Token bus (802.4) Token ring (802.5) DQDB (802.6)...

39
1 Chapter 2 Data-link layer Problem Statement To transmit data over physical links from one node to another or more nodes effectively and efficiently, there is much more to do than simply modulating bit stream into signal. Transmission impairments, such as crosstalk between two adjacent pairs, can unexpectedly change transmission signal and hence result in errors. The transmitter may transmit faster than the receiver can afford. If there are multiple stations that share common transmission media, an arbitration mechanism is required to determine who can transmit its own data. The transmitter has to somehow indicate the destination, and usually needs to name itself so that the receiver knows where the source is. These problems need to be addressed by a set of functions above the physical layer. In the Open Systems Interconnection (OSI) seven-layer model, a specific layer, named data-link layer, provides the service of controlling data communications over a physical link. This layer provides solutions to the above problems. In addition, upper layers are therefore exempt from the duty of controlling parameters in a physical network. These services greatly alleviate upper-layer protocol design and make it virtually independent of physical transmission characteristics. Throughout this chapter, we intend to equip readers with fundamental background about (1) services and functions provided in the data-link layer, (2) real-world examples of popular data-link protocols, and (3) open source implementation in Linux. Frankly, there are too many real-world examples to choose. Some are legacy or much less popular nowadays. Some are in the mainstream and still some others are under development. It is nearly impossible to enumerate all of them. We subjectively offer a list of well-known data-link protocols in Table 2.1. Among these protocols, we introduce PPP as it is widely used in dial-up services. Network devices, say routers, also run PPP to carry various network layer protocols over point-to-point links among them. Ethernet technology has occupies more than 95 percent of all local area networks. It is also poised to be ubiquitous in the MAN and WAN. It is undoubtedly a technology we have to know. Wireless links allow greater mobility to make life easy. More devices, such as notebooks, Personal Data Assistant (PDA), cellular phones, and so on, are equipped with the 2 capability to access the Internet. In contrast with desktop PCs, which usually use wired links, these devices are mobile, and hence wireless links are preferred. We choose one typical example for wireless local area network, IEEE 802.11, and another for wireless personal local area network, Bluetooth in this chapter. PAN/LAN/MAN WAN Legacy or Minor Token bus (802.4) Token ring (802.5) DQDB (802.6) HIPPI SMDS Fiber Channel Isochronous (802.9) Demand Priority (802.12) ATM FDDI ISDN X.25 Frame Relay ATM Mainstream or Under development Ethernet (802.3) Resilient Packet Ring (802.17) Point-to-Point Protocol (PPP) HDLC DOCSIS Wireless PAN/LAN/MAN (802.15/11/16) Bluetooth HIPERLAN HomeRF Ethernet (802.3) Resilient Packet Ring (802.17) Point-to-Point Protocol (PPP) Table 2.1 data-link protocols Section 2.1 provides a general introduction of the functions in data-link layer. Specifically, they include framing, addressing, error control, flow control, and access control. We primarily explain why and how in this section, and leave technical details in specific protocols to later sections as possible. Section 2.2 introduces the Point-to-Point Protocol (PPP). The PPP is a standard protocol that carries multi-protocol packets in the upper layer over a point-to-point link. We present the open-source implementation so that the readers can know how the protocol operates in a real system. Following it is Section 2.3, which introduces the dominating LAN technology, Ethernet. Having evolved more than twenty years, Ethernet is rich in its physical specifications. However, this section will focus more on its functions in the data-link layer, and leaves the physical details in further reading. We also provide open Verilog code to be familiar with the implementation. Section 2.4 discusses wireless LAN. The nature of wireless media, such as mobility and lack of reliability, brings new impact in design different from wired media. Two typical examples, IEEE 802.11 and the Bluetooth technology, will be introduced in this section. Section 2.5 illustrates general concepts of device drivers in Linux. We will go deeply into Ethernet and PPP driver implementations, and list a map to indicate the source codes of the other drivers for the readers to

Transcript of Token bus (802.4) Token ring (802.5) DQDB (802.6)...

Page 1: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

1

Cha

pter

2 D

ata-

link

laye

r Pr

oble

m S

tate

men

t

To tr

ansm

it da

ta o

ver p

hysi

cal l

inks

from

one

nod

e to

ano

ther

or m

ore

node

s ef

fect

ivel

y an

d ef

ficie

ntly,

the

re is

muc

h m

ore

to d

o th

an s

impl

y m

odul

atin

g bi

t st

ream

int

o si

gnal

. Tr

ansm

issi

on i

mpa

irmen

ts,

such

as

cros

stal

k be

twee

n tw

o ad

jace

nt p

airs

, can

une

xpec

tedl

y ch

ange

tran

smis

sion

sig

nal a

nd h

ence

resu

lt in

er

rors

. The

tran

smitt

er m

ay tr

ansm

it fa

ster

than

the

rece

iver

can

affo

rd. I

f the

re

are

mul

tiple

sta

tions

tha

t sh

are

com

mon

tra

nsm

issi

on m

edia

, an

arb

itrat

ion

mec

hani

sm

is

requ

ired

to

dete

rmin

e w

ho

can

trans

mit

its

own

data

. Th

e tra

nsm

itter

has

to s

omeh

ow in

dica

te th

e de

stin

atio

n, a

nd u

sual

ly n

eeds

to n

ame

itsel

f so

that

the

rece

iver

kno

ws

whe

re th

e so

urce

is. T

hese

pro

blem

s ne

ed to

be

addr

esse

d by

a s

et o

f fun

ctio

ns a

bove

the

phys

ical

laye

r. In

the

Ope

n S

yste

ms

Inte

rcon

nect

ion

(OS

I) se

ven-

laye

r m

odel

, a s

peci

fic la

yer,

nam

ed d

ata-

link

laye

r, pr

ovid

es th

e se

rvic

e of

con

trollin

g da

ta c

omm

unic

atio

ns o

ver a

phy

sica

l lin

k. T

his

laye

r pr

ovid

es s

olut

ions

to

the

abov

e pr

oble

ms.

In

addi

tion,

upp

er l

ayer

s ar

e th

eref

ore

exem

pt f

rom

the

dut

y of

con

trollin

g pa

ram

eter

s in

a p

hysi

cal n

etw

ork.

Th

ese

serv

ices

gre

atly

alle

viat

e up

per-l

ayer

pro

toco

l des

ign

and

mak

e it

virtu

ally

in

depe

nden

t of p

hysi

cal t

rans

mis

sion

cha

ract

eris

tics.

Th

roug

hout

thi

s ch

apte

r, w

e in

tend

to

equ

ip r

eade

rs w

ith f

unda

men

tal

back

grou

nd a

bout

(1)

ser

vice

s an

d fu

nctio

ns p

rovi

ded

in t

he d

ata-

link

laye

r, (2

) re

al-w

orld

ex

ampl

es

of

popu

lar

data

-link

pr

otoc

ols,

an

d (3

) op

en

sour

ce

impl

emen

tatio

n in

Lin

ux.

Fran

kly,

ther

e ar

e to

o m

any

real

-wor

ld e

xam

ples

to c

hoos

e. S

ome

are

lega

cy

or m

uch

less

pop

ular

now

aday

s. S

ome

are

in t

he m

ains

tream

and

stil

l so

me

othe

rs a

re u

nder

dev

elop

men

t. It

is n

early

impo

ssib

le to

enu

mer

ate

all o

f the

m.

We

subj

ectiv

ely

offe

r a li

st o

f wel

l-kno

wn

data

-link

pro

toco

ls in

Tab

le 2

.1. A

mon

g th

ese

prot

ocol

s, w

e in

trodu

ce P

PP

as i

t is

wid

ely

used

in

dial

-up

serv

ices

. N

etw

ork

devi

ces,

say

rou

ters

, al

so r

un P

PP

to c

arry

var

ious

net

wor

k la

yer

prot

ocol

s ov

er p

oint

-to-p

oint

link

s am

ong

them

. Eth

erne

t tec

hnol

ogy

has

occu

pies

m

ore

than

95

perc

ent o

f all

loca

l are

a ne

twor

ks. I

t is

also

poi

sed

to b

e ub

iqui

tous

in

the

MA

N a

nd W

AN. I

t is

undo

ubte

dly

a te

chno

logy

we

have

to k

now.

Wire

less

lin

ks a

llow

gre

ater

mob

ility

to m

ake

life

easy

. Mor

e de

vice

s, s

uch

as n

oteb

ooks

, P

erso

nal D

ata

Ass

ista

nt (P

DA

), ce

llula

r pho

nes,

and

so

on, a

re e

quip

ped

with

the

2

capa

bilit

y to

acc

ess

the

Inte

rnet

. In

cont

rast

with

des

ktop

PC

s, w

hich

usu

ally

use

w

ired

links

, the

se d

evic

es a

re m

obile

, and

hen

ce w

irele

ss li

nks

are

pref

erre

d. W

e ch

oose

one

typ

ical

exa

mpl

e fo

r w

irele

ss lo

cal a

rea

netw

ork,

IE

EE

802

.11,

and

an

othe

r for

wire

less

per

sona

l loc

al a

rea

netw

ork,

Blu

etoo

th in

this

cha

pter

.

PA

N/L

AN

/MA

N

WA

N

Lega

cy o

r M

inor

Toke

n bu

s (8

02.4

) To

ken

ring

(802

.5)

DQ

DB

(802

.6)

HIP

PI

SM

DS

Fibe

r Cha

nnel

Is

ochr

onou

s (8

02.9

)

Dem

and

Prio

rity

(802

.12)

AT

M

FD

DI

ISD

N

X.2

5 Fr

ame

Rel

ay

ATM

Mai

nstr

eam

or

U

nder

de

velo

pmen

t

Ethe

rnet

(802

.3)

R

esilie

nt P

acke

t Rin

g (8

02.1

7)

Poi

nt-to

-Poi

nt P

roto

col (

PP

P)

HD

LC

DO

CS

IS

Wire

less

PAN

/LAN

/MAN

(8

02.1

5/11

/16)

B

luet

ooth

HIP

ER

LAN

Hom

eRF

Ethe

rnet

(802

.3)

Res

ilient

Pac

ket R

ing

(802

.17)

P

oint

-to-P

oint

Pro

toco

l (P

PP

)

Tabl

e 2.

1 da

ta-li

nk p

roto

cols

Sec

tion

2.1

prov

ides

a g

ener

al in

trodu

ctio

n of

the

func

tions

in d

ata-

link

laye

r. Sp

ecifi

cally

, th

ey i

nclu

de f

ram

ing,

add

ress

ing,

erro

r co

ntro

l, flo

w c

ontro

l, an

d ac

cess

con

trol.

We

prim

arily

exp

lain

why

and

how

in

this

sec

tion,

and

lea

ve

tech

nica

l de

tails

in s

peci

fic p

roto

cols

to

late

r se

ctio

ns a

s po

ssib

le.

Sec

tion

2.2

intro

duce

s th

e P

oint

-to-P

oint

Pro

toco

l (P

PP

). Th

e P

PP

is a

sta

ndar

d pr

otoc

ol th

at

carri

es m

ulti-

prot

ocol

pac

kets

in

the

uppe

r la

yer

over

a p

oint

-to-p

oint

lin

k. W

e pr

esen

t th

e op

en-s

ourc

e im

plem

enta

tion

so t

hat

the

read

ers

can

know

how

the

pr

otoc

ol o

pera

tes

in a

rea

l sys

tem

. Fol

low

ing

it is

Sec

tion

2.3,

whi

ch in

trodu

ces

the

dom

inat

ing

LAN

tech

nolo

gy, E

ther

net.

Hav

ing

evol

ved

mor

e th

an tw

enty

yea

rs,

Ethe

rnet

is ri

ch in

its

phys

ical

spe

cific

atio

ns. H

owev

er, t

his

sect

ion

will

focu

s m

ore

on it

s fu

nctio

ns in

the

dat

a-lin

k la

yer,

and

leav

es t

he p

hysi

cal d

etai

ls in

fur

ther

re

adin

g. W

e al

so p

rovi

de o

pen

Veril

og c

ode

to b

e fa

milia

r with

the

impl

emen

tatio

n.

Sect

ion

2.4

disc

usse

s w

irele

ss L

AN.

The

natu

re o

f w

irele

ss m

edia

, su

ch a

s m

obilit

y an

d la

ck o

f re

liabi

lity,

brin

gs n

ew im

pact

in d

esig

n di

ffere

nt f

rom

wire

d m

edia

. Tw

o ty

pica

l exa

mpl

es, I

EE

E 8

02.1

1 an

d th

e B

luet

ooth

tech

nolo

gy, w

ill b

e in

trodu

ced

in t

his

sect

ion.

Sec

tion

2.5

illust

rate

s ge

nera

l co

ncep

ts o

f de

vice

dr

iver

s in

Lin

ux. W

e w

ill go

dee

ply

into

Eth

erne

t and

PP

P dr

iver

impl

emen

tatio

ns,

and

list a

map

to in

dica

te th

e so

urce

cod

es o

f the

oth

er d

river

s fo

r the

read

ers

to

Page 2: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

3

stud

y fu

rther

. In

Sec

tion

2.6,

we

indi

cate

com

mon

pitf

alls

and

falla

cies

. The

re is

m

uch

mor

e to

lea

rn t

han

the

book

can

cov

er,

we

refe

r th

e re

ader

s to

fur

ther

re

adin

g in

Sec

tion

2.7.

2.1

Gen

eral

Issu

es

W

e ha

ve p

rese

nted

pos

sibl

e pr

oble

ms

over

phy

sica

l com

mun

icat

ion

in t

he

prel

ude.

San

dwic

hed

betw

een

the

phys

ical

lay

er a

nd t

he n

etw

ork

laye

r, th

e da

ta-li

nk la

yer p

rovi

des

cont

rol t

o ph

ysic

al c

omm

unic

atio

ns a

nd s

ervi

ces

to u

pper

ne

twor

k ab

stra

ctio

n. T

he m

ajor

func

tions

to a

ddre

ss th

ese

prob

lem

s in

this

laye

r in

clud

e M

ajor

Fun

ctio

ns

Fram

ing

Con

trol i

nfor

mat

ion

com

es a

long

with

the

bit s

tream

itse

lf to

spe

cify

the

dest

inat

ion

node

, ind

icat

e th

e up

per-l

ayer

pro

toco

l, ch

eck

poss

ible

err

or, a

nd s

o on

. To

be c

onve

nien

t, da

ta a

re s

ent a

nd p

roce

ssed

in u

nits

of f

ram

es.

A ty

pica

l fra

me

usua

lly c

onta

ins

two

mai

n pa

rts: c

ontro

l inf

orm

atio

n an

d th

e da

ta. C

ontro

l in

form

atio

n is

refe

rred

to d

urin

g fra

me

proc

essi

ng b

y th

e da

ta-li

nk p

roto

cols

. The

da

ta

part

com

es

from

up

per

laye

rs

and

is

enca

psul

ated

w

ith

the

cont

rol

info

rmat

ion

into

a w

hole

fra

me.

