Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux...

29
Optically Induced Gauge Fields Optical Flux Lattices Z 2 Topological Insulators Topological Bandstructures for Ultracold Atoms Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin B´ eri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011) Nigel Cooper Cavendish Laboratory, University of Cambridge G Topological Bandstructures for Ultracold Atoms

Transcript of Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux...

Page 1: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Topological Bandstructures for Ultracold Atoms

Nigel CooperCavendish Laboratory, University of Cambridge

New quantum states of matter in and out of equilibriumGGI, Florence, 12 April 2012

NRC, PRL 106, 175301 (2011)Benjamin Beri & NRC, PRL 107, 145301 (2011)

NRC & Jean Dalibard, EPL 95, 66004 (2011)

April 26, 2012

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 2: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Motivation: fractional quantum Hall regime

Rotating BECs

nφ =2MΩ

h

[K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000)]

FQH states of bosons forn2Dnφ

<∼ 6 [NRC, Wilkin & Gunn, PRL (2001)]

[Laughlin, composite fermion, Moore-Read and Read-Rezayi]

Ω ' 2π × 100Hz ⇒nφ <∼ 2× 107cm−2

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 3: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Optically Induced Gauge Fields

[Y.-J. Lin, R.L. Compton, K. Jimenez-Garcıa, J.V. Porto and I.B. Spielman, Nature 462, 628 (2009)]

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 4: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

“Optical Flux Lattices”[NRC, PRL 106, 175301 (2011); NRC & Jean Dalibard, EPL 95, 66004 (2011)]

H =p2

2MI + V (r)

• Landau levels: Narrow bands with unit Chern numbernφ ' 109cm−2 ⇒FQH states at high particle densities

• Distinct from previous tight-binding proposals[Jaksch & Zoller (2003); Mueller (2004); Sørensen, Demler & Lukin (2005); Gerbier & Dalibard (2010)]

• Generalizes to Z2 topological invariant[Benjamin Beri & NRC, PRL 107, 145301 (2011)]

• “Nearly free electron” approach to topological bands

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 5: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Outline

Optically Induced Gauge Fields

Optical Flux Lattices

Z2 Topological Insulators

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 6: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Optically Induced Gauge Fields

[J. Dalibard, F. Gerbier, G. Juzeliunas, P. Ohberg, RMP 83, 1523 (2011)]

H =p2

2MI + V (r)

V (r): optical coupling of N internal states

e.g. 1S0 and 3P0 for Yb or alkaline earth atom[F. Gerbier & J. Dalibard, NJP 12, 033007 (2010)]

S01

P03

ΩR

ω

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 7: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

e.g. 1S0 and 3P0 for Yb or alkaline earth atom[F. Gerbier & J. Dalibard, NJP 12, 033007 (2010)]

S01

P03

ΩR

ω

V = ~(

0 12

(ΩRe

iωt + Ω∗Re

−iωt)

12

(Ω∗

Re−iωt + ΩRe

iωt)

ω0

)→ ~

(−∆

212

(ΩR + Ω∗

Re−2iωt

)12

(Ω∗

R + ΩRe2iωt)

∆2

)

RWA ω ∆,ΩR V → ~2

(−∆ ΩR(r)

Ω∗R(r) ∆

)

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 8: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

[J. Dalibard, F. Gerbier, G. Juzeliunas, P. Ohberg, RMP 83, 1523 (2011)]

H =p2

2MI + V (r)

V (r) ⇒local spectrum En(r) and dressed states |nr〉

|ψ(r)〉 =∑n

ψn(r)|nr〉

Adiabatic motion Hnψn = 〈nr|Hψn|nr〉

Hn =(p− qA)2

2M+ Vn(r) qA = i~〈nr|∇nr〉

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 9: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Maximum flux density: Back of the envelope

Vector potential qA = i~〈0r|∇0r〉⇒|qA| <∼h

λ

Cloud of radius R λ

Nφ ≡∫

nφd2r =

q

h

∫∇× A · dS =

q

h

∮A · dr <∼

1

λ(2πR)

⇒ nφ ≡NφπR2

<∼1

Rλ' 2× 107cm−2

[R ' 10µm λ ' 0.5µm]

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 10: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Maximum flux density: Carefully this time!

