Toulouse 2012

download Toulouse 2012

of 40

Transcript of Toulouse 2012

  • 8/13/2019 Toulouse 2012

    1/40

    RELAXATION AND ENERGYDISSIPATION IN TDCDFT

    Roberto DAgostaUPV/EHU and Ikerbasque

    San Sebastian

    [email protected]

  • 8/13/2019 Toulouse 2012

    2/40

    RELAXATION IN QUANTUM MECHANICS

    Common approach (effective non unitary time evolution, e.g.Caldeira-Leggett)

    Time Dependent Density Functional Theory approach(Unitary Time Evolution)

    How to introduce

    a time arrow in aHamiltonianframework?

    Answer: Thefunctional dependson the velocity eld

  • 8/13/2019 Toulouse 2012

    3/40

    The Kohn-Sham Hamiltonian for TDCDFT

    The Vignale-Kohn exchange-correlation eld

    In principle, exact time evolution of particle and current densities

    H KS =

    1

    2m Xi [ pi

    + eA

    (r, t

    ) + eA xc

    (n, j

    )]

    2

    + Z V (r, t ) + V ALDAxc (r, t ) n (r, t )dr

    edA

    xc

    dt =

    xcn

    v = jn

    xc,ij = i v j + j v i 2

    3 ij v + ij v

  • 8/13/2019 Toulouse 2012

    4/40

    THE KOHN-SHAM ENERGY FUNCTIONAL

    dE

    dt 0

    t

    dE dt

    = Z j(r , t ) E xc(r , t ) dr e E xc (r , t ) = dA xcdt E [n ,

    ~

    j] = h KS |

    H KS | KS i

    Z V hxc(r , t )n(r , t ) dr + E ALDAhxc [n]

    We assume vanishing velocity at theboundaries

    is NOT the total energy but gives a time arrow E

  • 8/13/2019 Toulouse 2012

    5/40

    Numerical results

    ~

    > 0 , t < 0 ~

    = 0 , t > 0

    -L/2 -L/2

    L/2

    L/2

    1D code no memory.For similar results in the case of

    systems with memory look atH. Wijewardane and C. Ullrich, Phys. Rev. Lett. 95 , 086401 (2005)

    Quantum Well

    E i

    E (t ) E 0 e t

  • 8/13/2019 Toulouse 2012

    6/40

    z

    y

    x

    1D Quantum well in the z direction

    2D electron gas in the (x,y) plane

    Energy transfer from the motion in the z direction to the 2D electron gas

    Energy transfer

    By using standard time-dependent perturbation theory one can test theapproximations for the xc kernel.

  • 8/13/2019 Toulouse 2012

    7/40

  • 8/13/2019 Toulouse 2012

    8/40

    TIME EVOLUTION

    Energy

    conservationdE

    dt + T (t )

    dS

    dt = 0Z

    0

    dE

    dt + T (t )

    dS

    dt dt = 0

    quasi-static

    T (t ) = T i + s 2

    [ E i E (t )]

    dS

    dt =

    dS

    dT

    dT

    dt = C V (T )

    dT

    dt

    S (t ) = p 2 [ E i E (t )]

  • 8/13/2019 Toulouse 2012

    9/40

    CONCLUSION - 1

    TDCDFT is able to capture the relaxation of a many-particle system to a statistical equilibrium

    The corresponding time evolution is unitary and doesnot contain ad hoc parameters

    At least in a simple case we are able to interpret the

    Kohn-Sham energy as the maximum work one canextract from the system

    TDCDFT offers a natural framework where to study the dynamical timeevolution of a many-particle system

  • 8/13/2019 Toulouse 2012

    10/40

    OPEN QUANTUM SYSTEMS

    Van Kampen, Stochastic Processes in Physics and Chemistry

    bath l(t )

    The bath induces stochasticity and:

  • 8/13/2019 Toulouse 2012

    11/40

    OPEN QUANTUM SYSTEMS

    Van Kampen, Stochastic Processes in Physics and Chemistry

    bath l(t )

    The bath induces stochasticity and:

    is macroscopic

  • 8/13/2019 Toulouse 2012

    12/40

    OPEN QUANTUM SYSTEMS

    Van Kampen, Stochastic Processes in Physics and Chemistry

    bath l(t )

    The bath induces stochasticity and:

    is macroscopic

    is unbiased

  • 8/13/2019 Toulouse 2012

    13/40

    OPEN QUANTUM SYSTEMS

    Van Kampen, Stochastic Processes in Physics and Chemistry

    bath l(t )

    The bath induces stochasticity and:

    l (t ) = 0

    l (t )l (t ) = (t t )

    V =

    V (t ) is assigned

    no feedback is macroscopic

    is unbiased

    has no memory

  • 8/13/2019 Toulouse 2012

    14/40

    Open Quantum Systems

    bath l(t )

    The system is in a mixed state and:

    is out of equilibrium

    is interacting

    has memory

  • 8/13/2019 Toulouse 2012

    15/40

    Open Quantum Systems

    bath l(t )

    two formalisms

    density matrixstochastic

    Schrdinger eq.

