   Navisworks  Tebodin  project  manager   Navisworks  Tebodin  BIM  coordinator   Revit  and  Navisworks  Tebodin  lead  engineer  structural   Revit*  and  Navisworks  Tebodin  lead  engineer  utilities   Plant  3D*  and  Navisworks  Tebodin  lead  engineer  civil  and  architecture   Revit*  and  Navisworks  Tebodin  lead  engineer  building  services  (HVAC)   Revit*  and  Navisworks  Tebodin  lead  engineer  process   Inventor*  and  Navisworks  GEA  project  manager   Navisworks  Pieters  Bouwtechniek  project  manager   Revit  and  Navisworks  *  Not  used  by  the  lead  engineer  but  by  its  department    

Within  Tebodin  it  will  involve  the  departments  process,  structural,  electrical  &  instrumentation  &  process  control   (not   available   for   this   research),   engineering,   civil   &   architecture,   building   Services   (HVAC)   and  utilities.  These  departments  have  played  a  significant  role  in  the  process;  the  other  departments  who  are  involved  in  the  process  have  not  been  of  such  importance  and  will  therefore  be  omitted  of  this  research.  In  addition  the  project  manager  and  the  BIM  coordinator  of  Tebodin  are  also  interviewed.    The  other   interviews   that  will  be  held  are  with   the  client  and   two  main  contractors  of   this  project.  The  client,  the  initiator  of  the  project,  should  be  satisfied  with  the  result  that  is  delivered.  Therefore  it  could  be  interesting  to  find  out  their  opinion  to  3D  modelling  and  BIM,  whether  they  have  an  interest  in  it  and  may   benefit   from   it.   Besides   that   two   of   the  main   contractors   are   spoken   to,   namely   GEA   and   Pieters  Bouwtechniek   (PBT).   These   two   contractors   are   the   two   most   interesting   ones,   because   of   their  international  allure  (GEA)  and  the  function  as  mediator  (PBT).  GEA  is  an   international  company  and  also  one  of  the  biggest  at  this  market  segment.  Because  of  the  international  aspect  of  them,  the  process  design  they  deliver  is  composed  of  multiple  countries.  Therefore  they  should  be  experienced  with  collaborating,  which  makes   them   ideal   to   interview.   Jorritsma   is   the  main  contractor   for   the  sub  zero  and  above  zero  level,   however   PBT   functions   as   a   mediator   between   Tebodin   and   Jorritsma.   PBT   is   first   of   all   an  engineering  company  in  structural  design.  Next  to  that  they  are  also  experienced  with  3D  modelling  and  BIM   technology   projects.   These   two   aspects   are   combined   in   their   function   in   the   Mountain   project:  developing  the  structural  design  and  translating  the  3D  model  into  useable  2D  drawings.      With  these  departments  and  external  parties  every  aspect   is  covered:  different  actors   in  the  process,  all  the  different  software  programs  and  different  disciplines.  

4.4 Interv iews results The  interviews  provide  a  diversity  of  information  that  can  be  structured  in  several  ways.  The  main  subjects  that   are   covered  during   these   interviews   are   collaboration,   the   software   and   the   expectations.   But   the  interviews   are   primarily   held   to   analyse   the   design   process  within   Tebodin.   The   design   process   can   be  divided  into  an  internal  design  model,  that  is  the  model  that  represents  the  design  phase  as  it  takes  place  during   this  project  within  Tebodin.  Next   to   that  Tebodin   is  also   involved   in   the  design  process  after   the  basic  engineering  phase  (as  they  have  defined  their  detail  level).  During  this  detail-­‐engineering  phase  the  contractors  will  continue  the  design  Tebodin  has  developed.  Therefore  these  two  separate  design  models  will  be  further  elaborated  in  this  part  of  the  chapter.    

4 .4 . 1 Co l laborat ion    The  design  process  of  Tebodin  at  this  project  can  be  characterized  as  a  multidisciplinary  design  process.  Multiple  disciplines  are  involved  in  this  project  and  are  collaborating  to  have  one  integral  design.  Already  from   the   initiation   of   the   project   the   project   manager   encourages   early   collaboration   from   the   main  disciplines   that   will   be   involved   during   the   project.   Because   the   engineering   time   was   very   short,   he  thought   it   was   necessary   to   work   almost   parallel   with   six   different   design   disciplines.   The   parallel  collaboration,  although   it  was  necessary  because  of   the   limited  amount  of   time,   caused   some   troubles.  The  parallel  design  process  had  a   consequence   that   certain   information  was  not   (yet)   available  when   it  was  needed  or  normally  would  have  gone.  This  could  be  countered  by  communicating,  just  ask  the  person  in  question  what  the  design  solution  will  be.  As  a  result  of  the   interviews   it  appears  that  each  discipline  would  prefer  to  cooperate  at  one  location,  but  they  also  think  that   it   is  not  necessary  the  whole  project  

Page 45: Transformation from 3D modelling to building information modelling

Building information modelling   33    

team  is  placed  at  one  location,  this  is  partly  due  to  the  large  distance  between  Deventer/Borculo  and  The  Hague   and   partly   because   they   think   the   modern   world   offer   sufficient   sources   to   collaborate   and  communicate  sufficiently.  Besides  collaborating  in  terms  of  communication  there  is  also  the  collaboration  with  or   through  the  software.  There  are  complaints   the  model   is  changing  so   fast;   it   is   therefore  not   to  keep   track   of   every  modification   the   way   it   is   currently   used.   Besides   that,   the  model   is   so   large   and  complex   it   is   difficult   to   find   every   part   or  modification   in   the  model.   Every   discipline   of   Tebodin   was  working  in  Revit  (architecture,  structural  or  MEP)  or  joining  someone  who  was  capable  to  work  with  Revit,  in  order  to  process  his  or  her  part  in  the  model.  They  have  their  own  family  file,  which  does  not  include  every  part  of  the  entire  model.  Only  the  BIM  coordinator  had  access  to  the  central  Revit  file.  He  merged  everything  together  and  processed  this  Revit  file  into  Navisworks.  The  Navisworks  model  was  accessible  to  all  disciplines  and  this  model  was  in  fact  the  tool  that  made  collaboration  possible.      A   3D  or   BIM  model   encourages  multidisciplinary   design.   The  participants   also   believe   it   is   necessary   to  work  integral  if  3D  modelling  is  used  as  a  design  method.  A  gloss  upon  multidisciplinary  design  however  it  is   does   not   mean   they   are   working   integral.   This   can   be   compared   with   the   over-­‐the-­‐wall   approach,  people  are  working  with  other  disciplines  at  the  same  time,  but  this  does  not  mean  they  are  collaborating  with  each  other  (working  with  blinkers  on).  This  is  corresponding  with  the  iteration  of  the  design  process.  There  are  different   interpretations  whether   the  3D/BIM  process   is  a  more   iterative  process   then  an  old  fashion  design  process.  The  amount  of   iterations   is  not  necessarily  more,  which  corresponds  to  the   fact  that  people  are  not  always  informed  of  any  modifications.      The  fact  that  the  process  supplier  was  unknown  during  the  engineering  phase  did  not  benefit  the  process.  Initially  Friesland  Campina   informed  Tebodin  Tetra  Pak  would  be  supplier  of  the  process  equipment  and  Tebodin   can   assume   the   process   is   copied   from   two   other   plants.   After   a   change   in   the   list   of  requirements,  the  supplier  of  the  process  installation  became  GEA  instead  of  Tetra  Pak.  This  decision  had  large   consequences   for   the   design   of   Tebodin   and   they   had   to   take   a   large   step   backwards.   Although  Tebodin   could   not   directly   be   blamed   for   this,   it   was   the   decision   of   the   client   (RFC);   they   could   have  promoted  an  early  decision-­‐making.  This  ties  in  with  the  involvement  of  the  contractors  to  the  process.  It  is  not  usual   contractors  are   involved  early   in   the  design  phase;  most  participants   find   it  not  necessarily  that  contractors  are  involved  in  the  design  phase.  But  everyone  agreed  upon  the  appointment  of  GEA  that  this  should  be  done  much  earlier.  GEA  sees  the  earlier  involvement  in  the  design  process  of  contractors,  engineers  and/or  suppliers  as  a  benefit.  This  will  be  relevant  by  the  important  role  they  have  in  a  design.    

4 .4 .2 Des ign software The  initial  idea  of  Tebodin  about  the  design  was  they  would  do  it  by  combining  Revit,  Plant  3D,  Inventor  and   Navisworks.   Early   in   the   project   it   became   clear   the   collaboration   between   Revit,   Plant   3D   and  Inventor  was   not   a   great   success.   Next   to   that,   the   Revit  model   became   very   large   and   heavy,   normal  computers   have   great   problems   processing   everything.   The   Navisworks   model   turns   out   to   be   the  solution.  This  tool  was  quite  easy  to  learn  for  all  participants  and  also  the  computer  could  process  these  models   without   having   any   problems.   All   engineers   do   think   Revit   is   the   best   option   to   design.   Partly  because  it  is  a  complete  package  that  Autodesk  offers  and  the  majority  uses  Revit  and  partly  because  they  are  unfamiliar  with  other  design  tools.  Many  (lead)  engineers  did  not  have  any  experience  with  Revit  or  3D   modelling   before   the  Mountain   project.   As   a   consequence   many   possibilities   of   BIM   are   unknown  and/or   not   used   during   the   project.   Inexperienced   is   probably   the   keyword   to   many   problems   or  opportunities.  The  clash  control  appears  to  take  more  time  than  previously  thought  (initially  the  idea  was  to   do   clash   control   in   Revit   automatically,   but   became   a   visual   clash   control   in  Navisworks),   the   Box   is  chosen  as  exchange  program  (Project  Place  might  be  a  good  alternative),   the  workload  moves   from  the  construction  phase  to  the  design  phase,  and  the  precision  of  modelling  become  much  more  important.      The   choice   for   Revit   and  Navisworks,   part   of   the   package   of   Autodesk,  was   quickly  made.   In   Deventer  some  engineers  already  had  experience  with  Revit.  By  combing  Revit  with  Navisworks  and   (in   theory)   it  seems   to   be   possible   to   combine   Revit   with   Inventor   and   Plant   3D,   the   choice   fell   on   this   software  package.  IFC,  Solibri  and  other  software  tools  are  unknown  to  most  (lead)  engineers  and  partly  because  of  this  not  chosen  as  software  tool  that  is  used  in  the  Mountain  project.  The  choice  to  make  everything  Revit  compatible   is   seen   as   unnecessary   because   information   is   lost   and   the   transfer   protocol   via   SAT   (of  maximum   100  MB)   is   old   fashioned.   Transferring   all   the   files   does   cost   GEA  much   extra   time   and   the  added  value  was  nil  because  other  partners  did  not  use  this  model.  The  consequence  of  this  according  to  

Page 46: Transformation from 3D modelling to building information modelling

34 Building information modelling  

 

the   project   manager   of   GEA   was   that   partners   did   not   (are   hardly)   execute   self-­‐control.   Because   not  everybody  invested  in  Navisworks  Manager  they  could  not  control  their  work  directly  and  abused  or  used  the  layout  meetings  to  do  the  self-­‐control.  This  took  a  lot  of  extra  time.    

4 .4 .3 Expectat ions As   mentioned   in   the   previous   part   of   this   chapter,   many   participants   are   unfamiliar   with   building  information   modelling.   The   definition   that   came   forward   includes   the   following   keywords:   3D   model,  organize,   collaborate,   appointments,   clash   control,   information   (generation   of   information   such   as  quantities,  costs  or  reports).  Many  participants  agreed  on  the  fact  that  this  project  is  more  3D  modelling  than  BIM,  although  they  think  the  project  has  some  similarities  with  BIM.  The  possibilities  BIM  offers  are  partly  known,  but  how  to  take  benefit  from  the  possibilities  are  unknown.  All  participants  do  think  BIM  is  the  future.      The  benefits  of   the  design  method  used  during  the  Mountain  project  are  the  adaptability  of   the  model,  the  consistency  3D  modelling  entails  and  the  visualization  of  the  complete  model.  The  disadvantages  that  are  mentioned  are  the  time  and  energy  that  is  spent  to  set  up  a  model,  a   lack  of  overview  in  the  model  and  the  feedback  arrived  from  it,  the  security  that  people  cannot  change  everything  in  the  model,  the  lack  of  experience  and  developments  of  BIM,  the  dependency  because  of  a  malfunction,  and  full  integration  is  necessary.  Points   for   improvements  are   the   reliability  of   the  model,  everything  must  be  designed   in  3D  that  means   also   the   partners   in   the   project   have   to  model   in   a   compatible   3D   program,   and   the   BIM  protocol  and  task  description  (how  far  something  has  to  be  developed)  should  be  clarified.  Engineers  are  preferred  to  draughtsmen,  because  they  have  more  qualities  to  collaborate  (without  blinkers)  with  other  disciplines.  An  important  note  GEA  made  concerning  the  software  is  that  the  software  package  should  be  used  what  they  are  designed  for  (Revit  for  architecture,  structural  and  MEP,  inventor  and  Solidworks  for  mechanical,  and  Navisworks  to  review  and  use  clash  control).    

4 .4 .4 Internal des ign model During   the   basic   engineering   phase   the   different   design   disciplines   collaborated   to   establish   within   a  limited   amount   of   time   a   conceptual   model.   At   the   intercession   of   the   project   manager   the   six   most  important  disciplines  were  directly  involved  at  the  concept  phase.  The  thoughts  behind  this  idea  were  to  create  a  complete  conceptual  model  as  soon  as  possible,  in  which  every  part  of  the  project  is  represented.  From   this  point   the   individual  disciplines   can   further  develop   their  part  of   the  project   that   is   combined  once   in   a   certain   predefined   period.   The   BIM   coordinator   was   the   main   person   who   received   all   the  different  models  from  each  discipline.  He  was  the  only  one  who  had  the  ability  to  work  in  the  central  file  and   merged   the   families   every   discipline   delivered.   Beforehand   he   developed   a   protocol   for   the  engineering   groups   where   the   families   had   to   live   up   to,   such   as   rules   about   the   orientation   and  conditions.   After   combining   all   the   family   files   into   the   central   file,   a   visual   clash   control   is   executed.  Initially   clash   control  was  done  automatically  by   composing  a   set  of   rules,  which   can  be   tested   in  Revit  Autodesk.  Because  of   the  complexity  and   the   large  extent  of   the  central   file  an  automatic   clash  control  was   no   longer   useful.   The   visual   clash   control   took   place   at   Navisworks   Freedom.   This   program   allows  Tebodin  to  combine  the  different  models   into  one  model  visualized  in  one  software  program.  This  time-­‐consuming  process  was  used  to  check  the  complete  model  on  errors  in  the  design.      The   design   team   within   Tebodin   exists   of   three   different   groups:   the   project   manager,   3D/BIM  coordinator  and  engineering  teams.      • The   different   disciplines   exist   of   a   lead   engineer   and   multiple   engineers   depending   on   the  

department.   The   lead   engineers   were   involved   at   internal   meetings   to   discuss   the   latest   design  problems.  At  these  meetings  both  the  project  manager  and  the  BIM  coordinator  were  in  place.    

• The  project  manager  was  on  the  one  hand  the  leading  and  central  person  at  Tebodin  at  this  project  and  on   the  other  hand  he   representative  on  behalf  of  Tebodin   towards   the  client  and   the  external  actors  such  as  the  contractors.  He  also  has  to  be  master  of  the  Navisworks  model.    

• The   BIM   coordinator   as   mentioned   before   was   the   manager   of   the   3D   model,   both   internally   as  externally.  Every  design  change  that  takes  place  is  going  through  him.    

 The  project  manager  and  the  BIM  coordinator  are  two  main  roles  and  therefore  shown  in  Figure  23.  The  other   functions   shown   in   this   figure   are   the   different   design   disciplines.   It   shows   the   importance   of  

Page 47: Transformation from 3D modelling to building information modelling

Building information modelling   35    

communication  via  this  model  and  the  importance  of  the  BIM  model  and  the  corresponding  function  of  a  BIM  coordinator.      

   Figure 23: internal organization scheme (Tebodin – Mountain project)

4 .4 .5 External des ign model Tebodin  is  contracted  to  design  to  a  certain  level  of  detail.  If  this  level  of  detail  is  accomplished  the  design  is  not  sufficient  enough  to  use  it  for  construction.  Therefore  the  basic  engineering  design  is  handed  over  to   the   contractors   of   the   project.   They   will   further   develop   the   model   until   it   is   detailed   enough   to  construct   the  milk  powder   factory.   The  3D  or  BIM  model  will   remain   the   central   file   also   for   the  detail  phase.  This  means  that   in  this  case  the  BIM  coordinator  of  Tebodin  remains  the  BIM  coordinator  during  the  project.  Because  of  the  type  of  contract  this  is  the  case.  As  is  shown  in  Figure  24,  the  BIM  coordinator  also  has  a  separate  central  role  in  the  external  process.  The  flow  chart  shows  the  deviation  of  the  project.  It   is   divided   in   a   group   utilities,   sub   and   above   zero   (building)   and   process.   Cofely,   a   technical   service  provider,   covers   the   utilities   group.   The   building   group   is   covered   by   Jorritsma,   a   (mainly   industrial)  contractor,  and  is  divided  into  construction,  electrical  and  HVAC.  Imtech,  also  a  technical  service  provider,  covers  both  the  electrical  and  the  HVAC  part.  Pieter  Bouwtechniek,  an  engineering  company  in  structural  design,   handles   the   construction   part.   The   last   but   most   important   part   of   the   Mountain   project   is  process.   “GEA  Group  Aktiengesellschaft   is  one  of   the   largest   suppliers   for   the   food  processing   industry”  (GEA   Group,   2014)   and   covers   the   process   part   in   this   project.   Although   it   seems   one   organization,   in  practice  it  exists  of  seven  different  companies.  Because  the  process  installation  consists  of  seven  different  parts   (according   to   the  deviation  within  GEA),   seven  different   parties   of  GEA  are  designing   the  process  installation.   These   seven   parts   are   located   in   five   different   countries   and   use   four   different   design  packages.      Tebodin   is   responsible   during   this   entire   process   for   the   3D   model   and   the   overall   design.   Whereas  Tebodin  were  primarily  designing  in  the  basic  engineering  phase,  in  the  detail-­‐engineering  phase  Tebodin  primarily   has   a   management   function.   During   the   design   phase   the   role   of   Tebodin   changes   and   the  involvement  of  engineers  and  lead  engineers  differ  from  full  time  involvement  to  a  more  steering  role  or  in  some  cases  not  even  involved  anymore.      