Optical wavelength λ ⇒|qA| <∼h

λ

A can have singularities – if the optical fields have vortices.

e.g. ΩR(r) ∼ (x + iy)

Vanishing net flux. Can be removed by a gauge transformation.

[cf. “Dirac strings”]

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 11: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Gauge-independent approach (two-level system)

Bloch vector ~n(r) = 〈0r|~σ|0r〉

nφ =1

8πεijkεµνni∂µnj∂νnk |nφ| <∼

1

λ2

Region A n

r

Solid AngleΩ ∫

areaAnφd

2r =Ω

The number of flux quanta in region A is the number of times theBloch vector wraps over the sphere.

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 12: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Optical flux lattices[NRC, Phys. Rev. Lett. 106, 175301 (2011)]

Spatially periodic light fields which cause the Bloch vector to wrapthe sphere a nonzero integer number, Nφ, times in each unit cell.

nφ =NφAcell

∼ 1

λ2' 109cm−2

vectors (nx , ny )

contours nzNφ = 2

a

a (b)(a)

contours nφ

.

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 13: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Optical Flux Lattice: One-Photon Implementation

H =p2

2MI + VM(r) M = ~M(r) · ~σ

e.g. 1S0 and 3P0 for Yb or alkaline earth atom[Gerbier & Dalibard, New Journal of Physics 12, 033007 (2010)]

S01

P03

ΩR

ω

Mx ,My : Rabi coupling, ω ' ω0

Mz : standing waves at “anti-magic” frequency, ωam

VM =

(−~∆

2 − Vam(r) ~Ω(r)2

~Ω∗(r)2

~∆2 + Vam(r)

)

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 14: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Square Lattice

Msq =

(sin(κx) sin(κy) cos(κx)− i cos(κy)

cos(κx) + i cos(κy) − sin(κx) sin(κy)

)where κ ≡ 2π/a.

vectors (nx , ny )

contours nzNφ = 2

a

a (b)(a)

contours nφ

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 15: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Triangular lattice

Mtri =

(cos[r · (κ1 + κ2)] cos(r · κ1)− i cos(r · κ2)

cos(r · κ1) + i cos(r · κ2) − cos[r · (κ1 + κ2)]

)

κ1

κ2κ2κ +1

θ

θ ' 2π/3vectors: (nx , ny )

contours: nzNφ = 2

(a) (b)

a

a

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 16: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Bandstructure (Triangular Lattice)

H =p2

2MI + V [c1σx + c2σy + c12σz ]

ci ≡ cos(κi · r), c12 ≡ cos[(κ1 + κ2) · r]

Tight-binding limit V >∼ ER ≡ ~2κ2

2M

-2 Π -Π Π 2 Πk ya

-3-2-1

123

Etb

k ax

Lowest energy band has narrow width and Chern number of 1.

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 17: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Two-Photon Dressed States

[NRC & Jean Dalibard, EPL 95, 66004 (2011)]

g−g+

Je = 1/2Light at two frequencies:• ωL with Rabi freqs. κm (m = 0,±1)• ωL + δ with Rabi freq. E in σ−

ωL + δ

σ− pol.

ωL

ωLωL

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 18: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Triangular lattice with Nφ = 1 per unit cell.

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 19: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Bandstructure, Jg = 1/2

3 3.5 4 4.5 5 5.5E/E

R

DoS

(ar

b.)

x 1/10V = 2ER, θ = π/4, ε = 1.3

• Narrow lowest energy band, with Chern number of 1

• Can also be applied to bosons Jg = 1 (e.g. 87Rb)

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 20: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Experimental Consequences

Non-interacting fermions (IQHE)

• Filled band has chiral edge state:

Precession of collective modes

• Bloch oscillations [Hannah Price & NRC, PRA 85, 033620 (2012)]

Interacting fermions/bosons

Strongly correlated phases if interactions large compared tobandwidth: likely candidates for FQHE states.

• Incompressible states (density plateaus)

• Chiral edge modes

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 21: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Outline

Optically Induced Gauge Fields

Optical Flux Lattices

Z2 Topological Insulators

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 22: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Topological Insulators[Hasan & Kane, RMP 82, 3045 (2010); Qi & Zhang, RMP 83, 1057 (2011)]

TI: Band insulator with gapless surface states.