    The system is in a mixed state and:

    is out of equilibrium

    is interacting

    has memory

  • 8/13/2019 Toulouse 2012

    16/40

    STOCHASTIC

    SCHROEDINGER EQ.

    t (r, t ) = i H (r, t ) 1

    2V V (r, t ) + l(t )V (r, t )

  • 8/13/2019 Toulouse 2012

    17/40

    STOCHASTIC

    SCHROEDINGER EQ.

    t (r, t ) = i H (r, t ) 1

    2V V (r, t ) + l(t )V (r, t )

    dissipation uctuation

  • 8/13/2019 Toulouse 2012

    18/40

    STOCHASTIC

    SCHROEDINGER EQ.

    t (r, t ) = i H (r, t ) 1

    2V V (r, t ) + l(t )V (r, t )

    dissipation uctuation

    (t ) =i

    p i | i i |

    ...

    1 | 1 2 | 2 M | M

  • 8/13/2019 Toulouse 2012

    19/40

  • 8/13/2019 Toulouse 2012

    20/40

    BOSE GAS IN A TRAP

    Gross - Pitaevskii equation

    i t (x, t ) = 12m

    d2

    dx 2 +

    12

    m 20 x2 + gn (x, t ) (x, t )

    Davis, et al. PRL (2005),

    Anderson, et al. Science (2005)

    13

  • 8/13/2019 Toulouse 2012

    21/40

  • 8/13/2019 Toulouse 2012

    22/40

    1-D CONFINED BOSE GAS

    V

    0 1 1 1 . . .

    0 0 0 0 . . ....

    ......

    ......

    0 0 0 0 . . .

    R. DAgosta and M. DiVentra PRB (2008)

    .

    ..

    E

    E

    E

    E

    Em 0

    14

  • 8/13/2019 Toulouse 2012

    23/40

    1-D CONFINED BOSE GAS

    V

    0 1 1 1 . . .

    0 0 0 0 . . ....

    ......

    ......

    0 0 0 0 . . .

    R. DAgosta and M. DiVentra PRB (2008)

    .

    ..

    E

    E

    E

    E

    Em 0

    No interaction,g=0

    14

  • 8/13/2019 Toulouse 2012

    24/40

    0 5 10 15 200

    0.2

    0.4

    0.6

    0.8

    1single run10 runs50 runs100 runsdensity matrix

    p 0

    t! 0

    0 5 10 15 200

    0.04

    0.08

    t! 0

    |p 0 -p0 |/p 0dm sse sse

    1-D CONFINED BOSE GAS

    V

    0 1 1 1 . . .

    0 0 0 0 . . ....

    ......

    ......

    0 0 0 0 . . .

    R. DAgosta and M. DiVentra PRB (2008)

    .

    ..

    E

    E

    E

    E

    Em 0

    No interaction,g=0

    14

  • 8/13/2019 Toulouse 2012

    25/40

    1-D CONFINED BOSE GAS

    V

    0 1 1 1 . . .

    0 0 0 0 . . ....

    ......

    ......

    0 0 0 0 . . .

    R. DAgosta and M. DiVentra PRB (2008)

    .

    ..

    E

    E

    E

    E

    Em 0

    No interaction,g=0

    !!"#!"$!"%!"&!"'

    !"#$"

    ()

    * ,

    !

    !

    !"#

    !"$

    !"%

    !"#%

    -)

    * ,

    !

    .#' .#! .' ! ' #! #'!

    !"#

    !"$

    ,/, !

    !"#"

    0)

    * ,

    !

    14

  • 8/13/2019 Toulouse 2012

    26/40

    Strong interaction

    ! "! #! $! %! &! '!!

    !("

    !(#

    !($

    !(%

    !(&

    !('

    ) * * + , -

    . / 0 1 , 3 0

    4 -

    4 / 5 / . 6

    , !

    , "

    . !