Page 48: Transformation from 3D modelling to building information modelling

36 Building information modelling  

 

 Figure 24: external organization scheme (Mountain project)

4 .5 Relat ion to l i terature The   findings   of   the   interviews   become  more  meaningful   if   these   findings   correspond  with   the   analysis  made   in   chapter   3   out   of   the   literature.   The   collaboration   within   the   Mountain   project   has   some  similarities  with  the  literature.  Also  the  aspects  of  the  project  that  went  not  so  well  can  be  traced  back  to  these  findings.  The  parallel  multidisciplinary  design  approach  that  is  used  in  the  Mountain  project  is  used  to  create  a  shorter  lead-­‐time.  The  project  manager  also  had  the  task  to  a  get  a  constant  cycle  of  offering,  evaluating  and  redesigning  between  engineers  as  mentioned  in  chapter  3.3.2.  The  benefits  of  this  method  were  mainly  expressed  within  Tebodin  and  not  downstream  at  the  contractors.      The   choice   of   the   software   that   is   used   in   the   project   was   declared   by   the   fact   that   the   civil   and  architecture  department  at  Deventer  had  some  experience  with  Revit.  It  is  also  confirmed  by  Eastman  et  al.   (2008)  this  choice  was  not  so  bad;  “Revit   is  the  best  known  and  current  market   leader  for  the  use  of  BIM  in  architectural  design.”  Revit  has  a  user-­‐friendly  interface  and  also  supports  a  multi-­‐user  interface.  A  frequently  mentioned  problem  is  that  the  Revit  model  became  very  slow  to  work  with.  The  BIM  Handbook  refers  to  the  weakness  of  Revit,  namely  Revit  slows  down  significantly  for  projects  larger  than  about  220  megabytes.  The  central  file  of  the  Mountain  project  abundantly  exceeds  this  limit.  The  family  files  have  an  average  size  of  200  megabytes.  The  main  issue  of  the  speed  is  (provisionally)  an  unsolvable  problem;  Revit  (and   also  other   design   software)   are   running  only   at   one   core  processor   on   the   computer.   Therefore   a  multicore  processor  does  not  make  any  sense  with  loading  and  working  in  a  Revit  model  (loading  a  render  is  much  faster  with  a  multicore  processor).      The   participants   mention   more   or   less   the   same   corresponding   benefits   as   literature   describes.  Consistency  in  the  drawings,  visualization,  and  increased  quality  are  the  main  benefits  mentioned  by  them  and   these   benefits   can   be   found   back   in   the   preconstruction   benefits   and   design   benefits   earlier  described.  Some  benefits  do  not  come  forward  are  based  on  the  functions  used  in  the  Mountain  project.  Not  all  functions  that  BIM  includes  are  used  during  the  project  and  therefore  not  all  benefits  are  known.  Also  the  disadvantages  BIM  involves  are  recognized  by  Tebodin,  things  as  the  involvement  that  is  required  by  all  project  partners,  high  start-­‐up  costs,  high  demands  to  hardware,  workload  and  changeableness  are  mentioned  by  both  the  participants  as  well  as  the  literature.      

Page 49: Transformation from 3D modelling to building information modelling

Building information modelling   37    

4.6 Wrap-up This   chapter   starts   with   a   project   description   showing   that   the   project   team   of   Tebodin   carefully  considered  how   they  want   to   tackle   the  project.   In  practice   some   things   are  disappointing,   such  as   the  progress  achieved  by   the  contractors  with  3D  modelling.  The   interviews  provide   insight   to   the   thoughts  and  developments  related  to  BIM  or  3D  modelling  software,  collaboration  and  their  expectations.  There  are   no   remarkable   outcomes   that   are   different   to   what   the   majority   response.   The   interviews   also  contribute   to   the   development   of   a   representative   design   model.   The   interviews   are   held   with  representatives  from  all  disciplines  that  got  a  clear  overview  of  their  department  and  also  the  ratio  with  respect   to   the  complete  process.  The  disadvantage  of   this  choice  was   that   these  people   (often)  are  not  experienced  with  3D  modelling  software.  Besides  the  lack  of  experience  with  3D  modelling,  they  also  do  not   have   any   experience   with   BIM   (except   the   people   from   PBT).   This   is   an   observation,   but   it   is  unfortunate   that   no   one   inside   Tebodin   has   this   experience.   The   main   findings   of   the   case   study   are  presented   to   the   experts   (a   list   of   the   experts   can   be   found   in   Appendix   E   and   these   outcomes   are  elaborated  below:    • The   project   manager   stimulates   an   early   collaboration   within   Tebodin.   The   civil   and   architecture  

discipline  were  leading  the  process  (this  is  (partly)  because  RFC  moved  Tetra  Pak  forward),  the  other  disciplines   were   following   closely.   The   collaboration   with   project   partners   was   “old   fashion”;   they  were  involved  after  the  basic  engineering  phase.      

The  type  of  collaboration  within  Tebodin  corresponds  to  the  model  that  is  presented  in  P.  H.  Chen  et  al.  (2005)  and  van  Nederveen  and  Tolman  (1992).  The  early  involvement  is  not  something  that  is  different  to  other  projects  of  Tebodin  according  to  Tebodin  Director  Buildings  West;  the  type  of  software  that  is  used  is  different.      • A   lack   of   knowledge   of   3D   software   and   BIM   caused   problems   (mainly   in   the   detailed   engineering  

phase/construction  phase,  where  the  contractors  were  involved).    All  experts  indicated  that  a  lack  of  knowledge  in  the  construction  industry  is  a  well-­‐known  problem.  More  and  more   companies   have   the   ability   to  model   3D   and   collaborate  within   BIM,   however   the   “weakest  partner”  in  the  process  determines  the  ability  to  BIM.      • The  Revit  model  became  too  heavy;  Navisworks  provided  the  solution  to  visualize  the  model.    The   external   experts   indicate   that   this   is   a   well-­‐known   problem.   Revit   becomes   too   heavy   and   slow  because  of  the  single  core  processor,  curved  geometry,  heavy  plug-­‐ins,  the  hard  and  software  is  not  up-­‐to-­‐date.      • Eye  blinkers  caused  problems  (to  collaborate  efficiently)  within  disciplines  and  partners.      This  is  a  well-­‐known  problem  in  the  construction  industry.  Companies  who  are  not  used  to  collaborate  in  a  BIM  project  do  not  yet   fully  understand   the  point  of  BIM  to  create  an   integrated  design.   It   is   therefore  necessary  to  select  your  project  partners  carefully.      This  case  study  has  established  the  design  model  of  Tebodin  and  their  current  status  with  respect  to  3D  modelling  and  BIM.  This  data  is  used  in  the  following  chapter:  the  synthesis.  The  results  of  the  literature  study  and  the  case  study  are  combined  and  verified  according  to  a  BIM  maturity  scheme  to  establish  the  current  status  of  the  BIM  implementation  process  of  Tebodin.  This  will   lead  to  an  advice  related  to  BIM  implementation  based  on  the  future  BIM  stages.        

Page 50: Transformation from 3D modelling to building information modelling

38 Building information modelling  

 

   

Page 51: Transformation from 3D modelling to building information modelling

Building information modelling   39    

Chapter 5

Synthesis & future perspective Previously   the   literature   study  and   the  case  study  of   the  Mountain  project  were  analysed  and  these  two  outcomes  will  be  combined  in  this  chapter.  This  chapter  will  combine  both  important  outcomes  and  based  on  these  outcomes  the  current  stage  of  BIM  will  be  determined  according  to  an  existing  maturity  scheme.  This  scheme  consists  of  different  BIM  stages  that  will  be  used  to  determine   the   current   BIM   status   of   Tebodin   (the   synthesis)   and   next   to   that,   based   on   the  phases   to   be   covered,   a   description  will   follow   of   how   these   stages  may   be   achieved   (future  perspective).  The  results  of  this  chapter  together  with  the  main  conclusions  in  chapter  7  will  be  validated   at   the   end   of   this   chapter.   The   validation  will   consist   of   the   findings   of   the   experts  regarding  the  research  results.    

5 . 1 Synthes is Within   the   synthesis   the  previous   results  will   be  merged   together   to  explain   the   cohesion  between   the  literature   and   the   case   study.   To   combine   these   parts,   a   BIM   maturity   scheme   will   be   used.   In   this  research   the  maturity   model   of   Khosrowshahi   and   Arayici   (2012)   is   used   because   of   its   simplicity   and  clearly  described  BIM  stages.  These  terms  will  be  used  to  verify  whether  a  certain  stage  is  accomplished  or  not  and  will  be  used  in  a  time  frame  in  the  recommendation  of  chapter  7.  But  first  the  current  situation  of  Tebodin  will   be  visualized  based  on   this   scheme.  After   this   is   established   the   future  perspective   can  be  outlined.  

   Figure 25: BIM maturity stages in BIM implementation (adapted from (Khosrowshahi & Arayici, 2012))

Determination  current  BIM  maturity  stage  Based  on  the  different  BIM  maturity  stages  it  will  be  determined  what  the  current  stage  is  of  Tebodin.  The  pre  BIM  status   is  not  applicable  to  this  project  and  therefore  will  be  omitted  for  this  reason.  Each  stage  

Page 52: Transformation from 3D modelling to building information modelling

40 Building information modelling  

 

lists  a  number  of  aspects  that  must  be  met  for  each  stage.  The  Mountain  project  (the  design  process  of  Tebodin)  will  be  classified  on  the  basis  of  these  aspects.    Table 4: BIM maturity stage 1

BIM  stage  accomplishments   Current  position  of  Tebodin  3D  object-­‐oriented  model   Achieved  Automated  and  coordinated  views   Achieved    Streamlined  3D  visualizations   Achieved    Basic   data   harvested   from   the   model   such   as   3D  plans,   elevations,   sections,   quantity   take-­‐off,  lightweight  models  for  internet  

Partly  achieved:  (e.g.)  Tebodin  does  not  yet  use  quantity  take-­‐off  

Asynchronous  communication   Achieved      Table 5: BIM maturity stage 2

BIM  stage  accomplishments   Current  position  of  Tebodin  Information  share  and  exchange   Achieved    4th  and  5th  dimensions  (time  and  cost)   Not  achieved  Generate  array  of  analysis  driving  deliverables   Not  achieved    Clash  detection  between  disciplines   Achieved  (largely  visual)  Asynchronous  communication   Achieved    

 Table 6: BIM maturity stage 3

BIM  stage  accomplishments   Current  position  of  Tebodin  Multi-­‐dimensional  model  (nD)   Not  achieved  Complex   analysis   in   early   stages   such   as  sustainability,  constructability,  lifecycle  costs,  etc.  

Not  achieved  

Multi-­‐discipline   utilise   the   same   model   through   an  integrated,  interoperable  or  federated  database  

Partly  achieved:  within  Tebodin  every  discipline  utilises   the   same  model.   Contractors   also   did,  however   not   everything   is   model   (directly)   in  3D  

Streamlined  lean  process   Not  achieved  Synchronise  communication   Achieved:  but  not  every  aspect  of  synchronized  

communication  is  optimal  Multi-­‐server  technologies  for  collaboration   Not  achieved  

 Out  of  this  analysis  Tebodin  can  be  categorized  as  a  company  who  is  currently  at  BIM  maturity  stage  1  and  on   its   way   to   stage   2;   they   already  master   some   aspects   of   stage   2.   In   chapter   3   the   literature   study  showed   that   some   benefits   of   BIM   are   interoperability,   consistency   in   2D   drawings,   visualization   of   a  design  and  workload.  The  fact  that  these  benefits  correspond  to  BIM  maturity  stage  1  can  be  explained  by  the   fact   that   stage   1   mainly   concerns   3D   modelling.   The  Mountain   project   has   been   a   project   that   is  designed  as  a  3D  model  but  without  adding  data  to  it.  The  3D  model  is  used  to  visualize  the  design  and  to  check  the  design  visually  on  any  errors.  The  3D  model  is  also  used  to  extract  elevations,  sections  and  3D  plans   by   Tebodin   and   the   contractor   uses   quantity   take-­‐off.   The   communication   has   been   taken   place  both  asynchronous  as  synchronous;  during  the  project  it  has  been  possible  to  communicate  at  the  same  place  at  a  different  time  (asynchronous  communication)  as  well  as  at  the  same  time  at  a  different  place  (synchronized  communication).  These  aspects  are  (largely)  part  of  stage  1  and  show  Tebodin  is  master  of  stage  1.  It  does  not  mean  these  aspects  could  not  be  improved.    Besides  aspects  of  stage  1  Tebodin   is  also  master  of  some  aspects  of  stage  2  and  3.  The  aspects  of  BIM  maturity   stage  2  and  3   that   Tebodin   is  master  of,   are   related   to   collaboration:   information   sharing  and  exchanging,   clash   detection   and   communication.   This   shows   Tebodin   excels   in   collaboration;   it  corresponds   to   what   they   pretend   to   be:   a  multidisciplinary   firm.   From   this   analysis   is   concluded   that  Tebodin  has  mastered  the  3D  aspects  but  that  the  extra  dimensions  (such  as  4D,  5D,  6D  and  nD)  are  not.  The  collaboration  takes  place  between  3D  model,  sharing  and  exchange  geometrical  data,  but  data  such  as  product  data  or  data  gathered  from  analyses  has  not  been  exchanged  yet.    

Page 53: Transformation from 3D modelling to building information modelling

Building information modelling   41    

5 .2 Future perspect ive The  previous  part  shows  that  Tebodin  controls  BIM  maturity  stage  1.  In  this  part  of  the  chapter,  stage  1,  2  and  3  will  be  elaborated.  Based  on  these  BIM  maturity  stages  the  main  challenges  of  BIM  will  be  covered,  the   remaining   opportunities   are   elaborated   together   with   the   approach   towards   the   weaknesses   and  threats.      In  the  following  tables  (Table  8-­‐10)  the  aspects  of  each  BIM  maturity  stage  are  shown  and  the  solutions  are   described   if   certain   aspects   are   not   achieved   (yet).   The   aspects   that   are   not   achieved   yet   can   be  divided   in   the   following   categories:   scheduling   (4D),   cost   estimating   (5D),   sustainability   or   analysis   (6D)  and  facility  management  (nD).  These  topics  will  be  further  elaborated  later  in  this  section,  together  with  the  indirect  effects  of  BIM.      Table  7:  BIM  maturity  stage  1  

BIM  stage  goals   How  to  achieve  3D  object-­‐oriented  model   Achieved  Automated  and  coordinated  views   Achieved    Streamlined  3D  visualizations   Achieved    Basic   data   harvested   from   the   model   such   as   3D  plans,   elevations,   sections,   quantity   take-­‐off,  lightweight  models  for  internet  

Partly   achieved:   quantity   take-­‐off   will   be  covered  with  the  4th  and  5th  dimension  

Asynchronous  communication   Achieved      Table  8:  BIM  maturity  stage  2  

BIM  stage  goals   How  to  achieve  Information  share  and  exchange   Achieved    4th  and  5th  dimensions  (time  and  cost)   Can  be  achieved  by  doing  research  to  sufficient  

4th  and  5th  dimension  software.  The  employees  who  have  to  work  with  this  have  to  be  trained  

Generate  array  of  analysis  driving  deliverables   Can  be  achieved  by  integrating  the  deliverables  into   the   software,   allowing   to   generate   these  analyses    

Clash  detection  between  disciplines   Achieved   (largely   visual).   Navisworks   Manager  or  similar  other  viewer   is  highly  recommended  to  exploit  the  opportunities  of  BIM  

Asynchronous  communication   Achieved          

Page 54: Transformation from 3D modelling to building information modelling

42 Building information modelling  

 

Table  9:  BIM  maturity  stage  3  

BIM  stage  goals   How  to  achieve  Multi-­‐dimensional  model  (nD)   Can  be  achieved  by  doing  research  to  sufficient  

nth   dimension   software.   The   employees   who  have  to  work  with  this  have  to  be  trained  

Complex   analysis   in   early   stages   such   as  sustainability,  constructability,  lifecycle  costs,  etc.  

Can  be  achieved  by  entering   these  data   in   the  models.   This   might   need   support   from  contractors  or  suppliers  

Multi-­‐discipline   utilise   the   same   model   through   an  integrated,  interoperable  or  federated  database  

Can   be   fully   achieved   by   demanding   the  required   modelling   level   from   all   relevant  actors  in  the  process  

Streamlined  lean  process   Always  can  be  improved  Synchronise  communication   Communication   is   partly   done   in   a  

synchronized   way,   but   by   communicating   e.g.  via  videoconferences  this  can  be  even  better.  