The

dat

a-lin

k la

yer

serv

ice

shou

ld s

omeh

ow

delim

it bi

t stre

am in

to fr

ames

and

con

vert

fram

es in

to b

it st

ream

. Not

ice

that

the

two

term

s, p

acke

ts a

nd f

ram

es,

are

usua

lly u

sed

inte

rcha

ngea

bly.

To

be m

ore

spec

ific,

her

e w

e re

fer t

o th

e da

ta u

nit i

n th

e da

ta-li

nk la

yer a

s fra

mes

. A

ddre

ssin

g W

e ne

ed a

n ad

dres

s w

hen

writ

ing

a le

tter

to o

ur f

riend

s. W

e al

so

need

a p

hone

num

ber

whe

n di

alin

g up

to

them

. A

ddre

ssin

g is

nee

ded

for

the

sam

e re

ason

in

the

data

-link

lay

er.

The

iden

titie

s of

the

inv

olve

d st

atio

ns a

re

indi

cate

d by

an

addr

ess,

ofte

n pr

esen

ted

in a

num

eric

form

of s

ome

leng

th.

Erro

r co

ntro

l D

ata

trans

mitt

ed o

ver

phys

ical

med

ia a

re s

ubje

ct t

o er

rors

. Th

e er

rors

mus

t be

dete

cted

by

the

rece

iver

. The

rec

eive

r m

ay s

omeh

ow in

form

the

trans

mitt

er t

hat

ther

e ar

e er

rors

so

that

the

tra

nsm

itter

kno

ws

to r

etra

nsm

it th

e da

ta.

Flow

con

trol

The

tra

nsm

itter

may

sen

d at

a r

ate

fast

er t

han

the

rece

iver

can

af

ford

. In

thi

s si

tuat

ion,

the

rec

eive

r ha

s to

dis

card

the

fra

mes

, m

akin

g th

e tra

nsm

itter

ret

rans

mits

the

dro

pped

fra

mes

. H

owev

er,

this

is

inef

ficie

nt.

Flow

co

ntro

l pro

vide

s a

way

to le

t the

rece

iver

slo

w d

own

the

trans

mitt

er.

Med

ium

Acc

ess

cont

rol T

here

mus

t be

an

arbi

tratio

n m

echa

nism

whe

n th

ere

are

mul

tiple

sta

tions

tha

t w

ant

to t

rans

mit

data

ove

r sh

ared

med

ia.

For

a go

od

arbi

tratio

n m

echa

nism

, th

e ac

cess

to

a sh

ared

med

ium

sho

uld

be f

air

and

the

4

utiliz

atio

n of

the

shar

ed m

ediu

m m

ust k

eep

high

if m

any

stat

ions

are

inte

nded

to

trans

mit

sim

ulta

neou

sly.

Th

is s

ectio

n ra

ises

gen

eral

fun

ctio

ns i

n th

e da

ta-li

nk l

ayer

. A

fter

thes

e pr

elim

inar

ies,

we

will

exe

mpl

ify th

e op

erat

ions

in p

opul

ar d

ata-

link

laye

r pro

toco

ls

in la

ter s

ectio

ns.

2.

1.1

Fram

ing

Fram

e D

elim

iting

B

ecau

se d

ata

are

trans

mitt

ed i

n ra

w b

it st

ream

in

the

phys

ical

lay

er,

the

data

-link

laye

r m

ust s

omeh

ow te

ll th

e be

ginn

ing

and

the

end

of a

fram

e. It

mus

t al

so c

onve

rt fra

mes

into

raw

bit

stre

am f

or p

hysi

cal t

rans

mis

sion

. Th

is is

cal

led

fram

ing.

The

re a

re m

any

way

s to

del

imit

fram

es. D

epen

ding

on

the

basi

c un

it of

a

fram

e, w

hich

can

be

byte

(or

oct

et)

or b

it, c

alle

d by

te-o

rient

ed o

r bi

t-orie

nted

fra

mes

, we

may

use

spe

cial

sen

tinel

cha

ract

ers

or b

it pa

ttern

to m

ark

the

fram

e bo

unda

ry.

We

intro

duce

how

fra

min

g is

ach

ieve

d w

ith e

xam

ples

of

bit-o

rient

ed

HD

LC f

ram

es a

nd le

gacy

BIS

YN

C f

ram

es.

Ther

e ar

e st

ill ot

her

way

s to

del

imit

fram

es. F

or e

xam

ples

, som

e E

ther

net s

yste

ms

use

spec

ial p

hysi

cal e

ncod

ing

to

mar

k fra

me

boun

dary

whi

le o

ther

s id

entif

y th

e bo

unda

ry s

impl

y by

the

pres

ence

or

abs

ence

of s

igna

l1 . A

bit-o

rient

ed fr

ame

can

spec

ify a

spe

cial

bit

patte

rn, s

ay 0

1111

110

in H

DLC

, w

hile

a b

yte-

orie

nted

fra

me

can

spec

ify s

peci

al c

hara

cter

s, s

ay S

OH

(st

art

of

head

er)

and

STX

(st

art o

f tex

t) to

mar

k th

e be

ginn

ing

of fr

ame

head

er a

nd d

ata.

Th

ere

may

be

an a

mbi

guity

whe

n no

rmal

dat

a ch

arac

ters

or b

its a

re th

e sa

me

as

the

spec

ial c

hara

cter

s or

pat

tern

. A te

chni

que

calle

d by

te- o

r bit-

stuf

fing

is u

sed

to

solv

e th

e am

bigu

ity, a

s illu

stra

ted

in F

ig. 2

.1. A

spe

cial

esc

ape

char

acte

r, na

mel

y D

LE (

data

lin

k es

cape

), pr

eced

es a

spe

cial

cha

ract

er t

o in

dica

te t

he n

ext

char

acte

r is

nor

mal

dat

a in

a b

yte-

orie

nted

fram

e. O

f cou

rse,

DLE

itse

lf is

als

o a

spec

ial c

hara

cter

. Tw

o co

nsec

utiv

e D

LEs

repr

esen

t a n

orm

al c

hara

cter

the

sam

e as

DLE

. For

bit-

orie

nted

fram

es, t

he b

it pa

ttern

011

1111

0 is

use

d in

HD

LC. W

hen

ther

e ar

e fiv

e co

nsec

utiv

e 1’

s in

the

norm

al d

ata

bits

, a 0

is s

tuffe

d af

ter

the

five

1’s

so th

at th

e pa

ttern

011

1111

0 ne

ver

appe

ars

in th

e no

rmal

dat

a bi

ts. B

oth

the

trans

mitt

er a

nd t

he r

ecei

ver

follo

w t

he s

ame

rule

and

hen

ce t

he a

mbi

guity

is

solv

ed.

A di

ffere

nt a

ppro

ach

is in

the

Eth

erne

t. Fo

r ex

ampl

e, 1

00B

AS

E-X

can

use

sp

ecia

l en

codi

ng t

o m

ark

the

boun

dary

bec

ause

afte

r 4B

/5B

enc

odin

g (S

ee

Sec

tion

1.1.

1),

ther

e ar

e 32

(=

25 ) co

des

that

can

be

trans

mitt

ed o

ver

phys

ical

1 E

ther

net u

ses t

he te

rm ‘s

tream

’ to

refe

r to

phys

ical

enc

apsu

latio

n of

a fr

ame.

Stri

ctly

spea

king

, spe

cial

en

codi

ng o

r pre

senc

e of

sign

al d

elim

it st

ream

, not

fram

e. H

owev

er, w

e do

not

bot

her t

he d

etai

ls h

ere.

Page 3: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

5

med

ia w

hile

onl

y 16

out

of t

hem

com

e fro

m a

ctua

l dat

a. O

ther

cod

es c

an b

e us

ed

as c

ontro

l co

des.

The

se c

odes

are

uni

quel

y re

cogn

izab

le b

y th

e re

ceiv

er a

nd

henc

e de

limit

a fra

me

out

of a

seq

uenc

e of

bit

stre

am.

Som

e ot

her

Eth

erne

t sy

stem

s, s

ay 1

0BA

SE

-T,

does

not

hav

e si

gnal

bet

wee

n fra

mes

. Th

ey c

an

reco

gniz

e th

e fra

me

boun

dary

sim

ply

by th

e pr

esen

ce o

r abs

ence

of s

igna

l.

Figu

re 2

.1

(a) b

yte-

stuf

fing

and

(b) b

it-st

uffin

g Fr

ame

Form

at

A fra

me

is d

ivid

ed in

to fi

elds

that

incl

ude

vario

us k

inds

of c

ontro

l inf

orm

atio

n fo

r pr

oces

sing

and

the

data

from

the

netw

ork

laye

r. N

ote

that

the

data

from

the

netw

ork

laye

r co

ver

cont

rol

info

rmat

ion

of h

ighe

r la

yers

and

the

act

ual

data

. C

ontro

l inf

orm

atio

n of

hig

her l

ayer

s is

not

dea

lt w

ith a

nd tr

eate

d as

nor

mal

dat

a in

th

e da

ta-li

nk la

yer.

Typi

cal f

ield

s of

con

trol i

nfor

mat

ion

othe

r th

an th

e da

ta fi

elds

ar

e lis

ted

belo

w:

Add

ress

: us

ually

indi

cate

s th

e so

urce

or

the

dest

inat

ion

addr

ess.

The

rec

eive

r kn

ows

the

fram

e is

for

it if

the

dest

inat

ion

addr

ess

mat

ches

its

own.

It a

lso

can

resp

ond

to th

e so

urce

by

fillin

g in

the

dest

inat

ion

addr

ess

of th

e ou

tgoi

ng fr

ame

with

the

sour

ce a

ddre

ss o

f the

inco

min

g fra

me.

Le

ngth

: may

indi

cate

the

leng

th o

f the

who

le fr

ame

or th

at o

f the

dat

a fie

ld.

Type

: Th

e ty

pe o

f ne

twor

k la

yer

prot

ocol

is e

ncod

ed in

thi

s fie

ld.

The

data

-link

la

yer

prot

ocol

can

rea

d th

e co

de t

o de

term

ine

wha

t ne

twor

k la

yer

mod

ule,

say

In

tern

et P

roto

col (

IP),

to b

e in

voke

d to

dea

l with

the

data

fiel

d fu

rther

. Er

ror

dete

ctio

n co

de: i

s a

func

tion

of th

e co

nten

t in

the

fram

e. T

he tr

ansm

itter

SOH

star

t of a

fram

e he

ader

Hea

der i

nfor

mat

ion

DLE

ST

X

data

-link

esc

ape (a

)

0111

1110

1010

1110

0011

1011

1110

0000

1101

1100

1101

0101

0101

0101

1111

0101

1…

star

t of a

fram

e st

uffin

g bi

t st

uffin

g bi

t

five

cons

ecut

ive

1’s

five

cons

ecut

ive

1’s

(b)

ETX

star

t of t

ext

end

of te

xt

DLE

D

LE

Dat

a po

rtion

6

com

pute

s th

e fu

nctio

n an

d em

beds

the

valu

e in

the

fram

e to

be

trans

mitt

ed. U

pon

rece

ivin

g th

e fra

me,

the

rece

iver

com

pute

s in

the

sam

e w

ay to

see

if b

oth

resu

lts

mat

ch.

If th

ey d

o no

t m

atch

, it

impl

ies

the

cont

ent

is m

ade

chan

ged

durin

g tra

nsm

issi

on.

Two

com

mon

fun

ctio

ns a

re C

heck

sum

and

Cyc

lic R

edun

danc

y C

heck

(CR

C).

2.1.

2 A

ddre

ssin

g G

loba

l or L

ocal

Add

ress

A

n ad

dres

s is

an

id

entif

ier

to

iden

tify

each

st

atio

n fro

m

anot

her

in

com

mun

icat

ions

. Alth

ough

a n

ame

is e

asie

r to

rem

embe

r, it

is c

ompa

ct to

use

a

num

eric

al a

ddre

ss in

low

-leve

l lay

er p

roto

cols

, suc

h as

thos

e in

the

data

-link

laye

r. W

e le

ave

the

conc

ept o

f nam

e as

an

iden

tifie

r to

Cha

pter

5 (

See

Dom

ain

Nam

e S

yste

m).

An

addr

ess

can

be g

loba

lly u

niqu

e or

loc

ally

uni

que.

A g

loba

lly-u

niqu

e ad

dres

s is

uni

que

wor

ldw

ide,

whi

le a

loca

lly-u

niqu

e ad

dres

s is

onl

y un

ique

in a

lo

cal s

ite. I

n ge

nera

l, a

loca

lly-u

niqu

e ad

dres

s co

nsum

es fe

wer

bits

and

req

uire

s th

e ad

min

istra

tor’s

effo

rts t

o m

ake

sure

it

is l

ocal

ly u

niqu

e. S

ince

th

e bi

t ov

erhe

ads

of t

he a

ddre

ss a

re t

rivia

l, gl

obal

ly-u

niqu

e ad

dres

ses

are

pref

erre

d no

wad

ays.

The

adm

inis

trato

r si

mpl

y ad

ds a

sta

tion

at w

ill, a

nd d

oes

not n

eed

to

wor

ry a

bout

the

conf

lict o

f add

ress

es.

Add

ress

Len

gth

H

ow l

ong

shou

ld a

n ad

dres

s be

? A

long

er a

ddre

ss t

akes

mor

e bi

ts t

o be

tra

nsm

itted

, har

der t

o re

fer t

o or

rem

embe

r. O

n th

e co

ntra

ry, a

sho

rt ad

dres

s m

ay

be n

ot e

noug

h fo

r gl

obal

uni

quen

ess.

For

a lo

cally

-uni

que

addr

ess,

8 o

r 16

bits

sh

ould

be

enou

gh. H

owev

er, f

or a

glo

bally

uni

que

addr

ess,

muc

h m

ore

bits

are

ne

cess

ary.

A v

ery

popu

lar

addr

essi

ng f

orm

at a

dopt

ed b

y IE

EE

802

has

48 b

its

long

. W

e le

ave

it as

an

exer

cise

for

the

rea

ders

to

disc

uss

whe

ther

48

bits

are

en

ough

. IE

EE 8

02 M

AC

Add

ress

W

e in

trodu

ce

a po

pula

r da

ta-li

nk

addr

ess

spec

ified

in

th

e IE

EE

80

2 St

anda

rds.

It is

an

exce

llent

exa

mpl

e be

caus

e th

e ad

dres

sing

is w

idel

y ad

opte

d in

m

any

data

-link

pro

toco

ls,

incl

udin

g E

ther

net,

Fibe

r D

istri

butio

n D

ata

Inte

rface

(F

DD

I), T

oken

Rin

g, w

irele

ss L

AN

, etc

. W

hile

the

IEE

E 80

2 sp

ecifi

es t

he u

se o

f ei

ther

2-b

yte

of 6

-byt

e ad

dres

ses,

m

ost

impl

emen

tatio

ns a

dopt

6-b

yte

(or

48-b

it) a

ddre

sses

. To

mak

e su

re t

he

addr

ess

is g

loba

lly u

niqu

e, t

he a

ddre

ss i

s pa

rtitio

ned

into

tw

o m

ain

parts

:

Page 4: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

7

Org

aniz

atio

n-U

niqu

e Id

entif

ier

(OU

I) an

d O

rgan

izat

ion-

Ass

igne

d P

ortio

n, e

ach

occu

pyin

g th

ree

byte

s.

