Towards the parallelization of Reversible Jump Markov ... · Towards the parallelization of...

37
HAL Id: hal-00720005 https://hal.inria.fr/hal-00720005 Submitted on 23 Jul 2012 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Towards the parallelization of Reversible Jump Markov Chain Monte Carlo algorithms for vision problems Yannick Verdie, Florent Lafarge To cite this version: Yannick Verdie, Florent Lafarge. Towards the parallelization of Reversible Jump Markov Chain Monte Carlo algorithms for vision problems. [Research Report] RR-8016, INRIA. 2012. <hal-00720005>

Transcript of Towards the parallelization of Reversible Jump Markov ... · Towards the parallelization of...

HAL Id: hal-00720005https://hal.inria.fr/hal-00720005

Submitted on 23 Jul 2012

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Towards the parallelization of Reversible Jump MarkovChain Monte Carlo algorithms for vision problems

Yannick Verdie, Florent Lafarge

To cite this version:Yannick Verdie, Florent Lafarge. Towards the parallelization of Reversible Jump Markov Chain MonteCarlo algorithms for vision problems. [Research Report] RR-8016, INRIA. 2012. <hal-00720005>

ISS

N0

24

9-6

39

9IS

RN

INR

IA/R

R--

80

16

--F

R+

EN

G

RESEARCH

REPORT

N° 8016July 2012

Project-Teams Geometrica, Ayin

Towards the

parallelization of

Reversible Jump Markov

Chain Monte Carlo

algorithms for vision

problems.

Yannick Verdié , Florent Lafarge

RESEARCH CENTRE

SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93

06902 Sophia Antipolis Cedex

♦rs t ♣r③t♦♥ ♦ rs ♠♣

r♦ ♥ ♦♥t r♦ ♦rt♠s ♦r

s♦♥ ♣r♦♠s

❨♥♥ ❱ré ∗ ♦r♥t r ∗

Pr♦t♠s ♦♠tr ②♥

sr ♣♦rt ♥ ② ♣s

strt P♦♥t ♣r♦sss ♠♦♥strt ♥② ♥ ♦♠♣tt♥ss ♥ rss♥♦t r♦♥t♦♥ ♣r♦♠s ♥ s♦♥ ♦r s♠t♥ ts ♠t♠t ♠♦s s tts s♣② ♦♥ r s♥s ①st♥ s♠♣rs sr r♦♠ r ♣r♦r♠♥s ♥ tr♠s ♦♦♠♣tt♦♥ t♠ ♥ stt② ❲ ♣r♦♣♦s ♥ s♠♣♥ ♣r♦r s ♦♥ ♦♥t r♦♦r♠s♠ r ♦rt♠ ①♣♦ts r♦♥ ♣r♦♣rts ♦ ♣♦♥t ♣r♦sss t♦ ♣r♦r♠ t s♠♣♥♥ ♣r s ♣r♦r s ♠ ♥t♦ tr♥ ♠♥s♠ s tt t ♣♦♥ts r♥♦♥♥♦r♠② strt ♥ t s♥ ♣r♦r♠♥s ♦ t s♠♣r r ♥②③ tr♦ st♦ ①♣r♠♥ts ♦♥ r♦s ♦t r♦♥t♦♥ ♣r♦♠s r♦♠ r s♥s ♥ tr♦ ♦♠♣rs♦♥st♦ t ①st♥ ♦rt♠s

②♦rs ♠ ♥ s♦♥ t♦st ♦ ♦♥t r♦ ♥r② ♠♥♠③t♦♥ r♦♥♦♠

∗ ♦♣ ♥t♣♦s r♥

❱rs ♣rést♦♥ s ♦rt♠s ♦♥t r♦ ♣r

♥ r♦ à sts rérss ♣♦r s ♣r♦è♠s ♥

s♦♥

és♠é s ♣r♦sss ♣♦♥ts ♠rqés s s♦♥t ♠♦♥trés ①trê♠♠♥t ♣r♦r♠♥ts ♣♦rtrtr s ♣r♦è♠s tt♦♥ ❵♦ts t r♦♥♥ss♥ ♦r♠s ♥ s♦♥ ♣r ♦r♥tr♣♥♥t s♠t♦♥ s ♠♦ès ♠té♠tqs st ♥ t ♥ ♣rtr ♣♦rs sè♥s rs s é♥t♦♥♥rs ①st♥t s♦r♥t ♣r♦r♠♥s ♠♦②♥♥ ♥ tr♠ t♠♣s t stté ♦s ♣r♦♣♦s♦♥s ♥ ♥♦ ♦rt♠ ①♣♦t♥t s ♣r♦♣rétés♠r♦♥♥s s ♣r♦sss ♣♦♥ts ♥ tr ♥ é♥t♦♥♥ ♥ ♣rè tt♠ét♦ st ♥téré à ♥ ♠♥s♠ é ♣r s ♦♥♥és ♥ ❵♦t♥r ♥ stt♦♥ ♥♦♥♥♦r♠ s ♣♦♥ts ♥s sè♥ s ♣r♦r♠♥s ♥♦ é♥t♦♥♥r s♦♥t ♥②sésà trrs ♣srs ①♣ér♥s sr rs sè♥s t ♦♠♣rés ① ♦rt♠s ①st♥ts

♦tsés ♠ t s♦♥ ♠♦è st♦stq ♦♥t r♦ ♠♥♠st♦♥ ❵♥r ♠♣ r♦

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

♥tr♦t♦♥

r♦ ♣♦♥t ♣r♦sss ♦♥sttt ♥ ♦t♦r♥t ①t♥s♦♥ ♦ trt♦♥ r♦ ♥♦♠s ❲rs s rss ♥ ♣r♦♠s ♦♥ stt r♣s r♦ ♣♦♥t ♣r♦sss ♥ t ♦t r♦♥t♦♥ ♣r♦♠s ② rt② ♠♥♣t♥ ♣r♠tr ♥tts ♦♥②♥♠ r♣s s ♣r♦st ♠♦s ♥tr♦ ② ② t ❬❪ ①♣♦t r♥♦♠rs ♦s r③t♦♥s r ♦♥rt♦♥s ♦ ♣r♠tr ♦ts ♦t ♥ ss♥t♦ ♣♦♥t ♣♦st♦♥ ♥ t s♥ ♥♠r ♦ ♦ts s ts r♥♦♠ r ♥ ts♠st ♥♦t st♠t ♦r s♣ ② ♥ sr ♥♦tr str♥t ♦ r♦ ♣♦♥t ♣r♦sss str t② t♦ t ♥t♦ ♦♥t ♦♠♣① s♣t ♥trt♦♥s t♥ t ♦ts ♥ t♦ ♠♣♦s♦ rr③t♦♥ ♦♥str♥ts

P♦♥t ♣r♦sss ♦r s♦♥ ♣r♦♠s

♥② r♥t ♦rs ①♣♦t♥ ♣♦♥t ♣r♦sss ♥ ♣r♦♣♦s t♦ rss r rt② ♦♦♠♣tr s♦♥ ♣r♦♠s ❬ ❪ r♦♥ ♥trst ♥ ts ♣r♦st♠♦s s ♠♦tt ② t ♥ t♦ ♠♥♣t ♣r♠tr ♦ts ♥trt♥ ♥ s♥s Pr♠tr ♦ts ♥ ♥ ♥ srt ♥♦r ♦♥t♥♦s ♦♠♥s ② s② ♦rrs♣♦♥t♦ ♦♠tr ♥tts s♠♥ts rt♥s rs ♦r ♣♥s t ♥ ♠♦r ♥r② ♥②t②♣ ♦ ♠t♠♥s♦♥ ♥t♦♥ ♣♦♥t ♣r♦ss rqrs t ♦r♠t♦♥ ♦ ♣r♦t②♥st② ♥ ♦rr t♦ ♠sr t qt② ♦ ♦♥rt♦♥ ♦ ♦ts ♥st② s t②♣②♥ s ♦♠♥t♦♥ ♦ tr♠ ssss♥ t ♦♥sst♥② ♦ ♦ts t♦ t t ♥ tr♠t♥ ♥t♦ ♦♥t s♣t ♥trt♦♥s t♥ ♦ts ♥ r♦♥ ♦♥t①t ♦♣t♠♦♥rt♦♥ ♠①♠③♥ ts ♥st② s s② sr ♦r ② ♦♥t r♦ s s♠♣r♣ ♦ ①♣♦r♥ t ♦ ♦♥rt♦♥ s♣ ♥ ♠♦st ss r♦ ♥ ♦♥t r♦ ♦rt♠ ❬ ❪

s♦♠s t ❬❪ ♣r♦♣♦s ♣♦♥t ♣r♦ss ♦r ♦♥t♥ ♣♦♣t♦♥s r♦♠ r ♠s ♥tt② ♥ ♣tr ② ♥ ♣s t ❬❪ ♣rs♥t ♣♦♥t ♣r♦ss ♦r s♠r ♣♣t♦♥t t t♦ r♦ tt♦♥ r♦♠ r♦♥s ♣♦t♦s ♦r ♦ts r ♥ s st ♦ ♦② s♣ t♠♣ts r♥ r♦♠ tr♥♥ t t ♠s r s ② ❯tst ❬❪ t♦ tt ♣♦♣ ② ♣♦♥t ♣r♦ss ♥ r t ♦ts r s♣ ② ②♥rs♥ t ❬❪ ♥ ♦st t ❬❪ ♣r♦♣♦s ♣♦♥t ♣r♦sss ♦r ①trt♥ ♥ ♥t♦rs r♦♠♠s ② t♥ ♥t♦ ♦♥t s♣t ♥trt♦♥s t♥ ♥s t♦ ♦r t ♦t ♦♥♥①♦♥r t ❬❪ ♣rs♥t ♥r ♠♦ ♦r ①trt♥ r♥t t②♣s ♦ ♦♠tr trsr♦♠ ♠s ♥♥ ♥ rt♥s ♦r ss ♠①tr ♦ ♦t ♥trt♦♥s r s♦ ♦♥sr s tt t ♣r♦ss ♥ rss r♥t ♣r♦♠s r♥♥ r♦♠ ♣♦♣t♦♥ ♦♥t♥t♦ ♥ ♥t♦r ①trt♦♥ tr♦ t♦ t①tr r♦♥t♦♥ s♦t ❬❪ ♦♣s ♣♦♥t ♣r♦ss♦r tr♥ rt♥r ♦ts r♦♠ ♦ ♠♦♥♦♠♥s♦♥ ♣♦♥t ♣r♦ss s ♣r♦♣♦s ②t t ❬❪ ♦r ♠♦♥ s♥s ② ♠①trs ♦ ♣r♠tr ♥t♦♥s ♠♣♦s♥♣②s ♦♥str♥ts t♥ t ♠♦s

♦tt♦♥s

rsts ♦t♥ ② ts ♣♦♥t ♣r♦sss r ♣rtr② ♦♥♥♥ ♥ ♦♠♣tt tt ♣r♦r♠♥s r♠♥ ♠t ♥ tr♠s ♦ ♦♠♣tt♦♥ t♠ ♥ ♦♥r♥ stt② s♣② ♦♥ r s♥s s rs ①♣♥ ② ♥str② s ♥ rt♥t ♥t ♥♦ t♦♥trt ts ♠t♠t ♠♦s ♥ tr ♣r♦ts ♥ t ♣♦♥t ♣r♦sss ♣rs♥t ♥t♦♥ ♠♣s③ ♦♠♣① ♠♦ ♦r♠t♦♥s ② ♣r♦♣♦s♥ ♦ts ♣r♠tr② s♦♣stt ❬ ❪ ♥ t♥qs t♦ t ♦ts t♦ t t ❬❪ ♥ ♥♦♥tr s♣t ♥trt♦♥s