Multi-­‐server  technologies  for  collaboration   Currently   there   is   a   single   server   technology.  Multi-­‐server   technology   can   be   achieved   by   a  collaboration  with  partners  who  add  a  server  to  Tebodin,   which   make   it   a   multi-­‐server  technology  

 Scheduling  (4D)  The   fourth   dimension   in   BIM   is   devoted   by   time,   namely   about   project   phasing   simulations   and   lean  scheduling.   4D  modelling  makes   it   possible   to   visualize   and   communicate   within   project   teams,   which  means   also   the  owners   and  users.   This   instrument   should   give   the   team  a  better   understanding  of   the  construction   plans   and   milestones   of   the   project.   This   type   of   simulation   provides   the   team   an  identification   of   problems   before   the   actual   construction   phase   starts,   which   makes   it   easier   and   less  costly  to  solve.  It  is  also  possible  to  visualize  the  occupancy  during  a  renovation  project.  By  visualizing  the  phased   occupancy,  multiple   options   can   be   highlighted   to   consider   and   evaluate   (space)   conflicts.   BIM  models  can  also  be  used  to  explore  construction  activities,  time-­‐based  clashes  can  be  identified  and  it  can  be  used  for  the  planning  and  management  of  materials  (Halvorson,  2010).    But  to  make  use  of  these  options  the  fourth  dimension  offers,  the  3D  model  needs  to  be  connected  to  4D  software.  Table  10  shows  some  of  these  software  programs,  (some  of)  these  programs  can  be  connected  to   Microsoft   Project   (MS   Project)   or   Primavera.   These   two   programs   are   software   packages   that   are  designed  to  support  companies  by  making  schedules.  By  combing  the  schedule  of  Primavera  or  MS  Project  with   for   example   the   TimeLiner   tool   in   Navisworks   it   can   be   possible   to   visualize   the   scheduling   of   a  construction  project  (Autodesk,  2014).      Cost  estimating  (5D)    The   fifth   dimension   is   the   part   of   BIM   that   offers   the   following   possibilities:   it   shows   the   user   the  consequences  to  the  budget  and  schedule  when  a  change  is  made  to  the  project;   it  makes  it  possible  to  organize  the  cost  and  pricing  information,  crew  composition  data,  labour  productivity  rates  and  sub  KPI’s;  multiple  estimations  can  be  shown  to  the  owner,  which  offers  the  owner  the  opportunity  to  compare  it  to  the  target  costs;  and  cost  loaded  schedules  can  be  provided  to  the  owner  (Vicosoftware,  2014).    The  costs  will  be  made  on  the  basis  of  for  example  predefined  costs  per  square  meter  or  costs  given  from  vendors,  contractors  or  costs   that  are  known  from  history.  RS  Means  offers  a  database  “to   find  reliable  cost  data  on  construction  materials,  equipment,  and  labour”  (RSMeansOnline,  2014).  This  type  of  data  can  also  be  gathered  with  the  support  of  the  information  suppliers  or  contractors  to  make  this  available.    Quantity  Take-­‐off  (QTO)  is  a  feature  of  Autodesk  and  is  incorporated  in  Navisworks  2014,  which  makes  it  a  handy  tool   to  use  for  Autodesk  users.   Innovaya  supports  Autodesk  Revit,  AutoCAD,  Tekla  and  any  other  CAD   3D   tool   (Innovaya,   2014).  Within   this   program   the   3D  model   is   visualized,   together   with   a   tab   of  component   types,   building   sections,   managed   quantities   and   assembly   take-­‐off.   Every   component   or  section  of  the  construction  can  be  specified  and  quantified.  This  fifth  dimension  will  be  combined  with  the  information  that  becomes  available  through  the  fourth  dimension.      

Page 55: Transformation from 3D modelling to building information modelling

Building information modelling   43    

Sustainability  and/or  analysis  (6D)  When  sustainability  plays  a  role  within  the  project  model,  a  well-­‐known  term  is  Leadership  in  Energy  and  Environmental   Design   (LEED).   LEED   is   a   rating   system   that   gives   an   indication   how   green   a   building   is  (Autodesk,   2014).   Autodesk   has   a   couple   of   software   services   that   makes   it   able   for   users   to   analyse  sustainable   aspects,   namely   Green   Building   Studio   and   Ecotect.   Green   Building   Studio   can   be   used   to  evaluate  the  environmental  impact  of  the  construction  and  alternatives.  Tools  of  this  program  are  energy  and   carbon   results,   photovoltaic   potential,   daylight   results,   water   usage   data   and   design   alternatives.  Green   Building   Studio   is   a  web-­‐based   service   that   can   be   integrated  with   Revit,   by   exporting   the   Revit  model   (via  export  gbXML  (green  building  eXtensible  Markup  Language))  and   importing  this   file   in  Green  Building   Studio   the   building   information   model   can   be   used.   Ecotect   is   in   line   with   this   tool   and  emphasizes   climate   and  environmental   factors.   Tools   of   Ecotect   are   a  building   energy   analysis,   thermal  performance,  solar  radiation,  day  lighting,  and  shows  and  reflections.  Ecotect  is  a  software  tool  that  has  a  very  simple  interface  that  looks  like  Google  Sketchup.  Also  in  Ecotect  the  Revit  model  can  be  exported  as  a  gbXML   file.   Another   analysis   tool   is   VE-­‐Pro   that   offers   a   wide   range   of   energy   related   analytical   and  simulation   tools.   To   collaborate  with  Revit   it  makes   use  of   two   things:   a   gbXML   file   and   an   IES   toolbar  (Chan  &  Farrell,  2014).      Operations  and  facility  management  (nD)  The  operations  and  facility  management  dimension  of  BIM  has  applications  such  as  life  cycle  strategies,  an  as-­‐built   model,   embedded   operation   and   maintenance   (O&M)   manual,   integration   with   COBie,   and  maintenance   plans   and   technical   support.   The   software   tools   offer   applications   that   provide   real-­‐time  integration  of  BIM;  in  fact  during  this  phase  with  the  help  of  these  tools  the  “I”  in  BIM  is  used.      Table 10: BIM tools (for further information see Appendix D)

Clash  control   4D  simulation   5D  simulation   6D  Analysis   nD  Facility  management  

Navisworks  Manage    

Navisworks  Simulate  

QTO     Robot     EcoDomus  

Solibri  Model  Checker    

Innovaya  4D  simulation  

DProfiler     Green  Building  Studio    

Onuma  System  

Synchro  Professional    

Synchro  Professional    

Innovaya  visual  estimating  or  QTO  

Ecotect     FM:Interact    

Tekla  BIMsight     Tekla  Structures   Vico  Take-­‐off  Manager    

Solibri  Model  Checker    

YouBIM    

Vico  Office   Vico  Control     RS  Means   VE-­‐Pro     Archibus           Apache  HVAC             FloVent             DesignBuilder      

 Indirect  effects  of  BIM  The  BIM  maturity  framework  describes  the  aspects  that  BIM  involves,  however  BIM  includes  not  only  the  aspects  that  are  described  in  this  framework  it  also  has  some  indirect  effects.  These  indirect  effects  of  BIM  are  aspects  that  should  be  dealt  with  in  order  to  implement  BIM  successfully.    • Liability  of  the  BIM  model:  the  liability  of  the  model  is  related  to  transparency,  management/control,  

involvement,   roles   and   responsibility   and   changeableness.   To   be   aware   of   this   indirect   aspect   the  design  of  the  organisational  structure  and  corresponding  responsibilities  and  roles  must  be  clear.  It  is  important   the   scope   of   the   project   is   clearly   written,   who   is   involved   from   which  moment   in   the  process,   and  what   are   the   roles   and   responsibilities   each   actor   covers   in   the   process   (Chao-­‐Duivis,  2013).  This   is  necessary  because  building   information  modelling   is  a  broad  concept.  Because  BIM   is  not  exactly  one  thing  it  must  be  clear  what  is  being  asked.  In  case  of  the  client:  if  the  client  just  uses  the  term  BIM  in  an  assignment  (and  no  further  explanation  what  is  implied  with  BIM),  the  contractor  is  free  to  use  his  interpretation  of  BIM.  This  could  be  the  use  of  clash  control  in  combination  with  a  3D  model;  whether  this  is  what  the  client  is  expecting  is  the  question.  In  case  of  an  engineer  related  to  a  supplier  or  contractor:   the  agreement  they  enter   into  must  define  clearly  what  the  quality   is  of   the  supplied  models.   This   is   depending   on   the   type   of   contract,   if   it   is   a   Construction   Team   (in  Dutch:  

Page 56: Transformation from 3D modelling to building information modelling

44 Building information modelling  

 

Bouwteam)  type  of  contract   (which  supports   integrated  collaboration)  or  a  more  traditional   type  of  contract   (which   drives   partners   to   the   over   the   wall   philosophy).   This   determines   the   mutual  alignment  whether   it  must  be  sharply  defined  or   it   is  not  so   important.  But  because  BIM  is  a  broad  concept  the  different  functions  need  to  be  marked  out  sharply  to  prevent  issues  with  liability.      

• BIM  software:  this  theme  covers  the  indirect  effects  of  software,  such  as  naming  the  objects,  model  sharing,  product  libraries,  and  flexibility.  There  are  two  options  that  have  different  thoughts  of  central  data   repository:   homogeneous   software   environment   and   plural   data   environment.   The  homogeneous   software   environment   assumes   a   central   data   repository   and   the   plural   data  environment  are  “believers  of   freedom  for  a  project  partner   to  choose   its  own  software   tools.  This  groups  tends  to  believe   in  a  shared  data  repository,  but  finds   this  has  to  be  based  on  an  open  data  model  like  IFC”  (van  Berlo  et  al.,  2012).  Whether  a  project  team  is  working  with  an  Autodesk  software  environment  or   in  an   IFC  environment,   in  both   cases   the   structure  of   the  model   is   very   important.  Consistency  in  naming  the  objects  will  be  most  valuable  to  work  multidisciplinary.  Also  experience  will  play  a  role  with  BIM  software;  the  more  projects  will  be  done  with  3D  modelling  and  BIM,  the  more  handy  facts  of  BIM  will  be  familiar.  The  changeableness  of  the  model  will  not  disappear,  but  by  using  for  example  the  switchback  option,  essential  changes  will  be  known  to  those  who  have  an  interest  to  it.  But  apart   from  the  substantive  challenges,  the  focus  must  only  not  be  on  specific  software.  Each  discipline  or  project  partner  should  be  able  to  choose  the  software  tool  to  perform  their  task  and  they  should  not  be  forced  to  use  selected  software  to  have  the  ability  to  share  data  (van  Berlo  et  al.,  2012).  The  viewer  will  be  the  tool  that  combines  the  different  models  and  share  the  information.  

• Costs:   the   costs   of   BIM   are   a   frequently   cited   disadvantage.   However,   many   costs   are   only  made  once.   But   nevertheless   extra   costs   are   made   to   educate   the   employees,   to   buy   the   required  hardware,  software,  and/or  hire  or  employ  BIM-­‐experience.  Another  cost  related  issue  concerns  the  workload.  According  to  the  literature  the  centre  of  gravity  of  the  workload  shifts  from  the  execution  phase   towards   the   design   phase.   From   the   viewpoint   of   an   engineering   company,   this   means   a  growth   of   the  workload   for   the   engineers   but   the   price   of   the   tender   does   not   increase   until   this  project.   From   the   interviews   appears   it   is   not   in   line   with   the   expectations   the   tender   price   of  engineers  will  increase  because  of  the  movements  of  the  workload.  The  expectations  are  the  design  process  will  be  more  efficient  because  of  BIM,  but  this  can  be  monitored  whether  the  time  spend  to  a  project   is  according  to  the  offer  made.  By  registration  one  or  more  projects  the  outcome  can  be  to  increase  the  tender.  If  the  outcome  appears  to  be  negative,  the  contractual  relationships  may  need  to  change.  The  appreciation  that  an  engineering  firm  will  need  to  increase  in  that  case.    

5 .3 Wrap-up The   BIM  maturity  model   is   used   to   establish   the   current   stage   of   Tebodin   implementing   BIM   and   the  future  aspects  of  BIM  come  forward.  Tebodin  is  capable  to  manage  stage  1  (which  does  not  mean  Tebodin  should  not  improve  itself  in  these  aspects).  Tebodin,  as  a  multidisciplinary  firm,  excels  at  the  collaboration  aspect   of   BIM,   but   the   modelling   and   interoperability   qualities   need   to   be   developed.   The   ability   to  collaborate   integrally   will   be   an   advantage   in   the   further   implementation   of   BIM.   The  maturity  model  appoints   just  the  direct  aspects  BIM  includes,  however  indirect  consequences  of  BIM  that  are  important  for  a  successful   implementation  are  neglected  in  this  framework.  The  different  dimensions  BIM  includes  are  described:      • Time   (4D)   make   it   possible   to   simulate   project   phasing   and   lean   planning.   Several   tools   make   it  

possible   to  connect  a   time   frame   to   the  design.  This   time   frame  can  be  used   in  advance,  during  or  after  the  construction  phase.    

• Costs  (5D)  give  the  user  the  ability  to  gain  inside  in  the  costs  of  the  project,  e.g.  the  consequences  of  a  design  decision  to  the  budget,  estimations  can  be  made  and  comparisons  can  be  made.    

• Analysis   (6D)  makes   it   possible   to   gain   knowledge   that   should   improve   the   design.   These   analyses  could  be  about  inter  alia  sustainability  and  constructability.  

• Operations   and   facility   management   (nD)   focuses   on   the   post   construction   phase   and   have  applications  such  as  maintenance  plans  and  technical  support.    

 Out  of  the  expert  meetings  appears  the  analysis  tool  could  be  the  most  relevant  dimension  for  engineers  (Tebodin).   These   tools   can   be   used   to   evaluate   the   environmental   impact   of   the   construction,   are  calculated  the  daylight,  water  usage,  etc.  The  time  and  costs  dimension  should  be  used  in  an  early  stage  of  

Page 57: Transformation from 3D modelling to building information modelling

Building information modelling   45    

the   design   phase   to   calculate   or   show   the   feasibility   of   the   project   (in   terms   of   time   and   costs).   The  software  tools  for  each  dimension  should  be  chosen  based  on  the  usage  of  the  tool  and  not  whether  it  fits  the  design  software  (this  is  often  the  case).      The  indirect  effects  of  implementing  BIM  are  related  to  liability,  software  and  costs.  These  challenges  will  also  be  mentioned  in  the  recommendations  in  chapter  7.      • The   liability   of   the  model   is   related   to   transparency,  management/control,   involvement,   roles   and  

responsibility  and  flexibility.  Because  the  BIM  process   involves  (often)  an   integrated  design  process,  all  the  actors  have  access  to  the  model.  Therefore  it  should  be  clear  who  is  in  charge  of  the  model.  

• There  are  plenty  of  modelling  tools;  important  is  the  modelling  software  fits  to  the  design  discipline.  Each  project  should  be  analysed  which  disciplines  will  be  involved  and  what  the  consequences  are  for  the   collaboration   between   the   software   tools   (whether   it   is   a   homogeneous   or   plural   software  environment).    

• The  costs  are  related  to  education  and  the  shift  in  workload.  The  experts  mention  a  single  3D  design  will  not  be  rewarded  with  higher  rates,  however  when   it   includes  a  building   information  model   the  contractors  are  prepared  to  reward  the  architect/engineer  for  the  extra  effort.    

   

Page 58: Transformation from 3D modelling to building information modelling

46 Building information modelling  

 

   

Page 59: Transformation from 3D modelling to building information modelling

Building information modelling   47    

Chapter 6

Implementation of BIM While  adopting  BIM  into  the  design  process,  the  benefits  that  BIM  offers  must  be  exploited  and  at  the  same  time  the  disadvantages  must  be  diminished.  This  chapter  offers  an  in  depth  analysis  in   the   form   of   a   SWOT   analysis.  Whereas   the   previous   chapters   were   used   to   formulate   the  current  design  process  of  Tebodin  and  the  future  perspective  based  on  the  BIM  maturity  stages,  this  chapter  will  describe  the  path  that  emerges  from  the  gap  between  the  current  situation  and  the   future  perspective.   To  describe   this  path  use  will   be  made  of   a   SWOT  analysis   to   find  out  what  Tebodin  need  to  be  focussed  on  and  can  excel  at,  and  which  aspects  could  be  neglected.  The  outcome  of  the  SWOT  analysis  will  be  used  for  the  recommendations  towards  Tebodin  for  the  implementation  of  BIM  in  their  design  process.      

6 . 1 SWOT analys is This   analysis   provides   an   overview   of   four   different   viewpoints   about   implementing   BIM.   SWOT   is   an  abbreviation  of  strengths,  weaknesses,  opportunities  and  threats.  These  four  viewpoints  will  give  a  good  overview   what   the   benefits   (the   strengths)   of   BIM   are,   and   therefore   which   aspects   need   to   be  maintained   and   exploited   by   Tebodin.   It   also   reveals   the   opportunities,   the   aspects   that   need   to   be  captured  and  further  developed  into  strengths.  On  the  other  hand  the  analysis  exposes  possible  negative  side  effects  of  implementing  BIM.  This  could  be  weaknesses  that  need  to  be  stopped  before  it  becomes  a  threat   and   if   possible   it   needs   to   be   remedied   to   thereby   turn   it   into   an   opportunity   or   strength.   The  disadvantages  (threats)  should  be  countered,  minimized  or  eliminated.  By  being  aware  of  the  strengths,  weaknesses,  opportunities  and  threats  of  BIM,  it  is  possible  to  precede  any  negative  outcomes.  The  SWOT  analysis   will   give   an   in   depth   analysis   of   the   current   level   of   building   information   modelling   within  Tebodin.  It  means  the  SWOT  is  based  on  the  design  process  that  is  established  based  on  the  case  study.  Some   aspects   of   the   SWOT   are   specific   to   Tebodin   and   other   aspects   are   benefits   or   disadvantages   in  general  to  engineering  firms  at  this  BIM  maturity  level.      In  the  previous  chapter  the  validation  has  shown  the  design  process  of  the  Mountain  project  is  typical  for  implementing  BIM.  The  strengths,  weaknesses,  opportunities  and  threats  are  formulated  according  to  the  current  design  process  as  found  in  the  case  study.    

6 .2 Strengths The  strengths  of  BIM  in  the  design  process  can  be  implemented  and  should  be  maintained  and  exploited  by  Tebodin.  These  strengths  are  primarily  benefits  to  Tebodin  based  on  the  Mountain  project  and  expert  meetings.  Nevertheless   these  strengths  can  also  be  strengths   in  general   to  other  engineering   firms.  The  strengths  are  as  follows:    Strengths  of  Tebodin    • Early  discovery  of  errors  and  omissions   (clash   control):  with  the  help  of  clash  control  every  design  

error   caused  by   2D  drawings   that   is   inconsistent   is   eliminated.   Systems   and  designs   from  different  disciplines   are   brought   together   and   checked   systematically   and   visually.   This   method   identifies  conflicts   in   the   design   phase   before   they   are   detected   in   the   field.   This   aspect   of   BIM   was   of  

Page 60: Transformation from 3D modelling to building information modelling

48 Building information modelling  

 

tremendous  value  during  the  Mountain  project;  to  design  this  project  in  2D  was  not  possible  without  making  mistakes.  

