Towards a uni ed ice thickness product derived from … · First results of brightness temperature...

13
Towards a unified ice thickness product derived from SMAP and SMOS: First results of brightness temperature comparisons Amelie Tetzlaff, Lars Kaleschke Institute of Oceanography, University of Hamburg, Germany Amelie Tetzlaff SMAP and SMOS 1

Transcript of Towards a uni ed ice thickness product derived from … · First results of brightness temperature...

Towards a unified ice thickness product derived from SMAP and SMOS:First results of brightness temperature comparisons

Amelie Tetzlaff, Lars Kaleschke

Institute of Oceanography, University of Hamburg, Germany

Amelie Tetzlaff SMAP and SMOS 1

Sea ice thickness from SMOS

Retrieval algorithm

based onbrightness temperature(TB) intensity (0◦–40◦)

→sea ice radiation model

+thermodynamic model

→account for subpixel-scale heterogeneity ofice thickness

→ sea ice thickness of up to 1m

Amelie Tetzlaff SMAP and SMOS 2

Data products

SMAP SMOS

I L1C Radiometer Half-Orbit36 km EASE-Grid TB

I daily average

I L1C TB

I daily values

→ 12.5 km polar stereographic grid (NSIDC)

I incidence angle: 40◦ I incidence angles: 0–65◦

0 10 20 30 40 50 60 70incidence angle θ (◦)

210

220

230

240

250

260

270

TB

(K)

SMAP

TBH and TBV

TBH

TBV

Amelie Tetzlaff SMAP and SMOS 3

Data products

SMAP SMOS

I L1C Radiometer Half-Orbit36 km EASE-Grid TB

I daily average

I L1C TB

I daily values

→ 12.5 km polar stereographic grid (NSIDC)

I incidence angle: 40◦ I incidence angles: 0–65◦

0 10 20 30 40 50 60 70incidence angle θ (◦)

210

220

230

240

250

260

270

TB

(K)

SMAP

TBH and TBV

TBH

TBV

Amelie Tetzlaff SMAP and SMOS 3

SMOS TB 40◦

SMOS TB at 40◦

0 10 20 30 40 50 60 70incidence angle θ (◦)

230

240

250

0.5(

TB

H+

TB

V)

(K)

C

TB intensity

0 10 20 30 40 50 60 70incidence angle θ (◦)

210

220

230

240

250

260

270

TB

(K)

SMAP

TBH and TBV

TBH

TBV

2-step regression after Zhao et al. (2015)

0.5(Tb,h + Tb,v ) = A · θ2 + C

Tb,h = ah · θ2 + C“bh sin2(θ) + cos2(θ)

”Tb,v = av · θ2+

C“bv sin2(dv · θ) + cos2(dv · θ)

Zhao et al.: ”Refinement of SMOS multiangular brightness temperature toward soilmoisture retrieval and its analysis over reference targets”. IEEE (2015)

Amelie Tetzlaff SMAP and SMOS 4

SMOS TB 40◦

SMOS TB at 40◦

0 10 20 30 40 50 60 70incidence angle θ (◦)

230

240

250

0.5(

TB

H+

TB

V)

(K)

C

TB intensity

0 10 20 30 40 50 60 70incidence angle θ (◦)

210

220

230

240

250

260

270

TB

(K)

SMAP

TBH and TBV

TBH

TBV

2-step regression after Zhao et al. (2015)

0.5(Tb,h + Tb,v ) = A · θ2 + C

Tb,h = ah · θ2 + C“bh sin2(θ) + cos2(θ)

”Tb,v = av · θ2+

C“bv sin2(dv · θ) + cos2(dv · θ)

Zhao et al.: ”Refinement of SMOS multiangular brightness temperature toward soilmoisture retrieval and its analysis over reference targets”. IEEE (2015)

Amelie Tetzlaff SMAP and SMOS 4

Comparison of SMAP and SMOS

Qualitative comparison of SMAP and SMOS - 5 April 2015

TBV

TBH

SMAP SMOS

Amelie Tetzlaff SMAP and SMOS 5

Comparison of SMAP and SMOS

Quantitative comparison

Selected regions overice and water

400 km x 400 km

1 Apr 2015 31 Aug 2015

AMSR2 ice edge

Amelie Tetzlaff SMAP and SMOS 6

Comparison of SMAP and SMOS

Quantitative comparison - over sea ice

Apr May Jun Jul Aug

180

200

220

240

260

TB

(K

)

SMOS SMAPTBV

TBH

Area averaged TB

Apr May Jun Jul Aug0

2

4

6

8

10

12

14

16

Sta

ndard

devia

tion (

K)

SMOS SMAP

Area standard deviation TBV

1 Apr 2015 31 Aug 2015

AMSR2 ice edge

Average

TBV TBH

RMSD: 1.7 K 3.7 K

bias: -0.8 K 2.9 K

I pol. difference 3.7 Ksmaller for SMOS

I correlation r > 0.99

Standard deviationTBV TBH

RMSD: 0.7 K 1.1 K

bias: <0.1 K

r : 0.98 0.97

Amelie Tetzlaff SMAP and SMOS 7

Comparison of SMAP and SMOS

Quantitative comparison - over sea ice

Apr May Jun Jul Aug

180

200

220

240

260

TB

(K

)

SMOS SMAPTBV

TBH

Area averaged TB

235 240 245 250 2550

50

100

150

200

250

# o

f pix

els

(K)

TBVTBH

SMOS SMAP

20150426

1 Apr 2015 31 Aug 2015

AMSR2 ice edge

Average

TBV TBH

RMSD: 1.7 K 3.7 K

bias: -0.8 K 2.9 K

I pol. difference 3.7 Ksmaller for SMOS

I correlation r > 0.99

Standard deviationTBV TBH

RMSD: 0.7 K 1.1 K

bias: <0.1 K

r : 0.98 0.97

Amelie Tetzlaff SMAP and SMOS 7

Comparison of SMAP and SMOS

Quantitative comparison - over open water

Apr May Jun Jul Aug70

80

90

100

110

120

130

TB

(K

) SMOS SMAPTBV

TBH

2015

Area averaged TB

1 Apr 2015 31 Aug 2015

AMSR2 ice edge

I RFI contamination in SMOS +

I known issue in SMOS v620: ocean bias (but better long term stability)

I bias: 1.2 K (TBV), 11.6 K (TBH)

I noise in the signal → r ∼ 0.5

Amelie Tetzlaff SMAP and SMOS 8

Comparison of SMAP and SMOS

Summary

1) Fit SMOS TB to 40◦

2) Comparison between SMAP and SMOS TB:

I variability over sea ice: very good agreement

I 3.7 K smaller polarisation difference over ice for SMOS

I large bias (>11 K) in TBH for SMOS over water

Amelie Tetzlaff SMAP and SMOS 9

Comparison of SMAP and SMOS

Short term TB variability

SM

OS

20150615 20150616 20150617

SM

AP

160

170

180

190

200

210

220

230

240

250TBH

Amelie Tetzlaff SMAP and SMOS 10