❨♥♥ ❱ré ♦r♥t r

t♥ ♦ts ❬ ❪ ♦r ts ♦rs ♦♥② st② rss t ♦♣t♠③t♦♥ sssr♦♠ s ♦♠♣① ♠♦s

♠♣s♦♥ ♦rt♠s ❬ ❪ ♥ s♥ t♦ s♣♣ t s♠♣♥② ♥srt♥ s♦♥ ②♥♠s ♦r t ①♣♦rt♦♥ ♦ t ♦♥t♥♦s ss♣s s s♠♣rsr ♥♦rt♥t② rstrt t♦ s♣ ♥st② ♦r♠s t ♦♥srt♦♥s s♦ ♥ st♦ r t s♠♣♥ t ♠♦r ♥② ❬❪ ♦r ♠ s♠♥tt♦♥ ♣r♦♠s ♦♠ ♦rs s♦ ♣r♦♣♦s ♣r③t♦♥ ♣r♦rs ② s♥ ♠t♣ ♥s s♠t♥♦s② ❬❪ ♦r♦♠♣♦st♦♥ s♠s ♥ ♦♥rt♦♥s s♣s ♦ ① ♠♥s♦♥ ❬ ❪ ♦r t② r♠t ② ♦rr ts ♥ r ♥♦t s♥ t♦ ♣r♦r♠ ♦♥ r s♥s ♥ t♦♥ t①st♥ ♦♠♣♦st♦♥ s♠s ♥♥♦t s ♦r ♦♥rt♦♥ s♣s ♦ r ♠♥s♦♥ ♠♥s♠ s ♦♥ ♠t♣ rt♦♥ ♥ strt♦♥ ♦ ♦ts s ♥ s♦ ♦♣♦r rss♥ ♣♦♣t♦♥ ♦♥t♥ ♣r♦♠s ❬ ❪ rtss ♦t rt♦♥s rqr tsrt③t♦♥ ♦ t ♣♦♥t ♦♦r♥ts ♥s s♥♥t ♦ss ♦ r②

s tr♥t rs♦♥s ♦ t ♦♥♥t♦♥ s♠♣r ♦② ♦ t ♠♣r♦♠♥t♦ ♦♣t♠③t♦♥ ♣r♦r♠♥s ♥ s♣ ♦♥t①tst s t ♥s ♥ tr♠s ♦ ♦♠♣tt♦♥t♠ r♠♥ ♥ r s② r③ t t ①♣♥s ♦ s♦t♦♥ stt② ♥♥ st♥t s♠♣r ♦r ♥r r♦ ♣♦♥t ♣r♦sss r② r♣rs♥ts ♥♥ ♣r♦♠

♦♥trt♦♥s

❲ ♣rs♥t s♦t♦♥s t♦ rss ts ♣r♦♠ ♥ t♦ rst② r ♦♠♣tt♦♥ t♠s r♥t②♥ qt② ♥ stt② ♦ t s♦t♦♥ r ♦rt♠ ♣rs♥ts sr ♠♣♦rt♥t♦♥trt♦♥s t♦ t

❼ ♠♣♥ ♥ ♣r ♦♥trr② t♦ t ♦♥♥t♦♥ s♠♣r ♠s ts♦t♦♥ ♦ ② sss ♣rtrt♦♥s ♦r ♦rt♠ ♥ ♣r♦r♠ r ♥♠r♦ ♣rtrt♦♥s s♠t♥♦s② s♥ ♥q ♥ r♦♥ ♣r♦♣rt② ♦ ♣♦♥t♣r♦sss s ①♣♦t t♦ ♠ t ♦ s♠♣♥ ♣r♦♠ s♣t② ♥♣♥♥t ♥ ♥♦r♦♦

❼ ♦♥ ♥♦r♠ ♣♦♥t strt♦♥s P♦♥t ♣r♦sss ♠♥② s ♥♦r♠ ♣♦♥t strt♦♥s r ♦♠♣tt♦♥② s② t♦ s♠t t ♠ t s♠♣♥ ①tr♠② s♦❲ ♣r♦♣♦s ♥ ♥t ♠♥s♠ ♦♥ t ♠♦t♦♥s rt♦♥s ♦r r♠♦s ♦♦ts ② t♥ ♥t♦ ♦♥t ♥♦r♠t♦♥ ♦♥ t ♦sr s♥s ♦♥trr② t♦ t tr♥ s♦t♦♥s ♣r♦♣♦s ② ❬❪ ♥ ❬❪ ♦r ♥♦♥♥♦r♠ strt♦♥ s ♥♦t t rt②r♦♠ ♠ ♦♦ t s rt s♣♣rtt♦♥♥ trs t♦ ♥sr t s♠♣♥♣r③t♦♥

❼ ♥t P❯ ♠♣♠♥tt♦♥ ❲ ♣r♦♣♦s ♥ ♠♣♠♥tt♦♥ ♦♥ P❯ s♥♥t② rs ♦♠♣t♥ t♠s t rs♣t t♦ ①st♥ ♦rt♠s ♥rs♥stt② ♥ ♠♣r♦♥ t qt② ♦ t ♦t♥ s♦t♦♥

❼ ♦t tt♦♥ ♠♦ r♦♠ ♣♦♥t ♦ ♦ t t ♦rt♠ ♥ ♣r♦♣♦s ♥ ♦r♥ ♣♦♥t ♣r♦ss t♦ tt ♣r♠tr ♦ts r♦♠ ♣♦♥t ♦ss ♠♦ s ♣♣ t♦ tr r♦♥t♦♥ r♦♠ sr s♥s ♦ r r♥ ♥ ♥tr♥r♦♥♠♥ts ♦ ♦r ♥♦ t s t rst ♣♦♥t ♣r♦ss s♠♣r t♦ t t♦ ♣r♦r♠♥ s ② ♦♠♣① stt s♣s

♥r

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

P♦♥t Pr♦ss r♦♥

♣♦♥t ♣r♦ss srs r♥♦♠ ♦♥rt♦♥s ♦ ♣♦♥ts ♥ ♦♥t♥♦s ♦♥ st K t♠t② s♣♥ ♣♦♥t ♣r♦ss Z s ♠sr ♠♣♣♥ r♦♠ ♣r♦t② s♣ (Ω,A,P)t♦ t st ♦ ♦♥rt♦♥s ♦ ♣♦♥ts ♥ K s tt

∀ω ∈ Ω, pi ∈ K,Z(ω) = p1, ..., pn(ω)

r n(ω) s t ♥♠r ♦ ♣♦♥ts ss♦t t t ♥t ω ❲ ♥♦t ② P t s♣ ♦♦♥rt♦♥s ♦ ♣♦♥ts ♥K ♠♦st ♥tr ♣♦♥t ♣r♦ss s t ♦♠♦♥♦s P♦ss♦♥ ♣r♦ss♦r t ♥♠r ♦ ♣♦♥ts ♦♦s srt P♦ss♦♥ strt♦♥ rs t ♣♦st♦♥ ♦ t♣♦♥ts s ♥♦r♠② ♥ ♥♣♥♥t② strt ♥ K P♦♥t ♣r♦sss ♥ s♦ ♣r♦ ♠♦r♦♠♣① r③t♦♥s ♦ ♣♦♥ts ② ♥ s♣ ② ♥st② h(.) ♥ ♥ P ♥ rr♥♠sr µ(.) ♥r t ♦♥t♦♥ tt t ♥♦r♠③t♦♥ ♦♥st♥t ♦ h(.) s ♥t

p∈P

h(p)dµ(p) < ∞

♠sr µ(.) ♥ t ♥st② h(.) s s② ♥ t ♥t♥st② ♠sr ν(.) ♦ ♥♦♠♦♥♦s P♦ss♦♥ ♣r♦ss ♣②♥ ♥st② h(.) ♦s t ♥srt♦♥ ♦ t ♦♥sst♥②♥ s♦ t rt♦♥ ♦ s♣t ♥trt♦♥s t♥ t ♣♦♥ts ♥ ♣rtr t r♦♥♣r♦♣rt② ♥ s ♥ ♣♦♥t ♣r♦sss s♠r② t♦ r♥♦♠ s t♦ rt s♣t ♥♣♥♥ ♦ t ♣♦♥ts ♥ ♥♦r♦♦ ♦t s♦ tt h(.) ♥ ①♣rss ② s ♥r②U(.) s tt

h(.) ∝ exp−U(.)

r♦♠ ♣♦♥ts t♦ ♣r♠tr ♦ts ❲t ♠s ♣♦♥t ♣r♦sss ttrt ♦r s♦♥ s t♣♦sst② ♦ ♠r♥ ♣♦♥t pi ② t♦♥ ♣r♠trs mi s tt t ♣♦♥t ♦♠sss♦t t ♥ ♦t xi = (pi,mi) ❲ ♥♦t ② C t ♦rrs♣♦♥♥ s♣ ♦ ♦t♦♥rt♦♥s r ♦♥rt♦♥ s ♥ ② x = x1, ..., xn(x) ♦r ①♠♣ ♣♦♥t♣r♦ss ♦♥ K ×M t K ⊂ R

2 ♥ t t♦♥ ♣r♠tr s♣ M =]− π2 ,

π2 ]× [lmin, lmax]

♥ s♥ s r♥♦♠ ♦♥rt♦♥s ♦ ♥s♠♥ts s♥ ♥ ♦r♥tt♦♥ ♥ ♥t r t♦ ♣♦♥t s ♣♦♥t ♣r♦sss r s♦ ♠r ♣♦♥t ♣r♦sss ♥t trtr

♠♦st ♣♦♣r ♠② ♦ ♣♦♥t ♣r♦sss ♦rrs♣♦♥s t♦ t r♦ ♣♦♥t ♣r♦sss ♦ ♦tss♣ ② s ♥rs ♦♥ C ♦ t ♦r♠

∀x ∈ C, U(x) =∑

xi∈x

D(xi) +∑

xi∼xj

V (xi, xj)

r ∼ ♥♦ts t s②♠♠tr ♥♦r♦♦ rt♦♥s♣ ♦ t r♦ ♣♦♥t ♣r♦ss D(xi)s ♥tr② t tr♠ ♠sr♥ t qt② ♦ ♦t xi t rs♣t t♦ t ♥ V (xi, xj) ♣rs ♥trt♦♥ tr♠ t♥ t♦ ♥♦r♥ ♦ts xi ♥ xj ∼rt♦♥s♣ ss② ♥ ♠t st♥ ǫ t♥ ♣♦♥ts s tt

xi ∼ xj = (xi, xj) ∈ x2 : i > j, ||pi − pj ||2 < ǫ

♥ t sq ♦♥sr r♦ ♣♦♥t ♣r♦sss ♦ ts ♦r♠ ♦t tt ts ♥r② ♦r♠s s♠rts t t st♥r ♥ ♥rs ♦r s s t ♥ ♣♣♥① ♦r♣r♦♠ ♥ s♥ s ♥r③t♦♥ ♦ ts ♠♦s

❨♥♥ ❱ré ♦r♥t r

r r♦♠ t t♦ rt r③t♦♥s ♦ ♣♦♥t ♣r♦ss ♥ ♦ r♦ ♣♦♥t ♣r♦ss ♥♦ r♦ ♣♦♥t ♣r♦ss ♦ ♥s♠♥ts r② s ♥s r♣rs♥t t ♣rs ♦ ♣♦♥ts♥trt♥ t rs♣t t♦ t ♥♦r♥ rt♦♥s♣ s s♣ r ② ♠t st♥ǫ t♥ t♦ ♣♦♥ts

♠t♦♥ P♦♥t ♣r♦sss r s② s♠t ② rs ♠♣ s♠♣r ❬❪t♦ sr ♦r t ♦♥rt♦♥ ♠♥♠③s t ♥r② U s s♠♣r ♦♥ssts ♦ s♠t♥ srt r♦ ♥ (Xt)t∈N ♦♥ t ♦♥rt♦♥ s♣ C ♦♥r♥ t♦rs ♥ ♥r♥t♠sr s♣ ② U t trt♦♥ t rr♥t ♦♥rt♦♥ x ♦ t ♥ s ♦②♣rtr t♦ ♦♥rt♦♥ y ♦r♥ t♦ ♥st② ♥t♦♥ Q(x → .) s♦ r♥ ♣rtrt♦♥s r ♦ ♠♥s tt x ♥ y r ♦s ♥ r ② ♥♦ ♠♦r t♥ ♦♥♦t ♦♥rt♦♥ y s t♥ ♣t s ♥ stt ♦ t ♥ t rt♥ ♣r♦t②♣♥♥ ♦♥ t ♥r② rt♦♥ t♥ x ♥ y ♥ r①t♦♥ ♣r♠tr Tt r♥Q ♥ ♦r♠t s ♠①tr ♦ sr♥s Qm ♦s♥ t ♣r♦t② qm s tt