    , #

    1-D CONFINED BOSE GASR. DAgosta and M. Di VentraPRB (2008)

    15

    g/ 0 = 5

  • 8/13/2019 Toulouse 2012

    27/40

    Strong interaction

    ! "! #! $! %! &! '!!

    !("

    !(#

    !($

    !(%

    !(&

    !('

    ) * * + , -

    . / 0 1 , 3 0

    4 -

    4 / 5 / . 6

    , !

    , "

    . !

    , #

    1-D CONFINED BOSE GASR. DAgosta and M. Di VentraPRB (2008)

    !" !# $ # "$

    $%$&

    $%'

    $%'&

    $%#

    ()*+,-.)/+

    0,*1-. ! 3451/

    676$

    8 6

    $

    15

    g/ 0 = 5

  • 8/13/2019 Toulouse 2012

    28/40

    SPIN CHAIN

    0 50 100 150 200 250

    time

    -0.0015

    -0.001

    -0.0005

    0

    0.0005

    0.001

    0.0015

    e n e r g y c u r r e n

    t

    j 2,

    3 j 1,

    2

    L > R

  • 8/13/2019 Toulouse 2012

    29/40

    EQUATION OF MOTION

    average over the stochastic eld

    M .Di Ventra and R. DAgosta PRL (2007)

    j (r, t )

    t=

    F (r, t )

    m+ G (r, t ) +

    1

    mF ext (r, t )

    R. DAgosta and M. Di Ventra PRB (2008)

  • 8/13/2019 Toulouse 2012

    30/40

    EQUATION OF MOTION

    average over the stochastic eld

    F (r, t ) = i = j

    (r r i ) j U (r i r j ) + m (r, t )

    internal forces

    M .Di Ventra and R. DAgosta PRL (2007)

    j (r, t )

    t=

    F (r, t )

    m+ G (r, t ) +

    1

    mF ext (r, t )

    R. DAgosta and M. Di Ventra PRB (2008)

  • 8/13/2019 Toulouse 2012

    31/40

    EQUATION OF MOTION

    average over the stochastic eld

    G (r, t ) =

    V

    j (r, t )

    V

    1

    2 j (r, t )

    V

    V

    1

    2V

    V

    j (r, t )bath induced forces

    M .Di Ventra and R. DAgosta PRL (2007)

    j (r, t )

    t=

    F (r, t )

    m+ G (r, t ) +

    1

    mF ext (r, t )

    R. DAgosta and M. Di Ventra PRB (2008)

  • 8/13/2019 Toulouse 2012

    32/40

    EQUATION OF MOTION

    average over the stochastic eld

    F ext (r, t ) = n(r, t )

    m t A ext (r, t )

    j (r, t )m

    [ A ext (r, t )]

    external forces: driving elds

    M .Di Ventra and R. DAgosta PRL (2007)

    j (r, t )

    t=

    F (r, t )

    m+ G (r, t ) +

    1

    mF ext (r, t )

    R. DAgosta and M. Di Ventra PRB (2008)

  • 8/13/2019 Toulouse 2012

    33/40

  • 8/13/2019 Toulouse 2012

    34/40

    STOCHASTIC TD-CDFTGiven l(t ), V , (r, 0)

    M. Di Ventra and R. DAgosta, PRL (2007)

    A ext r, tR. DAgosta and M. Di Ventra, PRB (2008)

  • 8/13/2019 Toulouse 2012

    35/40

    STOCHASTIC TD-CDFTGiven l(t ), V , (r, 0)

    M. Di Ventra and R. DAgosta, PRL (2007)

    A ext r, tR. DAgosta and M. Di Ventra, PRB (2008)

  • 8/13/2019 Toulouse 2012

    36/40

    STOCHASTIC TD-CDFTGiven l(t ), V , (r, 0)

    M. Di Ventra and R. DAgosta, PRL (2007)

    A ext r, tR. DAgosta and M. Di Ventra, PRB (2008)

  • 8/13/2019 Toulouse 2012

    37/40

  • 8/13/2019 Toulouse 2012

    38/40

    A SURPRISING RESULT

    The theorem of STCDFT does admit for the system to beclosed, i.e.we can set for the KS system

    = 0

    AKS (r, t ) = Aext (r, t ) + A xc [ j, 0 , V = 0]

    Yuen-Zhou et al., PCCP 2009

    Relaxation and dissipation in TDCDFT are described by a KSvector potential in a closed system!

  • 8/13/2019 Toulouse 2012

    39/40

  • 8/13/2019 Toulouse 2012

    40/40

    THANKS!