• Simultaneous:   By   collaborating   early   on   in   the   design   process,   it   is   prevented   that   the   input   from  engineers  applied  after  the  major  design  decisions  are  made.  By  working  simultaneously  with  multiple  design   disciplines   the   amount   of   design   errors   and   omissions   are   significantly   reduced.   It   can   be  compared  with  concurrent  engineering  and  facilitate  to  design  multidisciplinary,  which   is   ideal   for  a  multidisciplinary  engineering  company  as  Tebodin.  Therefore  Tebodin  should  especially  maintain  and  exploit  this  aspect  of  BIM.  

• Consistency  in  2D  drawings:  at  any  time  during  the  project,  accurate  and  consistent  drawings  can  be  produced.   If   there   are   any   changes  made   to   the   design,   new   and   fully   consistent   drawings   can   be  produced   as   soon   as   the   modifications   are   set.   This   reduces   time   and   errors   that   are   related   to  creating   all   construction   drawings   for   all   specific   drawings.   Especially   for   Tebodin   as   a  multidisciplinary  engineering  company,  consistency  in  the  model  is  beneficial.    

 Strengths  in  general  • Interoperability:  with  a  BIM  the  design  is  controlled  by  parametric  rules.  These  rules  ensure  a  proper  

alignment  and  decrease  the  effort  to  manage  design  changes  for  the  user.  This  should  to  be  further  developed  to  create  interoperability  between  all  actors  and  all  models.  

• Visualization  of  a  design:  because  the  project  is  created  in  a  3D  modelling  tool,  the  object  is  already  in   3D.   At   any   stage   of   the   process   3D   visualization  models   and   2D   drawings   can   be   provided,   for  example  during  the  construction  phase,  as  is  the  case  in  the  Mountain  project.    

6 .3 Weaknesses The  weaknesses  of   implementing  BIM  should  be  stopped  and  changed  or  remedied.  The  points  that  are  brought  forward  in  this  group  are  not  as  dangerous  as  the  threats,  but  neglecting  these  issues  can  have  a  large  impact  on  the  successful  implementation  of  BIM  in  the  design  process  of  Tebodin.  Some  weaknesses  are  close  related  to  threats  or  opportunities:    Weaknesses  of  Tebodin    • Product   libraries:   “most   libraries   are   commercial   available”,   such   as   Autodesk   Revit,   which  means  

that   these   libraries   will   bought   or   will   be   created   by   gathering   own   created   elements.   Besides   a  standard   format   for   data   exchange,   there   is   a   greater   need   for   standard   vocabulary   for   the  consistency  of  data  when  exporting  from  one  package  to  another”  (Gu  &  London,  2010).  Tebodin  is  at  the  early  stage  of  adopting  Revit  and  the  product  libraries  are  rather  limited.  These  libraries  will  grow  in  the  future  doing  more  projects  within  Revit.  Therefore  IFC  and  DRS  are  important  to  implement,  to  cover  the  lack  of  interoperability  between  Revit  and  other  software  packages.  

• Equipment:  the  equipment  exists  of  multiple  aspects.  The  capacity  of  the  computers  is  a  thorny  issue.  As   mentioned   at   the   start-­‐up   costs   computers   could   have   problems   running   smoothly   with   large  models.  Having  a  computer  or  hardware  that  is  not  capable  to  handle  the  large  data  a  model  entails,  abolish  the  benefits  of  BIM.  Besides  the  capacity  of  equipment,  the  type  of  equipment  is  important.  By  focussing  on  Autodesk  Revit  some  disciplines  are  obligated  to  work  with  a  modelling  program  that  might  not  fit  to  their  discipline  and  the  collaboration  with  partners  might  not  be  optimal.  The  current  stage  of  Tebodin  is  applicable  to  this  aspect  of  BIM,  because  Tebodin  focussed  on  Revit  especially  for  the  Mountain  project.  It  will  not  necessarily  be  a  weakness  because  of  the  interoperability  problems  with  IFC.      

• Communication:   several   weaknesses   are   related   to   communication.   The   weaknesses   often   were  mentioned  in  the  interviews  and  can  be  related  to  the  lack  of  experience  of  Tebodin:  • Naming   objects:   because   of   the   diversity   of   objects   in   models   it   can   be   hard   to   find   certain  

objects;  this  can  lead  to  unnecessary  loss  of  time  and  increases  the  opportunity  at  mistakes.  By  naming   the   objects   in   a   consistent   way,   objects   are   easy   to   find   and   garbage   is  minimalized/eliminated.    

• Management/control:   who   controls   the   input   of   data   in   the   model?   It   must   be   clear   who  controls  the  input  of  the  data  and  who  communicates  this  information  to  the  relevant  actors.  If  this  does  not  happen,  everyone  can  upload  data  that  might  be  incorrect  and  not  all  the  actors  are  familiar   with   the   changes.   Besides   that   changes   and   adaptions   within   the   model   should   be  

Page 61: Transformation from 3D modelling to building information modelling

Building information modelling   49    

visualized   (to  give  a  notification   for  example),   this  prevents  design  disciplines  are  not  aware  of  changes  or  could  not  find  these  changes.    

• Backup   system:  a   lack  of   registration  of  communication  and   information  exchange  can  cause  a  problem.  Because  this   information  is  not  captured  In  a  BIM  model,  things  can  be  uncertain  and  unknown   for   actors   involved   in   the   process.   By   arranging   the   “naming   objects”   and  “management/control”  in  a  proper  way,  this  problem  is  minimalized.    

 Weaknesses  in  general  • Involvement:  to  optimally  use  the  possibilities  of  BIM  the  external  actors  should  be  involved  early  on  

in  the  process  and  be  aligned  to  each  other.  Especially  when  Tebodin  has  a  management  role  during  the  construction  phase  (e.g.  EPCm  contract),  early  involvement  of  project  partners  during  the  design  phase  can  be  beneficial  to  the  progress  of  the  project.    

• Model   sharing:  adequate  methods  to  share  model   information  among  the  project  participants.   It   is  only  possible  to  work  with  an  IFC  or  data  centric  approach  at  small  and  tractable  projects  according  to  Lee  and  Jeong  (2012).  

6 .4 Opportun it ies If   an   aspect   of   BIM   is   an   opportunity,   it   means   it   could   be   a   potential   strength.   In   order   to   make   an  opportunity  a  strength  it  needs  to  be  developed.  That  is  exactly  the  case  of  the  following  opportunities  of  BIM.  The  aspects  that  are  mentioned  are  potential  very  valuable  to  the  design  process,  however  it  needs  to  be  developed  and  some  effort  needs  to  be  made  in  order  to  succeed:    Opportunities  for  Tebodin  • Feasibility:   BIM   makes   it   possible   to   provide   early   on   in   the   concept   phase   the   quantities   and  

materials.  Herewith   the  possibility   is   created   to   check   the   feasibility  of   the  project.   Feasibility   is   an  opportunity  to  Tebodin  because  they  are  involved  early  on  in  the  design  process  as  a  consulting  firm.  

• Quality   increase:  by  creating  a  design  model  with  alternatives  using  analysis  or  simulation  tools,  the  overall   quality   of   the   project   will   increase.   Examples   of   these   analyses   or   simulation   tools   are   the  following:  • Cost   analysis   and  monitoring:   it   is  possible  with  the  help  of  BIM  technology  to  extract  a   list  of  

spaces,   objects   and   quantities,   which   can   be   used   for   a   cost   estimation.   As   the   level   of  development  progresses,   the  cost  estimation  will  be  more  accurate.  But  Tebodin  could  use  the  cost  analysis  during  the  design  phase  to  give  more  precise  figures.  

• Scheduling:   it  can  simulate  the  entire  construction  process  and  show  the  project  at  any  point  in  the   construction   project   and   show   at   the   same   time   potential   problems   and   improvement  opportunities.  It  can  also  provide  temporarily  construction  objects  linked  to  schedule  activities.    

• Analyses:  the  possibility  to  link  the  model  to  various  types  of  tool  that  can  analyse  the  project  to  improve   the   quality   of   it.   Tebodin   should   develop   this   opportunity   of   BIM   to   integrate   the  consultancy  aspect  with  the  3D  model  (that  will  be  a  BIM).    

 Opportunities  in  general  • Operations:  the  model  contains  information  for  every  system  used  in  the  construction  project.  An  up-­‐

to-­‐date  building  information  model  can  provide  a  natural  interface  that  supports  monitoring  of  real-­‐time   control   systems.   The   nth   dimension   of   BIM   becomes   relevant   for   Tebodin   when   they   have   a  DBFM(O)  type  of  contract  or  are  involved  in  a  maintenance  or  renovation  project.    

• Procurement:   a   building   information   model   can   provide   an   accurate   view   of   the   quantities   of  materials   that   are   contained   in   the   design.   This   information   can   be   used   to   procure   the  materials  needed  for  the  project.  This  aspect  of  BIM  is  only  useful  for  Tebodin  when  they  are  involved  during  the  procurement.  

6 .5 Threats The   following   aspects   that   the   implementation   of   BIM   entails   are   the   threats.   Although   some   of   these  aspects   are   closely   related   to   the   group  weaknesses,   the   threats   have   to   be   countered   and  minimized,  before  it  can  change  into  a  weakness  of  opportunity.  Some  of  the  threats  may  call  for  large  resistance:      

Page 62: Transformation from 3D modelling to building information modelling

50 Building information modelling  

 

Threats  to  Tebodin  • Interoperability:  although  interoperability  can  be  seen  as  a  benefit/strength  of  BIM,  it  can  also  be  a  

threat.   At   the   current   stage   of   development   the   interoperability   between   the   different   software  programs  is  not  fully  developed.  This  causes  a  gap  between  the  collaboration  of  some  disciplines  or  actors  in  the  process  who  are  using  different  software  packages  that  do  not  connect  well.  This  is  also  experienced   during   the  Mountain   project:   within   Tebodin   some   design   disciplines   did   not   use   the  design  software,  and  partners   in   the  project  also  experienced  some  difficulties  with   the  exchanging  format.    

 Threats  in  general  • Data  centric  database  is  not  sufficient:  the  shared  database  quickly  becomes  too  large  and  unwieldy  

to   support   the   dynamic   process   of   designing   buildings   in   multidisciplinary   collaborative   design.  Multiple   attempts   have   been   made   to   overcome   this,   an   example   of   this   attempt   is:   IFC   base  information  exchanges,   Information  Delivery  Manual   (IDM)  and  Model  View  Definition  (MVD).  “This  may  increase  the  complexity  of  the  IFC  deployment  by  adding  additional  sets  of  specifications”  (Lee  &  Jeong,  2012).  

• Applicability:    BIM   is   less   suitable   to   smaller  projects,  because  of   the   time  and   costs   ratio.  Besides  BIM  is  not  particular  relevant  for  engineering  companies  who  only  design  a  construction  object  and  who  are  not  involved  later  on  in  the  project.  In  this  case  the  company  invest  much  time  and  effort  in  developing  a  model,  without  having  the  benefits  of  it  and/or  without  passing  on  the  extra  costs  that  are   made.   To   be   sure   a   project   is   profitable   a   cost   benefit   analysis   can   be   executed   or   the   costs  (hours)  should  be  monitored  very  precisely  during  the  project  (this  is  related  to  costs  –  workload).    

• Costs:  multiple  issues  are  related  to  costs:  • BIM   requires   a   large   investment.   First   of   all   appropriate   software  must   be   purchased,   next   to  

that  the  staff  needs  to  be  educated,  and  the  working  environment  needs  to  be  adapted  to  BIM  which  means  computers  and  attachments  should  be  changed  (related  to  equipment).    

• The   centre   of   gravity   of   the   workload   lies   at   the   execution   phase   but   the   use   of   BIM   this  workload  will   shift   towards  the  design  phase.  This  means  the  construction  process  needs  to  be  adapted   to   these   changes,   otherwise   it   is   not   achievable   at   the   desired   amount   of   time   and  quality.  The  shift   in  workload  can  be  a  huge  threat   if   the  project   is  cancelled,   then  great   losses  will  occur.  

• Roles  and  responsibilities  is  a  threat  that  has  some  similarities  with  other  threats.  However  some  roles  become  obsolete  and  new  roles  will  emerge  (Gu  &  London,  2010)  as  is  the  case  at  Tebodin.  During   the  Mountain   project   an   external   expert  was   hired   to   assist   in   the   design   phase,  while  Tebodin   Deventer   already   has   some   knowledge   to   3D   modelling/BIM.   If   Tebodin   The   Hague  designs  a  project  this  knowledge  is  lacking.    

• Liability:  multiple  threats  concerning  liability  are  involved  with  implementing  BIM:    • Multiple  questions  exist  at  the  subject  who  is  responsible  for  the  model.  Often  it  is  not  clear  who  

the  owner  of  the  model   is,  who  is  responsible  controlling  any  changes,  who  pays  for  the  model  and  which  information  can  be  shared  by  the  owner?  Also  pointed  out  by  Gu  and  London  (2010).  They  have   concerns   about  design  protection   (intellectual   property   (IP)   and   copyright   issues).   It  can  be  alleviated  by  greater  awareness  and  legal  measures.  

• Working  with  a  BIM  demands  a  certain  degree  of  transparency.  Because  it  is  one  shared  model,  other  actors  have  a  view  in  possible  valuable  information  of  a  company.  

6 .6 Wrap-up The   strengths,   weaknesses,   opportunities   and   threats   are   summed   up   in   Table   11.   The   benefits   and  disadvantages  that  came  forward  in  chapter  3  are  contained  in  this  overview,  together  with  the  gap  that  arises   in   the   BIM   maturity   model.   Some   of   the   benefits   are   already   strengths.   Other   benefits   are  opportunities   because   they   are   not   yet   useable   and   need   to   be   developed   to   become   a   strength.   The  weaknesses  are  issues  that  came  forward  during  the  Mountain  project  and  Tebodin  is  (partly  because  of  this  research)  aware  of  these   issues  and  therefore  they  are  manageable.  The  threats  of  this  analysis  are  often  issues  that  are  threats   in  general,  Tebodin  and  other  firms  should  counter  these  threats  by  paying  attention  to  these  problems  to  minimalize  the  effects  of  it.      

Page 63: Transformation from 3D modelling to building information modelling

Building information modelling   51    

Tebodin   is  an  engineering  company   that   could  excel   in   the  multidisciplinary  aspect  of  projects,  because  their  company  consists  of  multiple  disciplines  that  can  unite  the  design  process  without  collaboration  with  other  engineering  firms.  Therefore  they  should  take  advantage  of  this  fact  by  creating  a  BIM  environment  that   fits   to  all  disciplines.  The  opportunities  will  be  developed  as   time  progresses;   these  aspects  of  BIM  can   be   managed   by   investing   time   and   effort   to   it.   The   weaknesses   are   issues   that   emerge   from   the  Mountain  project.  By  being  aware  of  these  weaknesses  and  paying  attention  to  it,  the  weaknesses  can  be  transferred   into  opportunities  or   strengths.   The  difference  between   the  weaknesses  and   threats   is   that  developing  a  protocol  or  solution  can  minimize  the  threats,  but  often  Tebodin  will  depend  on  others  by  solving   this   threats.   The  weaknesses   can  be  managed  within   Tebodin   and  even   changed   into   a  benefit.  This  does  not  mean  they  should  not  take  these  threats  into  account.        Table 11: SWOT analysis

 Strengths     S  

 Weaknesses   W  Maintained,  built  upon  or  levered   Remedied,  changed  or  stopped  

• Interoperability  • Consistency  in  2D  drawings  • Visualization  of  a  design  • Early   discovery   of   errors   and  

omissions  • Simultaneous      

  • Involvement  • Communication  

• Naming  objects  • Management/control  • Backup  system  

• Model  sharing  • Product  libraries  • Equipment  

 

 Opportunities   O  

 Threats   T  Prioritized,  captured  built  on  and  optimized   Countered  or  minimized  and  managed  

• Feasibility  • Quality  increase  

• Cost  analysis  and  monitoring  • Scheduling  • Analyses  

• Operations  • Procurement    

  • Data   centric   database   is   not  sufficient  

• Applicability  • Interoperability  • Costs  

• Large  investment  • Workload  • Roles  and  responsibilities  

• Liability  • Responsibility    • Transparency  

 

         

Page 64: Transformation from 3D modelling to building information modelling

52 Building information modelling  

 

   

Page 65: Transformation from 3D modelling to building information modelling

Building information modelling   53    

Chapter 7

Answering the research questions, conclusion & recommendations

In  the  previous  chapters  the  literature,  case  study,  and  the  synthesis  took  place  and  the  SWOT  analysis  for  Tebodin  has  been  done.  The  results  of  these  chapters  are  discussed  according  to  the  predefined   research   questions.   These   research   questions   contribute   to   answering   the   main  research  question.  This  main  question  will   be  answered   in   the   second  part  of   this   chapter,  by  which   the   objective   of   this   research   is   achieved.   After   the   conclusion   of   the   research   the  recommendations  will   be   discussed.   The   recommendations  will   be   to   the   address   of   Tebodin  and  in  general  concerning  the  best  practice  to  use  this  research  and  the  implementation  of  BIM  in  the  future.  Besides  that  there  will  be  also  recommendations  for  further  research  topics  that  can  elaborate  the  results  this  research  presents  or  go  further  beyond  the  scope  of  this  research.  Within   this   part   there  will   be   also   a   reflection  on   improvements   that   the   research  offers.   The  conclusions  and  recommendations  of  this  chapter  will  be  validated  by  experts.    

7 . 1 Research quest ions This  part  of   the  chapter   the  results  are  described,  by  answering   the  research  question.  The   information  that  is  gathered  during  the  literature  study,  case  study,  synthesis  and  SWOT  analysis  will  help  to  answer  the  research  questions.  These  research  questions  will  help  to  answer  the  main  research  question   in   the  next  part  of  the  chapter.    