Q(x → .) =∑

m

qmQm(x → .)

sr♥ s s② t t♦ s♣ t②♣s ♦ ♠♦s s t rt♦♥r♠♦ ♦ ♥♦t rt ♥ t r♥ ♦r t ♠♦t♦♥ ♦ ♣r♠trs ♦ ♥ ♦t tr♥st♦♥tt♦♥ ♦r r♦tt♦♥ r♥s r♥ ♠①tr ♠st ♦ ♥② ♦♥rt♦♥ ♥ C t♦ r r♦♠ ♥② ♦tr ♦♥rt♦♥ ♥ ♥t ♥♠r ♦ ♣rtrt♦♥s rrtt② ♦♥t♦♥♦ t r♦ ♥ ♥ sr♥ s t♦ rrs t♦ ♣r♦♣♦s t ♥rs♣rtrt♦♥

s♠♣r s ♦♥tr♦ ② t r①t♦♥ ♣r♠tr Tt t t♠♣rtr♣♥♥ ♦♥ t♠ t ♥ ♣♣r♦♥ ③r♦ s t t♥s t♦ ♥♥t② t♦ ♦rt♠ rs♦ Tt s ♥ssr② t♦ ♥sr t ♦♥r♥ t♦ t ♦ ♠♥♠♠ r♦♠ ♥② ♥t ♦♥rt♦♥♦♥ ss str ♦♠tr rs s ♥ ♣♣r♦①♠t s♦t♦♥ ♦s t♦ t ♦♣t♠♠❬❪

s♠♣♥ ♣r♦r

♠t♥♦s ♠t♣ ♣rtrt♦♥s

♦♥♥t♦♥ s♠♣r ♣r♦r♠s sss ♣rtrt♦♥s ♦♥ ♦ts ♣r♦r s ♦♦s② ♦♥ ♥ st♦s s♣② ♦r r s ♣r♦♠s ♥tr t st

♥r

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

♦rt♠ s♠♣r ❬❪

♥t③ X0 = x0 ♥ T0 t t = 0 t trt♦♥ t t Xt = x

❼ ♦♦s sr♥ Qm ♦r♥ t♦ ♣r♦t② qm

❼ Prtr x t♦ y ♦r♥ t♦ Qm(x → .)

❼ ♦♠♣t t r♥ rt♦

R =Qm(y → x)

Qm(x → y)exp

(

U(x)− U(y)

Tt

)

❼ ♦♦s Xt+1 = y t ♣r♦t② min(1, R) ♥ Xt+1 = x ♦trs

♥①♣♦r ♦r r♦ ♣♦♥t ♣r♦sss ♦♥ssts ♥ s♠♣♥ ♦ts ♥ ♣r ② ①♣♦t♥ tr♦♥t♦♥ ♥♣♥♥ ♦ts t ♦ ♥♦r♦♦ strt② ♠♣s ♣rtt♦♥♥t s♣ K s♦ tt s♠t♥♦s ♣rtrt♦♥s r ♣r♦r♠ t ♦t♦♥s r ♥♦ ♣rt t♦♥♦t ♥trr ♥ r t ♦♥r♥ ♣r♦♣rts

r♦♠ sq♥t t♦ ♣r s♠♣♥ t (Xt)t∈N r♦ ♥ s♠t♥ r♦♣♦♥t ♣r♦ss ♥ K s♥ ②♥♠s ♥ cs ♣rtt♦♥ ♦ t s♣ K r ♦♠♣♦♥♥t cs s ♦ s c1 ♥ c2 r s ♥♣♥♥t ♦♥ X t tr♥st♦♥♣r♦t② ♦r ♥② r♥♦♠ ♣rtrt♦♥ ♥ ♥ c1 ♥ t ♥② t♠ t ♦s ♥♦t ♣♥ ♦♥ tr♦ts ♦r ♣rtrt♦♥s ♥ ♥ c2 ♥ rs

❲ ♥ ♠♦♥strt tt t tr♥st♦♥ ♣r♦t② ♦ t♦ sss ♣rtrt♦♥s ♥ ♥♥♣♥♥t s ♥r t t♠♣rtr Tt s q t♦ t ♣r♦t ♦ t tr♥st♦♥ ♣r♦ts ♦ ♣rtrt♦♥ ♥r t s♠ t♠♣rtr ♥ ♦tr ♦rs r③♥ t♦ sss♣rtrt♦♥s ♦♥ ♥♣♥♥t s t t s♠ t♠♣rtr s q♥t t♦ ♣r♦r♠♥ t♠ ♥♣r

t x r③t♦♥ ♦ t ♣♦♥t ♣r♦ss s tt x = (x1, x2, u) r x1 rs♣t②x2 r♣rs♥ts t st ♦ ♣♦♥ts ♥ ♥ t c1 rs♣t② c2 ♥ u s t r♠♥♥st ♦ ♣♦♥ts ♥ ♥ K − c1, c2 t y ♥ ♦♥rt♦♥ ♦ ♣♦♥ts ♦t♥ r♦♠ x

② t♦ ♣rtrt♦♥s ♦♥ t s c1 ♥ c2 s♦ tt y = (y1, y2, u) ♣r♦t②Pr[Xt+2 = y|Xt = x] ♥ ①♣rss s

Pr[Xt+2 = y|Xt = x] =

Pr[Xt+2 = (y1, y2, u)|Xt+1 = (y1, x2, u)]× Pr[Xt+1 = (y1, x2, u)|Xt = x]+Pr[Xt+2 = (y1, y2, u)|Xt+1 = (x1, y2, u)]× Pr[Xt+1 = (x1, y2, u)|Xt = x]

❨♥♥ ❱ré ♦r♥t r

r strt♦♥ ♦ t q♥ t♥ t♦ sss ♣rtrt♦♥s ♦♥ ♥♣♥♥ts c1 ♥ c2 ♥ t♦ s♠t♥♦s ♣rtrt♦♥s ♦♥

♦r s t t♠♣rtr ♣r♠tr s ♦♥st♥t t♥ t ♥ t+ 2

Pr[Xt+2 = y|Xt+1] = (y1, x2, u)

= Q((y1, x2, u) → y)×min[

1, Q(y→(y1,x2,u))Q((y1,x2,u)→y) exp

(

U((y1,x2,u))−U(y)Tt+1

)]

= Q((y1, x2, u) → y)×min[

1, Q(y→(y1,x2,u))Q((y1,x2,u)→y) exp

(

U((y1,x2,u))−U(y)Tt

)]

= Pr[Xt+1 = y|Xt = (y1, x2, u)]

s c1 ♥ c2 ♥ ♥♣♥♥t t tr♥st♦♥ ♣r♦t② ♦r t ♣rtrt♦♥ y2 ♥♥ c2 ♦s ♥♦t ♣♥ ② ♥t♦♥ ♦♥ x1 ♥ y1 s ♥ ♣rtr

Pr[Xt+1 = (y1, y2, u)|Xt = (y1, x2, u)] = Pr[Xt+1 = (x1, y2, u)|Xt = (x1, x2, u)]

♦t♥

Pr[Xt+2 = y|Xt+1 = (y1, x2, u)] = Pr[Xt+1 = (x1, y2, u)|Xt = x]

♠r② ♥ ♠♦♥strt tt

Pr[Xt+2 = y|Xt+1 = (x1, y2, u)] = Pr[Xt+1 = (y1, x2, u)|Xt = x]

♥② ② ♥srt♥ q ♥ ♥ q ♦t♥ t ①♣t rst

Pr[Xt+2 = y|Xt = x] =

2! Pr[Xt+1 = (y1, x2, u)|Xt = x]× Pr[Xt+1 = (x1, y2, u)|Xt = x]

r 2! s t ♦♠♥t♦r ♦♥t ♦rrs♣♦♥♥ t♦ t ♥♠r ♦ ♣r♠tt♦♥s ♦ ♣rtrt♦♥s ♥ t sq♥t ♥

♥sr♥ ♥♣♥♥ ♦ ♥♣♥♥t s ♠st ♦t t ♠♥♠♠ st♥ r♦♠ ♦tr s strt ♥ ts st♥ ♠st t ♥t♦ ♦♥t ♦t t

♥r

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

r ♥♣♥♥ ♦ s ♥ t t s t t ♦ t c2 s ♥♦t r ♥♦t♦ ♥sr t ♥♣♥♥ ♦ t s c1 ♥ c3 t t♦ r② ♣♦♥ts ♥ c1 ♥ c3 ♥♥♦t ♣rtr t t s♠ t♠ ♥ t rt s t s c1 ♥ c3 r ♥♣♥♥t s q ssts

t ♦ t ♥♦r♥ rt♦♥s♣ ǫ ♥ t ♥t ♦ t st ♠♦ ♦ s ♦t♣rtrt♦♥ ♥♦t ② δmax ♥♣♥♥ t♥ t♦ s cs ♥ cs′ s t♥ r♥t

minp∈cs, p′∈cs′

||p− p′||2 ≥ ǫ+ 2δmax

♥♣♥♥t tr♥ ♥tr ♦♥ssts ♦ ♣rtt♦♥♥ t s♣ K ♥t♦ rr ♠♦s ♦ s t s③ rtr t♥ ♦r q t♦ ǫ + 2δmax s ♥ t♥ rr♦♣ ♥t♦ 2dimK sts s tt s ♥t t♦ s ♦♥♥ t♦ r♥t sts strts t rr♦♣♥ s♠ ♦r dimK = 2 ♥ dimK = 3 s rr♦♣♥ s♠♥srs t ♠t ♥♣♥♥ t♥ t s ♦ s♠ st ♥ t sq s st s ♠st st ♦ t② ♥♣♥♥t s

♦♥♥♦r♠ ♣♦♥t strt♦♥s

♠♣♥ ♦ts ♥ ♣r rr ♣rtt♦♥♥ s strt ♦♥ & s ♦r ♥♦t ♦♣t♠ s t s♣t ♣♦♥t strt♦♥ s ♥ssr② ♥♦r♠ ♥ ♦s ♥♦t t♥t♦ ♦♥t t rtrsts ♦ ♦sr s♥s ♦ ♦r♦♠ ts ♣r♦♠ ♥♦♥rr♣rtt♦♥♥ ♦ t s♥ s rt ② ①♣♦t♥ ts ♥♦

♦♥♥♦r♠ r♥ r♦♠ ♥♦r♠ sr♥s ①trs ♦ sr♥s r rq♥t②s t♦ s♠t ♣♦♥t ♣r♦sss ② ②♥♠s sr♥ ♦rrs♣♦♥♥ t♦ ♣rtrt♦♥ t②♣ rt ♥ t tr♥st♦♥ r♦tt♦♥ t ♦r t ♦♥sst♥ ♦♠t♥ sr♥s t s♣t rstrt♦♥s t♦ rt ♥♦♥♥♦r♠ ♣♦♥t strt♦♥s s♥♦t ♥ ①♣♦t ♥ t trtr t cs

(1), .., cs(L) L ♣rtt♦♥s ♦ t s♣ K s

tt cs(i) s s ♣rtt♦♥ ♦ cs

(i−1) L ♣rtt♦♥s ♥ s♣♣rtt♦♥♥tr ♥♦t K ♥ ♦s s ♦rrs♣♦♥ t♦ ♣rtt♦♥ ♦ K ② ss♦t♥ t ♦♥t♥ ♥ K ♥♦r♠ sr♥ s♣t② rstrt t♦ t ss♣ s♣♣♦rt♥ ts ♥♦♥♥♦r♠ r♥ ♥ rt ② ♠t♦♥ s ♥ ♥ q ♥ strt ♥

tr♥ s♣♣rtt♦♥♥ tr rr 1t♦2dimK rr ss♦♥ s♠s ♦♥sr t♦ ♣rtt♦♥♥ tr t②♣② qtr ♥ ♠♥s♦♥ t♦ ♥ ♥ ♦tr ♥