The

OU

I pa

rt is

ad

min

istra

ted

by

the

IEE

E.

Eac

h m

anuf

actu

rer

can

cont

act

the

IEE

E

to

appl

y to

ow

n an

O

UI

2 (

See

ht

tp://

stan

dard

s.ie

ee.o

rg) f

or a

fee,

and

then

they

are

in c

harg

e of

the

uniq

uene

ss

of th

e O

rgan

izat

ion-

Ass

igne

d P

ortio

n. In

theo

ry, t

here

are

tota

lly 2

48 (a

roun

d 10

15)

addr

esse

s th

at c

an

be

assi

gned

. Th

is n

umbe

r is

la

rge

enou

gh f

or

glob

al

uniq

uene

ss. T

he fo

rmat

of t

he a

ddre

ss is

illu

stra

ted

in F

ig. 2

.2.

Fi

gure

2.2

IE

EE

802

add

ress

form

at

Th

e fir

st b

it in

tran

smis

sion

ord

er is

rese

rved

to in

dica

te w

heth

er th

e ad

dres

s is

uni

cast

or m

ultic

ast3 . A

uni

cast

add

ress

is d

estin

ed fo

r a s

ingl

e st

atio

n, w

hile

a

mul

ticas

t add

ress

is d

estin

ed fo

r a g

roup

of s

tatio

ns. A

spe

cial

cas

e of

mul

ticas

t is

broa

dcas

t, w

here

all

bits

of t

he a

ddre

ss a

re 1

’s. I

t is

dest

ined

for a

ll st

atio

ns a

s fa

r as

a fr

ame

can

reac

h in

the

data

-link

laye

r. A

lso

note

that

the

trans

mis

sion

ord

er

of b

its i

n ea

ch b

yte

in t

he a

ddre

ss m

ay b

e di

ffere

nt f

rom

the

ord

er s

tore

d in

m

emor

y. In

Eth

erne

t, th

e tra

nsm

issi

on o

rder

is le

ast

sign

ifica

nt b

it (L

SB

) fir

st in

ea

ch b

yte,

cal

led

little

-End

ian.

In o

ther

pro

toco

ls, s

uch

as F

DD

I and

Tok

en R

ing,

th

e tra

nsm

issi

on o

rder

is

mos

t si

gnifi

cant

bit

(MS

B)

first

in

each

byt

e, c

alle

d bi

g-E

ndia

n. T

he a

ddre

ss i

s of

ten

writ

ten

in h

exad

ecim

al f

orm

of

sepa

rate

d by

da

shes

or c

olon

s, e

.g. 0

0-32

-4f-c

c-30

-58.

2.

1.3

Erro

r con

trol

Fram

es a

re s

ubje

ct t

o er

rors

dur

ing

trans

mis

sion

. Th

e er

rors

sho

uld

be

dete

cted

and

the

tra

nsm

itter

may

be

dem

ande

d to

ret

rans

mit

the

fram

e. I

n th

is

subs

ectio

n, w

e in

trodu

ce th

e w

ay to

det

ect e

rrors

and

wha

t act

ion

follo

ws

whe

n er

rors

are

det

ecte

d.

Erro

r de

tect

ion

oper

ates

by

addi

ng a

dditi

onal

bits

as

a fu

nctio

n of

the

fram

e co

nten

t to

the

fram

e by

the

trans

mitt

er. T

he r

ecei

ver

perfo

rms

exac

tly th

e sa

me

calc

ulat

ion

to t

he f

ram

e co

nten

t to

see

if

the

two

resu

lts m

atch

. If

ther

e is

a

2 S

ee h

ttp://

stan

dard

s.iee

e.or

g/re

gaut

h/ou

i/oui

.txt a

bout

how

OU

I has

bee

n as

sign

ed.

3 The

seco

nd b

it ca

n in

dica

te w

heth

er th

e ad

dres

s is g

loba

lly-u

niqu

e or

loca

lly-u

niqu

e. T

he u

se is

seld

om,

so w

e ig

nore

it h

ere.

Firs

t byt

e

Sec

ond

byte

Th

ird b

yte

Fo

urth

byt

e

Fi

fth b

yte

S

ixth

byt

eO

rgan

izat

ion-

Uni

que

Iden

tifie

r (O

UI)

Org

aniz

atio

n-A

ssig

ned

Por

tion

first

bitt

rans

mitt

ed0:

uni

cast

add

ress

1:

mul

ticas

t add

ress

8

mis

mat

ch, t

he fr

ame

is c

onsi

dere

d to

be

subj

ect t

o er

rors

. We

will

illus

trate

two

com

mon

fun

ctio

ns i

n er

ror

dete

ctio

n: c

heck

sum

and

cyc

lic r

edun

danc

y ch

eck

(CR

C).

Erro

r Det

ectio

n C

ode

Th

e ch

ecks

um c

ompu

tatio

n si

mpl

y di

vide

s th

e fra

me

cont

ent i

nto

bloc

ks o

f m

bits

and

tak

es t

he s

um o

f th

ese

bloc

ks.

Anot

her

pow

erfu

l te

chni

que

is c

yclic

re

dund

ancy

che

ck.

Alth

ough

it is

slig

htly

com

plic

ated

tha

n ch

ecks

um,

it is

ver

y ea

sy to

impl

emen

t in

hard

war

e. S

uppo

se t

here

are

m b

its in

the

fram

e co

nten

t. Th

e tra

nsm

itter

can

gen

erat

e a

sequ

ence

of k

bits

as

the

fram

e ch

eck

sequ

ence

(F

CS

) so

that

the

tota

l fra

me,

hav

ing

m+k

bits

, can

be

divi

ded

by a

pre

dete

rmin

ed

bit p

atte

rn, c

alle

d ge

nera

tor.

The

rece

iver

div

ides

in th

e sa

me

way

and

see

s if

the

rem

aind

er

is

zero

. If

the

rem

aind

er

is

not

zero

, th

ere

are

erro

rs

durin

g tra

nsm

issi

on.

We

show

the

CR

C p

roce

dure

to

gene

rate

the

FC

S w

ith t

he f

ollo

win

g ex

ampl

e:

fram

e co

nten

t F=

1101

0001

110

(11

bits

) ge

nera

tor B

= 10

1011

(6 b

its)

FCS

= (5

bits

) Th

e pr

oced

ure

goes

like

the

follo

win

g st

eps:

St

ep 1

Shi

ft F

by 2

5 , and

app

end

it w

ith 5

0’s

, yie

ldin

g 11

0100

0111

0000

00.

Step

2 T

he re

sulti

ng p

atte

rn in

Ste

p 1

is d

ivid

ed b

y B

. The

pro

cess

is a

s fo

llow

s:

(N

otic

e th

at th

e co

mpu

tatio

n is

all

mod

ule-

2 ar

ithm

etic

)

1101

0001

1100

0000

1010

11

1110

0000

111

1010

1111

1110

1010

1110

1011

1010

1111

0000

1010

1111

0110

1010

1111

1010

1010

1110

001

the

rem

aind

er

Page 5: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

9

Step

3 T

he re

mai

nder

in th

e ab

ove

com

puta

tion

is a

ppen

ded

in th

e or

igin

al fr

ame

cont

ent,

yiel

ding

110

1000

1110

1000

1. T

he re

sulti

ng fr

ame

is th

en tr

ansm

itted

. The

re

ceiv

er d

ivid

es th

e in

com

ing

fram

e by

the

bit p

atte

rn 1

0101

1 to

ver

ify th

e fra

me.

W

e le

ave

the

verif

icat

ion

on th

e re

ceiv

er s

ide

as a

n ex

erci

se.

With

car

eful

des

ign

of th

e ge

nera

tor,

the

CR

C is

pro

ved

mat

hem

atic

ally

to b

e ab

le to

det

ect m

any

kind

s of

erro

rs, i

nclu

ding

: 1.

si

ngle

-bit

erro

r 2.

do

uble

-bit

erro

r 3.

A

ny b

urst

erro

rs w

hose

bur

st le

ngth

is le

ss th

an th

e le

ngth

of t

he F

CS

. Th

e C

RC

co

mpu

tatio

n ca

n be

ea

sily

im

plem

ente

d in

ha

rdw

are

with

ex

clus

ive-

OR

gat

es a

nd s

hift

regi

ster

s. S

uppo

se w

e re

pres

ent

the

gene

rato

r in

th

e fo

rm a

nan-

1an-

2…a 1

a 0.

The

bits

an

and

a 0 a

re d

eman

ded

to b

e 1.

We

plot

a

gene

ral c

ircui

t arc

hite

ctur

e th

at im

plem

ents

the

CR

C c

ompu

tatio

n in

Fig

. 2.3

. The

fra

me

cont

ent i

s sh

ifted

into

this

circ

uit

bit b

y bi

t, an

d th

e fin

al b

it pa

ttern

in th

e sh

ift r

egis

ters

is

the

FCS

, i.e

. C

n-1C

n-2…

C1C

0. N

ote

that

the

ini

tial

valu

es o

f C

n-1C

n-2…

C1C

0 ar

e in

sign

ifica

nt b

ecau

se t

hey

will

be

final

ly s

hifte

d ou

t af

ter

com

puta

tion.

For

ver

y hi

gh-s

peed

net

wor

king

, circ

uits

that

com

pute

CR

C b

its in

pa

ralle

l hav

e be

en d

esig

ned

to s

peed

up

the

com

puta

tion.

Fi

gure

2.3

C

RC

circ

uit d

iagr

am

Er

ror C

ontr

ol A

ppro

ache

s Th

e re

ceiv

er c

an r

espo

nd t

he e

rror

stat

e of

the

inc

omin

g fra

me

in t

he

follo

win

g w

ays:

1.

S

ilent

ly d

isca

rd

2.

Pos

itive

ack

now

ledg

emen

t whe

n th

e in

com

ing

fram

e is

cor

rect

3.

N

egat

ive

ackn

owle

dgem

ent w

hen

the

inco

min

g fra

me

is in

corre

ct

The

trans

mitt

er m

ay r

etra

nsm

it th

e fra

me

that

is in

corre

ctly

rec

eive

d or

just

ig

nore

the

erro

rs. I

n th

e la

tter

case

, hig

her

laye

r pr

otoc

ols,

say

TC

P, c

an h

andl

e th

e re

trans

mis

sion

. 2.

1.4

Flow

con

trol

Fl

ow c

ontro

l add

ress

es th

e pr

oble

m o

f a fa

st tr

ansm

itter

and

a s

low

rece

iver

.

fram

e bi

tsC

0C

1

a 1a 2

Cn-

2C

n-1

a n-1

10

Whe

n th

e re

ceiv

er is

ove

rwhe

lmed

, flo

w c

ontro

l pro

vide

s a

way

to le

t the

rece

iver

te

ll th

e tra

nsm

itter

, “H

ey! Y

ou tr

ansm

it to

o fa

st. P

leas

e w

ait!”

The

sim

ples

t met

hod

is

calle

d st

op-a

nd-w

ait.

The

trans

mitt

er

trans

mits

on

e fra

me,

w

aits

th

e ac

know

ledg

emen

t fro

m th

e re

ceiv

er, a

nd tr

ansm

its th

e ne

xt. T

his

met

hod

resu

lts

in v

ery

low

util

izat

ion

of th

e tra

nsm

issi

on li

nk.

Sl

idin

g W

indo

w P

roto

col

An

impr

ovem

ent i

s th

e sl

idin

g w

indo

w p

roto

col.

The

trans

mitt

er c

an tr

ansm

it a

win

dow

of

fram

es w

ithou

t ac

know

ledg

emen

ts.

Whe

n th

e ac

know

ledg

emen

ts

retu

rn f

rom

the

rec

eive

r, th

e tra

nsm

itter

can

mov

e fo

rwar

d to

tra

nsm

it m

ore

fram

es.

To

track

w

hich

ou

tgoi

ng

fram

e co

rres

pond

s to

a

retu

rned

ac

know

ledg

emen

t, ea

ch fr

ame

is la

bele

d w

ith a

seq

uenc

e nu

mbe

r. Th

e ra

nge

of

sequ

ence

num

ber

shou

ld b

e la

rge

enou

gh s

o th

at a

seq

uenc

e nu

mbe

r w

ill no

t re

appe

ar to

o so

on. I

f so,

am

bigu

ity w

ill ha

ppen

, sin

ce w

e ha

ve n

o m

eans

to te

ll th

e se

quen

ce n

umbe

r rep

rese

nts

an o

ld o

r a n

ew fr

ame.

Fo

r ex

ampl

e, s

uppo

se th

e w

indo

w s

ize

of th

e tra

nsm

itter

is 9

. It m

eans

the

trans

mitt

er c

an tr

ansm

it up

to 9

fram

es w

ithou

t ack

now

ledg

emen

ts. S

uppo

se th

e tra

nsm

itter

has

tra

nsm

itted

4 f

ram

es a

nd r

ecei

ves

an a

ckno

wle

dgem

ent

that

in

dica

tes

the

first

thre

e fra

mes

are

suc

cess

fully

rece

ived

. The

win

dow

will

slid

e 3

mor

e fra

mes

. It

mea

ns

3 m

ore

fram

es

can

be

trans

mitt

ed

with

out

ackn

owle

dgem

ents

. Slid

ing

win

dow

flow

con

trol i

s al

so a

ver

y im

porta

nt te

chni

que

in T

rans

mis

sion

Con

trol P

roto

col (

TCP

). W

e st

rong

ly r

ecom

men

d th

e re

ader

s to

pa

y at

tent

ion

to re

late

d di

scus

sion

in C

hapt

er 4

. O

ther

App

roac

hes

Ther

e ar

e st

ill ot

her

met

hods

to

impl

emen

t flo

w c

ontro

l. Fo

r ex

ampl

e, t

he

mec

hani

sm in

Eth

erne

t inc

lude

s ba

ck p

ress

ure

and

PAU

SE

fra

me.

How

ever

, to

un

ders

tand

thes

e m

etho

ds re

quire

the

know

ledg

e of

how

thes

e pr

otoc

ols

oper

ate.

W

e w

ill le

ave

thes

e flo

w c

ontro

l tec

hniq

ues

to la

ter s

ectio

ns.

2.

1.5

Med

ium

acc

ess

cont

rol

Med

ium

acc

ess

cont

rol,

also

sim

ply

refe

rred

to a

s M

AC

, is

nee

ded

whe

n m

ultip

le s

tatio

ns s

hare

a c

omm

on p

hysi

cal

med

ium

. It

incl

udes

an

arbi

tratio

n m

echa

nism

that

eve

ry s

tatio

n sh

ould

obe

y in

ord

er to

sha

re th

e co

mm

on m

ediu

m

fairl

y an

d ef

ficie

ntly.

The

re a

re p

lent

y of

tech

niqu

es to

do

so. W

e su

mm

ariz

e th

ese

tech

niqu

es in

to th

ree

cate

gorie

s be

low.