7 . 1 . 1 What does a trad it ional des ign process of an eng ineer ing f i rm look l ike? Traditional   design   can   be   characterized   as   a   sequential   or   over   the   wall   design   process.   In   a   single  discipline   (often   small   projects)   the   design   process   remains   slightly   compact,   where   a  multidisciplinary  project  becomes  a  chain  of  activities   that  are  preformed  sequentially.  Within  Tebodin   the  over   the  wall  approach  is  not  so  much  applicable  to  their  internal  design  process,  but  to  their  collaboration  with  project  partners.    General  design  process  The  design  process  illustrated  by  Hanssen  (2000)  as  is  shown  in  Figure  7  consists  of  several  steps.  The  first  step  in  this  process  is  the  project  demands,  these  are  clarified  and  defined,  the  functions  are  determined  and  then  the  solution  principles  are  developed.  If  the  other  disciplines  or  the  client  approves  this  solution,  this   design   solution   is   further   developed   into   a   detail   design   and   (often  by  other   project   partners)   into  specifications   for   construction.   The   design   process   is   an   iterative   process   done   by   each   discipline.   This  process  that  Hanssen  (2000)  describes  can  also  be  summarized  as  concept  design,  preliminary  design,  final  design,   specifications   and   detail   design.   In   each   phase   the   process   of   analysis,   synthesis,   simulation,  evaluation   and   decision   is   repeated.   Besides   a   separation   of   phases   the  moment   of   involvement   from  disciplines   as   well   as   project   partners   is   separated.   Each   phase   of   the   construction   process   is   clearly  defined:   the   client   involves   the   architect   or   engineer   through   procurement;   the   architect/engineer   or  

Page 66: Transformation from 3D modelling to building information modelling

54 Building information modelling  

 

client   involves   the  supplier  or  contractor   through  procurement  when  the  detail  design  phase   is   finished  for  example.  The  lines  between  the  different  groups  are  clearly  outlined.      Tebodins’  design  process  The  design  process  of  Tebodin  is  established  in  two  different  schemes:  the  commercial  building  activities  and  plant  engineering  process.  Both  activity   schemes  are  divided   into  several  phases   that  are  similar   to  the  design  process  of  Hanssen   (2000)   .   The  design  process  of   the   commercial  building   is  divided   to   the  definition   phase,   the   preliminary   design,   final   design,   and   technical   specification   phase   and   after   the  tender  phase   the  construction  phase   is   included.   The  plant  engineering  design  process   is  practically   the  same;  it  uses  different  terms  and  leaves  out  the  tender  phase.  The  aspect  in  which  both  schemes  differ  is  the   leading   discipline:   architectural   within   the   commercial   building   activity   and   process   in   the   plant  engineering  activity.  

7 . 1 .2 What does the BIM des ign process look l ike of an eng ineer ing company? BIM  is  a  broad  and  complex  concept.  The  meaning  of  what  BIM  could   include  can  differ  which  makes   is  difficult   to   describe.   The   design   process   of   BIM   can   differ   from   time   to   time   and   can   include   many  different  design   tools.  Different  actors   can  use  BIM  and  every  actor   can  use   it   for   its  own  purpose  and  have  therefore  its  own  definition  of  BIM.  But  basically  the  design  process  of  BIM  is  in  essence  every  time  the  same  process,  there  is  one  integrated  model  and  all  actors  (no  matter  how  many)  are  all  making  use  of  the  same  model  (central  of  distributed).      Current  BIM  design  process  There  can  be  discussions  whether  the  Mountain  project  was  a  BIM  project,  but  let’s  assume  it  was  in  its  early  stage  of  BIM  (based  on  the  synthesis  earlier  described  in  this  chapter).  The  project  manager  insisted  every  discipline  of  Tebodin  was  involved  from  the  start.  This  is  corresponding  to  the  model  that  is  made  by  H.  M.  Chen  and  Hou  (2014)  illustrated  in  Figure  26.  Within  the  Mountain  project  initially  the  architectural  department  was   leading   in  the  design  phase.  This   is  partly  due  to  the  fact  that  RFC  was  heading  for  the  known  process  installation  of  Tetra  Pak.  Compared  to  a  traditional  design  model,  BIM  makes  it  possible  to  model  multidisciplinary  in  a  parallel  way  (van  Berlo  et  al.,  2012).  Initially  disciplines  that  are  not  leading  in  the  process  could  not  begin  designing  because  they  would  not  have  sufficient  information,  however  with  BIM   the  model   is  much  more  up-­‐to-­‐date  which  makes   it   possible   to  design   in   a   concurrent  way.   In   the  Mountain  project  there  is  still  a  deviation  visible  between  different  design  phases  within  Tebodin  and  the  involvement   of   contractors   and   suppliers   in   the   design   phase.   But   the   design   team  within   Tebodin   did  make  use  of  the  up-­‐to-­‐date  information  by  almost  parallel  modelling  of  different  disciplines.    

 Figure 26: the common interdisciplinary modelling approach (H. M. Chen & Hou, 2014)

Future  BIM  design  process  The  Mountain   project   of   Tebodin   is   as   stated   in   its   early   stage   of   BIM,   but  what   could   the   BIM  design  process  of  an  engineering  look  like  in  the  future?  Because  it  is  possible  to  design  simultaneously  with  BIM  (aspect  of  concurrent  engineering),  all  disciplines  are  designing  at  the  same  time   in  the  same  model.  All  these  models  are  part  of  the  central  file.  There  are  two  choices  of  central  data  repository:  homogeneous  software   environment   and   plural   software   environment.   The   homogeneous   software   environment   is  suitable  for  mono  disciplinary  projects  or  a  project  within  a  single  company;  they  can  make  use  of  a  single  software  package   for  example  Autodesk  Revit   combined  with  Navisworks.  Projects   that  are   suited   for  a  

Page 67: Transformation from 3D modelling to building information modelling

Building information modelling   55    

plural  software  environment  are  multidisciplinary  projects.  This  design  process  will  be  shaped  by  multiple  software  design   tools,  which  combine   these   tools  within  Navisworks   (if  possible)  or   IFC  model   checkers  (such   as   Solibri).   In   this   way   it   is   possible   for   actors   to   work   in   their   family   file   or   reference   model,  discipline  model  or  aspect  model  as  Lundsgaard  et  al.  (2008)  calls  it.  The  BIM  makes  it  possible  to  work  in  an  up-­‐to-­‐date  model,  however  engineers  “prefer  a  synchronization  that  is  not  done  in  real-­‐time,  but  once  a  day,  or  even  once  a  week”  (Arcadis,  2011).  This  combined  is  to  keep  it  manageable  to  work  in  a  model  that  is  not  changed  every  second  and  is  not  too  heavy  to  work  with.  An  illustration  is  shown  in  Figure  27.  There   are   two   different   types   of   teams:   “interdisciplinary   team   consists   of   teams   from   different  disciplines”   (lead   engineers)   and   “intradisciplinary   teams   consists   of   several   members   of   the   same  discipline  ((lead)  engineers)”  (H.  M.  Chen  &  Hou,  2014).    

 Figure 27: collaboration model (adjusted to the original model of H. M. Chen and Hou (2014)

Analysing  the  BIM  design  process  it  is  noticeable  that  functionality  is  important.  In  the  concept  phase  all  (important)   disciplines   will   give   their   input   in   general.   With   this   general   thought   the   discipline   that   is  leading  on  the  functional  aspect  of  the  project  will  create  a  first  draft.  When  the  outlines  are  visible,  the  other   disciplines   can   jump   into   the   design.   To   create   an   integrated   design   it   is   important   to   involve   all  disciplines  but  also  the  (important)  suppliers  and/or  contractors.  This  should  be  done  gradually  during  the  design   phase   as   is   illustrated   in   Figure   28.   Therefore   there  will   be   less  matter   of   different   phases.   The  different  design  phases  will  be  more  and  more  interrelated  with  each  other.    

 Figure 28: time-based involvement

Page 68: Transformation from 3D modelling to building information modelling

56 Building information modelling  

 

Figure 29: concurrent time-based model  

7 . 1 .3 How does bu i ld ing informat ion model l ing inf luence the trad it ional des ign process these days and in the future?

The  influence  of  BIM  on  the  traditional  process   is   initially  not  directly  shown.  The  reason  for  this  can  be  deducted  from  the  fact  that  the  traditional  design  process  is  merged  with  the  new  BIM  process  and  this  process  takes  place  gradually.      Dimension  (2D-­‐3D)  The  main  change  that  takes  place   is  the  movement  from  2D  into  3D  modelling  and  not  necessarily  BIM.  But   the  old  habits  are  not   replaced  directly  and   for   that   reason,   the   influence  of  BIM  at   this  moment   is  restricted  to  (mainly)  new  software.  3D  modelling   is  covering  a  wide  range  of   functions  that  are   initially  used;   however   this   makes   it   not   BIM.   Therefore   the   main   changes   that   take   place   in   an   engineering  company   are   related   to   software.   This   may   include   a   training   course,   new   software   packages,   new   or  additional   employees   with   specific   knowledge,   and   a   specific   demand   (of   software   skills)   in   respect   of  suppliers  and  contractors.  Besides  that  multiple  meetings  are  arranged  to  evaluate  the  model  with  all  lead  engineers  during  3D  sessions.  These  meetings  identify  where  the  clashes  in  the  design  are  located,  instead  of   multiple   sessions   where   multiple   2D   layers   need   to   determine   whether   different   disciplines   clash.  Within   the   Mountain   project   the   client   Friesland   Campina   is   directly   involved   in   the   design   process.  Campina   indicates   that   there   is   no   difference   compared   to   traditional   projects,   however   from   the  viewpoint  of  Tebodin  the  involvement  of  the  client  is  definitely  a  change  compared  to  other  projects.      Collaboration  The  Mountain   project   is   in   its   early   stage   of   BIM   implementation,   and   therefore   this   project   has   some  early   influence   of   BIM   compared   to   the   traditional   design   process.   But   this   influence   will   and   has   to  change   in   the   future.   BIM  will   influence   the   collaboration  within   the   project.  Where   the   over   the  wall  approach  was  common  in  the  past,  BIM  will  change  this  method  into  a  concurrent  way  as  follows:    • In   the   initiation   or   concept   phase   all   disciplines   will   stick  

together   to   give   an   outline  what   is   important   to   the   concept.  The   leading  discipline  will  make  a  concept  design,  where  other  disciplines   can   hook   up   to   as   is   illustrated   in   Figure   28.   The  different  disciplines  will  start  based  on  preliminary  information,  which   is   possible   because   of   the   availability   of   an   up-­‐to-­‐date  model,  as  is  illustrated  in  Figure  29.    

• Besides  the  internal  collaboration  the  collaboration  with  project  partners  will  change.  There  should  be  made  use  of  the  specific  knowledge   certain   partners   have   (confirmed   by   the   project  manager   of   GEA),   this   should   be   done   earlier   in   the   design  process   as   shown   in   Figure  28.   The  new   form  of   collaboration  will   be   encouraged   by   a   type   of   contract   that   allows   early   collaboration   and   involvement   of  contractors  and/or  suppliers.    

 Other  influences  • The   employees   of   an   engineering   company   will   change.   For   example   there   are   currently   lead  

engineers,  engineers  and  draftsmen.  Because  of  BIM  the  required  skills  of  engineers  will  increase  and  eventually  also  that  of  the  lead  engineers.  An  employee  with  multiple  skills  becomes  very  useful.  CAD-­‐operators  might  become  redundant,  because  this  function  becomes  obsolete  by  the  required  skills  of  (lead)   engineers.   The   same   goes   for   project   managers;   this   manager   becomes   more   of   a   project  information  manager  as  mediator  between  the  contractors,  suppliers  and  advisors  (Adriaanse,  2014).  

• The  dependency  of  technology  will  be  even  larger  than  it  currently  is.  The  building  information  model  is  the  only  way  to  access  the  design  and  when  there  is  a  hard-­‐  or  software  failure,  designing  becomes  impossible.  An  alternative  or  a  backup  is  therefore  necessary.    

• The   communication   that   currently   takes   place   primarily   via   telephone   and   face   to   face   will   shift  towards  communication  through  this  model.  By  having  hard-­‐  and  software  that  is  able  to  process  the  model  within  a  fraction  of  a  second,  changes  will  be  transferred  and  processed  through  a  notification  option  of  BIM.    

• BIM  offers  a  seamless  form  of  collaboration  between  different  partners  in  the  project;  therefore  it  is  important  that  the  engineering  company  will  focus  on  what  kind  of  software  is  common  in  their  type  

Page 69: Transformation from 3D modelling to building information modelling

Building information modelling   57    

of   industry.   It   is   sensible   to   not   ignore   this   software   in   order   to   encourage   cooperation   (this   is  endorsed  by  GEA).  For  example  if  a  project  is  limited  to  architectural,  structural  and  building  service  departments   Revit   combined   with   Navisworks   could   be   a   good   option   (a   homogeneous   software  environment).   If   a   project   is   dominated   by   non-­‐civil   and   architectural   disciplines,   it   is   likely   that  different   software   packages   are   used   (a   plural   software   environment).   To   support   these   different  tools,  it  is  important  that  data  exchange  is  based  on  IFC  or  at  least  viewer  software  is  able  to  combine  the  output  of  these  software  packages.    

7 . 1 .4 What are the main chal lenges to f ight wh i le implement ing BIM in the pro ject context of an eng ineer ing organ izat ion?

The   possibilities   BIM   offers   will   be   challenging   to   implement   (these   are   elaborated   previously   in   this  chapter).  But  it  is  at  least  as  important  to  focus  on  the  indirect  consequences  BIM  entails.      Interoperable  As  mentioned  before  BIM  makes  the  seamless  collaboration  between  partners  in  the  project  possible.  To  achieve   this,   there  must  be  established   inter   alia  how   the  data-­‐,   information-­‐   and  knowledge  exchange  takes  place  and  what  the  delivered  products  are.   If   the  contractor  receives  a  BIM  model  and  works   in  a  modelling  program  that  allows  no  mutually  exchange,  lots  of  effort  is  wasted.  BIM  enables  a  smooth  data  transfer  but  this  should  be  guided  and  defined.  A  challenge  that  this  entails  is  the  earlier  involvement  of  contractors  and  suppliers  in  the  process.  Two  different  ways  describe  the  possibility  to  tackle  issues  earlier  in  the  process  or  to  prevent  them  of  taking  place:  create  a  protocol  to  describe  the  design  process  of  the  project   (involvement,   agreements   and   interoperability   related   aspects);   and   create   a   collaborative  environment  (the  type  of  contract  should  change  or  a  partnership  lies  on  the  basis  of  a  project).      Transparency  Another  challenge  BIM  entails  is  about  the  transparency  of  information  that  will  be  exchanged.  Parties  are  reluctant   to   share   sensitive   information   to   partners   in   the   process.   An   option   to   prevent   that   sensitive  information  ends  up  out  on  the  streets  is  to  sign  a  confidentiality  agreement.  Another  option  could  be  to  block   certain   information   in   the   building   information   model   by   asking   permissions   to   the   responsible  party.      Liability    The  transparency  is  related  to  the  liability  issue  BIM  entails.  Liability  is  already  an  issue  these  days  with  the  traditional  design  method,  for  example  the  question  “who  is  liable  for  which  part  of  the  design?”  But  BIM  entails  a  new  dimension  of  liability.  At  the  beginning  of  each  project  there  should  be  wondered  whether  there   is   one   manager/actor   of   the   model   or   is   the   model   passed   on   from   stage   to   stage   to   different  actors?   The   second   option   will   not   be   realistic,   because   the   model   will   have   several   owners   and   the  information   will   not   be   reliable   anymore.   In   practice   the   main   contractor   will   deliver   the   BIM  manager/coordinator   because   they   are   (often)   involved   from   the   design   phase   up   to   the   construction  phase  (Chao-­‐Duivis,  2009).    Because  BIM  is  a  broad  concept  at  the  start  of  a  project  it  should  be  made  clear  what  is  expected  with  the  use   of   BIM   to   prevent   liability   issues.   The   client   could   do   this   by   creating   a   clear   description  what   the  assignment   includes   in   terms   of   BIM,   for   example   which   level   of   BIM   is   required.   Also   the   leading  construction   firm   should   describe   what   is   expected   from   which   partner   in   the   process.   Then   clarity   is  created  in  advance  and  each  party  involved  knows  what  it  means  to  participate  in  the  project.      Reliability    As  mentioned  in  liability,  reliability  is  important.  Unreliable  information  will  decrease  the  confidence  using  BIM.   It  should  be  possible  to  extract  the  quantities  of  BIM  and   if   these  quantities  are  calculated  the  old  fashion  way,  this  advantage  of  BIM  is  lost.  To  create  reliable  information  the  data  that  is  included  in  the  model  should  be  useful  and  correct  and  therefore  there  is  a  role  for  suppliers.  By  having  an  information  or  knowledge   exchange   between   engineers,   contractors   and   suppliers   the   reliability   of   the   model   will  increase.      

Page 70: Transformation from 3D modelling to building information modelling

58 Building information modelling  

 

7 .2 Conc lus ion The   objective   of   this   research   is   to   develop   recommendations   for   the   implementation   of   building  information   modelling   at   an   engineering   and   consultancy   company   (e.g.   Tebodin).   To   achieve   this  objective  the  current  state  of  design  methods  needs  to  be  analysed.  This  is  done  by  a  literature  study  of  the   traditional   (current)   design   methods   and   a   case   study   of   a   representative   project   (the   Mountain  project)   at   an   engineering   company   (Tebodin)   to   analyse   their   design   process.   Alongside   the   current  situation  of  the  design  process,  also  the  ideal  picture  must  be  researched.  Therefore  BIM  is  analysed  and  the   strengths,  weaknesses,   opportunities   and   threats   are   exposed.   The   points  mentioned   above   are   all  included  in  the  synthesis,  where  the  current  stage  of  Tebodin  is  established  using  an  existing  BIM  maturity  scheme.  From  this  stage  the  aspects  to  be  covered  in  the  future  are  described.  These  steps  will  result  in  answering  the  research  questions  as  is  done  previously  in  this  chapter  (and  in  chapter  3.2)  and  the  main  question:    What  needs  to  be  changed  in  the  work  processes  of  an  engineering  company  to  move  from  3D  modelling  

towards  building  information  modelling  in  the  design  phase?      