❨♥♥ ❱ré ♦r♥t r

r r ♣rtt♦♥♥ s♠ ♦ K ♥ ♠♥s♦♥ t♦ t t s r sqrs rr♦♣ ♥t♦ 4 ♠sts ②♦ r ♥ r♥ s ♥t t♦ s ♦♥♥ t♦r♥t ♠sts ♥ ♠♥s♦♥ tr rt t s r s rr♦♣ ♥t♦ 8 ♠sts

♠♥s♦♥ tr ss♦♥ ♦ t s s r♥ ② t t ❲ ss♠ tt ss ♦♥trst ♥ K ♥ t ♦ts ♣r♦t② t♦ ♦♥ t♦ ♥ r♦② st♥s r♦♠ t t ①trt♦♥ ♦ s ss s ♥♦t rss r ♥ s s♣♣♦s t♦ ♦♥ ② s♠♥tt♦♥ ♦rt♠ ♦ t trtr ♣t t♦ t ♦♥sr ♣♣t♦♥ t ♥ ♦ t tr s ♥t♦ 2dimK s t t ♥①t t ♦r♣s t t ♥ss ♦ ♥trst rr ♦♠♣♦st♦♥ s st♦♣♣ ♥ t ♠♥♠ s③ ♦ t ♦♠s ♥r♦r t♦ ǫ+2δmax ♥ t ♥♣♥♥ ♦♥t♦♥ q s ♥♦t ♦♥r

♣rtt♦♥♥ tr ♦s t rt♦♥ ♦ ♥♦♥ ♥♦r♠ ♣♦♥t strt♦♥ ♥tr② ♥♥t② ♥ t ♥st② ♣r♦rss② rss ♥ ♠♦♥ r r♦♠ t ss ♦ ♥trsts s♦♥ ♥ ♥ ♥sr t♦ ♥♦♥♥ ♣♦♥t strt♦♥ s ts ♥♦t rt②t ♥ t ss ♦ ♥trst s ♥rt② ①trt

r♥ ♦r♠t♦♥ ♥ s♣♣rtt♦♥♥ tr K ♦♠♣♦s ♦ L s ♥ 2dimK

♠sts ♦r ♥ ♦r♠t ♥r r♥ Q s ♠①tr ♦ ♥♦r♠ sr♥sQc,t sr♥ ♥ ♥ ♦♥ t c ♦ K ② t ♣rtrt♦♥ t②♣ t ∈ T s tt

∀x ∈ C, Q(x → .) =∑

c∈K

t∈T

qc,t Qc,t(x → .)

r qc,t s t ♣r♦t② ♦ ♦♦s♥ sr♥ Qc,t(x → .) ♥ ②

qc,t =Pr(t)

#s ♥ K

♦r t②♣s ♦ r♥s r s② ♦♥sr ♥ ♣rt s♦ tt T = rt ♥ ttr♥st♦♥ r♦tt♦♥ s st♥ r♥ ♥ s♦ s ♥ ♦ts sr♣♦ss t②♣s ♦t tt t r♥ Q s rrs s s♠ ♦ rrs sr♥s ♦t s♦

♥r

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

r ♣ ♣rtt♦♥♥ tr ♥ ♠♥s♦♥ t♦ ss ♦ ♥trst r s st♠tr♦♠ ♥ ♥♣t ♠ qtr s rt s♦ tt t s r rrs② ♣rtt♦♥♦r♥ t♦ t ss ♦ ♥trst s ♦♠♣♦s ♦ ♦r ♠sts ②♦ r ♥r♥ sts ♦ s t♦ r♥t② t s♠♣♥ ♣r③t♦♥ ♠t♦♥ t tr♥t s s♥s ♥♦♥ ♥♦r♠ strt♦♥ ♦t ♦ t strt♦♥ ♥tr② srst ss ♦ ♥trst ② ♣r♦rss② rs♥ t ♥st② ♥ ♠♦♥ ②

tt ts r♥ ♦s s t♦ st t ♦ ♦♥rt♦♥ s♣ C s♥ t s r♥t ② tsr♥s ♦ t ♦rsst ♦ K

♠♣r ♦r♠t♦♥

r♥ ♥ ♥ q s ♠ ♥t♦ t ②♥♠s s♦ tt t ♥ s♠♣r♦s t ss♦t♦♥ ♦ ♠t♣ ♣rtrt♦♥s ♣r♦r♠ ♥ ♣r t r♥t ♥♦♥♥♦r♠♣♦♥t strt♦♥s s ♦♥ tr♥ s♣ ♣rtt♦♥♥ trs ♦rt♠ ts t s♠♣♥ ♣r♦r

♦rt♠ r ♣r s♠♣r

♥t③ X0 = x0 ♥ T0 t t = 0♦♠♣t s♣♣rtt♦♥♥ tr Kt trt♦♥ t t Xt = x

❼ ♦♦s ♠st Smic ∈ K ♥ r♥ t②♣ t ∈ T ♦r♥ t♦ ♣r♦t②∑

c∈Smic

qc,t

❼ ♦r c ∈ Smic

Prtr x ♥ t c t♦ ♦♥rt♦♥ y ♦r♥ t♦ Qc,t(x → .)

t t r♥ rt♦

R =Qc,t(y → x)

Qc,t(x → y)exp

(

U(x)− U(y)

Tt

)

♦♦s Xt+1 = y t ♣r♦t② min(1, R) ♥ Xt+1 = x ♦trs

♦t tt t t♠♣rtr ♣r♠tr s ♣t tr srs ♦ s♠t♥♦s ♣rtrt♦♥ss tt t t♠♣rtr rs s q♥t t♦ ♦♦♥ s ② ♣t ♥ st♥r

❨♥♥ ❱ré ♦r♥t r

sq♥t s♠♣♥ ♦t s♦ tt t rr ♣rtt♦♥♥ ♦ K ♣r♦tts t s♠♣ r♦♠ ♠♦s ts ♥ ♣rt t s♠♣♥ s st♦♣♣ ♥ ♥♦ ♣rtrt♦♥ s ♥♣t r♥ rt♥ ♥♠r ♦ trt♦♥s

①♣r♠♥ts

♣r♦♣♦s ♦rt♠ s ♥ ♠♣♠♥t ♦♥ P❯ ♦r dimK = 2 ♥ dimK = 3 ♥tst ♦♥ r♦s ♣r♦♠s ♥♥ ♣♦♣t♦♥ ♦♥t♥ ♥♥t♦r ①trt♦♥ r♦♠ ♠s♥ ♦t r♦♥t♦♥ r♦♠ ♣♦♥t ♦s ♦t tt t♦♥ rsts ♥ ♦♠♣rs♦♥s r♥ ♥ s s ts ♦♥ ♥r② ♦r♠t♦♥s

♠♣♠♥tt♦♥

♦rt♠ s ♥ ♠♣♠♥t ♦♥ P❯ s♥ ❯ tr s t t♦ s♠t♥♦s ♣rtrt♦♥ s♦ tt ♦♣rt♦♥s r ♣r♦r♠ ♥ ♣r ♦r ♦ ♠st s♠♣r s ts t ♠♦r ♥t s t ♠st ♦♥t♥s ♠♥② s ♥ ♥r②s♣♥ s t s♥ s♣♣♦rt ②K s r ♦r♦r t ♦ s ♥ ♣r♦r♠♠ t♦ ♦t♠♦♥s♠♥ ♦♣rt♦♥s ♥ ♣rtr t trs ♦ ♥♦t ♦♠♠♥t t♥ ♦tr♥ ♠♠♦r② ♦s♥ ♣r♠ts st ♠♠♦r② ss ♠♠♦r② tr♥sr t♥ P❯ ♥P❯ s s♦ ♥ ♠♥♠③ ② ♥①♥ t ♣r♠tr ♦ts ①♣r♠♥ts ♣rs♥t♥ ts st♦♥ ♥ ♣r♦r♠ ♦♥ 2.5 ③ ❳♦♥ ♦♠♣tr t r♣s rr♦ rttr

P♦♥t ♣r♦sss ♥

♦rt♠ s ♥ t ♦♥ ♣♦♣t♦♥ ♦♥t♥ ♣r♦♠s r♦♠ rs ♠s s♥ ♣♦♥t ♣r♦ss ♥ t dimK = 2 ♣r♦♠ ♣rs♥t ♥ ♦♥ssts ♥ tt♥♠rt♥ rs t♦ ①trt ♥♦r♠t♦♥ ♦♥ tr ♥♠r tr s③ ♥ tr s♣t ♦r♥③t♦♥ ♣♦♥t ♣r♦ss s ♠r ② ♣ss r s♠♣ ♦♠tr ♦ts ♥ ② ♣♦♥t♥tr ♦ ♠ss ♥ t♦♥ ♣r♠trs ♥ r ♣t t♦ ♣tr t r ♦♥t♦rs ♥r② s s♣ ② ♥tr② t tr♠ s ♦♥ t ttr②② st♥ t♥t r♦♠tr② ♥s ♥ ♦ts ♦ t ♦t ♥ ♣rs ♥trt♦♥ ♣♥③♥ t str♦♥♦r♣♣♥ ♦ ♦ts s ♣♣♥①

♦♠♣tt♦♥ t♠ qt② ♦ t r ♥r② ♥ stt② r t tr ♠♣♦rt♥t rtrs t♦ t ♥ ♦♠♣r t ♣r♦r♠♥ ♦ s♠♣rs s s♦♥ ♦♥ ♦r ♦rt♠ ♦t♥s t st rsts ♦r ♦ t rtr ♦♠♣r t♦ t ①st♥ s♠♣rs ♥♣rtr r ttr ♥r② s ♦r ❬❪ ♥ ♦r ❬❪ s♥♥t②r♥ ♦♠♣tt♦♥ t♠s s s s ♦r ❬❪ ♥ 2.8 × 106 s ♦r ❬❪ ♦t tt♦r t rs♦♥s ♠♥t♦♥ ♥ t♦♥ ts ♣ ♥ ♣r♦r♠♥ ♥rss ♥ t ♥♣t s♥♦♠s rr s♦ ♥r♥s ♥ ♠♣♦rt♥t ♠tt♦♥ ♦ t rr♥ ♣♦♥t ♣r♦sss♠♣r ♦r ♣♦♣t♦♥ ♦♥t♥ ❬❪ ♦♠♣r t♦ ♦r ♦rt♠ ♥ t srt③t♦♥ ♦ t♦t ♣r♠trs rqr ♥ ❬❪ ss ♣♣r♦①♠t tt♦♥ ♥ ♦③t♦♥ ♦ ♦ts ①♣♥s t r qt② ♦ t r ♥r② stt② s ♥②③ ② t ♦♥t♦ rt♦♥ ♥ s t st♥r t♦♥ ♦r ♠♥ ♥ ♥♦♥ t♦ r♥t sttst♠sr ♦r ♦♠♣r♥ ♠t♦s ♥ r♥t ♠♥s r s♠♣r ♣r♦s ttr stt②t♥ t ①st♥ ♦rt♠s

♠♣t ♦ t tr♥ s♣ ♣rtt♦♥♥ tr s s♦ ♠sr ② ♣r♦r♠♥ tsts t

♥r

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

r r ♦♥t♥ ② ♣♦♥t ♣r♦ss ♦ ♣ss rt ♦r t♥ t♥ t♦s♥ rsr ①trt ② ♦r ♦rt♠ ♥ ♠♥ts r♦♠ t r s r ♠ ♠ qtr strtr s s t♦ rt ♥♦♥♥♦r♠ ♣♦♥t strt♦♥ ♦t ♦♥ t r♦♣♣♣rts ♦ t rs r rt② ♣tr ② ♣ss ♥ s♣t ♦ t ♦ qt② ♦ t ♠♥ t ♣rt ♦r♣♣♥ ♦ rs

♦♥t ♦ rt♦♥♥r② t♠ ♦ts

❬❪ 7.3% 4.2% 1.7%♠t♣ rt ♥ 5.0% 2.1% 1.3%t ❬❪♦r s♠♣r t♦t 7.4% 6.2% 1.6%♣rtt♦♥♥ tr♦r s♠♣r t 4.4% 1.8% 1.1%♣rtt♦♥♥ tr