C

onte

ntio

n-ba

sed

App

roac

h

Page 6: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

11

Mul

tiple

sta

tions

con

tend

for t

he u

se o

f med

ium

in th

is a

ppro

ach.

A c

lass

ical

ex

ampl

e is

ALO

HA

. Sta

tions

tran

smit

data

at w

ill. If

two

or m

ore

stat

ions

tran

smit

at t

he s

ame

time,

cal

led

a co

llisi

on,

thei

r fra

mes

will

be g

arbl

ed,

mak

ing

the

thro

ughp

ut lo

w. A

refin

emen

t is

the

slot

ted

ALO

HA

, in

whi

ch a

sta

tion

is a

llow

ed to

tra

nsm

it on

ly in

the

begi

nnin

g of

a ti

me

slot

. Fur

ther

ref

inem

ents

incl

ude

Car

rier

Sen

se a

nd C

ollis

ion

Det

ectio

n. C

arrie

r sen

se m

eans

the

stat

ion

sens

es if

ther

e is

tra

nsm

issi

on (i

n si

gnal

cal

led

carr

ier)

ove

r the

sha

red

med

ium

. The

tran

smitt

er w

ill w

ait p

olite

ly b

efor

e it

trans

mits

unt

il th

e sh

ared

med

ium

is fr

ee. C

ollis

ion

dete

ctio

n pr

even

ts t

he t

rans

mitt

er f

rom

a g

arbl

ed f

ram

e by

sto

ppin

g tra

nsm

issi

on i

f a

collis

ion

is d

etec

ted.

R

ound

-rob

in A

ppro

ach

Th

e m

ost

typi

cal

exam

ples

are

Tok

en R

ing,

Tok

en B

us,

and

FDD

I. Th

eir

mec

hani

sms

are

sim

ilar

desp

ite t

hat

thei

r st

ruct

ures

are

diff

eren

t. A

toke

n ci

rcul

ates

one

by

one

to a

llow

fair

shar

e of

the

med

ium

am

ong

stat

ions

. A s

tatio

n th

at o

wns

the

toke

n ha

s th

e rig

ht to

tran

smit

its fr

ame.

R

eser

vatio

n-ba

sed

App

roac

h C

ollis

ion-

base

d ap

proa

ch is

inef

ficie

nt if

a c

ollis

ion

cann

ot b

e de

tect

ed in

tim

e.

A fra

me

is c

ompl

exly

gar

bled

bef

ore

the

trans

mitt

er i

s aw

are

of t

he t

rage

dy.

Ano

ther

app

roac

h is

res

ervi

ng b

efor

e tra

nsm

ittin

g. T

he c

hann

el i

s re

serv

ed

som

ehow

bef

ore

the

trans

mitt

er a

ctua

lly tr

ansm

its it

fram

e. A

wel

l-kno

wn

exam

ple

is th

e R

TS/C

TS m

echa

nism

in IE

EE

802

.11

wire

less

LA

N. W

e w

ill ta

lk m

ore

abou

t th

is m

echa

nism

in S

ectio

n 2.

4.

Ther

e is

a tr

adeo

ff as

to th

e us

e of

rese

rvat

ion.

The

rese

rvat

ion

proc

ess

itsel

f is

an

over

head

. If

the

cost

of

a fra

me

loss

is

not

larg

e, e

.g.

a sh

ort

fram

e, a

co

nten

tion-

base

d ap

proa

ch m

ay b

e m

ore

effic

ient

. If

only

two

stat

ions

are

on

a po

int-t

o-po

int l

ink,

the

acce

ss c

ontro

l may

not

be

nece

ssar

y, d

epen

ding

on

the

med

ium

cha

ract

eris

tics.

In

such

a s

ituat

ion,

bot

h st

atio

ns c

an tr

ansm

it at

the

sam

e tim

e, w

hich

we

call

full-

dupl

ex o

pera

tion.

We

will

talk

mor

e ab

out f

ull-d

uple

x op

erat

ion

in S

ectio

n 2.

3.

2.

2 Po

int-t

o-po

int p

roto

col

St

artin

g fro

m th

is s

ectio

n, w

e w

ill lo

ok in

to re

al-w

orld

pro

toco

ls to

see

how

the

prin

cipl

es in

trodu

ced

in S

ectio

n 2.

1 w

ork

in t

hem

. Th

is s

ectio

n fo

cuse

s on

the

P

oint

-to-P

oint

Pro

toco

l (P

PP

), a

wid

ely

used

pro

toco

l we

ofte

n fin

d w

hen

we

dial

12

up a

mod

em o

r us

e A

DS

L to

the

Int

erne

t. W

e w

ould

like

to

emph

asiz

e on

the

ch

arac

teris

tics

in th

e da

ta-li

nk la

yer,

fram

ing,

add

ress

ing,

erro

r co

ntro

l, an

d flo

w

cont

rol,

in o

ur e

xpla

natio

n of

the

prot

ocol

ope

ratio

n. T

he P

PP

was

der

ived

from

an

old,

but

wid

ely

used

pro

toco

l, H

igh-

leve

l D

ata

Link

Con

trol

(HD

LC).

Dur

ing

its

oper

atio

n ar

e tw

o pr

otoc

ols,

Lin

k C

ontro

l P

roto

col (

LCP

), an

d N

etw

ork

Con

trol

Pro

toco

l (N

CP

). A

s E

ther

net

exte

nds

to h

ome

and

orga

niza

tions

, w

ith a

brid

ge

devi

ce s

uch

as A

DS

L m

odem

, con

nect

ed to

the

Inte

rnet

Ser

vice

Pro

vide

r (IS

P),

ther

e is

a r

equi

rem

ent

of P

PP

over

Eth

erne

t (P

PP

oE).

Fig.

2.4

sho

ws

the

rela

tions

hip

betw

een

thes

e co

mpo

nent

s w

e w

ill in

trodu

ce in

this

sec

tion.

Fi

gure

2.4

R

elat

ions

hip

of P

PP

-rela

ted

prot

ocol

s 2.

2.1

Hig

h-le

vel D

ata

Link

Con

trol (

HD

LC)

Th

e H

DLC

pro

toco

l is

old

but i

t is

a ba

sis

of m

any

othe

r pr

otoc

ols.

Der

ived

fro

m a

n ea

rly p

roto

col,

Syn

chro

nous

Dat

a Li

nk C

ontro

l pro

toco

l (S

DLC

), by

IBM

, it

was

late

r sub

mitt

ed to

ISO

and

bec

omes

an

ISO

sta

ndar

d. T

he H

DLC

pro

toco

l is

the

basi

s of

man

y ot

her d

ata-

link

prot

ocol

s. F

or e

xam

ple,

the

PP

P us

es H

DLC

-like

fra

min

g. IE

EE

802

.2 L

ogic

al L

ink

Con

trol (

LLC

) is

a m

odifi

catio

n of

HD

LC. C

CIT

T m

odifi

es H

DLC

as

part

of t

he X

.25

stan

dard

, ca

lled

Link

Acc

ess

Pro

cedu

re,

Bal

ance

d (L

AP-

B).

For

its

varia

tions

, H

DLC

su

ppor

ts

poin

t-to-

poin

t an

d po

int-t

o-m

ultip

oint

link

, and

hal

f-dup

lex

and

full-

dupl

ex li

nk. T

o be

tter

unde

rsta

nd

how

HD

LC w

ork

in te

rms

of th

e da

ta li

nk fu

nctio

ns w

e ha

ve m

entio

ned,

we

first

ta

ke a

look

of t

he H

DLC

ope

ratio

n.

Page 7: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

13

HD

LC O

pera

tion:

Med

ium

Acc

ess

Con

trol

In

HD

LC, s

tatio

ns a

re e

ither

prim

ary

or s

econ

dary

sta

tions

. HD

LC s

uppo

rts

the

follo

win

g th

ree

trans

fer

mod

es.

Not

e th

at i

t is

the

way

how

sta

tions

are

co

ntro

lled

to a

cces

s th

e m

ediu

m.

Nor

mal

res

pons

e m

ode

(NR

M):

The

seco

ndar

y st

atio

n ca

n on

ly p

assi

vely

tra

nsm

it da

ta in

res

pons

e to

the

prim

ary’

s po

ll. T

he r

espo

nse

may

hav

e on

e or

m

ore

fram

es.

In

a po

int-t

o-m

ultip

oint

sc

enar

io,

seco

ndar

y st

atio

ns

mus

t co

mm

unic

ate

thro

ugh

the

prim

ary

stat

ion.

A

sync

hron

ous

resp

onse

mod

e (A

RM

): Th

e se

cond

ary

stat

ion

can

initi

ate

the

data

tra

nsfe

r w

ithou

t th

e pr

imar

y’s

poll,

but

the

prim

ary

is s

till

resp

onsi

ble

for

cont

rollin

g th

e co

nnec

tion.

A

sync

hron

ous

bala

nced

mod

e (A

BM

): Bo

th p

artie

s in

com

mun

icat

ion

can

play

th

e ro

le o

f th

e pr

imar

y an

d th

e se

cond

ary.

It

mea

ns b

oth

stat

ions

hav

e eq

ual

stat

us. T

his

type

of s

tatio

n is

cal

led

a co

mbi

ned

stat

ion.

NR

M is

ofte

n us

ed in

a p

oint

-to-m

ultip

oint

link

s, s

uch

as t

hose

bet

wee

n a

com

pute

r an

d its

te

rmin

als.

A

RM

is

ra

rely

us

ed.

It ha

s ad

vant

ages

fo

r po

int-t

o-po

int l

ink,

but

AB

M is

eve

n be

tter.

AB

M h

as le

ss o

verh

ead

such

as

the

prim

ary’

s po

ll an

d bo

th p

artie

s ca

n ha

ve c

ontro

l ove

r th

e lin

k. It

is s

uita

ble

for

a po

int-t

o-po

int l

ink.

Afte

r of

ferin

g an

impr

essi

on o

f the

HD

LC o

pera

tion,

we

go o

n di

scus

sing

the

func

tion

issu

es.

Dat

a lin

k fu

nctio

ns: F

ram

ing,

Add

ress

ing,

and

Err

or C

ontr

ol

W

e lo

ok a

t the

fram

ing,

add

ress

ing,

and

err

or c

ontro

l iss

ues

dire

ctly

from

the

fram

e fo

rmat

. The

n w

e w

ill di

scus

s flo

w c

ontro

l and

med

ium

acc

ess

cont

rol.

The

HD

LC fr

ame

form

at is

dep

icte

d in

Fig

. 2.5

.

Flag

A

ddre

ss

Con

trol

Info

rmat

ion

FCS

Flag

bits

8

8

8

Any

16

8

Figu

re 2

.5

HD

LC fr

ame

form

at

Fl

ag: T

he v

alue

is fi

xed

at 0

1111

110

to d

elim

it th

e be

ginn

ing

and

the

end

of th

e fra

me.

As

illust

rate

d in

Sec

tion

2.1.

1, b

it st

uffin

g is

use

d to

avo

id a

mbi

guity

be

twee

n ac

tual

dat

a an

d th

e fla

g va

lue.

A

ddre

ss: T

he a

ddre

ss in

dica

tes

the

seco

ndar

y st

atio

n in

volv

ed in

tran

smis

sion

, pa

rticu

larly

in p

oint

-to-m

ultip

oint

situ

atio

n. A

sec

onda

ry s

tatio

n w

orks

und

er t

he

14

cont

rol o

f the

prim

ary

stat

ion,

as

we

have

men

tione

d in

the

HD

LC o

pera

tion.

C

ontr

ol: T

his

field

indi

cate

s th

e fra

me

type

as

wel

l as

othe

r co

ntro

l inf

orm

atio

n.

Ther

e ar

e th

ree

type

s of

fra

mes

in

H

DLC

: In

form

atio

n,

Sup

ervi

sory

, an

d U

nnum

bere

d. W

e w

ill lo

ok a

t the

m d

eepe

r lat

er.

Info

rmat

ion:

The

inf

orm

atio

n fie

ld c

an b

e of

arb

itrar

y le

ngth

in

unit

of b

its.

It ca

rries

the

payl

oad

of d

ata

to b

e tra

nsm

itted

. FC

S: A

16-

bit C

RC

-CC

ITT

code

is u

sed.

HD

LC a

llow

s bo

th p

ositi

ve a

nd n

egat

ive

ackn

owle

dgem

ents

. Th

e er

ror

cont

rol

in

HD

LC

is

com

plex

. P

ositi

ve

ackn

owle

dgem

ents

can

indi

cate

a s

ucce

ssfu

l fra

me

or a

ll fra

mes

up

to a

poi

nt,

whi

le n

egat

ive

ackn

owle

dgem

ents

can

rej

ect

a re

ceiv

ed f

ram

e or

a s

peci

fied

fram

e.

We

do

not

go

into

de

tails

ab

out

the

scen

ario

s in

w

hich

th

ese

ackn

owle

dgem

ents

are

em

ploy

ed.

Inte

rest

ed r

eade

rs a

re e

ncou

rage

d to

rea

d fu

rther

from

our

list

in S

ectio

n 2.

7.

D

ata

link

func

tions

: Flo

w C

ontr

ol

Fl

ow c

ontro

l in

HD

LC is

sim

ple.

The

tran

smitt

er k

eeps

a c

ount

er to

reco

rd th

e se

quen

ce n

umbe

r of

the

next

fra

me

to b

e se

nt.

On

the

othe

r si

de,

the

rece

iver

ke

eps

a co

unte

r to

reco

rd th

e ex

pect

ed s

eque

nce

num

ber.

It ch

ecks

whe

ther

the

sequ

ence

num

ber

rece

ived

mat

ches

its

expe

ctat

ion.

If it

is a

nd th

e fra

me

is n

ot

garb

led,

it

incr

ease

s its

cou

nter

by

one

and

ackn

owle

dges

the

sen

der

by

trans

mitt

ing

a m

essa

ge c

onta

inin

g th

e ex

pect

ed s

eque

nce.

If th

e re

ceiv

ed fr

ame

is n

ot a

s ex

pect

ed, o

r an

err

or is

det

ecte

d, th

e fra

me

is d

ropp

ed a

nd a

neg

ativ

e ac

know

ledg

emen

t is

sent

bac

k to

the

send

er.

Fram

e Ty

pe

The

abov

e fu

nctio

ns a

re a

chie

ved

thro

ugh

vario

us k

inds

of

fram

es.

An

info

rmat

ion

fram

e, c

alle

d I-f

ram

e, c

arrie

s da

ta f

rom

the

upp

er l

ayer

and

som

e co

ntro

l inf

orm

atio

n. T

he c

ontro

l inf

orm

atio

n ha

s tw

o se

quen

ce n

umbe

rs o

f thr

ee

bits

to

indi

cate

the

seq

uenc

e nu

mbe

r of

itse

lf an

d th

e ac

know

ledg

ed s

eque

nce

num

ber

from

the

rec

eive

r. Th

ese

sequ

ence

num

bers

are

for

flo

w-c

ontro

l an

d er

ror-c

ontro

l pu

rpos

es.