There  are  many  aspects  that  BIM  includes  and  therefore  many  aspects  that  can  be  changed  in  the  work  processes  of  an  engineering  company   to  move   from  3D  modelling   towards  BIM   in   the  design  phase.  To  structure  the  answer  the  answer  is  divided  into  the  three  groups  Pramod  Reddy  (2012)  suggests:  people,  process  and  platform.      People  People   are   considered   the   employees   of   an   organization   or   the   members   of   a   project   team.   The  employees  of  the  company  are  the  most  relevant  people  for  this  question.  It  is  important  that  the  line  of  thought   about   implementing   BIM   is   recognized   by   the   management   of   the   company   and   also   by   the  engineers.  If  bottom  up  and  top  down  both  stimulate  the  same  thoughts  about  BIM,  the  implementation  of  BIM  will  be  possible.  Imparting  such  knowledge  should  be  done  through  a  special  working  group  (this  will  be  discussed  in  the  part  “platform”).  Next  to  recognition,  knowledge  is  a  keyword  for  implementation.  Knowledge   can  be  acquired  at  different  ways:   training  and  education  of   the   current  employees,   attract  external  knowledge,  and/or  piggyback  on  existing  knowledge  during  projects.  Training  and  educating  the  current  employees  through  courses  that  connect  to  the  level  they  control  at  that  moment  should  be  about  the  modelling  software  and  BIM  software,  but  besides  that   it  could  also  be  about  collaborating  within  a  multidisciplinary   project.   Attracting   new   and   external   knowledge   can   be   beneficial   by   having   specific  knowledge  from  which  the  other  staff  members  could   learn.  This  new  member  of  the  firm  can  adapt  to  the  philosophy  of  the  firm  and  could  give  advice  what  needs  to  be  changed  to  work  successfully.  By  hiring  temporarily   people   to   facilitate   the   design   team,   the   adoption   to   the   firm   takes   place   time   after   time.  Another   way   to   gain   knowledge   and   experience   is   to   join   several   BIM   projects   and   then   observe   the  current  practices  (piggybacking).      An  engineering  company  does  not  have  direct  influence  on  the  partners  in  the  project,  such  as  the  client,  contractors  and  suppliers.  The  client  should  obligate  the  ability  to  work  in  BIM  for  the  architect,  engineer,  contractor   and   supplier.   The   reward   of   the   different   actors   in   the   project   should   be   changed.   Another  possibility  is  that  an  engineering  company  demand  the  project  partners  to  master  the  necessary  software  knowledge.      

 Figure 30: list of actions for Tebodin (people)

Process  Process   is   the   steps   an   organization   takes   to   complete   task   and   projects.   Where   in   the   past  multidisciplinary   projects  would   be   done   sequentially,   BIM  makes   it   necessary   to   collaborate   integrally  

• Recognition  (bottom  up  and  top  down)  • Gaining  knowledge  

• Training  and  education  current  staff  • Complement  the  current  staff  if  necessary  • Piggyback  on  the  experience  of  project  partners  

• Commitment  at  the  client  and  project  partners    

Page 71: Transformation from 3D modelling to building information modelling

Building information modelling   59    

and  parallel  in  time.  Concurrent  engineering  is  a  concept  that  exists  for  some  time  and  may  prove  highly  conducive  as  form  of  collaboration  of  BIM.  Each  discipline  of  an  engineering  company  is  involved  and  the  most  important  discipline  is  leading  the  project  in  question.  Because  the  building  information  model  is  up-­‐to-­‐date  it  is  possible  to  start  for  all  disciplines  on  preliminary  information,  which  shortens  make  the  design  process   of   the   engineering   company.   Besides   a   change   in   the   process  within   an   engineering   company,  there  will  be  also  a  change  in  the  process  related  to  the  client,  and  contractors  and  suppliers.  The  client  does  not  have  to  have  specific  knowledge  to  verify  the  status  of  the  design.  The  3D  model  and  accurate  information  that  is  connected  to  this  model  (the  BIM)  make  it  possible  for  the  client  to  follow  the  project  (without   having   technical   skills)   and   to   intervene   the   design   process   when   something   does   not   go  according  to  plan  (only  for  crucial  design  decisions,  otherwise  the  client  becomes  the  engineer).      The  process  between  engineering  companies  and  contractors  and/or  suppliers  will  also  change.  This  can  be   done   in   two   ways:   clear   agreements   about   the   supplied   products   or   even   better   integrated  cooperation.  Firstly,  the  clear  agreements  about  the  supplied  product  are  necessary.  In  the  past  drawings  were  handed  over  and  these  2D  drawings  could  be  used  and  read  out  by  the  next  party  in  the  chain.  The  BIM   that   an   engineering   company   deliver   to   the   contractor   or   supplier  must   be   useable   by   the   actor  otherwise   it   completely   ignores   the   principles   of   the  model   and   building   information  model   is   useless.  Therefore  agreements  need  to  be  made  about  the  product  supplied.  Secondly,  integrated  cooperation  is  even   better   for   the   process   of   BIM.   Knowledge   can   be   shared   quite   easily   through   this   model.   If   the  supplier  or  contractor  uses  its  knowledge  for  certain  design  problems  during  the  engineering  phase,  then  a  better  model   is  created  earlier   in  the  process.  Spaces  or  constructions  that   initially  were  unfamiliar  or  left  blank,  are  in  this  case  designed  whereby  the  level  of  the  design  increases.  Therefore  it  is  important  the  design   process   does   not   include   a   clear   separation   of   actors,   but   exists   of   a   collaborative   design  environment  between  engineers,  contractors  and  suppliers.    The  connection  between  people  and  platform   is  also   improved  by  creating  a  process   that   improves   the  completion  of  tasks  and  projects.      

 Figure 31: list of actions for Tebodin (process)

Platform  Platform,  in  most  cases,  is  the  network  infrastructure,  desktops,  and  laptops.  But  to  be  able  to  use  these  tools,  a  working  group  should  explore  the  options  and  develop  a  strategy  to  implement  in  the  company.  This  study  group  should  be  motivated  and  able  to  have  the  knowledge  of  the  modelling  software,  develop  standards   and   have   the   competence   to   negotiate   and   share   knowledge.   This   knowledge   will   be  transferred  to  the  boardrooms;  the  directors  and  advisors  have  to  be  trained  in  the  prerequisites  of  BIM.  After  this  step  the  project  managers  and  other  members  of  the  project  teams  will  be  trained  to  implement  BIM.   The   study   group   will   be   the   research   and   development   department   and   the   helpdesk   of   the  company.          This  study  group  that  is  part  of  a  platform  will  do  research  into  the  platform  the  firm  will  be  working  at:  building   information   modelling.   This   takes   place   with   the   help   of   software   and   platform   is   therefore  meanly   about   software   related   issues.   First   of   all   it   is   important   an   engineering   company   has   the  appropriate   gear:   software   tools,   laptops   and   other   hardware.   The   design   software   should   be   chosen  because   it   suits   to   the   design   discipline   and   therefore   for   each   discipline   must   be   considered   which  software  is  best  suited.  A  computer  or  other  hardware  devices  should  not  limit  software  and  therefore  the  hardware  and  data  centres  should  be  more   than  capable   to   run   the  software  smoothly.  By   focussing  at  one   software   package,   a   company   could   excel   by   mastering   this   software   completely.   However,   most  likely  the  company  will  limit  itself  in  collaboration  by  being  able  to  model  with  a  single  software  package,  especially   in   a   multidisciplinary   engineering   firm.   Besides   modelling   software   also   analysis   software   is  important  to  BIM.  Each  design  discipline  will  have  their  own  analysis  tools  that  can  help  to  improve  their  design  decisions;  these  tools  should  correspond  to  their  demand.        

• BIM  is  integrated  design  (create  an  multidisciplinary,  concurrent  and  interoperable  environment  • Most  important  design  discipline  will  be  leading  in  the  design  process,  other  disciplines  will  hook  up  quickly  • (Earlier)  Involvement  of  clients  and  (relevant)  project  partners  and  clear  agreements  

Page 72: Transformation from 3D modelling to building information modelling

60 Building information modelling  

 

Besides   the   choice   which   software   should   be   chosen   to   invest   in,   each   project   entails   a   choice   which  software   combination   should   be   chosen.   Shall   it   be   a   homogeneous   software   environment   or   a   plural  software   environment?   A   homogeneous   software   environment   aims   to   allow   projects   that   include  disciplines  that  are  related  to  each  other  (for  example  architecture  and  structural:  both  can  work  in  Revit).  A  plural  software  environment  corresponds  to  multidisciplinary  projects  with  multiple  software  programs  from  multiple  software  suppliers.  Geometry  will  be  shared  by  exchanging  SAT  files  and  geometry  including  data  will  be  shared  by  exchanging  IFC  files.      

 Figure 32: list of actions for Tebodin (platform)

7 .3 Recommendat ion The  recommendations  (in  general  and  towards  Tebodin)  and  are  part  of  the  evaluation  of  this  research.  It  consists  of  reflections  on  the  possibilities  that  are  created  with  this  research,  but  also  its  limitations.    

7 .3 . 1 Recommendat ions to the construct ion industry Building   information   modelling   causes   a   change   in   the   market.   The   workload   will   shift   from   the  construction   documents   towards   the   schematic   design   and   design   developments,   often   from   the  contractor  to  the  architect  or  engineer.  The  fact  that  this  movement  takes  place  is  beneficial  for  the  costs  of   design   changes   (that   increase  with   time),   however   the   increase   in  workload   for   engineers  must   also  mean   an   increase   financially.   The   contractor   saves   time   and   effort   if   he   receives   a  well-­‐structured   and  developed  building  information  model  (indicated  by  a.o.  BAM).  This  movement  in  time  and  effort  should  also  mean  a  change  in  financial  reward.  The  contractor  is  willing  to  pay  for  this  extra  effort  (based  on  the  expert  meetings)  in  case  this  model  is  enriched  with  data.  If  the  contractor  does  not  recognize  the  benefits  of  this,  the  extra  reward  could  be  accomplished  by  the  client  by  making  a  redistribution.    The  change  in  the  design  process  also  fits  to  the  performance  specifications.  Herewith  the  contractor  can  determine  the  necessary  activities  and  quantities  of  building  materials  to  achieve  the  desired  result  and  is  not  restricted  to  what  needs  to  be  done,  how  it  should  be  done  and  how  often  it  should  be  done.        The   involvement   of   engineers,   contractors   and/or   suppliers   should   be   stimulated.   BIM   enables   early  collaboration   if   the   project   requests   it.   Engineers,   contractors   and   suppliers   with   specific   knowledge  support   the   progress   of   the   project   by   advising   or   collaborating   in   the   concept   or   preliminary   phase  instead  of   the  detailed  design  or   specification/fabrication  phase.   The   client  or   the  engineering   firm  can  initiate   this.   By   recognizing   the   importance   of   this   the   client   can   insist   on   early   involvement   or   a  Construction  Team  (in  Dutch:  Bouwteam)  structure.      In   the  Mountain  project   it  has  been  noticed   that  partners  do  not  always  collaborate  within   the  project.  This  means  they  are  partners  in  a  project  and  they  do  collaborate,  however  they  do  not  assist  each  other.  In  the  design  phase  everything  must  be  modelled  in  such  a  way  so  that  every  discipline  and  every  partner  fits  in  the  model  that  is  necessary.  There  is  no  need  to  baulk  at  this,  because  they  have  to  work  it  out.  To  create  a  successful  project  it  is  therefore  easier  to  create  a  mentality  to  support  each  other  because  in  the  BIM  must   be   collaborated   one   way   or   another.   Collaboration   provides   a   higher   quality   of   the   design;  questions  that  remain  while  designing  will  be  solved  (earlier)  working  in  an  integrated  collaborative  way.  The  collaboration  can  be  simplified  by  working  with  consistent  data  (that  provides  a  clear  structure)  and  by  having  fixed  or  long-­‐term  partnerships.    

7 .3 .2 Impl i cat ions Tebod in The  recommendations  towards  the  construction  industry  are  also  applicable  to  Tebodin,  but  this  section  will  give  recommendations  specifically  to  Tebodin  (The  Hague).      Previously   in   this   research   the   BIM   maturity   scheme   is   presented,   Figure   33   presents   a   comparable  scheme:  a  time  based  framework.  Tebodin  has  arrived  already  at  stage  1;  this  does  not  mean  they  should  not   invest   in  previous  steps.  Tebodin  has  several   study  groups   that  are  exploring   the  horizon  related   to  BIM  (a  Revit  working  group  and  SMART  engineering  working  group),  but  this  should  be  united  into  a  BIM  

• Create  a  dedicated  study  group  à   communicate  and  educate   the  board  members  à   implement  BIM   into  the  organization    

• Create  an  appropriate  soft-­‐  and  hardware  environment  • Homogeneous  or  plural  software  environment  

Page 73: Transformation from 3D modelling to building information modelling

Building information modelling   61    

study  group.  Someone  from  the  senior  management  should  develop  a  study  group  with  people  who  are  interested   in   the   subject,   have   the   skills   and   competence   to   develop   standards.   The   developer   of   the  study   group   should   translate   the   ideas   to   the   boardrooms   to   educate   the   directors   and   advisors.   They  should  be  able  to  understand  the  current  practices  to  convince  the  clients  to  “invest”  in  a  BIM  project  and  at  the  same  time  understand  what  the  prerequisites  of  BIM  are.  Besides  the  communication  towards  the  client   the   changes   should   also   be   implemented   in   the   organization.   From   the   study   group   the  recommendation   towards   the   boardrooms   should   be   introduced   and   implemented   within   all   the  disciplines.  But  not  just  the  design  disciplines  and  project  managers  should  be  incorporated  but  also  the  ICT  department.  The  ICT  department  should  be  able  to  act  quickly  and  proactively.  For  example  the  Mountain  project  is  designed  by  modelling  in  Revit  combined  with  Navisworks,  but  there  are  more  modelling  tools  that  might  be  better  to  use  for  the  structural  or  process  department.  PDMS  is  such  a  program  that  Tebodin  already  owns  and  by  being  able   to  combine  PDSM  with   for  example  Revit  Tebodin  could  create  a   strong  position   in   the  construction  market.  A  study  group   (for  example   the  BIM  working  group)   should   investigate  which  software   (modelling,  viewers,  analysis   tools  and  other   tools)   is  most   suitable   for  which  design  discipline.  When   this   is  known,   there  should  be  an   investment   in  design  related  software  that  does  not   limit  the  possibilities  (for  example  the  free  version  of  Navisworks).  Make  sure  there  are  enough  opportunities  to  give  education  possibilities  for  those  who  need  it  or  benefit  from  it.      In  the  Mountain  project  Tebodin  had  access  to  a  Revit/BIM  coordinator.  Assuming  in  the  future  more  and  multiple   projects   will   be   done   with   the   help   of   BIM,   there   will   be   demand   for   more   BIM   (project  information)   managers   or   coordinators.   It   should   be   necessary   to   train   a   suitable   (lead)   engineer   or  project   manager,   or   there   should   be   an   external   search   for   a   suitable   BIM  manager.   In   the  Mountain  project  an  external  office  was  hired   to  assist  on   the   field  of  BIM.  This  knowledge   is  highly  valuable  and  perfect  to  have  around  in  the  company.      The   collaboration  within   Tebodin   is   important  but   it   is   important   for   Tebodin   to  question,   could  we  be  distinctive  to  cooperate  with  certain  chain  partners?  First  of  all  to  gain  more  knowledge  of  BIM  it  can  be  useful  to  collaborate  with  more  experienced  BIM  partners  to  observe  the  do’s  and  don’ts  of  BIM.  Besides  that   collaboration   and   early   involvement   of   relevant   partners   in   the   project   can   create   a   better   design  earlier   in  the  process.  Also  Tebodin  should  be  aware  of  the  fact  that  the  client  can  track  the  progress  of  the  design  much  more.  To  involve  the  client  within  design  decisions  can  create  a  higher  satisfaction,  but  Tebodin  must   be   able   to  manage   the   involvement   of   the   client   in   a   sensible  way,   otherwise   the   client  becomes  the  engineer  and  every  design  decision  will  be  discussed.      The   form   of   collaboration   related   to   BIM  will   be   captured   in   a   BIM   protocol.   The   BIM   protocol   that   is  written   on   the   start   of   the  Mountain   project   should   be  modified   for   each   project   that   starts.   But   the  protocol  as  is  it  is  now,  is  too  vague  and  too  large.  It  should  be  clear  and  concise.  The  current  protocol  for  the  Mountain   project   is   a   bookwork   that  mentions  many   things  without   getting   to   the   point.   It   should  formulate  the  goal  of   the  project,   the  encodings  and  task  description.  Besides  that   it  should  be  concise,  straight  to  the  point  and  in  Dutch  to  prevent  confusion.  Every  project  partner  should  sign  this  protocol  and  should  stick  to  it,  otherwise  they  should  be  corrected  and  even  measures  must  follow.    In  this  thesis  the  aspect  liability  is  mentioned  several  times.  It  is  important  the  firms  are  familiar  with  the  risks  a  BIM  involves.  By  having  a  single  actor  in  the  process  that  will  function  as  BIM  manager  during  the  entire  project,   it   is  clear  to  all  actors  who  is   in  charge  of  the  model.  Often  the  contractor  (such  as  BAM)  takes  the  responsibility  to  own  the  BIM  during  the  design  and  construction  phase.  If  this  is  not  the  case  a  form  of  shared  responsibility  can  be  a  solution.  In  this  way  every  partner  is  responsible  for  a  certain  part  of  the  project   (in  case  something  goes  wrong  afterwards  all   the  project  partners  are   liable  for  a  specific  percentage  of  the  total  amount).  The  type  of  contract  that  shall  be  entered  to,  should  serve  to  achieve  the  common  goal,  where  collaboration  is  paramount.      During   the  Mountain   project   Revit   (combined  with  Navisworks)   is   used   and   this   project   already   covers  some   problems   modelling   with   Revit.   These   limitations   of   Revit   (as   discussed   in   chapter   4)   can   be  minimalized  in  several  ways:  the  model  can  be  cut  in  work  sets  (to  keep  the  model  manageable),  certain  templates  can  be  switched  off   temporarily,   the  model   can  be   fragmented,  and/or  have  a   separate  data  server   that   stores   all   the   data   that   is   linked   to   the  model.   Sharing   data   and   geometry   can   be   done   in  

Page 74: Transformation from 3D modelling to building information modelling

62 Building information modelling  

 

several  ways;  a  common  way  is  IFC.  An  issue  related  to  IFC  is  the  unreliability  in  the  transfer  of  data.  This  should  be  accepted  and  the  missing  data  should  be  known  to  deal  with  it.  To  get  the  most  reliable  data,  the   data   exchange   (including   IFC)   should   be   originated   from   one   central   file   and   ensure   there   is   no  difference  concerning  the  settings,  policies/apps  or  software  updates,  because  this  can  create  a  difference  in  data  transmission  (according  to  the  expert  of  BAM).  IFC  can  be  used  to  work  in  a  native  environment  or  can  be  used  as  an  underlay.  The  data  that  is  included  in  the  BIM  gets  value  when  basic  values  are  known,  therefore   the   list   of   requirements   should   be   compared   to   the   outcome   of   design   decision   to   give   any  meaning  to  the  data  that  is  included  in  the  BIM.      The   two   activity-­‐relation-­‐schedules   of   Tebodin   show   that   Tebodin   likes   to   work   according   to   a   certain  structure.   BIM   makes   it   hard   but   not   impossible   to   create   a   new   schedule.   BIM   makes   concurrent  engineering   possible   and   therefore   the   activities   will   take   place   (almost)   simultaneously.   Besides   the  activities  that  take  place  within  Tebodin,  activities  that  take  place  with  project  partners  should  be  placed  into  this  schedule  that  is  presented  in  7.1.2.  BIM  enables  to  work  at  various  locations  and  communicate  at  the  same  time  through  various  telecommunication  tools.  Despite  these  available  tools,  many  participants  of   this   research   think   it   is   necessary   to   sit   around   the   table   and   collaborate   to   develop   a   conceptual  design.   Early   on   in   the   process   it   is   important   that   the   design   team   digs   into   detail   to   check   the  constructability  and  then  switch  back  to  the  current  level  of  detail.    