Pr♦r♠♥s ♦ t r♦s s♠♣rs t ♣rs♥ts t ♦♥ts ♦ rt♦♥♦ t ♥r② t♠ ♥ ♥♠r ♦ ♦ts r t t ♦♥r♥ ♦r 50 s♠t♦♥s

❨♥♥ ❱ré ♦r♥t r

r Pr♦r♠♥s ♦ t r♦s s♠♣rs r♣ srs t ♥r② rs ♦rt♠ r♦♠ t r ♠ ♣rs♥t ♥ ♠ s r♣rs♥t s♥ ♦rt♠ s♦t tt t ♦rt♠ ❬❪ s s♦ s♦ tt t ♦♥r♥ s ♥♦t s♣② ♦♥ tr♣ 2.9× 107 trt♦♥s r rqr rss 1.8× 104 ♦r ♦r ♦rt♠

♦r s♠♣r ♠♣s♦♥ ❬❪ ❬❪ t ♦♥t♦r ❬❪♠ ♠♥t rtt♦♥ 0.45% 2.06% 0.06% 2.28%❯♥rtt♦♥ 32.7% 52.7% 17% 58.9%♣rs♥tt♦♥ ♥s♠♥t ♥s♠♥t ♥s♠♥t ♣①s

♦♠♣rs♦♥s t ①st♥ ♥♥t♦r ①trt♦♥ ♠t♦s r♦♠ t ♠ ♣rs♥t♥

♥♦r♠ ♣♦♥t strt♦♥s ♣r♦r♠♥s rs t r♠♥ ttr t♥ t ①st♥♦rt♠s ♥ ♣rtr t s♠♣r ♦ss stt② ♥ t ♦ts r tt ♥ ♦tss rt② t♥ t t ♣rtt♦♥♥ tr

♦rt♠ s s♦ ♥ tst ♦♥ ♥♥t♦r ①trt♦♥ r♦♠ ♠s ♣r♠tr♦ts r r ♥s♠♥ts ♥ ② ♣♦♥t ♥tr ♦ ♠ss ♥ t♦ t♦♥ ♣r♠trs♥t ♥ ♦r♥tt♦♥ ♦♥trr② t♦ t ♣♦♣t♦♥ ♦♥t♥ ♠♦ t ♣rs ♣♦t♥t♥s ♦♥♥①♦♥ ♥trt♦♥ ♦r ♥♥ t ♥s♠♥ts r s♦s r♦ ♥t♦r①trt♦♥ rst ♦t♥ r♦♠ stt ♠ rs ♣r♦s ♠♥ts ♦ ♦♠♣rs♦♥s t ①st♥ ♠t♦s rst qt② ♥ tr♠s ♦ r♦ ♥r♦rtt♦♥ s ♦②s♠r t♦ ①st♥ ♣♣r♦s r t♥ ❬❪ ♥ ❬❪ ♥ ♦r t♥ ❬❪ t ♦r ♦rt♠s♥♥t② ♠♣r♦s t ♦♠♣t♥ t♠s 16 s♦♥s r rqr ♥ ♦r s ♦♠♣r t♦7 ♠♥ts ② ♠♣s♦♥ ♦rt♠ ❬❪ 155 ♠♥ts ♦r ♠t♦ ❬❪ ♥ 60♠♥ts ♦r ♥ t ♦♥t♦r s ♣♣r♦ ❬❪

P♦♥t ♣r♦sss ♥

❲ tst ♦r ♦rt♠ t dimK = 3 ♦♥ ♥ ♦r♥ ♦t r♦♥t♦♥ ♣r♦♠ r♦♠ srs♥s ♦ s t♦ ①trt trs r♦♠ ♥strtr ♣♦♥t ♦s ♦♥t♥♥ ♦t ♦ ♦trs♥♦s ♥ ♦tr r♥t ♦ts ♥s r♦♥ rs ♥s rs t ♥ t♦ r♦♥③

♥r

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

r ♥♥t♦r ①trt♦♥ ② ♣♦♥t ♣r♦ss ♦ ♥s♠♥ts ♠ ♥ t ♣♦♥tstrt♦♥ s r♦② st♠t rt t r♦ ♥t♦r s r♦r r s♠♥ts ② ♦r♦rt♠ ♥ 16 s♦♥s r♦♠ t stt ♠ ♦t tt s s♦♥ ♦♥ t ♦s♣ s♦♠♣rts ♦ t ♥t♦r ♥ ♦♠tt ♥ r♦s r ♥ ② trs t s♦♠ ♦t♦♥s ①st♥♠t♦s s♦ ♥♦♥tr ts ♥ s ss

tr s♣s ♥ t②♣s ♦ts ss♦t t t ♣♦♥t ♣r♦ss ♦rrs♣♦♥ t♦ rr②♦ r♥t t♠♣ts ♦ trs t ♥ ♣♣♥① ♥tr② t tr♠ ♦ t ♥r②♠srs t st♥ r♦♠ ♣♦♥ts t♦ t♠♣t rs t ♣rs ♥trt♦♥ ts ♥t♦♦♥t ♦♥str♥ts ♦♥ ♦t ♦r♣♣♥ s s ♦♥ tr t②♣ ♦♠♣tt♦♥ ♦♠♣r t♦t ♦r♠r ♣♣t♦♥s t ♦♥rt♦♥ s♣ C s ♦ r ♠♥s♦♥ s♥ t ♦ts r♣r♠tr② ♠♦r ♦♠♣① s ♦s ♦r ♦rt♠ t♦ ①♣♦t ♠♦r ♣② ts ♣♦t♥t r♦tt♦♥ r♥ s ♥♦t s r s♥ t ♦ts r ♥r♥t ② r♦tt♦♥ ♦r s st♥ r♥ ♥ ♦rr t♦ ①♥ t t②♣ ♦ ♥ ♦t

s♦s rsts ♦t♥ r♦♠ sr s♥s ♦ r r♥ ♥ ♥tr ♥r♦♥♠♥ts 30rs♣t② 5.4 t♦s♥ trs r ①trt ♥ 96 rs♣ 53 ♠♥ts ♦♥ t 3.7♠2 ♠♦♥t♥r rs♣ 1♠2 r♥ r r♦♠ 13.8 rs♣ 2.3 ♠♦♥ ♥♣t ♣♦♥ts ♦♠♣tt♦♥ t♠s♥ ♣♣r t ♥♥ ♥♦♥tr ♦ts ♥ s rs s♥s ② ♣♦♥t ♣r♦sss s ♥ t♦ ♦r ♥♦ s ♥♦t ♥ ♥t ♥♦ t♦ t ①tr♠ ♦♠♣①t② ♦ t stt s♣ ♦t s♦ tt t ♣r♦r♠♥s ♦ ♠♣r♦ ② r♥ t s♣C t ♣♦♥t ♣r♦ss ♦♥ ♠♥♦s r t ③♦♦r♥t ♦ ♣♦♥ts s tr♠♥ ②♥ st♠t r♦♥ sr

t♥ t tt♦♥ qt② t r② ♦r ts ♣♣t♦♥ s t ts s♥ ♥♦r♦♥ trt ①sts s strt ♦♥ t r♦♣♣ ♣rt ♥ ♠♥② ♥① ttrs ♦♥ r♥t ③♦♥s r♦♠ r ♠s qr t t sr s♥s ♦ts r ♦② ♦t ♥ tt t♦ t ♥♣t ♣♦♥ts t ♦♠ss♦♥s ♥ ♥ trs r srr♦♥② ♦tr t②♣s ♦ r♥ ♥tts s s ♥s ♥♦♥♦r♣♣♥ ♦♥str♥t ♦ t ♥r②♦s s t♦ ♦t♥ stst♦r② rsts ♦r rs t tr ♥st② rr♦rs rq♥t② ♦r

❨♥♥ ❱ré ♦r♥t r

♥ st♥s♥ t tr t②♣ ♥ s♣t ♦ t tr ♦♠♣tt♦♥ tr♠ ♦ t ♥r②

r r r♦♥t♦♥ r♦♠ ♣♦♥t ♦s ② ♣♦♥t ♣r♦ss s♣ ② ♣r♠tr♠♦s ♦ trs r ♦rt♠ tts trs ♥ r♦♥③s tr s♣s ♥ rs t ♥♣ts♥ ♣♦♥ts ♥tr ♥ t♦♣ rt ♥♣t s♥ ♣♦♥ts r♥ ♥r♦♥♠♥ts ♥s♣t ♦ ♦tr t②♣s ♦ r♥ ♥tts ♥s r ♥ ♥s ♦♥t♥ ♥ ♥♣t ♣♦♥t♦s r ♦t s♥s ♥ r ♠ s ♦♥ t♦ ♦tt♦♠ rt t r♦♣♣ ♣rt t♦ ♣r♦ ♠♦r ♥tt r♣rs♥tt♦♥ ♦ t s♥ ♥ t tr ♦t♦♥ ♦t ♦♥ t r♦♣♣ ♣rt ♦t ♣r♠tr ♠♦s t t♦ t ♥♣t ♣♦♥ts ♦rrs♣♦♥♥ t♦ trs ♥ ♦ t ♥trt♦♥♦ tr ♦♠♣tt♦♥ ♦s t rr③t♦♥ ♦ t tr t②♣ ♥ ♥♦r♦♦

♦♥s♦♥

❲ ♣r♦♣♦s ♥ ♦rt♠ t♦ s♠♣ ♣♦♥t ♣r♦sss ♦s str♥ts ♥ ♦♥ t ①♣♦tt♦♥♦ r♦♥ ♣r♦♣rts t♦ ♥ t s♠♣♥ t♦ ♣r♦r♠ ♥ ♣r ♥ t ♥trt♦♥♦ tr♥ ♠♥s♠ ♦♥ ♥t strt♦♥s ♦ t ♣♦♥ts ♥ t s♥ r♦rt♠ ♠♣r♦s t ♣r♦r♠♥s ♦ t ①st♥ s♠♣rs ♥ tr♠s ♦ ♦♠♣t♥ t♠s ♥stt② s♣② ♦♥ r s♥s r t ♥ s r② ♠♣♦rt♥t t ♥ s t♦t♣rtr rstrt♦♥s ♦♥trr② t♦ ♠♦st s♠♣rs ♥ ♥ ♣♣rs s ♥ ♥trst♥ tr♥tt♦ t st♥r ♦♣t♠③t♦♥ t♥qs ♦r ♥ ♣r♦♠s s ①♣♥ ♥ ♣♣♥① ♥ ♣rtr ♦♥ ♥ ♥s s♥ t ♠♦ ♣r♦♣♦s ♥ t♦♥ t♦ ①trt ♥② t②♣♦ ♣r♠tr ♦ts r♦♠ r ♣♦♥t ♦s ♥ tr ♦rs t ♦ ♥trst♥ t♦♠♣♠♥t t ♦rt♠ ♦♥ ♦tr P❯ rttrs ♠♦r ♣t t♦ t ♠♥♣t♦♥ ♦ t strtrs rttr s♦ tt t ♣r♦r♠♥s ♦r ♣♦♥t ♣r♦sss ♥ ♦ ♠♣r♦

♥r

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

♥♦♠♥ts

s ♦r s ♣rt② ♥ ② t r♦♣♥ sr ♦♥ trt♥ r♥t ♦st♦♠tr② Pr♦ss♥ r♥t r♠♥t t♦rs t♥ ♠ss♦ s♦t r♥ ♣♣♥ ♥② t ♦r ❱t ♥ t ♦r ♣r♦♥♥ ttsts