A po

ll/fin

al (

P/F

) is

als

o in

the

con

trol

info

rmat

ion

to

indi

cate

a p

oll f

rom

the

prim

ary

or th

e la

st re

spon

se fr

om th

e se

cond

ary.

A

supe

rvis

ory

fram

e, c

alle

d S

-fram

e, c

arrie

s co

ntro

l inf

orm

atio

n on

ly. A

s w

e ha

ve

seen

in

th

e illu

stra

tion

of

HD

LC

fram

e,

both

po

sitiv

e an

d ne

gativ

e ac

know

ledg

emen

ts a

re s

uppo

rted

for

erro

r co

ntro

l. O

nce

ther

e is

an

erro

r, th

e tra

nsm

itter

can

eith

er r

etra

nsm

it al

l ou

tsta

ndin

g fra

mes

or

only

the

err

oneo

us

fram

e, a

s sp

ecifi

ed i

n th

e co

ntro

l in

form

atio

n. T

he r

ecei

ver

can

also

ask

for

a

tem

pora

ry s

top

to th

e tra

nsm

itter

with

an

S-fr

ame.

Page 8: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

15

An

unnu

mbe

red

fram

e, c

alle

d U

-fram

e, is

als

o us

ed fo

r co

ntro

l pur

pose

, but

no

t ca

rries

an

y se

quen

ce

num

ber,

so

is

the

nam

e de

rived

. Th

ey

incl

ude

mis

cella

neou

s co

mm

ands

for

mod

e se

tting

s, in

form

atio

n tra

nsfe

r, an

d re

cove

ry.

How

ever

, we

do n

ot g

o in

to d

etai

ls h

ere.

2.2.

2 P

oint

-to-P

oint

Pro

toco

l (P

PP

)

The

PP

P is

a s

tand

ard

prot

ocol

def

ined

by

IETF

to

carry

mul

ti-pr

otoc

ol

pack

ets

over

a p

oint

-to-p

oint

link

. It i

s w

idel

y us

ed fo

r dia

l-up

mod

ems

and

leas

ed

lines

. To

carry

mul

ti-pr

otoc

ol p

acke

ts, i

t has

thre

e m

ain

com

pone

nts:

1.

An

enca

psul

atio

n m

etho

d to

cap

pac

kets

from

the

netw

ork

laye

r. 2.

A L

ink

Con

trol

Pro

toco

l (L

CP

) to

han

dle

the

cycl

e of

con

nect

ion

setu

p,

conf

igur

atio

n, a

nd te

ar-d

own.

3.

A N

etw

ork

Con

trol P

roto

col (

NC

P) t

o co

nfig

ure

diffe

rent

net

wor

k-la

yer o

ptio

ns.

We

first

look

at t

he P

PP

oper

atio

n an

d th

en s

tudy

its

func

tions

.

PPP

Ope

ratio

n Th

e sc

enar

io o

f th

e P

PP

oper

atio

n w

orks

lik

e th

is:

Firs

t, P

PP

send

s LC

P pa

cket

s to

est

ablis

h an

d te

st t

he c

onne

ctio

n. A

fter

the

conn

ectio

n is

set

up,

the

peer

may

aut

hent

icat

e its

elf

befo

re a

ny n

etw

ork

laye

r pa

cket

s ar

e ex

chan

ged.

Th

en P

PP

star

ts t

o se

nd N

CP

pack

ets

to c

onfig

ure

one

or m

ore

netw

ork

laye

r pr

otoc

ols.

Onc

e th

e co

nfig

urat

ion

is d

one,

the

netw

ork

laye

r pac

kets

can

be

sent

ov

er t

he li

nk.

The

who

le p

roce

dure

is d

epic

ted

in t

he p

hase

dia

gram

sho

wn

in

Figu

re 2

.6.

Fi

gure

2.6

P

hase

dia

gram

of P

PP

conn

ectio

n se

tup

and

tear

-dow

n

We

expl

ain

each

maj

or tr

ansi

tion

in th

e di

agra

m a

s fo

llow

s:

Dea

d to

Est

ablis

h: T

he t

rans

ition

is

invo

ked

by c

arrie

r de

tect

ion

or n

etw

ork

adm

inis

trato

r con

figur

atio

n to

use

a p

hysi

cal l

ink.

Es

tabl

ish

to

Aut

hent

icat

e:

The

LCP

star

ts

to

set

up

the

conn

ectio

n by

Dea

d U

p Es

tabl

ish

Ope

n A

uthe

ntic

ate

Succ

ess/

Non

e

Net

wor

kC

lose

Te

rmin

ate

Dow

n

Fail

Fail

16

exch

angi

ng c

onfig

urat

ion

pack

ets.

All

optio

ns n

ot n

egot

iate

d ar

e as

sum

ed to

be

defa

ult

valu

es.

Not

e th

at o

nly

optio

ns i

ndep

ende

nt o

f th

e ne

twor

k la

yer

are

nego

tiate

d. T

he o

ptio

ns a

bout

net

wor

k la

yer c

onfig

urat

ion

are

left

to th

e N

CP.

A

uthe

ntic

ate

to N

etw

ork:

Aut

hent

icat

ion

is o

ptio

nal i

n P

PP.

If re

quire

d in

the

link

esta

blis

hmen

t ph

ase,

the

trans

ition

will

com

e to

the

auth

entic

atio

n ph

ase.

If t

he

auth

entic

atio

n fa

ils,

the

conn

ectio

n w

ill b

e te

rmin

ated

. If

it is

suc

cess

ful,

the

prop

er N

CP

star

ts to

neg

otia

te e

ach

netw

ork

laye

r pro

toco

l. N

etw

ork

to T

erm

inat

e: T

he te

rmin

atio

n ha

ppen

s in

man

y si

tuat

ions

. The

y in

clud

e th

e lo

ss o

f ca

rrier

, au

then

ticat

ion

failu

re,

expi

ratio

n of

an

idle

con

nect

ion,

use

r te

rmin

atio

n, e

tc.

The

LCP

is r

espo

nsib

le f

or e

xcha

ngin

g Te

rmin

ate

pack

ets

to

clos

e th

e co

nnec

tion

and

late

r the

PP

P te

lls th

e ne

twor

k la

yer p

roto

col t

o cl

ose.

Th

ere

are

thre

e cl

asse

s of

LC

P fra

mes

: C

onfig

urat

ion,

Ter

min

atio

n an

d M

aint

enan

ce.

A pa

ir of

C

onfig

ure-

requ

est

and

Con

figur

e-ac

k ca

n op

en

a co

nnec

tion.

Opt

ions

, su

ch a

s m

axim

um r

ecei

ve u

nit,

or a

uthe

ntic

atio

n pr

otoc

ol,

are

nego

tiabl

e du

ring

the

conn

ectio

n se

tup.

The

oth

er fu

nctio

ns a

re s

umm

ariz

ed

in F

ig. 2

.7. T

he L

CP

fram

e is

a s

peci

al c

ase

of th

e P

PP

fram

e. T

here

fore

, bef

ore

we

look

at t

he L

CP

fram

e fo

rmat

, we

first

intro

duce

the

PP

P fra

me

form

at b

elow

.

Cla

ss

Type

Fu

nctio

n C

onfig

ure-

requ

est

Ope

n a

conn

ectio

n by

giv

ing

desi

red

chan

ges

to o

ptio

ns

Con

figur

e-ac

k A

ckno

wle

dge

Con

figur

e-re

ques

t

Con

figur

e-na

k D

eny

Con

figur

e-re

ques

t bec

ause

of u

nacc

epta

ble

optio

ns

Con

figur

atio

n

Con

figur

e-re

ject

D

eny

Con

figur

e-re

ques

t be

caus

e of

un

reco

gniz

able

optio

ns

Term

inat

e-re

ques

t R

eque

st to

clo

se th

e co

nnec

tion

Term

inat

ion

Term

inat

e-ac

k Ac

know

ledg

e Te

rmin

ate-

requ

est

Cod

e-re

ject

U

nkno

wn

requ

ests

from

the

peer

Prot

ocol

-reje

ct

Uns

uppo

rted

prot

ocol

from

the

peer

Echo

-requ

est

Echo

bac

k th

e re

ques

t (fo

r deb

uggi

ng)

Echo

-repl

y Th

e ec

ho fo

r Ech

o-re

ques

t (fo

r deb

uggi

ng)

Mai

nten

ance

Dis

card

-req

uest

Ju

st d

isca

rd th

e re

ques

t (fo

r deb

uggi

ng)

Tabl

e 2.

2 Th

e LC

P fra

me

type

s D

ata

link

func

tions

: Fra

min

g, A

ddre

ssin

g, a

nd E

rror

Con

trol

Th

e P

PP

fram

e is

enc

apsu

late

d in

an

HD

LC-li

ke fo

rmat

, as

depi

cted

in F

ig.

2.8.

Not

e th

e fla

g va

lue

is e

xact

ly th

e sa

me

as in

HD

LC. I

t ser

ves

as th

e de

limit

char

acte

rs fo

r fra

min

g.

Page 9: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

17

Flag

01

1111

10

Add

ress

11

1111

11

Con

trol

0000

0011

P

roto

col

Info

rmat

ion

FCS

Fl

ag

0111

1110

bits

8

8

8

8

or 1

6

A

ny

16 o

r 32

8

Figu

re 2

.7

PP

P fra

me

form

at

The

diffe

renc

e fro

m a

n H

DLC

fram

e is

sum

mar

ized

bel

ow:

1. T

he a

ddre

ss is

fixe

d at

the

valu

e 11

1111

11, w

hich

is th

e al

l-sta

tions

add

ress

in

the

HD

LC fo

rmat

. Sin

ce th

ere

is o

nly

one

peer

in a

poi

nt-to

-poi

nt li

nk, t

here

is

no n

eed

to in

dica

te a

n in

divi

dual

sta

tion

addr

ess

at a

ll.

2. T

he c

ontro

l co

de i

s fix

ed a

t th

e va

lue

0000

0011

, w

hich

cor

resp

onds

to

an

unnu

mbe

red

fram

e in

the

HD

LC f

orm

at.

This

im

plie

s th

at n

o se

quen

ce

num

bers

and

ack

now

ledg

emen

t ar

e us

ed in

the

PP

P by

def

ault.

RFC

166

3 de

fines

an

exte

nsio

n to

mak

e th

e P

PP

conn

ectio

n re

liabl

e. In

tere

sted

read

ers

are

refe

rred

to th

is d

ocum

ent.

3. A

Pro

toco

l fie

ld is

add

ed to

indi

cate

wha

t kin

d of

net

wor

k la

yer p

roto

col,

say

IP

or IP

X th

e fra

me

is c

arry

ing.

The

fiel

d le

ngth

is 1

6 bi

ts b

y de

faul

t, bu

t it c

an b

e re

duce

d to

8 b

its u

sing

the

LCP

nego

tiatio

n.

4. T

he m

axim

um le

ngth

of

the

Info

rmat

ion

field

is 1

500

byte

s by

def

ault.

Thi

s va

lue

is c

alle

d th

e M

axim

um R

ecei

ve U

nit (

MR

U).

Oth

er v

alue

s fo

r M

RU

are

ne

gotia

ble.

5.

A 1

6-bi

t FC

S i

s us

ed b

y de

faul

t. Th

roug

h th

e LC

P ne

gotia

tion,

it

can

be

exte

nded

to 3

2 bi

ts. T

he re

ceiv

er s

impl

y dr

ops

the

rece

ived

fram

e if

an e

rror i

s de

tect

ed.

The

resp

onsi

bilit

y of

re

trans

mis

sion

fa

lls

on

the

uppe

r-lay

er

prot

ocol

s.

Dat

a lin

k fu

nctio

ns: F

low

Con

trol

and

Med

ium

Acc

ess

Con

trol

PP

P is

full-

dupl

ex a

nd th

ere

are

only

two

stat

ions

in a

poi

nt-to

-poi

nt li

nk. N

o m

ediu

m a

cces

s co

ntro

l is

nece

ssar

y. O

n th

e ot

her

hand

, PP

P do

es n

ot p

rovi

de

flow

con

trol.

Flow

con

trol i

s al

so le

ft to

upp

er-la

yer p

roto

cols

. LC

P an

d N

CP

nego

tiatio

n Th

e LC

P fra

me

is a

PPP

fram

e w

ith th

e P

roto

col f

ield

equ

al to

0xc

021,

whe

re

0x s

tand

s fo

r a h

exad

ecim

al n

umbe

r. Th

e ne

gotia

tion

info

rmat

ion

is e

mbe

dded

in

the

Info

rmat

ion

field

as

four

mai

n fie

lds.

The

y ar

e C

ode

to in

dica

te th

e ty

pe o

f LC

P,

Iden

tifie

r to

mat

ch r

eque

sts

and

repl

ies,

Len

gth

to in

dica

te th

e to

tal l

engt

h of

the

four

fiel

ds, a

nd D

ata

to c

arry

the

nego

tiatio

n op

tions

. S

ince

IP

is t

he d

omin

atin

g ne

twor

k-la

yer

prot

ocol

in

the

Inte

rnet

, w

e ar

e pa

rticu

larly

inte

rest

ed in

IP

over

PP

P. W

e w

ill so

on in

trodu

ce t

he N

CP

for

IP –

18

Inte

rnet

Pro

toco

l Con

trol P

roto

col (

IPC

P) i

n th

e ne

xt s

ubse

ctio

n.

2.

2.3

Inte

rnet

Pro

toco

l Con

trol P

roto

col (

IPC

P)

IP

CP

is a

mem

ber o

f NC

Ps

to c

onfig

ure

IP o

ver P

PP.

As

men

tione

d in

the

last

su

bsec

tion,

PP

P fir

st e

stab

lishe

s a

conn

ectio

n w

ith L

CP

and

then

use

s N

CP

to

conf

igur

e th

e ne

twor

k la

yer p

roto

col i

t car

ries.

Onc

e th

ese

conf

igur

atio

ns a

re d

one,

da

ta p

acke

ts c

an b

e tra

nsm

itted

ove

r the

link

. IP

CP

uses

a s

imila

r fra

me

form

at a

s th

e LC

P. It

s fra

me

is a

lso

a sp

ecia

l cas

e of

the

PP

P fra

me,

with

the

Pro

toco

l fie

ld e

qual

to

0x80

21.

The

exch

ange

m

echa

nism

is th

e sa

me

as th

at o

f the

LC

P. T

hrou

gh IP

CP,

IP m

odul

es o

n bo

th

peer

s ca

n be

ena

bled

, con

figur

ed, a

nd d

isab

led.

IP

CP

prov

ides

th

e co

nfig

urat

ion

optio

ns:

IP-A

ddre

sses

, IP

-Com

pres

sion

-Pro

toco

l, an

d IP

-Add

ress

. The

firs

t is

obso

lete

and

is re

plac

ed b

y th

e th

ird.