• IQHE: 2D, broken time reversal symmetry (TRS)

Chern number ⇒number of chiral edge states

• Z2 TI: fermions (S = 12 ,

32 , . . .) with TRS (Kramers’ deg.)

Band insulators are: trivial; or non-trivial (metallic surface)

2D: counterpropagating edge channels of opposite spin;Spin−up

Spin−down

3D: relativistic (Dirac) 2D surface state.

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 23: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Z2 Topological Insulators

H =p2

2MIN + VM(r) [Benjamin Beri & NRC, PRL 107, 145301 (2011)]

Time-reversal θ = i σy K TRS: M = θ−1M θ ⇒N = 4

M =

((A + B)I2 C I2 − i~σ · ~D

C I2 + i~σ · ~D (A− B)I2

)= AI4 + BΣ3 + C Σ1 + ~DΣ2~σ

[A,B,C , ~D = (Dx ,Dy ,Dz) real]

Dressed states are Kramers doublets ⇒non-Abelian gauge field.

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 24: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

171Yb has nuclear spin I = 1/2

VM =

(−(~

2 ∆ + Vam

)I2 −i~σ · ~Edr

i~σ · ~E∗dr(~

2 ∆ + Vam

)I2

)P0

3∆

S01

I =−1/2 +1/2z

TRS preserved if all components of ~E have a common phase.

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 25: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Two Dimensions

dr ~E = V (δ, cos(r · κ1), cos(r · κ2))

κ1 = (1, 0, 0)κκ2 = (cos θ, sin θ, 0)κ

κ1

κ2 EyEz

κ3

Ex

θ =z

~2

∆ + Vam(r) = −V cos[r · (κ1 + κ2)]

For Yb, θ ' 2π/3

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 26: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

U = 2−1/2(I4 − iΣ3σ2)

M ′ = U†MU = c1Σ1 + c2Σ2σ3 + c12Σ3 + δΣ2σ1.

ci ≡ cos(κi · r), c12 ≡ cos[(κ1 + κ2) · r]

(i) Decoupled spins, δ = 0

M ′ = c1Σ1 ± c2Σ2 + c12Σ3

OFLs of opposite flux for spin σ3 = ±1.

σ3 = ±1 bands are degenerate, but with opposite Chern numbers.

⇒“quantum spin Hall” system [e.g. Levin & Stern, PRL (2009)]

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 27: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

(ii) “Spin-orbit coupling”, δ 6= 0

-0.4

-0.2

0

0.2

0.4

E/E

R

(0,1) (0,0) (1,0) (1,1)

++

_ __

(1,1)

Γnm = 12 (nκ1 + mκ2)

Inversion symmetry [Fu & Kane, PRB (2007)]∏n,m=0,1

∏α∈filled

ξ(α)nm = −1

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 28: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Three Dimensions

This nearly-free electron viewpoint leads to a general method toconstruct Z2 non-trivial bands in 3D. [Benjamin Beri & NRC, PRL 107, 145301 (2011)]

e.g. δ → δ0 cos(κ3 · r) c12 → c12 + δ0(µ+ c13 + c23)

-0.5 -0.25 0 0.25 0.5k

1

-1.2

-1

-0.8

-0.6

E/E

R V = 0.9ER

δ0 = 1, µ = −0.4

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms

Page 29: Topological Bandstructures for Ultracold Atoms · Optically Induced Gauge Fields Optical Flux Lattices Z2 Topological Insulators Outline Optically Induced Gauge Fields Optical Flux

Optically Induced Gauge FieldsOptical Flux Lattices

Z2 Topological Insulators

Summary

I Simple forms of optical dressing lead to “optical flux lattices”:periodic magnetic flux with high mean density, nφ ∼ 1/λ2.

I The low energy bands are analogous to the lowest Landaulevel of a charged particle in a uniform magnetic field.

I The approach can be generalized to generate Z2 nontrivialbandstructures in 2D and 3D.

I Ultracold atomic gases can readily be used to explore strongcorrelation phenomena in topological bands.

Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106, 175301 (2011) Benjamin Beri & NRC, PRL 107, 145301 (2011) NRC & Jean Dalibard, EPL 95, 66004 (2011)Topological Bandstructures for Ultracold Atoms