 Figure 33: time-based BIM maturity stages

7 .3 .3 Recommendat ions for further research This   research   focussed   on   the   implementation   of   BIM   in   the   design   phase   of   an   engineering   firm.   The  objective  of  this  research  is  to  develop  recommendations  for  the  implementation  of  building  information  modelling  at   an  engineering  and   consultancy   company   (in   this   case  Tebodin).  Because  Tebodin  has   just  started  with  implementing  3D  modelling  and  therefore  is  located  at  the  beginning  of  BIM,  there  are  some  limitations  to  this  research.      The   case   study   that   has   been   done   showed   that   Tebodin   is   currently   working   and   investing   in   Revit  Autodesk.  The  main   focus  of   this   research  was  placed  on  Revit.  An  alternative   for  creating  an  Autodesk  modelling   environment   (a   homogeneous   software   environment)   is   to   create   a   plural   software  environment.  This  includes  other  software  modelling  tools  and  therewith  also  IFC.  IFC  has  been  discussed  in  this  research  but  is  not  of  key  importance  in  this  research.  Further  research  could  go  in  depth  whether  IFC   can  meet   the   expectations   and  where   and  what   the   limitations   of   IFC   are.   In   that   research   various  software   programs   should   be   used   such   as   modelling   software,   software   for   sustainability   analyses,  software  used  by  plant  consultants,  contractors  or  facility  management.        This   research   made   use   of   a   single   case   study   that   is   validated;   nevertheless   it   leaves   space   to   verify  whether  multiple  case  studies  deliver  the  same  result.  Different  kind  of  case  studies  could  give  the  result  of  this  research  more  support  or  could  tackle  the  outcome  of  the  case  study.    

Page 75: Transformation from 3D modelling to building information modelling

Building information modelling   63    

The   research   is   currently   based  on   the  design  process  of   a   company   at   the   start   of   implementing  BIM.  Further   research   could   be   done   at   a   different   phase   of   BIM,   for   example   the   use   of   BIM   during   the  construction   phase   of   operations   and  maintenance   phase.   Another   possibility   is   to   do   further   research  within   a   company   that   is   at   another   BIM   stage   or   with   a   different   construction   type   of   company   to  investigate  the  applicability  of  BIM  in  a  different  sector.      An  important  aspect  that  comes  forward  in  this  research  is  liability.  It  will  be  an  important  and  new  theme  with  the  rise  of  BIM.  New  law  and  regulation  might  be  applicable  to  process  that  BIM  involves.  Therefore  research  to  changing  regulatory  requirements  will  be  very  useful  the  industry.    The   use   of   parametric   design   in   building   information  modelling   could   improve   the   design   process.   The  geometrical   relations   between   objects   are   explicitly   defined   and   with   the   help   of   parametric   design  applying  changes  will  be  easier  and  it  cost  less  time  and  money.  An  example  of  parametric  design  software  is  Dynamo.  According  to  AUGI:  Autodesk  User  Group  International  (2014)  it  is  “the  newest,  most  amazing  add-­‐in  to  hit  Revit”.  This  program  could  be  combined  with  Revit  and  can  improve  the  design  by  generating  multiple   alternatives   that   can   be   changed   in   seconds.   This   subject   is   not   only   interesting   for   further  research  but  a  recommendation  towards  Tebodin  to  invest  time  and  effort  to  this  modelling  tool.    These   recommendations   for   further   research  correspond   to   issues   that  will   arise   in   the   future.  BIM  will  influence  the  current  way  of  the  design  process  in  multiple  ways  as  described  above,  other  issues  are:    • The  client  will  demand  a  building  information  model;  • Parametric  design  will  be  particular  relevant  using  a  BIM;  • A   list   of   requirements   will   generate   a   design   based   on   the   given   requirements   (combined   with  

parametric  design);  • Suppliers  provide  contractors  and  engineers  a  complete  database  of  building  elements;  • The  emphasis  will  be  even  more  on  prefabricated  construction.  3D  printing  will  be  a  part  of  this;  • There  will  be  procured  through  a  building  information  model.            

Page 76: Transformation from 3D modelling to building information modelling

64 Building information modelling  

 

   

Page 77: Transformation from 3D modelling to building information modelling

Building information modelling   65    

Literature

 Adamu,  Z.  (2014).  Understanding  BIM:  The  BIM-­‐Hub  perspective.  from  bim-­‐hub.lboro.ac.uk  Adriaanse,  A.  (2014).  BIM  vergt  speciale  projectmanager.  Cobouw.  Andreasen,  M.M.,  &  Hein,  L.  (1987).  Integrated  Product  Development.  Berlin:  Springer  Verlag.  Anumba,   C.J.,   Baugh,   C.,   &   Khalfan,   M.M.A.   (2002).   Organisatinal   structures   to   support   concurrent  

engineering  in  construction.  Industrial  Management  &  Data  Systems,  102(5),  260-­‐270.    Aouad,   G.,   Wu,   S.,   Lee,   A.,   &   Onyenobi,   T.   (2012).   Computer   Aided   Design:   Guide   for   Architecture,  

Engineering  and  Construction.  New  York:  SPON  Press.  Arcadis.  (2011).  Pilot  open  source  BIMserver  final  results.  Paper  presented  at  the  BIM  working  group.    Ashcraft,   H.W.   (2008).   Building   Information   Modeling:   A   framework   for   collaboration.   Construction  

Lawyer,  28(3).    AUGI:   Autodesk   User   Group   International.   (2014).   A   Rubust   and   Versatile   Dynamo.   from  

http://www.augi.com  Autodesk.  (2007a).  White  Paper:  BIM  and  Cost  Estimating.  Autodesk.  (2007b).  White  Paper:  BIM  and  Project  Planning.  Autodesk.  (2014).  BIM  Curriculum.  from  http://bimcurriculum.autodesk.com  Barlish,   K.,   &   Sullivan,   K.   (2012).   How   to   measure   the   benefits   of   BIM   —   A   case   study   approach.  

Automation  in  Construction,  24(149-­‐159).    BIM  wiki.  (2014).  IFC.  from  WordPress  British   Institute   of   Facilities   Management.   (2012).   BIM   and   FM:   Bridging   the   gap   for   success.  

Hertfordshire:  British  Institute  of  Facilities  Management.  buildingSMART.  (2014).  Industry  Foundation  Classes  (IFC)  data  model.        Carter,  D.E.,  &  Baker,  B.   (1992).  Concurrent   Engineering:   The  Product  Development   Environment   for   the  

1990's:  Addison-­‐Wesley  Publishing  Company.  Chan,   A.,   &   Farrell,   M.   (2014).   Advanced   Tips   for   Better   Translation:   Autodesk   Revit   2010   to   IES:   IES  

Worldwide  Support  Series.  Chao-­‐Duivis,   M.A.B.   (2009).   Juridische   implicatie   van   het   werken   met   BIM.   Tijdschrift   voor   Bouwrecht,  

3(44).    Chao-­‐Duivis,  M.A.B.   (2013).   Toekomstvisie   op   de   contractvorming  met   BIM.   Paper   presented   at   the   De  

juridische  kant  van  BIM,  Utrecht.  Chen,  H.M.,  &  Hou,  C.C.  (2014).  Asynchronous  online  collaboration  in  BIM  generation  using  hybrid  client-­‐

server  and  P2P  network.  Automation  in  Construction,  45,  72-­‐85.    Chen,  P.H.,  Cui,  L.,  Wan,  C.,  Yang,  Q.,  Ting,  S.K.,  &  Tiong,  R.L.K.  (2005).  Implementation  of  IFC-­‐based  web  

server  for  collaborative  building  design  between  architects  and  structural  engineers.  Automation  in  Construction,  14,  115-­‐128.    

Chevalier,  R.  (2010).  GAP  Analysis  Revisited.  Performance  Improvement,  49,  5-­‐7.  Corbett,   J.   (1991).   Design   for   Manufacture:   strategies,   principles   and   techniques:   Addison-­‐Wesley  

Publishing  Company.  Dankers,   B.   (2013).   Kansen   van   bouwen   met   woningconcepten:   keuzemogelijkheden   voor  

woonconsumenten  door  een  efficiënt  ontwerproces  in  de  case  WeBuildHomes.  Delft:  TU  Delft.  Deutsch,   R.   (2011).   BIM   and   Integrated   Design:   Strategies   for   Architectural   Practice.   New   Jersey:   John  

Wiley  &  Sons,  Inc.  Dym,  C.L.,  &  Little,  P.  (2004).  Engineering  Design:  a  Project-­‐Based  Introduction.  United  States  of  America:  

John  Wiley  and  Sons,  Inc.  Eastman,  C.M.,  Teicholz,  P.,  Sacks,  R.,  &  Liston,  K.  (2008).  BIM  Handbook:  A  Guide  to  Building  Information  

Modeling  for  Owners,  Managers,  Designers,  Engineers,  and  Contractors.  New  York:  John  Wiley  &  Sons,  Inc.  

Eppinger,   S.D.   (1991).   A   Model-­‐Based   Approaches   to   Managing   Concurrent   Engineering.   Journal   of  Engineering  Design,  2(4),  283-­‐290.    

Page 78: Transformation from 3D modelling to building information modelling

66 Building information modelling  

 

Eppinger,  S.D.,  Whitney,  D.E.,  Smith,  R.P.,  &  Gebala,  D.A.   (1994).  A  Model-­‐Based  Method   for  Organizing  Tasks   in   Product   Development   (pp.   1-­‐13).   Research   in   Engineering   Design:   Massachusetts  Institute  of  Technology.  

Epstein,  E.  (2012).  Implementing  Successful  Building  Information  Modeling.  Boston:  Artech  House.  Evbuomwan,  N.F.O.,  &  Anumba,  C.J.  (1998).  An  integrated  framework  for  concurrent  life-­‐cycle  design  and  

construction.  Advances  in  Engineering  Software,  29(7-­‐9),  587-­‐597.    Fernandes,  R.P.L.  (2013).  Advantages  and  Disadvantages  of  BIM  Platforms  on  Construction  Site.  University  

of  Porto  Rua,  Porto.        Fox,   S.,   &   Hietanen,   J.   (2007).   Interorganizational   use   of   building   information   models:   potential   for  

autmational,   informational   and   transformational   effects.   Construction   Management   and  Economics,  25,  289-­‐296.    

Friesland  Campina.  (2014).  Transport  twee  nieuwe  indampers  voor  FrieslandCampina  in  Borculo.    GEA  Group.  (2014).  Welcome  to  GEA.  from  http://www.gea.com  Gort,  S.  (2013).  Omschrijving  concept  ontwerp.  Internal  usage.  Tebodin  Netherland  B.V.  Den  Haag.    Grilo,   A.,  &   Jardim-­‐Goncalves,   R.   (2010).   Value   proposition   on   interoperability   of   BIM  and   collaborative  

working  environments.  Automation  in  Construction,  19,  522-­‐530.    Gu,  N.,  &  London,  K.  (2010).  Understanding  and  facilitating  BIM  adoption  in  the  AEC  industry.  Automation  

in  Construction,  19,  988-­‐999.    Halvorson,  C.  (2010).  BIM  recommendations:  John  Wayne  airport  improvement  program.  United  States  of  

America:  Arcadis  U.S.,  Inc.  Hanssen,  R.  (2000).  Concurrent  engineering  vanuit  beheersingsperspectief.  Eindehoven:  TU  Eindhoven.  Hardin,  B.   (2009).  BIM  and  Construction  Management:  Proven  Tools,  Methods,  and  Workflows.   Indiana:  

Wiley  Publishing,  Inc.  Hertogh,   M.J.C.M.,   &   Bosch-­‐Rekveldt,   M.G.C.   (2013).   Integraal   Ontwerp   en   Beheer:   Faculteit   Civiele  

Techniek  en  Geowetenschappen.  Het   Nationaal   BIM-­‐Platform.   (2013).   Lancering   Dutch   Revit   Standards   door   Revit   GG.   from  

http://www.hetnationaalbimplatform.nl  Hubers,   J.C.   (2007).   COLADIVIR:   COLlaborative   Architectural   Design   In   VIrtual   Reality.   Technische  

Universiteit  Delft,  Publikantieburo  Faculteit  Bouwkunde  TU  Delft.        Impararia.  (2014).  BIM  overview.        Innovaya.  (2014).  Innovaya  Software  Products  -­‐  Overview.  from  http://www.innovaya.com  Jägers,  P.  (2011).  Rijksgebouwendienst  gaat  BIM  voorschrijven  bij  geïntegreerde  contracten.    UNETO-­‐VNI:  

http://www.rijksoverheid.nl.  Jeong,   Y.S.,   Eastman,   C.,   Sacks,   R.,   &   Kaner,   I.   (2007).   Part   B   Data   Interoperability   Benchmark   Test:  

Between  Architect  and  Precast  Fabricator:  Georgia  Tech.  Kagioglou,  M.,  Cooper,  R.,  Aouad,  G.,  Hinks,  J.,  Sexton,  M.,  &  Sheath,  D.  (1998).  Final  report:  generic  design  

and  construction  process  protocol.  Salford:  The  University  of  Salford.  Karlshøj,  J.  (2011).  Information  Delivery  Manuals.  from  http://www.buidingsmart.org  Khalfan,   M.M.A.,   &   Anumba,   C.J.   (2000).   A   comparative   review   of   concurrent   engineering   readiness  

assessment   tools   and  models.   Paper   presented   at   the   Concurrent   Engineering   2000   (CE   2000)  Conference,  Lyon.    

Khosrowshahi,   F.,   &   Arayici,   Y.   (2012).   Roadmap   for   implementation   of   BIM   in   the   UK   construction  industry.  Engineering,  Construction  and  Architectural  Management,  19(6),  610-­‐635.    

Kymmell,  W.  (2008).  Building  Information  Modeling:  Planning  and  Managing  Construction  Projects  with  4D  CAD  and  Simulations.  United  States  of  America:  The  McGraw-­‐Hill  Companies,  Inc.  

Lawson,  B.  (1997).  How  designers  think  (3rd  ed.).  London:  Butterworth  Architecture.  Lee,   J.,   &   Jeong,   Y.   (2012).   User-­‐centric   knowledge   representations   based   on   ontology   for   AEC   design  

collaboration.  Computer-­‐Aided  Design,  44,  735-­‐748.    Lee,  J.,  Smith,  J.,  &  Kang,  J.  (2011).  The  role  of  IFC  for  sustainable  BIM  data  management.  Department  of  

Construction  Science:  Texas  A&M  University,  Texas,  USA.  Leedy,  P.L.,  &  Ormrod,  J.E.  (2001).  Practical  Research:  Planning  and  Design.  New  Jersey:  Prentice-­‐Hall,  Inc.  Lipman,   R.   (2010,   16-­‐18  November).  Developing   coverage   analysis   for   IFC   files.   Paper   presented   at   the  

27th  International  Conference,  Cairo.  Love,  P.E.D.,  &  Gunasekaran,  A.   (1997).  Concurrent  engineering   in   the  construction   industry.  Concurrent  

Engineering:  Research  &  Applications,  5(2),  155-­‐162.    Lundsgaard,  T.,  Alsdorf,  R.M.,  Johannessen,  R.C.,  Søefeldt,  M.B.,  Nielsen,  H.V.,  &  Rønnow,  G.  (2008).  BIPS  

C102  CAD  manual.  Ballerup,  Danmark.  

Page 79: Transformation from 3D modelling to building information modelling

Building information modelling   67    

McCord,  K.R.,  &  Eppinger,  S.D.  (1993).  Managing  the  integration  problem  in  Concurrent  Engineering.  MIT  Sloan  School  working  Paper  Number  3594.  

MdR  Advies.  (2013).  Wat  krijgt  u  bij  de  Dutch  Revit  Standards.  from  http://www.mdr-­‐advies.nl  National   Institute   of   Building   Sciences.   (2014).   About   the   National   BIM   Standard-­‐United   States.   from  

http://www.nationalbimstandard.org  Nevins,  J.L.,  &  Whitney,  D.E.  (1990).  Concurrent  Design  of  Products  and  Processes,  a  strategy  for  the  next  

generation  in  manufacturing:  MacGraw-­‐Hill.  Pahl,   G.,   Beitz,   W.,   Feldhusen,   J.,   &   Grote,   K.-­‐H.   (2007).   Engineering   Design:   A   Systematic   Approach.  