The

seco

nd i

ndic

ates

the

use

of

Van

Jaco

bson

’s T

CP

/IP h

eade

r co

mpr

essi

on. T

he th

ird a

llow

s th

e pe

er to

pro

vide

an

IP a

ddre

ss to

be

used

on

the

loca

l end

. Onc

e IP

CP

nego

tiatio

n is

don

e, n

orm

al IP

pac

kets

can

be

trans

mitt

ed

over

the

link

with

the

Pro

toco

l fie

ld e

qual

to 0

x002

1 on

the

PP

P fra

me.

2.

2.4

PP

P: O

pen

Sou

rce

Impl

emen

tatio

n In

trod

uctio

n

The

Linu

x P

PP

impl

emen

tatio

n is

prim

arily

com

pose

d of

tw

o pa

rts:

kern

el

(PP

P dr

iver

) an

d us

er-le

vel (

PP

P da

emon

) pa

rts. I

n th

e pa

st, t

he P

PP

pack

ages

ha

ve to

con

tain

upd

ated

ker

nel d

river

s. T

his

is n

o lo

nger

nec

essa

ry, a

s th

e cu

rrent

2.

2 an

d 2.

4 ke

rnel

sou

rces

con

tain

up-

to-d

ate

driv

ers.

Bes

ides

, th

e Li

nux

PP

P im

plem

enta

tion

is c

apab

le o

f bei

ng u

sed

both

for i

nitia

ting

PP

P co

nnec

tions

(as

a `c

lient

') or

for h

andl

ing

inco

min

g P

PP

conn

ectio

ns (a

s a

`ser

ver')

. Not

e th

at th

is is

an

ope

ratio

nal d

istin

ctio

n, b

ased

on

how

the

conn

ectio

n is

cre

ated

, rat

her t

han

a di

stin

ctio

n th

at is

mad

e in

the

PP

P pr

otoc

ols

them

selv

es.

Th

e P

PP

prot

ocol

con

sist

s of

tw

o pa

rts.

One

is

a sc

hem

e fo

r fra

min

g an

d en

caps

ulat

ing

pack

ets,

the

othe

r is

a s

erie

s of

pro

toco

ls c

alle

d LC

P, IP

CP,

PA

P an

d C

HA

P, f

or n

egot

iatin

g lin

k op

tions

and

for

aut

hent

icat

ion.

Sim

ilarly

, P

PP

pack

ages

con

sist

s of

two

parts

: a P

PP

driv

er (

supp

orte

d by

Lin

ux k

erne

l) w

hich

ha

ndle

s P

PP

's lo

w-le

vel f

ram

ing

prot

ocol

, and

a u

ser-l

evel

pro

gram

cal

led

pppd

w

hich

impl

emen

ts P

PP

's n

egot

iatio

n pr

otoc

ols.

Th

e P

PP

driv

er e

stab

lishe

s a

netw

ork

inte

rface

and

pas

ses

pack

ets

betw

een

Page 10: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

19

the

seria

l por

t, th

e ke

rnel

net

wor

k co

de a

nd th

e pp

pd. A

lso,

it h

andl

es th

e is

sues

of

dat

a lin

k la

yer (

e.g.

fram

ing,

erro

r det

ectio

n) d

escr

ibed

in p

revi

ous

subs

ectio

ns.

The

pppd

neg

otia

tes

with

the

pee

r to

est

ablis

h th

e lin

k an

d se

ts u

p th

e P

PP

netw

ork

inte

rface

. B

esid

es,

pppd

inc

lude

s su

ppor

t fo

r au

then

ticat

ion,

so

it ca

n co

ntro

l whi

ch o

ther

sys

tem

s m

ay m

ake

a P

PP

conn

ectio

n an

d w

hat I

P ad

dres

ses

they

may

use

. IP

pack

ets

go d

irect

ly to

the

ker

nel n

etw

ork

code

, so

once

ppp

d ha

s ne

gotia

ted

the

link,

it in

pra

ctic

e lie

s co

mpl

etel

y do

rman

t unt

il yo

u w

ant t

o ta

ke

the

link

dow

n, w

hen

it ne

gotia

tes

a gr

acef

ul d

isco

nnec

t. PP

P D

river

A

PP

P dr

iver

is m

ade

of th

e P

PP

gene

ric la

yer

and

the

PP

P ch

anne

l driv

er.

Figu

re 2

.8 p

rese

nts

the

PP

P ar

chite

ctur

e:

Ther

e ar

e as

ynch

rono

us

(/driv

ers/

net/p

pp_a

sync

.c)

and

sync

hron

ous

(/driv

ers/

net/p

pp_s

ynct

ty.c

) P

PP

chan

nel

driv

ers

in

Linu

x ke

rnel

. Th

e as

ynch

rono

us p

pp c

hann

el d

river

is u

sed

for a

sync

hron

ous

seria

l por

ts, w

hile

the

sync

hron

ous

one

is u

sed

for s

ynch

rono

us s

eria

l por

ts. W

e kn

ow th

at s

ynch

rono

us

com

mun

icat

ion

is d

esig

ned

for

bette

r ba

ndw

idth

allo

catio

n th

an a

sync

hron

ous

com

mun

icat

ion,

and

it’s

abo

ut 3

0% f

aste

r ac

tual

ly. F

or t

his

reas

on,

ther

e is

so

met

hing

diff

eren

t be

twee

n as

ync

and

sync

ppp

driv

er.

No

erro

r co

ntro

l is

put

into

pra

ctic

e in

syn

c pp

p dr

iver

, and

it is

left

to b

e do

ne in

the

hard

war

e de

vice

. H

owev

er, t

here

is e

rror

con

trol i

n as

ync

ppp

driv

er. M

ost P

C s

eria

l dev

ices

suc

h as

mic

e, k

eybo

ards

and

mod

ems

are

asyn

chro

nous

, w

here

as t

he h

igh-

spee

d W

AN a

dapt

ors

are

sync

hron

ous.

Hen

ce,

asyn

chro

nous

PP

P en

able

s Li

nux

to

Com

pone

nt F

unct

ion

pppd

ha

ndle

s co

ntro

l-pla

ne p

acke

ts

kern

el

hand

les

data

-pla

ne p

acke

ts

PPP

gene

ric

laye

r

hand

les

PP

P ne

twor

k in

terfa

ce

, /de

v/pp

p de

vice

, VJ

com

pres

sion

, m

ultil

ink

PPP

chan

nel

driv

er

hand

les

enca

psul

atio

n,

fram

ing,

and

erro

r con

trol

pppd

ke

rnel

PP

P ge

neric

laye

r

PP

P ch

anne

l driv

er

tty d

evic

e dr

iver

seria

l lin

e

Figu

re 2

.8

ppp

arch

itect

ure

20

rout

e IP

dat

agra

ms

over

tel

epho

ne n

etw

orks

, an

d sy

nchr

onou

s P

PP

enab

les

Linu

x to

rou

te I

P da

tagr

ams

over

ded

icat

ed le

ased

-line

s. F

ollo

win

g, w

e ex

plai

n th

e pp

p_sy

nctty

.c in

Lin

ux k

erne

l 2.4

. Th

ere

are

two

impo

rtant

dat

a st

ruct

ures

in th

is P

PP

driv

er, o

ne is

PP

P ch

anne

l an

d th

e ot

her i

s P

PP

unit.

A P

PP

chan

nel p

rovi

des

a w

ay fo

r gen

eric

PP

P co

de to

se

nd a

nd r

ecei

ve p

acke

ts.

A P

PP u

nit

corre

spon

ds t

o a

PP

P ne

twor

k in

terfa

ce

devi

ce a

nd it

rep

rese

nts

a m

ultil

ink

bund

le.

Figu

re 2

list

s so

me

usef

ul f

ield

s of

th

ese

two

data

stru

ctur

es :

Fig

2. i

s th

e re

latio

n fo

r th

e ou

tgoi

ng f

low

fun

ctio

ns,

and

Fig

2. i

s th

e de

scrip

tion

of th

em.

PP

P ch

anne

l Fi

eld

Func

tion

file

stuf

f for

read

/writ

e op

s op

erat

ions

for t

his

chan

nel

ppp

ppp

unit

we’

re c

onne

cted

to

clis

t lin

k in

list

of c

hann

els

per u

nit

PPP

Uni

t Fi

eld

Func

tion

file

stuf

f for

read

/writ

e ch

anne

llis

t of a

ttach

ed c

hann

els

xmit_

pe

ndin

g a

pack

et re

ady

to g

o ou

t

dev

netw

ork

inte

rface

dev

ice

Figu

re 2

. f

ield

s of

dat

a st

ruct

ures

Figu

re 2

. f

low

char

t of o

utgo

ing

flow

func

tions

Page 11: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

21

Fu

nctio

n D

escr

iptio

n pp

p_st

art_

xmit

put 2

-byt

e P

PP

prot

ocol

num

ber o

n th

e fro

nt o

f skb

pp

p_w

rite

take

out

the

file-

>priv

ate_

data

pp

p_fil

e_w

rite

allo

cate

sk

b,

copy

da

ta

from

us

er

spac

e,

to

PP

Pch

anne

l or P

PP

unit

ppp_

xmit_

proc

ess

to d

o an

y w

ork

queu

ed u

p on

the

trans

mit

side

that

can

be

don

e no

w

ppp_

chan

nel_

push

se

nd d

ata

out o

n a

chan

nel

ppp_

send

_fra

me

VJ

com

pres

sion

pp

p_pu

sh

hand

les

mul

tiple

link

st

art_

xmit

ppp_

sync

_sen

d pp

p_sy

nc_s

end

send

a p

acke

t ove

r an

tty li

ne

ppp_

sync

_tx_

mun

ge e

ncap

sula

tion

and

fram

ing

ppp_

sync

_pus

h pu

sh a

s m

ush

data

as

poss

ible

tty

->dr

iver

.writ

e w

rite

data

to tt

y de

vice

driv

er

Fig

2. is

the

rela

tion

for t

he in

com

ing

flow

func

tions

, and

Fig

2. i

s th

e de

scrip

tion

of

them

.

Figu

re 2

. d

escr

iptio

n of

out

goin

g flo

w fu

nctio

ns

22

Fu

nctio

n D

escr

iptio

n pp

p_sy

nc_r

ecei

ve

take

out

the

tty->

disc

_dat

a pp

p_sy

nc_i

nput

st

uff t

he c

hars

in th

e sk

b pr

oces

s_in

put_

pack

et

strip

add

ress

/con

trol f

ield

pp

p_in

put

take

out

the

pack

ets

that

sho

uld

be in

the

chan

nel

queu

e pp

p_do

_rec

v ch

eck

if th

e in

terfa

ce c

lose

d do

wn

ppp_

rece

ive_

fram

e de

cide

if th

e re

ceiv

ed fr

ame

is a

mul

tilin

k fra

me

ppp_

rece

ive_

nonm

p_fra

me

VJ

deco

mpr

essi

on i

f pr

oto=

=PP

P_V

JC_C

OM

P,

and

deci

de w

heth

er it

’s a

con

trol-p

lane

fram

e or

a

data

-pla

ne fr

ame

ppp_

rece

ive_

mp_

fram

e re

cons

truct

ion

of m

ultil

ink

fram

es

netif

_rx

push

pac

kets

into

the

queu

e fo

r ker

nel

skb_

queu

e_ta

il pu

sh p

acke

ts in

to th

e qu

eue

for p

ppd

Th

e m

ultip

le

chan

nels

av

aila

ble

with

IS

DN

se

rvic

es

mot

ivat

ed

the

deve

lopm

ent

of m

ultil

ink

(bun

dle)

PP

P, a

s do

cum

ente

d in

RFC

-199

0. M

ultil

ink

PP

P ar

rang

es s

ever

al in

depe

nden

t con

nect

ions

bet

wee

n a

fixed

pai

r of e

ndpo

ints

Figu

re 2

. f

low

char

t of i

ncom

ing

flow

func

tions

Figu

re 2

. d

escr

iptio

n of

inco

min

g flo

w fu

nctio

ns

Page 12: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

23

to fu

nctio

n lo

gica

lly a

s on

e. F

or e

xam

ple,

if a

rout

er h

as a

n IS

DN

BR

I int

erfa

ce, i

t co

uld

trans

fer d

ata

at 6

4Kbp

s on

one

"B" c

hann

el, b

ut th

en in

tim

es o

f hig

her l

oad

coul

d co

nnec

t a s

econ

d "B

" cha

nnel

and

so

have

an

aggr

egat

e ra

te o

f 128

KB

ps. I

t co

uld

also

be

used

whe

re th

ere

is a

leas

ed li

ne c

onne

ctio

n to

a re

mot

e si

te, b

ut in

tim

es o

f inc

reas

ed lo

ad it

cou

ld a

gain

con

nect

an

ISD

N "B

" cha

nnel

to te

mpo

raril

y in

crea

se t

hrou

ghpu

t. Th

is t

echn

ique

isn

’t lim

ited

to I

SD

N.

Any

num

ber

of P

PP

conn

ectio

ns o

f var

ying

spe

eds

and

diffe

rent

link

type

s m

ay b

e bu

ndle

d to

geth

er.

How

ever

, a

bund

le m

ust

still

conn

ect

betw

een

the

sam

e tw

o en

dpoi

nts.

The

m

ultil

ink

proc

edur

e en

code

s P

PP

fragm

ents

with

in P

PP f

ram

es.

Eac

h lin

k in

a

bund

le b

egin

s as

an

inde

pend

ent a

nd s

tand

alon

e co

nnec

tion.

Lat

er n

egot

iatio

ns

esta

blis

h th

e m

ultil

ink

optio

n an

d un

ique

ly

iden

tify

the

bund

le

a ph

ysic

al

conn

ectio

n pa

rtici

pate

s in

. O

nce

the

bund

le i

s ac

tive,

the

mul

tilin

k pr

oced

ure

fragm

ents

, seq

uenc

es, a

nd re

asse

mbl

es lo

gica

l PP

P fra

mes

. Fig

2 il

lust

rate

s th

is

proc

edur

e. F

ram

es c

onta

inin

g fra

gmen

ts h

ave

the

prot

ocol

fiel

d va

lue

0x00

3d. A

lo

gica

l fra

me

size

is li

mite

d by

a n

egot

iate

d m

axim

um re

ceiv

ed re

cons

truct

ed u

nit

(MR

RU

). Th

is v

alue

may

be

very

lar

ge,

sinc

e ea

ch f

ragm

ent

may

hav

e si

zes

with

in th

e M

RU

est

ablis

hed

for

indi

vidu

al c

onne

ctio

ns. H

owev

er, p

ract

ical

upp

er

limits

do

exis

t du

e to

res

ourc

es n

eces

sary

to

sort

and

asse

mbl

e fra

gmen

ts,

as

wel

l as

dete

ct th

eir l

oss.

pp

pd

2.2.