♣♣♥s

ts ♦♥ t ♣♦♣t♦♥ ♦♥t♥ ♠♦ r♦♠ ♠s

♥ ts ♣♣♥① t t ♥r② ♠♦ s ♦r t ♣♦♥t ♣r♦ss ♦ ♣ss tt s♥ ♣rs♥t ♥ st♦♥ ♦ t ♣♣r x r♣rs♥ts ♦♥rt♦♥ ♦ ♣ss ♥tr ♦♠ss p ♦ ♥ ♣s s ♦♥t♥ ♥ t ♦♠♣t st K s♣♣♦rt♥ t t ♠ s

r ♣s ♣r♠trs ♥ ♣s s ♥ ② ♣♦♥t p ∈ K ♥tr ♦ ♠ss ♦ t♦t ♥ 3 t♦♥ ♣r♠trs r t s♠♠♦r ①s b t s♠♠♥♦r ①s a♥ t ♥ θ ♥s rs♣t② ♦rr♥ ♦♠ ♦ t ♦t s ♥♦t ② Sin

rs♣t② Sout

♥r② ♦♦s t ♦r♠ ♥ ② q ♦ t ♣♣r

U(x) =∑

xi∈x

D(xi) +∑

xi∼xj

V (xi, xj)

r t ♥tr② t tr♠ D(xi) ♥ t ♣♦t♥t V (xi, xj) r ♥ ②

D(xi) =

1− d(xi)d0

d(xi) < d0

exp(d0−d(xi)d0

)− 1 ♦trs

V (xi, xj) = βA(xi ∩ xj)

min(A(xi), A(xj))

• d(xi) r♣rs♥ts t ttr②② st♥ t♥ t r♦♠tr② ♥s ♥ ♦ts t♦t xi

d(xi) =m2

in −m2out

4(σin − σout)−

1

2ln(

2σinσout

σ2in + σ2

out

)

❨♥♥ ❱ré ♦r♥t r

r t tr♠ D(xi) ♥ ♥t♦♥ ♦ t ttr②② st♥ d(xi) r t♦♥t d0 t ♠♦r st t ♦t tt♥

r min ♥ σin rs♣t② mout ♥ σout r t ♥t♥st② ♠♥ ♥ st♥rt♦♥ ♥ Sin rs♣t② ♥ Sout

• d0 s ♦♥t ①♥ t s♥stt② ♦ t ♦t tt♥

• A(xi) s t r ♦ ♦t xi

• β s ♦♥t t♥ t ♥♦♥♦r♣♣♥ ♦♥str♥t t rs♣t t♦ t t tr♠

rs ♥ sr t ♦t♦♥ ♦ t ♦ts r♥ t s♠♣♥ ♥ s ♦ r♦♥t♥ ♦t tt s ♠t♠t tt♦♥ s s t♦ r♦② ①trt t ss ♦♥trst r♦♠ t ♠ ♦ rs s

ts ♦♥ t ♥♥t♦r ①trt♦♥ ♠♦ r♦♠ ♠s

❲ t r t ♥r② ♠♦ s ♦r t ♣♦♥t ♣r♦ss ♦ ♥s♠♥ts tt s ♥♣rs♥t ♥ st♦♥ ♦ t ♣♣r ♠♦ ♦r♠t♦♥ s rt② s♠r t♦ t ♣♦♣t♦♥♦♥t♥ ♣r♦♠ t ♥ ♣♣♥① s strt ♦♥ ♥s♠♥t s ♥ ② ♣r♠trs ♥♥ t ♣♦♥t ♦rrs♣♦♥♥ t♦ t ♥tr ♦ ♠ss ♦ t ♦t♠r② t♦ t ♣♦♣t♦♥ ♦♥t♥ ♠♦ t tt♥ qt② t rs♣t t♦ t t s s♦♥ t ttr②② st♥ ♥tr② t tr♠ D(xi) ♦ t ♥r② s ♥ ② q ♣♦t♥t V (xi, xj) ♣♥③s str♦♥ ♦t ♦r♣s s q ♦r t ♣♦t♥t s♦ts ♥t♦ ♦♥t ♦♥♥t♦♥ ♥trt♦♥ ♥ ♦rr t♦ ♦r t ♥♥ ♦ t ♥s♠♥ts ♣♦t♥t tr♠ s ♥ ②

V (xi, xj) = β1A(xi ∩ xj)

min(A(xi), A(xj))+ xi∼ncxj

× β2f(xi, xj)

• β1 ♥ β2 r t♦ ♦♥t t♥ rs♣t② t ♥♦♥♦r♣♣♥ ♥ ♦♥♥t♦♥♦♥str♥ts t rs♣t t♦ t t tr♠

• ∼nc s t ♥♦♥♦♥♥t♦♥ rt♦♥s♣ t♥ t♦ ♦ts xi ∼nc xj t ♥♦r rs♦ xi ♥ xj s ♦ ♥♦t ♦r♣

♥r

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

r ♦t♦♥ ♦ t ♦t ♦♥rt♦♥ r♥ t s♠♣♥ ♥ ♠ ♣t r♣rs♥t♥ r ♣♦♣t♦♥ s r♦② s♠♥t ② ♠t♠t tt♦♥ ♥t♦ ♥r②♠ t ♦♦r ♦rrs♣♦♥s t♦ t ss ♦ ♥trst qtr s rt r♦♠ ts♠♥t ♠ ♥r② ♣r♦rss② rss r♥ t s♠♣♥ ♦tt♦♠ t♦ts ♥ t rr♥t ♦♥rt♦♥ ♦♠ ♠♦r ♥ ♠♦r r♥t

r ♦t♦♥ ♦ t ♥♠r ♦ ♦ts r♥ t s♠♣♥ r♦♠ t r ♠ ♣rs♥t♥ ♦ t ♣♣r ♦t tt t♠ s r♣rs♥t s♥ ♦rt♠ s ♥ tt ♦rt♠ ❬❪ s s♦ s♦ tt t ♦♥r♥ s ♥♦t s♣② ♦♥ t r♣ r ♥ ♥tst ♥♠r ♦ rs ♦♥ ② ♥ ①♣rt r♦♥ trt ♥♠r ♦ ♦ts ♦♥ ② ♦rs♠♣r s r② ♦s t♦ t ①♣rt ♥♠r s ♥♦t t s ♦ t ♦tr s♠♣rs ♦ttt st♠t♥ t ♦rrt ♥♠r ♦ ♦t ♦s ♥♦t ♠♥ tt t ♦ts r ♦rrt② ttt♦ t t t t s ♥ ♠♣♦rt♥t rtr♦♥ ♦r ♣♦♣t♦♥ ♦♥t♥ ♣r♦♠s s ♠♥t♦♥ ♥❬❪

❨♥♥ ❱ré ♦r♥t r

r ♥s♠♥t ♣r♠trs ♥s♠♥t s ♥ ② ♣♦♥t p ∈ K ♥tr ♦♠ss ♦ t ♦t ♥ 3 t♦♥ ♣r♠trs r t s♠♥t b t s♠t a♥ t ♦r♥tt♦♥ θ ♦t tt t s♠t a ♥ ♣r♠♥r② ① ♣♥♥ ♦♥ t♣♣t♦♥ ♦r ♠♦♥♦s r♦♥t♦r ①trt♦♥ ♥s rs♣t② ♦rr♥♦♠ ♦ t ♦t s ♥♦t ② Sin rs♣t② Sout ♥t ♦ t ♦♥♥t♦♥ r cs♦ t ♥♦r r s ♣r♠tr ♦ t ♠♦ ♦r♠t♦♥ ♥♦rs r ♥♦t② A1 ♥ A2

• condition s t ♥t ♥t♦♥ rtr♥♥ ♦♥ ♥ ♦♥t♦♥ s ♥ ③r♦ ♦trs

• f(xi, xj) s s②♠♠tr ♥t♦♥ t♥ t ♣♥③t♦♥ ♦ t♦ ♥♦♥♦♥♥t ♦tsxi ♥ xj t rs♣t t♦ tr r tt♥ qt② ♥t♦♥ f s ♥tr♦ t♦st② r① t ♦♥♥t♦♥ ♦♥str♥t ♥ t t♦ ♦ts r ♦ r② ♦♦ qt②

s ♦r t r ♦♥t♥ ♣r♦♠ s s ♠t♠t tt♦♥ t♦ r♦② ①trt tss ♦ ♥trst r♦♠ t r ♠ ♦ r♦♥t♦r s♦♥ ♦♥ r ♦ t ♣♣r ♥t r♦ ♣①s ♥ ts ♠ r rt② rt ♦♠♣r t♦ t r♦♥ s♠♥trst s ♥t② ♥♦t ♦♣t♠ t s♥t t♦ rt ♥ ♥t ♣rtt♦♥♥ tr s r ♠ ♦ t ♣♣r

ts ♦♥ t tr r♦♥t♦♥ ♠♦ r♦♠ ♣♦♥t ♦s

♥ ts ♣♣♥① t t ♥r② ♠♦ s ♦r t ♣♦♥t ♣r♦ss ♦ trs tt s ♥♣rs♥t ♥ st♦♥ ♦ t ♣♣r x r♣rs♥ts ♦♥rt♦♥ ♦ ♠♦s ♦ trs r♦♠ t♠♣t rr② sr ♥ ♥tr ♦ ♠ss p ♦ tr s ♦♥t♥ ♥ t ♦♠♣t st K s♣♣♦rt♥ t ♦♥♥♦① ♦ t ♥♣t ♣♦♥t ♦ s ❲ ♥♦t ② ∂xi t sr ♦ t ♦t xi ♥② Cxi t ②♥r ♦♠ ♥ rt ①s ♣ss♥ tr♦ t ♥tr ♦ ♠ss ♦ xi ♥ t ♥♣t ♣♦♥ts r ♦♥sr t♦ ♠sr t qt② ♦ xi ♥r② ♦♦s t ♦r♠ ♥ ② q ♦ t ♣♣r t t ♥tr② t tr♠ D(xi) ♥

♥r

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

r rr② ♦ tr ♠♦s t ♦ts r s♣② ② ♣♦♥t ♥tr ♦ ♠ssstrt ② r ♦t ♥ t♦♥ ♣r♠trs rr♦s ♥♥ t ♥♦♣② t②♣♦s s♣ ♥ ♦♥♦ ♣♥ ♦r r ♣s♦ ♣♦♣r ♦r t ♦r s♠♣s♦ ♦ ♦r ♠♣

r r ♣r♠trs tr s ♥ ② ♣♦♥t p ∈ K ♥tr ♦ ♠ss ♦ t ♦t t②♣ t ∈ ♦♥♦ ♣s♦ s♠♣s♦ ♥ 3 t♦♥ ♣r♠trs r t♥♦♣② t a t tr♥ t b ♥ t ♥♦♣② ♠tr c ②♥r ♦♠ Cxi

r♣rs♥ts t ttrt♦♥ s♣ ♦ ♦t xi ♥ t ♥♣t ♣♦♥ts r s t♦ ♠sr tqt② ♦ ts ♦t

❨♥♥ ❱ré ♦r♥t r

t ♣rs ♣♦t♥t V (xi, xj) ♥ ②

D(xi) =1

|Cxi|

pc∈Cxi

γ(d(pc, ∂xi))

V (xi, xj) = β1Voverlapping(xi, xj) + β2Vcompetition(xi, xj)

• |Cxi| s ♦♥t ♥♦r♠③♥ t ♥tr② t tr♠ t rs♣t t♦ t ♥♠r ♦ ♥♣t♣♦♥ts ♦♥t♥ ♥ Cxi

• d(pc, ∂xi) s st♥ ♠sr♥ t ♦r♥ ♦ t ♣♦♥t pc t rs♣t t♦ t ♦tsr ∂xi d s ♥♦t t ♦♥♥t♦♥ ♦rt♦♦♥ st♥ r♦♠ ♣♦♥t t♦ sr s sr trs ♦ ♥♦t sr ♣s♦♦♥♦ s♣s ♥♣t ♣♦♥ts r ♥♦t ♦♠♦♥♦s②strt ♦♥ t ♦t sr r d s ♥ s t ♦♠♥t♦♥ ♦ t ♣♥♠trst♥ t ♣r♦t♦♥ ♥ t ♣♥ ♦ qt♦♥ z = 0 ♦ t ♥ st♥ ♥t t♠tr rt♦♥ s tt ♣♦♥ts ♦ts t ♦t r ♠♦r ♣♥③ t♥ ♥s♣♦♥ts strts t ♦r ♦ d ♥ t ❳❩♣♥ ♦t tt d s ♥r♥t ②r♦tt♦♥ r♦♥ ❩①s