London:  Springer-­‐Verlag  London  Limited.  Panaitescu,  R.  (2014).  Building  Information  Modeling:  Towards  a  structured  implementation  process  in  an  

engineering  organization.  Delft  University  of  Technology,  Delft.        Papadonikolaki,   E.,   Koutamanis,   A.,   &   Wamelink,   J.W.F.   (2013).   Attaining   Performance   with   Building  

Information  Modelling.  Paper  presented  at  the  eCAADe:  Computation  and  Performance,  Delft.    Perry,  W.M.P.  (2013).  Project  execution  plan:  EPCm.  Internal  usage.  Tebodin  Netherlands  B.V.  Den  Haag.    Postma,  P.,  &  Punter,  L.M.  (2011).  Expertadvies  IFC.    Den  Haag.  Pramod  Reddy,  K.  (2012).  BIM  for  Building  Owners  and  Developers:  Making  a  Business  Case  for  using  BIM  

on  Projects.  New  Jersey:  John  Wiley  &  Sons,  Inc.  RIBA.  (1997).  RIBA  Plan  of  Work  for  the  Design  Team  Operation  (4th  ed.).  London:  Royal  Institute  of  British  

Architects  Publications.  RSMeansOnline.  (2014).  What  is  RSMeans  Online?      ,  from  http://www.rsmeansonline.com  Senci,  J.  (2014).  BIM  protocol.  internal  usage.  Tebodin  Netherlands  B.V.  Deventer.    SmartRevit.com.  (2012).  Aan  de  slag  met  SmartRevit  MEP:  ITANNEX.  Smith,  D.K.,  &  Tardif,  M.  (2009).  Building  Information  Modeling.  New  York:  John  Wiley  &  Sons,  Inc.  Snoei,  G.,  &  Beliaeva,  T.  (2012).  Baten  van  BIM.  USP  Marketing  Consultancy.    Straatman,   J.,  Pel,  W.,  &  Hendriks,  H.   (2012).  Aan  de  slag  met  BIM;  gewoon  doen!  Handreiking  Virtueel  

Bouwen.  Zoetermeer:  Stichting  Research  Rationalisatie  Bouw.  Syan,  C.S.  (1994).  Concurrent  Engineering:  Concepts,  implementation  and  practice.  London:  Chapmann  and  

Hall.  Tebodin.  (2014).  Welkom  bij  Tebodin  in  Nederland.  from  http://www.tebodin.com/nl  Tekla.  (2013).  Checking  the  exported  IFC  model.  from  teklastructures.support.com  The  American  Intstitute  of  Architects.  (2008).  AIA  Document  E202.  van   Berlo,   L.A.H.M.,   Beetz,   J.,   Bos,   P.,   Hendriks,   H.,   &   van   Tongeren,   R.C.J.   (2012).   Collaborative  

engineering   with   IFC:   New   insights   and   technology.   Paper   presented   at   the   9th   European  Conference  on  Product  and  Process  Modelling,  Reykjavik,  Iceland.    

van   Nederveen,   G.A.,   &   Tolman,   F.P.   (1992).   Modelling   multiple   views   on   buildings.   Automation   in  Construction  -­‐  Elsevier,  1,  215-­‐224.    

VDI-­‐Richtlinie  2221.  (1993).  Methodik  zum  Entwickeln  und  Konstruieren  technischer  Systeme  und  Produkte.  Düsseldorf:  VDI-­‐Verlag.  

Verschuren,  P.,  &  Doorewaard,  H.  (2003).  Het  ontwerpen  van  een  onderzoek.  Utrecht:  LEMMA  BV.  Vicosoftware.  (2014).  What  is?  A  BIM  Glossary.  from  http://www.vicosoftware.com  Visser,  E.,  de  Boer,   J.,  &  van  der  Voet,   L.   (2013).  BIM   in  het  beheer  biedt  kansen.  Amsterdam:  Bimming  

Business.  Whitney,  D.E.  (1989).  Manufacturing  by  design.  Harvard  Business  Review(July-­‐August),  28-­‐36.    Winner,  R.I.,  Pennell,  J.P.,  Bertrend,  H.E.,  &  Slusarczuk,  M.M.G.  (1988).  The  role  of  concurrent  engineering  

in  weapons  system  acquisition.  IDA  Report  R-­‐338,  Alexandria,  VA.:  Institute  for  Defense  Analyses.          

Page 80: Transformation from 3D modelling to building information modelling

68 Building information modelling  

 

   

Page 81: Transformation from 3D modelling to building information modelling

Building information modelling   69    

Appendices

Appendix A Abbrev iat ions  Table 12: list of abbreviations

Abbreviation   In  words  AEC  industry  BIM  BREEAM  CAD  CE  CME  COBie  DBFM(O)-­‐contract  DRS  DXF  EPCm-­‐contract  FM  gbXML  HVAC  IAI  ICT  IDM  IES  IFC  ISBL  KPI  LEED  LOD  MEP  MS  Project  MVD  NBIMS  O&M  OSBL  PBT  QOHSE  TQO  Revit  GG  RFC  Rgd  RIBA  SAT  SMART  SWOT  analysis  TQS  XML  2D,  3D,  4D,  etc.  

Architecture,  Engineering  and  Construction  industry  Building  information  modelling  or  building  information  model  Building  Research  Establishment  Environmental  Assessment  Method  Computer  Aided  Design  Concurrent  Engineering  Construction  Management  and  Engineering  Construction  Operations  Building  information  exchange  Design  Build  Finance  Maintain  (Operate)  contract  Dutch  Revit  Standards  Data  eXchange  Format  Engineering,  Procurement,  Construction  and  management  contract  Facility  Management  green  building  eXtensible  Markup  Language  Heating,  Ventilation  and  Air  Conditioning  International  Alliance  for  Interoperability  Information  Communication  Technology  Information  Delivery  Manual  Integrated  Environmental  Solutions  Industry  Foundation  Classes  In-­‐Side  Battery  Limit  Key  Performance  Indicator  Leadership  in  Energy  and  Environmental  Design  Level  of  Development  Mechanical,  electrical  and  plumbing  Microsoft  Project  Model  View  Definition  National  Building  Information  Modelling  Standard  Operations  and  Maintenance  Out-­‐Site  Battery  Limit  Pieters  Bouwtechniek  Quality,  Occupational  Health  and  Safety  Director  Quantity  Take-­‐off  Revit  Gebruikers  Groep  Royal  Friesland  Campina  Rijksgebouwendienst  Royal  Institute  of  British  Architects  Standard  ACIS  Text  Specific,  Measurable,  Accurate/Attainable/Achievable,  Relevant  and  Timely  Strength,  Weaknesses,  Opportunity  and  Threat  analysis  Tebodin  Quality  System  eXtensible  Markup  Language  Two-­‐dimensional,  three-­‐dimensional,  four-­‐dimensional,  etc.    

 

Page 82: Transformation from 3D modelling to building information modelling

70 Building information modelling  

 

Appendix B L ist of f igures  Figure  1:  BIM  maturity  stages  in  BIM  implementation  (for  the  complete  figure  see  Figure  X)  .....................  IX  Figure  2:  BIM  adaption  continuum  (Deutsch,  2011)  .......................................................................................  5  Figure  3:  research  visualization  .......................................................................................................................  6  Figure  4:  research  method  ..............................................................................................................................  9  Figure  5:  over  the  wall  approach  (Evbuomwan  &  Anumba,  1998)  ...............................................................  11  Figure  6:  disadvantages  according  to  (Anumba,  Baugh,  &  Khalfan,  2002;  Barlish  &  Sullivan,  2012)  ...........  12  Figure  7:  design  process  civil/process  industry  (left)  Hanssen,  2000)  and  building  industry  (right)  Hertogh  &  

Bosch-­‐Rekveldt,  2013)  .........................................................................................................................  12  Figure  8:  design  process  (Dym  &  Little,  2004)  ..............................................................................................  13  Figure  9:  what  BIM  technology  not  includes  (Eastman,  Teicholz,  Sacks,  &  Liston,  2008)  .............................  15  Figure  10:  preconstruction  benefits  to  owner  (Barlish  &  Sullivan,  2012;  Eastman  et  al.,  2008;  Fernandes,  

2013;  Straatman,  Pel,  &  Hendriks,  2012)  ............................................................................................  17  Figure  11:  design  benefits  (Barlish  &  Sullivan,  2012;  Eastman  et  al.,  2008;  Fernandes,  2013;  Straatman  et  

al.,  2012)  ..............................................................................................................................................  17  Figure  12:  construction  and  fabrication  benefits  (Barlish  &  Sullivan,  2012;  Eastman  et  al.,  2008;  Fernandes,  

2013;  Straatman  et  al.,  2012)  ..............................................................................................................  18  Figure  13:  post  construction  benefits  (Barlish  &  Sullivan,  2012;  Eastman  et  al.,  2008;  Fernandes,  2013;  

Straatman  et  al.,  2012)  ........................................................................................................................  18  Figure  14:  project  effort  and  impact  (Eastman  et  al.,  2008)  .........................................................................  19  Figure  15:  concept  of  concurrent  engineering  (edited  illustration  according  to  (Hanssen,  2000))  ..............  21  Figure  16:  IFC  possibilities  (edited  illustration  according  to  (Dankers,  2013))  ..............................................  23  Figure  17:  organization  chart  Tebodin  West  .................................................................................................  26  Figure  18:  process  package  (Gort,  2013)  ......................................................................................................  27  Figure  19:  visualization  Mountain  project:  floor  plan  (left)  and  3D  visualization  (right)  ..............................  27  Figure  20:  longitudinal  cross-­‐sections  ...........................................................................................................  27  Figure  21:  organogram  Royal  Friesland  Campina  (Mountain  project)  ..........................................................  29  Figure  22:  organogram  Tebodin  (Mountain  project)  ....................................................................................  29  Figure  23:  internal  organization  scheme  (Tebodin  –  Mountain  project)  ......................................................  35  Figure  24:  external  organization  scheme  (Mountain  project)  ......................................................................  36  Figure  25:  BIM  maturity  stages  in  BIM  implementation  (adapted  from  (Khosrowshahi  &  Arayici,  2012))  ..  39  Figure  26:  the  common  interdisciplinary  modelling  approach  (H.  M.  Chen  &  Hou,  2014)  ...........................  54  Figure  27:  collaboration  model  (adjusted  to  the  original  model  of  H.  M.  Chen  and  Hou  (2014)  .................  55  Figure  28:  time-­‐based  involvement  ..............................................................................................................  55  Figure  29:  concurrent  time-­‐based  model  .....................................................................................................  56  Figure  30:  list  of  actions  for  Tebodin  (people)  ..............................................................................................  58  Figure  31:  list  of  actions  for  Tebodin  (process)  .............................................................................................  59  Figure  32:  list  of  actions  for  Tebodin  (platform)  ...........................................................................................  60  Figure  33:  time-­‐based  BIM  maturity  stages  ..................................................................................................  62    

Page 83: Transformation from 3D modelling to building information modelling

Building information modelling   71    

Appendix C L ist of tables    Table  1:  common  exchange  formats  in  AEC  applications  (Eastman  et  al.,  2008)  .........................................  22  Table  2:  data  exchange  formats  (Eastman  et  al.,  2008)  ................................................................................  22  Table  3:  list  of  interview  participants  ...........................................................................................................  32  Table  4:  BIM  maturity  stage  1  .......................................................................................................................  40  Table  5:  BIM  maturity  stage  2  .......................................................................................................................  40  Table  6:  BIM  maturity  stage  3  .......................................................................................................................  40  Table  7:  BIM  maturity  stage  1  .......................................................................................................................  41  Table  8:  BIM  maturity  stage  2  .......................................................................................................................  41  Table  9:  BIM  maturity  stage  3  .......................................................................................................................  42  Table  10:  BIM  tools  (for  further  information  see  Appendix  D)  .....................................................................  43  Table  11:  SWOT  analysis  ...............................................................................................................................  51  Table  12:  list  of  abbreviations  .......................................................................................................................  69  Table  13:  4D  software  tool  description  ........................................................................................................  72  Table  14:  5D  software  tool  description  ........................................................................................................  72  Table  15:  clash  control  tool  description  ........................................................................................................  72  Table  16:  BIM  analysis  tool  description  ........................................................................................................  72  Table  17:  BIM  facility  management  tool  description  ....................................................................................  73  Table  18:  list  of  interview  participants  .........................................................................................................  74  Table  19:  list  of  expert  meeting  participants  ................................................................................................  74  Table  20:  relation  between  interview  and  research  questions  ....................................................................  74    

Page 84: Transformation from 3D modelling to building information modelling

72 Building information modelling  

 

Appendix D Software appl icat ions  Table 13: 4D software tool description

4D  software  tool   Function    Navisworks  Simulate  by  Autodesk   Linking   3D   model   to   popular   project   schedule  

applications  (e.g.  MS  project  or  Primavera)  Visual  Simulation  by  Innovaya    (Innovaya  Visual  4D  Simulation)  

Linking   3D   model   to   popular   project   schedule  applications  (e.g.  MS  project  or  Primavera)  

Synchro  Professional  by  Synchro   Linking   3D   model   to   popular   project   schedule  applications  (e.g.  MS  project  or  Primavera)  

Tekla  Structures  by  Tekla   Schedule   driven   by   link   between   model   and  project  software  

Vico  Control  by  Vico  Software   Schedule   is   scientifically   derived   from   the  resource-­‐loaded,  cost-­‐loaded,  location-­‐based  BIM  

 Table 14: 5D software tool description

5D  software  tool   Function    QTO  by  Autodesk   Generating   take-­‐offs   from  multiple  environments  

both  2D  and  3D  DProfiler  by  Beck  Technology     Conceptual  3D  modelling  with  cost  estimating  and  

life  cycle  operational  costs  forecasting  Visual  Applications  by  Innovaya    (Innovaya  Visual  Estimating  or  Quantity  Take-­‐off)  

Extracting  quantities  and  building  estimates   from  ADT  and  Revit  files  

Vico  Take-­‐off  Manager  by  Vico  Software   Quantity   take-­‐offs,   feeding   into   estimating   and  scheduling  

RS  Means  by  RS  Means  Online   Database   to   find   cost   data   on   construction  materials,  equipment,  and  labour  

 Table 15: clash control tool description

Clash  control  software  tool   Function    Navisworks  Manage  by  Autodesk   Model-­‐based  clash  detection  between  trades  Solibri  Model  Checker  by  Solibri   QA/QC  of  models  based  upon  rule  sets  and  spatial  

requirements  Synchro  Professional  by  Synchro  ltd.   Schedule-­‐driven  site  coordination  Tekla  Structures  by  Tekla   Structures   is   a   very   broad   BIM   offering   from   a  

structure-­‐centric  perspective  Vico  Office  by  Vico  Software   As   the   level   of   detail   increases,   the   schedule  

become  more  precise    Table 16: BIM analysis tool description

BIM  analysis  tool   Function    Robot  by  Autodesk   Bi-­‐directional  link  with  Revit  and  Structure  Green  Building  Studio  by  Autodesk   Measure  energy  use  and  carbon  footprint  Ecotect  by  Autodesk   Weather,  energy,  water,  carbon  emission  analysis  Solibri  Model  Checker  by  Solibri   Rule-­‐based   checking   for   compliance   and  

validation  of  all  objects  in  the  model  VE-­‐Pro   by   Integrated   Environmental   Solutions  (IES)  

All   aspects   of   energy   analysis   and   simulation   in  many  areas  

Apache  HVAC  by  IES   HVAC  plant  simulation    DesignBuilder  by  DesignBuilder   Integrated   set   of   high-­‐productivity   tools   to   assist  

with  sustainable  building  design  FloVent  by  Mentor  Graphics   Environmental  simulation  and  analysis  

 

Page 85: Transformation from 3D modelling to building information modelling

Building information modelling   73    

Table 17: BIM facility management tool description

BIM  facility  management  tool   Function    EcoDomus   Facility  management  Onuma  System   Facility  management  FM:Interact  by  FM:Systems   Facility  management  YouBIM     Facility  management  Archibus  by  Itannex  and  Procos  Nederland  BV   Facility  management    

 

Page 86: Transformation from 3D modelling to building information modelling

74 Building information modelling  

 

Appendix E Interv iews  Table 18: list of interview participants

Company  and  function   Software  program    Royal  Friesland  Campina  process  technologist   Navisworks  Tebodin  project  manager   Navisworks  Tebodin  BIM  coordinator   Revit  and  Navisworks  Tebodin  lead  engineer  structural   Revit*  and  Navisworks  Tebodin  lead  engineer  utilities   Plant  3D*  and  Navisworks  Tebodin  lead  engineer  civil  and  architecture   Revit*  and  Navisworks  Tebodin  lead  engineer  building  services  (HVAC)   Revit*  and  Navisworks  Tebodin  lead  engineer  process   Inventor*  and  Navisworks  GEA  project  manager   Navisworks  Pieters  Bouwtechniek  project  manager   Revit  and  Navisworks  *  Not  used  by  the  lead  engineer  but  by  its  department    

 Table 19: list of expert meeting participants

Company  and  function  Tebodin  Director  Buildings  West  and  partner  of  SMART  engineering  group  Tebodin  Director  Projects  West  Revitopleidingen.nl  Revit  Expert    Valstar  Simonis  Branch  Director  BAM  Virtual  Design  and  Construction  Coordinator  

 Table 20: relation between interview and research questions

Interview  questions   Research  questions  General  questions  • Job  description,  design  software  

 

What  does  BIM  mean  and  experience  of  not?   1  +  2  +  3  +  5  Collaboration  within  the  project  • How  do  they  perceive  the  collaboration  

within  Tebodin  and  with  project  partners?  

1  +  2  +  3  +  4  +  5  

Used  software    • Current  skills  and  collaboration  methods  the  

software  contains  

2  +  4  +  5  

Integrated  design/multidisciplinary  design  • Link  between  BIM,  integrated  design  and  this  

project  

1  +  2  +  3  +  4  +  5  

Any  changes  noticed?  • Efficiency,  errors,  etc.  

1  +  2  +  3  +  4  +  5  

Future  perspective  • Satisfied,  advantages,  disadvantages,  

challenges,  improvements  and  collaboration  

2  +  3  +  4  +  5  

 Research  questions  that  will  help  to  answer  the  main  question:  1. What  does  a  traditional  design  process  in  an  engineering  firm  look  like?  2. What  does  a  BIM  design  process  look  like  in  an  engineering  company?  3. What   are   the   potential   benefits   and   disadvantages   of   implementing   BIM   in   a   design   process   of   an  

engineering  organization?  4. How  does  building   information  modelling   influence  the  traditional  design  process  these  days  and   in  

the  future?  5. What   are   the   main   challenges   to   fight   while   implementing   BIM   in   the   project   context   of   an  

engineering  organization?