5 P

PP

over

Eth

erne

t (P

PP

oE)

The

Nee

d of

PPP

oE

As

Eth

erne

t tec

hnol

ogy

beco

mes

che

ap a

nd d

omin

ant,

it is

not

unc

omm

on

that

use

rs h

ave

thei

r ow

n E

ther

net L

AN

in th

eir h

ome

or o

ffice

. On

the

othe

r han

d,

broa

dban

d ac

cess

tec

hnol

ogie

s, s

ay A

DS

L, h

ave

a bo

ostin

g de

velo

pmen

t as

a

Hea

der

Dat

a

Logi

cal P

PP

fram

e

H

D

PPP

PPP

Seria

l con

nect

ion

#1

Ser

ial c

onne

ctio

n #2

H

D

H

D

H

D

24

met

hod

to a

cces

s th

e In

tern

et fr

om h

ome

or o

ffice

. Use

rs o

n an

Eth

erne

t LA

N a

re

likel

y to

acc

ess

the

Inte

rnet

thro

ugh

the

sam

e br

oadb

and

brid

ging

dev

ices

at t

he

sam

e tim

e. F

or s

ervi

ce p

rovi

ders

, th

ey d

esire

a m

etho

d to

hav

e ac

cess

con

trol

and

billin

g on

a p

er-u

ser b

asis

, jus

t sim

ilar t

o co

nven

tiona

l dia

l-up

serv

ices

. P

PP

has

conv

entio

nally

bee

n a

solu

tion

to b

uild

poi

nt-to

-poi

nt r

elat

ions

hip

betw

een

peer

s. H

owev

er,

an E

ther

net

netw

ork

cons

ists

of

mul

tiple

sta

tions

by

natu

re.

The

PP

P ov

er E

ther

net

prot

ocol

(P

PP

oE)

is d

esig

ned

to c

oord

inat

e th

e tw

o co

nflic

ting

philo

soph

ies.

It c

reat

es a

virt

ual i

nter

face

on

an E

ther

net i

nter

face

so

tha

t in

divi

dual

sta

tion

on a

LA

N c

an e

stab

lish

a P

PP s

essi

on w

ith a

rem

ote

PPPo

E se

rver

, kn

own

as A

cces

s C

once

ntra

tor

(AC

) lo

cate

d in

the

IS

P th

roug

h co

mm

on b

ridgi

ng d

evic

es. E

ach

user

on

the

LAN

see

s a

PP

P in

terfa

ce ju

st li

ke

wha

t is

seen

in a

dia

l-up

serv

ice,

but

the

PP

P fra

mes

are

act

ually

enc

apsu

late

d in

th

e E

ther

net f

ram

es. T

hrou

gh P

PP

oE, t

he u

ser’s

com

pute

r obt

ains

an

IP a

ddre

ss,

and

the

ISP

has

an e

asy

way

to tr

ack

the

IP a

ddre

ss to

a s

peci

fic u

ser n

ame

and

pass

wor

d.

PPPo

E O

pera

tion

The

PP

PoE

run

s in

tw

o st

ages

: th

e D

isco

very

sta

ge a

nd t

he P

PP S

essi

on

stag

e. I

n th

e D

isco

very

sta

ge,

the

MA

C a

ddre

ss o

f th

e ac

cess

con

cent

rato

r is

di

scov

ered

. A u

niqu

e P

PPoE

ses

sion

id is

als

o as

sign

ed to

the

sess

ion.

Onc

e a

PP

P se

ssio

n is

est

ablis

hed,

bot

h pe

ers

ente

r the

PP

P S

essi

on s

tage

and

do

wha

t ex

actly

a P

PP s

essi

on d

oes,

say

LC

P ne

gotia

tion.

Th

e D

isco

very

sta

ge p

roce

eds

in th

e fo

llow

ing

four

ste

ps:

1. T

he s

tatio

n th

at w

ould

like

to a

cces

s th

e In

tern

et b

road

cast

s an

Initi

atio

n fra

me

to a

sk fo

r rem

ote

acce

ss c

once

ntra

tors

to re

turn

thei

r MA

C a

ddre

sses

. 2.

The

rem

ote

acce

ss c

once

ntra

tor r

espo

nds

its M

AC

add

ress

es.

3. T

he

orig

inal

st

atio

n se

lect

s on

e ac

cess

co

ncen

trato

r. It

send

s a

Ses

sion

-Req

uest

fram

e to

the

sele

cted

acc

ess

conc

entra

tor.

4. T

he a

cces

s co

ncen

trato

r gen

erat

es a

PP

PoE

ses

sion

id a

nd re

turn

s a

Con

firm

fra

me

with

the

id.

The

PP

P S

essi

on s

tage

run

s in

the

sam

e w

ay a

s a

norm

al P

PP

sess

ion,

as

expl

aine

d in

Sec

tion

2.2.

2, o

nly

bein

g ca

rried

on

the

Eth

erne

t fra

mes

. Whe

n th

e LC

P te

rmin

ates

a P

PP

sess

ion,

the

PP

PoE

ses

sion

is t

orn

dow

n as

wel

l. N

ew

PP

P se

ssio

n re

quire

s a

new

PP

PoE

ses

sion

sta

rting

from

the

Dis

cove

ry s

tage

. To

term

inat

e a

PP

P se

ssio

n, a

nor

mal

PP

P te

rmin

atio

n pr

oces

s is

follo

wed

. P

PP

oE a

llow

s an

exp

licit

Term

inat

e fra

me

to c

lose

a s

essi

on s

ent b

y ei

ther

the

initi

atin

g st

atio

n or

the

acce

ss c

once

ntra

tor.

Onc

e th

e Te

rmin

ate

fram

e is

sen

t or

rece

ived

, no

fu

rther

fra

me

trans

mis

sion

is

al

low

ed,

even

fo

r no

rmal

P

PP

Page 13: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

25

term

inat

ion

fram

es.

PPPo

E: O

pen

Sour

ce Im

plem

enta

tion

2.

3 Et

hern

et (I

EEE

802.

3)

O

rigin

ally

pro

pose

d by

Bob

Met

calfe

in 1

973,

Eth

erne

t was

onc

e on

e of

the

com

petit

ors

of t

he L

AN

tec

hnol

ogy,

and

is n

ow t

he w

inne

r. O

ver

mor

e th

an 2

0 ye

ars,

Eth

erne

t ha

s be

en r

einv

ente

d m

any

times

to

acco

mm

odat

e up

-to-d

ate

need

s, re

sulti

ng in

the

1552

-pag

e IE

EE

802

.3 S

tand

ard.

Des

pite

this

, the

sto

ry is

st

ill ro

lling

into

the

futu

re. N

ew s

tand

ards

kee

p co

min

g up

as

time

goes

by.

In th

is

sect

ion,

we

invi

te y

ou t

o ap

prec

iate

the

pic

ture

and

phi

loso

phy

of E

ther

net.

We

also

brin

g th

e ho

t top

ics

in th

e cu

rrent

dev

elop

men

t. E

njoy

it!

2.3.

1 E

ther

net d

evel

opm

ent:

A bi

g pi

ctur

e A

s th

e tit

le o

f th

e st

anda

rd,

“Car

rier

Sen

se m

ultip

le a

cces

s w

ith c

ollis

ion

dete

ctio

n (C

SM

A/C

D)

acce

ss m

etho

d an

d ph

ysic

al la

yer

spec

ifica

tion”

sug

gest

s,

Eth

erne

t is

mos

t dis

tingu

ishe

d fro

m o

ther

LA

N te

chno

logi

es, s

uch

as T

oken

Bus

an

d To

ken

Rin

g, b

y its

med

ium

acc

ess

met

hod.

A la

b at

Xer

ox g

ave

birth

to th

e m

etho

d, w

hich

as

late

r st

anda

rdiz

ed b

y D

EC

, Int

el a

nd X

erox

in 1

981,

kno

wn

as

the

DIX

Eth

erne

t. A

lthou

gh t

his

stan

dard

bor

e lit

tle r

esem

blan

ce t

o th

e or

igin

al

desi

gn a

t X

erox

, th

e es

senc

e of

CS

MA

/CD

was

pre

serv

ed.

In 1

983,

the

IE

EE

80

2.3

Wor

king

Gro

up a

ppro

ved

a st

anda

rd b

ased

on

the

DIX

Eth

erne

t with

onl

y in

sign

ifica

nt

chan

ges.

Th

is

stan

dard

be

com

es

the

wel

l kn

own

IEE

E

802.

3 St

anda

rd.

Sin

ce X

erox

rel

inqu

ishe

d th

e tra

dem

ark

nam

e “E

ther

net”,

the

re is

no

dist

inct

ion

now

aday

s w

hen

we

refe

r to

the

Ethe

rnet

and

the

IEE

E 8

02.3

Sta

ndar

d.

In

fact

, th

e IE

EE

80

2.3

Wor

king

G

roup

ha

s be

en

lead

ing

the

Eth

erne

t de

velo

pmen

t as

of it

s fir

st v

ersi

on o

f the

sta

ndar

d. T

he m

ilest

ones

in th

e E

ther

net

stan

dard

s ar

e illu

stra

ted

in F

ig. 2

.8.

26

Fi

gure

2.8

M

ilest

ones

in th

e E

ther

net S

tand

ards

E

ther

net

has

expe

rienc

ed s

ever

al s

igni

fican

t re

visi

ons

durin

g th

e pa

st 2

0 ye

ars.

We

list t

he m

ajor

tren

ds b

elow

.

From

low

to h

igh

spee

d: S

tarti

ng fr

om a

pro

toty

pe ru

nnin

g at

3 M

b/s,

Eth

erne

t is

on it

s st

eps

to m

ove

tow

ard

10 G

b/s

in th

e ye

ar o

f 200

2 –

a bo

ost o

f mor

e th

an

3000

tim

es i

n sp

eed.

An

asto

nish

ing

deve

lopm

ent

as i

t is

, th

e te

chno

logy

stil

l ke

eps

chea

p, m

akin

g it

wid

ely

acce

pted

aro

und

the

wor

ld.

A gi

gabi

t E

ther

net

adap

ter

has

brok

en t

he c

ost

barri

er t

o be

les

s th

an $

100

in 2

001.

We

wou

ld

alm

ost b

e su

re th

at E

ther

net w

ill be

ubi

quito

us.

From

sha

red

to d

edic

ated

med

ia: T

he o

rigin

al E

ther

net r

uns

on a

bus

topo

logy

of

coa

xial

cab

les.

Mul

tiple

sta

tions

sha

re t

he b

us w

ith t

he C

SM

A/C

D M

AC

al

gorit

hm.

As

of t

he d

evel

opm

ent

of 1

0BA

SE-T

, de

dica

ted

med

ia b

etw

een

two

devi

ces

beco

mes

th

e m

ajor

. A

lthou

gh

not

suffi

cien

t, de

dica

ted

med

ia

are

nece

ssar

y to

the

lat

er d

evel

opm

ent

of f

ull-d

uple

x E

ther

net.

Full-

dupl

ex a

llow

s bo

th s

tatio

ns to

tran

smit

over

the

dedi

cate

d m

edia

sim

ulta

neou

sly,

whi

ch in

effe

ct

doub

les

the

band

wid

th!

Form

LA

N t

o M

AN

and

WA

N:

Eth

erne

t w

as w

ell k

now

n as

a L

AN

tec

hnol

ogy.

Tw

o fa

ctor

s he

lp th

e te

chno

logy

mov

e to

war

d th

e M

AN

and

WAN

mar

ket.

The

first

is

the

cos

t. E

ther

net

has

low

cos

t in

im

plem

enta

tion

beca

use

of i

ts s

impl

icity

. B

esid

es, i

t tak

es le

ss p

ains

and

mon

ey in

inte

rope

rabi

lity

if th

e M

AN a

nd W

AN a

re

also

Eth

erne

t. Th

e se

cond

com

es fr

om fu

ll du

plex

. Ful

l dup

lex

elim

inat

es th

e ne

ed

of C

SM

A/C

D, a

nd h

ence

lifts

the

dist

ance

rest

rictio

n du

e to

this

met

hod.

The

dat

a ca

n be

tran

smitt

ed a

s fa

r as

a ph

ysic

al li

nk c

an re

ach.

We

will

talk

mor

e ab

out f

ull

Page 14: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

27

dupl

ex in

the

next

sub

sect

ions

. Th

e m

ediu

m is

get

ting

riche

r: Th

e te

rm “e

ther

” com

es fr

om p

hysi

cs, w

hich

was

on

ce t

houg

ht o

f as

the

med

ium

to

prop

agat

e el

ectro

mag

netic

wav

es t

hrou

gh

spac

e. A

lthou

gh E

ther

net

neve

r us

es e

ther

to

trans

mit

data

, it

does

car

ry

mes

sage

s on

to a

var

iety

of m

edia

: coa

xial

cab

les,

twis

ted

pairs

, and

opt

ical

fibe

rs.

“Eth

erne

t is

Mul

timed

ia!”

-- Th

e am

usin

g w

ords

by

Ric

h S

eife

rt in

his

boo

k G

igab

it E

ther

net b

est d

epic

t the

sce

nario

. We

list a

ll th

e 80

2.3

fam

ily m

embe

rs in

term

s of

sp

eed

and

med

ia in

Tab

le 2

.3.

med

ium

spee

d

Coa

xial

cab

le

Twis

ted

pairs

Fi

ber

1 M

b/s

1B

AS

E5

(198

7)

10 M

b/s

10B

AS

E5

(198

3)

10B

AS

E2

(198

5)

10BR

OAD

36 (1

985)

10BA

SE-

T (1

990)

10

BAS

E-FL

(199

3)

10BA

SE-

FP (1

993)

10

BAS

E-FB

(199

3)

100

Mb/

s

10

0BA

SE

-TX

(199

5)

100B

AS

E-T

4 (1

995)

10

0BA

SE

-T2

(199

7)

100B

ASE-

FX (1

995)

1 G

b/s

10

00B

AS

E-C

X (1

998)

10

00B

AS

E-T

(199

9)

1000

BA

SE

-SX

(199

8)

1000

BA

SE

-LX

(199

8)

10 G

b/s

10G

BAS

E-R

(200

2)

10G

BAS

E-W

(200

2)

10G

BAS

E-X

(200

2)

Tabl

e 2.

3 Th

e 80

2.3

fam

ily

Not

e th

at n

ot a

ll m

embe

rs a

re c

omm

erci

ally

suc

cess

ful.

For

exam

ple,

10

0BA

SE

-T2

has

neve

r be

en a

com

mer

cial

pro

duct

. In

con

trast

, so

me

are

so

succ

essf

ul t

hat

alm

ost

ever

ybod

y ca

n fin

d a

Net

wor

k In

terfa

ce C

ard

(NIC

) of

10

BA

SE

-T o

r 10

0BA

SE

-TX

beh

ind

a co

mpu

ter

on a

LA

N.

The

num

ber

in t

he

pare

nthe

ses

indi

cate

s th

e ye

ar th

e sp

ecifi

catio

n w

as o

r w

ill be

app

rove

d by

the

IEE

E.

The

Ethe

rnet

nom

encl

atur

e E

ther

net i

s ric

h in

its

phys

ical

spe

cific

atio

n, a

s w

e ha

ven

seen

in T

able

2.3

. Th

e no

tatio

n fo

llow

s th

e fo

rmat

{1/

10/1

00/1

000/

10G

}{B

AS

E/B

RO

AD}[-

]phy

. Th

e fir

st i

tem

is

the

spee

d. T

he s

econ

d ite

m d

epen

ds o

n w

heth

er t

he s

igna

ling

is

base

band

or

broa

dban

d. A

lmos

t al

l Eth

erne

t si

gnal

ing

is b

aseb

and,

exc

ept

the

very

unp

opul

ar 1

0BR

OA

D36

. Th

e th

ird i

tem

is

the

max

imum

len

gth

in u

nit

of

100m

in th

e be

ginn

ing.