• γ(.) ∈ [−1, 1] s qt② ♥t♦♥ s strt② ♥rs♥

• Voverlapping s t ♣rs ♣♦t♥t ♣♥③♥ str♦♥ ♦r♣♣♥ t♥ t♦ ♦ts♥ ♥ ②

Voverlapping(xi, xj) =A(xi ∩ xj)

min(A(xi), A(xj))

r A(xi) s t r ♦ t ♦t xi ♣r♦t ♦♥t♦ t ♣♥ ♦ qt♦♥ z = 0

• Vcompetition s t ♣rs ♣♦t♥t ♦r♥ s♠r tr t②♣ t ♥ ♥♦r♦♦

Vcompetition(xi, xj) = ti 6=tj

r . s t ♥t ♥t♦♥

• β1 ♥ β2 r t♦ ♦♥ts t♥ rs♣t② t ♥♦♥♦r♣♣♥ ♦♥str♥t ♥t ♦♠♣tt♦♥ tr♠ t rs♣t t♦ t t tr♠

♥ ♦rr t♦ r♦② ①trt t ss ♦ ♥trst r♦♠ ♣♦♥t ♦ sttr sr♣t♦r ❬❪ s st♦ ♥t② t ♣♦♥ts ♣♦t♥t② ♦rrs♣♦♥ t♦ trs

Pr♦r♠♥ tsts ♦♥ ♦♥♥t♦♥ r♦ ♥♦♠

♠♦s

s ♠♥t♦♥ ♥ t ♣♣r ♦r ♦♥t r♦ s♠♣r ♥ s ♦r ♦♣t♠③♥ ♦♥♥t♦♥♠t ♥rs ♦ t ♦r♠

U(l) =∑

i∈V

Di(li) +∑

(i,j)∈E

V (li, lj)

r V s t st ♦ rts ♦r sts ♥ s ♦ ♠s E s t st ♦ s ♣rs ♦ ♥♦r♥ rts ♥ l ∈ [1, N ]card(V) s ♦♥rt♦♥ ♦ s ♦r V t N t ♥♠r ♦

♥r

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

r ♦r ♦ d ♥ t ❳❩♣♥ s♦rs r♣rs♥t t st♥s r♦♠ ♣♦♥ts t♦t s♠♣s♦ sr ♦♦r ♥ t

s ♦ t ♣r♦♠ ♦r ts ♦♥r♥♥ ts t②♣ ♦ ♥r② ♠♥♠③t♦♥ ♣r♦♠s ♥ ♦♥ ♥ ❬❪

♥ t ♣♦♥t ♣r♦sss ♥ s♥ s ♥r③t♦♥ ♦ ts ♦♥♥t♦♥ ♠♦s r t ♠♥s♦♥ ♦ t ♦♥rt♦♥ s♣ s r r♣ strtr s ♥♦t stt t ②♥♠ s r ♥ ♥ srt ♦r♥ ♦♥t♥♦s ♦♠♥s s♦ tt ♦♠♣① ♣r♠tr ♦ts♥ ♥ tr s ♥♦ ♦♥str♥t ♦♥ t ♦r♠ ♦ t ♣rs ♥trt♦♥ tr♠ V ② t ♠♥♠③t♦♥t♥qs

♥♦r♠ strt♦♥ ♦ t s s ♦♥sr r ♥ tr s ♥♦ ♣♦♥t t♦ ♦♠♣t ♣rtt♦♥♥ tr r♦♠ ♣r♥ s♠♥tt♦♥ s t ♣r♦♠ s t♦ s♠♥t t t rr ♣rtt♦♥♥ s t♥ s s strt ♦♥ r ♥ ♦ t ♣♣r t ♦ s ♥ ② t ♥♣♥♥ ♦♥t♦♥ s q ♥ t ♣♣r s δmax = 0 ♦tsr ① t t ♦ s ♠st s♣r♦r ♦r q t♦ ǫ t t ♦ t ♥♦r♦♦rt♦♥s♣ ♦r ♥st♥ ♥ s ♦ ♥ ♠ ♥ ♣r♦♠ t ♦r ♦♥♥①t② ♥♦r♦♦ t ♦♥t♦♥ ♠♣s tt ♥ ♦♥t♥ ♦♥ ♥q ♣① ♣rtt♦♥♥ s♦♦s② ♣r♦♠s♥ s ♦♥ qrtr ♦ t ♣①s ♦ t ♠ ♣rtr s♠t♥♦s②t trt♦♥ ♦ t s♠♣♥

♣r♦r♠♥s ♦ ♦r s♠♣r ♥ tst r♦♠ s ♠♦ ♦ ♠ s♠♥tt♦♥ ♥tr② t tr♠ Di(li) ♠srs t qt② ♦ li t ♣① i ss♥ strt♦♥s♦r ♣rs② t r♦♠tr② strt♦♥ ♦ ss s ♠♦ ② ss♥ ♦s♠♥ ♥ st♥r t♦♥ r ♠♦ ♣r♠trs t♦ st♠t ♦r ① ② ♥ sr ♣♦t♥t V ♦rrs♣♦♥s t♦ t ♦♥♥t♦♥ P♦tts ♠♦ ❬❪ s♦ tt t ♥ s s♠♦♦t♥ ♦ ♥♦r♦♦ ♦♥♥①t②

♥ r s♦ t ♣r♦r♠♥s ♦t♥ r♦♠ r♦s ♠s ♥ ♣r♦ ♦♠♣rs♦♥s t t st♥r ♦♣t♠③t♦♥ t♥qs ♠①♣r♦t Pr♦♣t♦♥ P❬❪ r♣t s ♦rt♠s ❬❪ ♥ trt ♦♥t♦♥ ♦s ❬❪ r s♠♣r♦♠♣ts t t ♦tr ♦rt♠s r ♥r② s s② st② r t♥② s♥ α①♣♥s♦♥ αβ s♣ ♦r P t t ♦♠♣tt♦♥ t♠ r ♦r ♥ ♦ t♠

❨♥♥ ❱ré ♦r♥t r

r ♠ s♠♥tt♦♥ t♦♣ ♥♣t ♠s r♦♠ t t♦ rt ♦rs ♣♥t r♥ ♠t s♦♥ r♦ sts ♦t♥ ② ♦r s♠♣r ② tr r♦ α①♣♥s♦♥ ♥② st r♦ ♦ r s ♥♦t t♦ t t s♠♥tt♦♥ ♠♦ s ♦♦s②♥♦t ♦♣t♠ t t♦ ♦♠♣r t rsts r♦♠ r♦s ♦♣t♠③t♦♥ t♥qs ♥ ♣rtr r♦♠α①♣♥s♦♥ ♥ ♣r♦ t ♦st ♥ st ♥rs ♥ t ♠♥ rs♣t②

♦r s♠♣r α①♣♥s♦♥ αβ s♣ P ♥r② t♠ ♥r② t♠ ♥r② t♠ ♥r② t♠ ♥r② t♠

♦rs

s ♣①s

♣♥t

s ♣①s

r

s ♣①s

♠t

s ♣①s

Pr♦r♠♥s ♦ r♦s ♦♣t♠③t♦♥ ♦rt♠s ♥ tr♠s ♦ r ♥r② ♥ ♦♠♣tt♦♥ t♠ ①♣rss ♥ s♦♥ r♦♠ t ♠s s♦♥ ♥

♥r

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

♦♠s r② ttrt ♥ t ♥♠r ♦ s ♥ t ♠ s③ ♥rs ♥ ♣rtrt rsts ♦t♥ r♦♠ ♠t s s♠t ♠ ♦ 8 sss s ♥♦rr♣t ② ss♥ ♥♦s s♦ tt ♦r s♠♣r ♥ ♥ ♥trst♥ tr♥t t♦ tst♥r ♦♣t♠③t♦♥ t♥qs ② str♦♥② r♥ ♦♠♣tt♦♥ t♠s r♥ ♥ ♥r② ♦ s♠r qt② ♦t tt t ♥r② r♦♠ t ♦rt♠ s r② ♦♥ ts♠ 4.1186 ♥ ts st ♥ ♦ ♠♥♠ s strt ♥ ♦tt♦♠ rt♠ r t ♥tr rt str s ♥ ♥♦rrt② ss ♦♦r ♥st ♦ rr②s ♣r♠♥r② ①♣r♠♥ts ♣rs♥t ♥ ts ♣♣♥① r ♣r♦♠s♥ t ♥ t♦ ♦♣ ♥ ♣rtr ♦♠♣rs♦♥s t ♣r③ rs♦♥s ♦ r♣t s ♦rt♠s ❬❪ ♠st t♦ t ♠♦r ♣② t ♣♦t♥t ♦ t s♠♣r ♦r s♦♥ ♠t ♣r♦♠s

t♦♥ rsts ♥ ♦♠♣rs♦♥s

❲ ♣rs♥t ♥ ts ♣♣♥① s♦♠ t♦♥ rsts ♥ ♦♠♣rs♦♥s ♦♥ ♣♦♣t♦♥ ♦♥t♥♥ ♥♥t♦r ①trt♦♥ ♣r♦♠s ♦t tt t ♦♦♥ ♠s ♥ ♣tr ♥ rs♦t♦♥ rr s ♥t t♦ ③♦♦♠ ♥ t ♠s ♥ ♦rr t♦ s ♠♦r ts

• ♥ ♣r♦♣♦s rsts ♦♥ ♦♥t♥ r♦♠ ♠r♦s♦♣ ♠s s♠s ♥ s♠t ② ❬❪ ♥ r ♣r♦ t r♦♥ trt t ①t♥♠r ♥ ♦t♦♥ ♦ s r ♥♦♥ ♦r ♠ r ♦rt♠ s ♥ ♦♠♣rt♦ t s♣rs ♣♣r♦ ♣r♦♣♦s ② ♠♣ts② t ❬❪ ♥ ♦t tt♦♥trr② t♦ ♦r ♦rt♠ ts s♣rs ♣♣r♦ st rs ♥ st♠t ♥♠r ♦s ♣r ♠s t♦t ♦t♥ ♥ ♥t♥ t♠

• ♥ ♣rs♥t t♦♥ ♥♥t♦r rsts s♦s s ♦♠♣rs♦♥s t r♥t ♣♣r♦s ❬ ❪ r♦♠ ♦t t r♦ ♠ ♣rs♥t ♥ ♦t ♣♣r ♥ ♥ r ♠ ♦ rr♥t♦r ♠r② t♦ ♦ t ♣♣r ♣r♦s ♦♠♣rs♦♥ t ❬ ❪ r♦♠ t rr ♠ ♥ tr♠s ♦ ♦♠♣tt♦♥ t♠♥ ♥t♦r ①trt♦♥ r②

• ♥ s♦ rsts ♦♥ r♥t ♦t ①trt♦♥ ♣r♦♠s r♦♠ ♠s

❨♥♥ ❱ré ♦r♥t r

r ♦♥t♥ r♦♠ t t ♠r♦s♦♣ ♠ ♠ r♦♥ rt s♦st ♦t♦♥ ♦ tr♦ r♦ss rt r ♣♦♥t ♣r♦ss ♦ ♣ss ♣trst s t r② rr♦rs s strt ♦♥ t rt r♦♣ ♦♠ss♦♥s ♥ ♣♣r ♥ ♠♥②s r rr♦♣ ♥ t♥② r ♦t tt ♥ s s t s r② t t♦ s② ttt s ♥ ♦r ♥ ①♣rt

r♦♥ rt r ♦rt♠ ♠♣ts② t ❬❪ L1rrst♦♥♠♣ts② t ❬❪ ♦♥♦rrst♦♥

♦♠♣rs♦♥s t t ♦♥t♥ ♣♣r♦ ♣r♦♣♦s ② ♠♣ts② t ❬❪ r♦♠t ♠r♦s♦♣ ♠s ♦ ♥ s ♦rrs♣♦♥ t♦ t ♥♠r ♦ s ♥t ♦♥sr ♠ r ♦rt♠ ♣r♦s ttr st♠t♦♥ ♦ t ♥♠r ♦ s t♥♦t t L1 ♥ ♦♥♦rr③t♦♥ rs♦♥s ♦ ❬❪ ♥ ♣rtr ♦r ♦rt♠ s ♠♦rrt ♥ s ♦ ♦♥rt♦♥s ♦ s ② ♦♥♥trt ♥ s♠ rs

♥r

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

r ♦♥t♥ r♦♠ st ♦ s① ♠r♦s♦♣ ♠s ♠r② t♦ r♦♥rt s r♣rs♥t ② ♠ t r♦sss rs ♦r rst s ♥ ② ♦tt♦♠ tr ♣ss

❨♥♥ ❱ré ♦r♥t r

r ♥♥t♦r ①trt♦♥ r ♦rt♠ s ♠♦r rt rsts t♥ t ♠t♦s♣r♦♣♦s ② ♦r② t ❬❪ ♥ r t ❬❪ r♦♠ t♦♣ t r♦ ♥ ♦tt♦♠ rr♥t♦r ♠s t ♦s ♥♦t ♣r♦r♠ ttr t♥ ♦st t ❬❪ ♣r♦♣♦s ♠♦r ♦♠♣①♠♦ t ♠♥② ♦♠tr ♥trt♦♥s t♦ strtr t ♥s♠♥ts t♦tr s♦ ♠♣②♥♠♥② ♠♦ ♣r♠trs t♦ t♥ s t ♥ ♦ t ♣♣r ♥ ♦rs♠♣r s♥♥t② rs t ♦♠♣tt♦♥ t♠ ♦♠♣r t♦ ts tr ♠t♦s

♥r

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

♦r s♠♣r r t ❬❪ ♦st t ❬❪ ♦r② t ❬❪♠ ♠♥t rtt♦♥ 0.78% 1.36% 0.22% 1.68%❯♥rtt♦♥ 30.5% 35.4% 32% 39.8%♣rs♥tt♦♥ ♥s♠♥t ♥s♠♥t ♥s♠♥t ♣①s

♦♠♣rs♦♥ t ①st♥ ♥♥t♦r ①trt♦♥ ♠t♦s r♦♠ t rr ♠ ♣rs♥t ♥ ♦tt♦♠ ♠r② t♦ t ♦♠♣rs♦♥ r♦♠ t r♦ ♠ t rst qt②♥ tr♠s ♦ r♦ ♥r♦rtt♦♥ s r t♥ ❬❪ ♥ ❬❪ t ♦r t♥ ❬❪ r s♠♣r s r② str t♥ t ♦tr ♣♣r♦s ♦t ♦r tt t ♥ ♦ t♠ s ♥♦t s♦♠♣♦rt♥t t♥ ♦r t r♦ ♠ s ♠ r ♠

r t♦♠t ♦♥t♥ ♦♥t♥ ♥ ①trt♥ ♦♣♥ st♦♠t ♦♥ ♣r♠ts s t♦♥②③ t rs ♥r♦♥♠♥t ♦♥t♦♥ ♥ t ♣♥t rts t♦ strss ♣♥♦♠♥s s r ♣♦t♦♥ ② ♦s♥ st♦♠t r ♣♦♥t ♣r♦ss ♣trs ♦♣♥ st♦♠t ♠rs ② ♣ss r♦♠ ♠♦s ♠s 757 st♦♠t r tt ♥ s♦♥s r♦♠ t t♠ ♦t t rt ♦ ♦♣♥ st♦♠t r ♦rrt② ①trt ♥ s♣t ♦ t ♥st② ♦t ♦s st♦♠t ♦ ♦♥trst ♠rs

❨♥♥ ❱ré ♦r♥t r

r ① tt♦♥ r♥ tr ♦ t①s s ♥②③ ② ♦♥t♥ ♥ ①trt♥②♦ s r♦♠ r ♠s r ♣♦♥t ♣r♦ss ♣trs t①s ② ♣ss ♦t tt tttr② st♥ s ♥ ♣t t♦ ♦r t ②♦ ♦ts ♥ t ♠ 87 t①s rtt ♥ s♦♥s r♦♠ t t ♠ s s♦♥ ♦♥ t t ♦r ♦rt♠ ♦s t♦③t♦♥ ♦ t①s ♥ s♣t ♦ t ♣rs♥ ♦ ♦tr s

r ①trt♦♥ ♦♥t♥ ♥ tr♥ s ♥ s ♦s s t♦ ♥②③ t♦r ♦ s r♦♠ ♥r ♣♦♥t ♦ r ♣♦♥t ♣r♦ss ♣trs ♦s ②♣ss r♦♠ ♠s ♦ s s r tt ♥ ♠♥ts r♦♠ t t ♠ ss♦♥ ♦♥ t r♦♣♣ ♠ t s r ♦② tt ♥ s♣t ♦ t ♥st② ♥ ♦r♣ ♦t tt t ♦♠♣t♥ t♠ s ♦♠♣r t♦ ♦tr ♣♣t♦♥s s t♣rtt♦♥♥ s♠ ♦♥t♥s s

♥r

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

r♥s

❬❪ ② s♦t ❱ t♦st ♦♠tr② ♠♦s ♥ s♦♥ ♦r♥♦ ♣♣ ttsts

❬❪ s♦♠s ❳ ♥♦s ❩③♥ t ①trt♦♥ s♥ st♦st rt♥t ②♥♠s ♥ ♦♥t♥♠ ♦r♥ ♦ t♠t ♠♥ ♥ ❱s♦♥

❬❪ ❲ ♦♥s r ♣♦♥t ♣r♦sss ♦r r♦ ♦♥t♥ ♥ ❱P ♠ ❯

❬❪ r ♠r s♦♠s ❳ ♦♠tr tr ①trt♦♥ ② ♠t♠r♣♦♥t ♣r♦ss P

❬❪ s♦t ❱ ♣t ♠♣ t♦♥ ♦r r ♥♠r ♦ ♠♦♥ ♦ts s♥♠r♦ sq♥t ♦t ♣r♦sss P

❬❪ t r ♦① ♦r ❯ rtr ♣ ♠r ♣♦♥t♣r♦ss ♦r ♠♦♥ r ♦r♠s P

❬❪ ♦st s♦♠ ❳ ❩r P♦♥t ♣r♦sss ♦r ♥s♣rs ♥ ♥t♦r①trt♦♥ ♥ r♠♦t s♥s♥ P

❬❪ ♥ ♥ ❩♥ r ♣♦♥t ♣r♦ss ♦r srtr ①trt♦♥ ♦♥ ♥♦r♠ ♥ ❱P ③♦ ♥

❬❪ ❯ts ♥ ♠r ♣♦♥t ♣r♦ss ♠♦ ♦r ♠t ♣♦♣ tt♦♥♥ ❱P ♦♦r♦ ♣r♥s ❯

❬❪ r♥ P rs ♠♣ r♦ ♥s ♦♥t r♦ ♦♠♣tt♦♥ ♥ ②s♥ ♠♦tr♠♥t♦♥ ♦♠tr

❬❪ st♥s ❲ ♦♥t r♦ s♠♣♥ s♥ r♦ ♥s ♥ tr ♣♣t♦♥s ♦♠tr

❬❪ ♥ ❩❲ ❩ ♥ ♠ s♠♥tt♦♥ ② ♥ t ♠♣s♦♥♠t♦ P

❬❪ rst r♥♥r ❯ ♥s♥ r ♠♣s♦♥ r♦ ♣r♦sss ♦♥♦rt♦♦♥ r♦♣s ♦r ♦t ♣♦s st♠t♦♥ ♦r♥ ♦ ttst P♥♥♥ ♥ ♥r♥

❬❪ ❩ ❩ ♠ ♠♥tt♦♥ ② tr♥ r♦ ♥ ♦♥t r♦ P

❬❪ r♥ss r♥ P Pr ♥s ② rt♦♥ ♥ rrs ♠♣ ♠♠ ♦r♦t r♦♥t♦♥ ♥ ❱ rst♦ ❯

❬❪ ②r rs r♦ ♥ t ♣rst♦♥ ♦ ♠♠s ♠ ♣r♦ss♥♥ ♥tr♥t♦♥ ②♠♣♦s♠ ♦♥ Pr ♥ strt Pr♦ss♥ t♥t ❯

❬❪ ♦♥③③ ♦ ❨ rtt♦♥ str♥ Pr s s♠♣♥ r♦♠ ♦♦rs t♦ t♥ ♥t♦♥ trs ♦r♥ ♦ ♥ r♥♥ sr

❬❪ ♦r② r♠②♥ ❩r r ♦rr t ♦♥t♦rs ❱

❨♥♥ ❱ré ♦r♥t r

❬❪ ♠♣ts② ❱ ❩ssr♠♥ r♥♥ t♦ ♦♥t ♦ts ♥ ♠s ♥ P ❱♥♦r♥

❬❪ ♦s ♦r♦ P sr tt♥ ♥ ♣rs♥ rttr t t② s r♦♠r♥ t ♥ ❱P ♥ r♥s♦ ❯

❬❪ ③s ❩ rst♥ ❱sr ♦♠♦♦r♦ ❱ r ♣♣♥ ♦tr ♦♠♣rt st② ♦ ♥r② ♠♥♠③t♦♥ ♠t♦s ♦r ♠r♦ r♥♦♠s t s♠♦♦t♥sss ♣r♦rs P

❬❪ r♦ ♥♦♠ ♦♥ ♥ ♠ ♥②ss ♣r♥r

❬❪ ❲ss ❨ r♠♥ ❲ ♥ t ♦♣t♠t② ♦ s♦t♦♥s ♦ t ♠①♣r♦t ♣r♦♣t♦♥ ♦rt♠ ♥ rtrr② r♣s r♥s ♦♥ ♥♦r♠t♦♥ ♦r②

❬❪ ♦②♦ ❨ ❱sr ❩ st ♣♣r♦①♠t ♥r② ♠♥♠③t♦♥ r♣ tsP

❬❪ s ♥ t sttst ♥②ss ♦ rt② ♣trs ♦r♥ ♦ t ♦② ttst♦t②

❬❪ ❱♥t ❱ r②♥♥ P ♦♥ ♠t s s♥ ♥r♠♥t ♣①♣♥s♦♥♠♦ ♦♥ t P❯s ♥ ❱ ❳♥ ♥

❬❪ ♠ss♦ s♦r P ♥♠♠ tt♥♥ ❨r ♦♠♣tt♦♥r♠♦r ♦r s♠t♥ ♦rs♥ ♠r♦s♦♣ ♠s t ♣♦♣t♦♥s r♥s♦♥ ♠♥

❬❪ r ♠r ①tr r♣rs♥tt♦♥ ② ♦♠tr ♦ts s♥ ♠♣s♦♥ ♣r♦ss ♥ ❱ s ❯

♥r

♦rs t ♣r③t♦♥ ♦ rs ♠♣ r♦ ♥ ♦♥t r♦ ♦rt♠s

♦♥t♥ts

♥tr♦t♦♥ P♦♥t ♣r♦sss ♦r s♦♥ ♣r♦♠s ♦tt♦♥s ♦♥trt♦♥s

P♦♥t Pr♦ss r♦♥

s♠♣♥ ♣r♦r ♠t♥♦s ♠t♣ ♣rtrt♦♥s ♦♥♥♦r♠ ♣♦♥t strt♦♥s ♠♣r ♦r♠t♦♥

①♣r♠♥ts ♠♣♠♥tt♦♥ P♦♥t ♣r♦sss ♥ P♦♥t ♣r♦sss ♥

♦♥s♦♥

♣♣♥s

ts ♦♥ t ♣♦♣t♦♥ ♦♥t♥ ♠♦ r♦♠ ♠s

ts ♦♥ t ♥♥t♦r ①trt♦♥ ♠♦ r♦♠ ♠s

ts ♦♥ t tr r♦♥t♦♥ ♠♦ r♦♠ ♣♦♥t ♦s

Pr♦r♠♥ tsts ♦♥ ♦♥♥t♦♥ r♦ ♥♦♠ ♠♦s

t♦♥ rsts ♥ ♦♠♣rs♦♥s

RESEARCH CENTRE

SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93

06902 Sophia Antipolis Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399