No

dash

is b

etw

een

the

seco

nd a

nd th

e th

ird it

em. T

he

28

conv

entio

n ha

d la

ter b

een

chan

ged

to in

dica

te th

e ph

ysic

al s

peci

ficat

ions

, suc

h as

m

ediu

m ty

pe, s

igna

l enc

odin

g, e

tc. A

das

h is

loca

ted

betw

een

the

seco

nd a

nd th

e th

ird it

em.

2.

3.2

The

Eth

erne

t MA

C

Ethe

rnet

Fra

min

g, A

ddre

ssin

g, a

nd E

rror

con

trol

Th

e 80

2.3

MA

C s

ubla

yer

is t

he m

ediu

m-in

depe

nden

t pa

rt of

the

Eth

erne

t. A

long

with

the

Log

ic L

ink

Con

trol (

LLC

) su

blay

er s

peci

fied

in I

EE

E 8

02.2

, th

ey

com

pose

the

data

-link

laye

r in

the

OS

I lay

er m

odel

. The

func

tions

ass

ocia

ted

with

th

e M

AC

sub

laye

r in

clud

e da

ta e

ncap

sula

tion

and

med

ia a

cces

s co

ntro

l. Le

t us

take

a lo

ok a

t the

unt

agge

d4 Eth

erne

t fra

me

in F

ig. 2

.9 fi

rst.

Thro

ugh

the

fram

e fo

rmat

, w

e w

ill fir

st i

ntro

duce

fra

min

g, a

ddre

ssin

g an

d er

ror

cont

rol

and

leav

e is

sues

of m

ediu

m a

cces

s co

ntro

l and

flow

con

trol l

ater

.

Prea

mbl

e S

FDD

A SA

T/

LD

ata

FCS

Byt

es

7

1

6

6

2

46-1

500

4

SFD

: Sta

rt of

Fra

me

Del

imit

D

A: D

estin

atio

n A

ddre

ss

SA

: Sou

rce

Add

ress

T

/L: T

ype

leng

th

FCS

: Fra

me

Che

ck S

eque

nce

Figu

re 2

.9

Eth

erne

t fra

me

form

at

Prea

mbl

e: T

his

field

is

used

to

sync

hron

ize

the

phys

ical

sig

nal

timin

g on

the

re

ceiv

er s

ide.

Its

valu

e is

fixe

d at

101

0….1

0 in

tran

smis

sion

ord

er5 , t

otal

ly 5

6 bi

ts

long

. Not

e th

at th

is fi

eld

is n

ot u

sed

to m

ark

the

fram

e bo

unda

ry. T

he b

ound

ary

is

mar

ked

by s

peci

al p

hysi

cal

enco

ding

, or

the

pre

senc

e (a

bsen

ce)

of s

igna

l, de

pend

ing

on th

e P

HY.

For

exa

mpl

e, 1

00B

AS

E-X

Eth

erne

t con

verts

the

first

byt

e of

the

Pre

ambl

e, /

1010

/101

0/,

into

tw

o sp

ecia

l co

de g

roup

s /J

/K/

of t

he v

alue

/1

1000

/100

01/

usin

g 4B

/5B

enc

odin

g. T

he 4

B/5

B e

ncod

ing

conv

erts

101

0 (in

tra

nsm

issi

on o

rder

) to

010

11 f

or n

orm

al d

ata.

No

bit-

or b

yte-

stuf

fing

is n

eede

d be

caus

e th

ere

is n

o am

bigu

ity. S

imila

rly, 1

00B

AS

E-X

app

ends

two

spec

ial c

ode

grou

ps /T

/R/ o

f the

val

ue /0

1101

/100

01/ a

fter a

fram

e to

mar

k th

e en

d.

SFD

: Th

is f

ield

ind

icat

es t

he s

tart

of t

he f

ram

e w

ith t

he v

alue

101

0101

1 in

tra

nsm

issi

on o

rder

. H

isto

rical

ly, t

he D

IX E

ther

net

Stan

dard

spe

cifie

d an

8-b

yte

prea

mbl

e w

ith e

xact

ly t

he s

ame

valu

e as

the

firs

t tw

o fie

lds

in a

n 80

2.3

fram

e.

They

are

onl

y di

ffere

nt in

nom

encl

atur

e.

4 A

n Et

hern

et fr

ame

can

carr

y a

VLA

N ta

g. W

e w

ill se

e th

at fr

ame

form

at w

hen

we

cove

r VLA

N in

Se

ctio

n 2.

3.4.

5 E

ther

net t

rans

mis

sion

is in

Litt

le-E

ndia

n bi

t ord

erin

g. W

e w

ill ta

lk a

bout

tran

smis

sion

ord

erin

g in

Sec

tion

2.6.

Page 15: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

29

DA

: Thi

s fie

ld is

the

48-b

it de

stin

atio

n M

AC a

ddre

ss in

the

form

at w

e in

trodu

ced

in

Sec

tion

2.1.

2.

SA: T

his

field

is th

e 48

-bit

sour

ce M

AC a

ddre

ss.

Type

/Len

gth:

Thi

s fie

ld h

as t

wo

mea

ning

s fo

r hi

stor

ical

rea

sons

. Th

e D

IX

Stan

dard

spe

cifie

d th

e fie

ld to

be

a co

de o

f pro

toco

l typ

e, s

ay IP

, whi

le th

e IE

EE

80

2.3

Stan

dard

spe

cifie

d th

e fie

ld to

be

the

leng

th o

f the

dat

a fie

ld6 a

nd le

ft th

e pr

otoc

ol ty

pe to

be

proc

esse

d by

the

LLC

sub

laye

r. Th

e 80

2.3

Stan

dard

late

r (in

19

97)

appr

oved

the

type

fiel

d, r

esul

ting

in th

e du

al r

oles

of t

his

field

toda

y. T

he

way

to

dist

ingu

ish

is s

impl

e. B

ecau

se t

he d

ata

field

is

neve

r la

rger

tha

n 15

00

byte

s, a

val

ue le

ss th

an o

r equ

al to

1500

mea

ns a

leng

th fi

eld.

A v

alue

larg

er th

an

or e

qual

to

1536

(=0

x600

) m

eans

a t

ype

field

. Th

e va

lues

in

betw

een

are

inte

ntio

nally

not

def

ined

. In

fac

t, m

ost

fram

es u

ses

the

type

fie

ld b

ecau

se t

he

dom

inat

ing

netw

ork

laye

r pro

toco

l, IP

, use

s th

e ty

pe fi

eld.

D

ata:

Thi

s fie

ld c

arrie

s th

e da

ta, a

s th

e na

me

says

it. I

t var

ies

from

46

to 1

500

byte

s.

FCS:

Thi

s fie

ld c

arrie

s a

32-b

it C

RC

cod

e as

a f

ram

e ch

eck

sequ

ence

. If

the

rece

iver

fin

ds a

n in

corr

ect

fram

e, it

sile

ntly

dis

card

s th

e fra

me.

The

tra

nsm

itter

kn

ows

noth

ing

abou

t w

heth

er t

he f

ram

e is

dis

card

ed.

The

resp

onsi

bilit

y of

a

retra

nsm

issi

on i

s le

ft to

upp

er-la

yer

prot

ocol

s, s

uch

as T

CP.

Thi

s ap

proa

ch i

s qu

ite e

ffici

ent b

ecau

se th

e tra

nsm

itter

doe

s no

t nee

d to

wai

t an

ackn

owle

dgem

ent

for t

he n

ext t

rans

mis

sion

. The

err

or is

not

a b

ig p

robl

em b

ecau

se th

e bi

t erro

r rat

e is

ass

umed

to b

e ve

ry lo

w in

the

Eth

erne

t phy

sica

l lay

er.

The

fram

e si

ze is

var

iabl

e. W

e of

ten

excl

ude

the

first

tw

o fie

lds

and

say

a m

inim

um E

ther

net f

ram

e ha

s 64

(=6+

6+2+

46+4

) by

tes

and

a m

axim

um E

ther

net

fram

e ha

s 15

18 (

=6+6

+2+1

500+

4) b

ytes

. Peo

ple

may

thin

k th

e m

axim

um le

ngth

is

not

long

eno

ugh

so th

at th

e he

ader

ove

rhea

d is

larg

er, c

ompa

red

with

Tok

en

Rin

g or

FD

DI.

We

will

anal

yze

the

Eth

erne

t effi

cien

cy in

Sec

tion

2.6.

M

ediu

m A

cces

s C

ontr

ol: T

rans

mis

sion

and

Rec

eptio

n Fl

ow

We

now

com

e to

the

show

of h

ow a

fram

e is

tran

smitt

ed a

nd re

ceiv

ed. H

ere

you

will

see

how

the

CS

MA

/CD

mec

hani

sm w

orks

in g

reat

det

ail.

Fig.

2.1

0 sh

ows

wha

t rol

e th

e M

AC

sub

laye

r pla

ys d

urin

g th

e fra

me

trans

mis

sion

and

rece

ptio

n.

6 T

here

is a

wid

e m

isco

ncep

tion

that

the

Leng

th fi

eld

indi

cate

s th

e fr

ame

size

. Thi

s is

not

true

. The

fram

e en

d is

mar

ked

by s

peci

al p

hysi

cal e

ncod

ing

or th

e ab

senc

e of

sig

nal,

depe

ndin

g on

the

PHY.

The

Eth

erne

t M

AC

can

eas

ily c

ount

how

man

y by

tes i

t has

rece

ived

in a

fram

e.

MA

C c

lient

(IP,

LLC

, …)

da

ta e

ncap

sula

tion

da

ta d

ecap

sula

tion

tra

nsm

it m

ediu

m m

anag

emen

t r

ecei

ve m

ediu

m m

anag

emen

t

30

Fi

gure

2.1

0 Fr

ame

trans

mis

sion

and

rece

ptio

n

The

trans

mis

sion

flow

is p

rese

nted

in F

ig. 2

.11.

We

list t

he p

roce

dure

bel

ow:

1. T

he M

AC

clie

nt (I

P, L

LC, …

) ask

s fo

r a fr

ame

trans

mis

sion

. 2.

The

MA

C s

ubla

yer p

repe

nds

and

appe

nds

MA

C in

form

atio

n (P

ream

ble,

SFD

, D

A, S

A, t

ype,

FC

S...

) to

the

data

pro

vide

d by

the

MA

C c

lient

. 3.

In

half-

dupl

ex m

ode,

i.e

., w

ith t

he C

SM

A/C

D m

etho

d, c

arrie

r is

sen

sed

to

dete

rmin

e if

the

trans

mis

sion

cha

nnel

is

busy

. If

yes,

the

tra

nsm

issi

on i

s de

ferre

d un

til th

e ch

anne

l is

clea

r. 4.

Wai

t for

a p

erio

d of

tim

e ca

lled

inte

r-fra

me

gap

(IFG

). Th

e tim

e le

ngth

is 9

6 bi

t tim

es f

or a

ll fla

vors

of

Eth

erne

t. Th

e bi

t tim

e is

the

dur

atio

n of

one

bit

trans

mis

sion

and

thus

the

reci

proc

al o

f the

bit

rate

. Thi

s un

it is

so

conv

enie

nt

that

we

do n

ot n

eed

to s

ay “

In th

e 10

Mb/

s sy

stem

s, th

e IF

G is

9.6

µs;

in th

e 10

0 M

b/s

syst

ems,

the

IFG

is

0.96

µs;

……

”. Th

e IF

G a

llow

s tim

e fo

r th

e re

ceiv

er to

do

poss

ible

pro

cess

ing,

suc

h as

inte

rrup

ts a

nd p

oint

er a

djus

tmen

t, fo

r the

inco

min

g fra

me.

5.

Sta

rt to

tran

smit

the

fram

e.

6. I

n ha

lf-du

plex

mod

e, t

he t

rans

mitt

er s

houl

d ke

ep m

onito

ring

if th

ere

is a

co

llisi

on d

urin

g tra

nsm

issi

on.

The

way

to

dete

ct c

ollis

ions

dep

ends

on

the

atta

ched

med

ium

. M

ultip

le t

rans

mis

sion

s on

a c

oaxi

al c

able

res

ult

in h

ighe

r ab

solu

te v

olta

ge le

vels

than

nor

mal

. For

twis

ted

pairs

, a c

ollis

ion

is a

sser

ted

by p

erce

ivin

g re

ceiv

ed s

igna

l on

the

rece

ive

pair

whi

le tr

ansm

ittin

g.

7. I

f the

re is

no

collis

ion

durin

g tra

nsm

issi

on, t

he fr

ame

is tr

ansm

itted

unt

il do

ne.

tra

nsm

it da

ta e

ncod

ing

rec

eive

dat

a de

codi

ng

lin

e si

gnal

MA

C su

blay

er

Phys

ical

laye

r

Page 16: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

31

Fi

gure

2.1

1 Fr

ame

trans

mis

sion

flow

If

ther

e is

a c

ollis

ion

dete

cted

in h

alf d

uple

x m

ode,

the

follo

win

g st

eps

go o

n:

8. T

he t

rans

mitt

er t

rans

mits

a 3

2 bi

ts lo

ng ja

m s

igna

l to

ensu

re t

he c

ollis

ion

is

long

eno

ugh

that

all

invo

lved

sta

tions

are

aw

are

of it

. The

pat

tern

of t

he ja

m

sign

al is

uns

peci

fied.

Com

mon

impl

emen

tatio

ns a

re k

eepi

ng t

rans

mitt

ing

32

mor

e bi

ts o

f dat

a or

tran

smitt

ing

alte

rnat

ing

1’s

and

0’s

by le

vera

ging

the

circ

uit

the

gene

rate

s th

e pr

eam

ble.

9.

Abo

rt th

e cu

rrent

tran

smis

sion

and

atte

mpt

to s

ched

ule

anot

her t

rans

mis

sion

! 10

. Th

e m

axim

um n

umbe

r of

atte

mpt

s to

ret

rans

mit

is 1

6. I

f st

ill no

t ab

le t

o tra

nsm

it, a

bort

the

fram

e.

11.

On

an a

ttem

pt t

o re

trans

mit,

a b

ack-

off

time

is c

hose

n ra

ndom

ly f

rom

the

ra

nge

of 0

to 2

k -1, w

here

k =

min

(n, 1

0) a

nd n

is th

e nu

mbe

r of a

ttem

pts.

Not

e th

at th

e ra

nge

grow

s ex

pone

ntia

lly, s

o th

e al

gorit

hm is

refe

rred

to a

s tru

ncat

ed

bina

ry e

xpon

entia

l bac

k-of

f. Th

e du

ratio

n of

the

slot

tim

e is

512

bit

times

for

10/1

00 M

b/s

Eth

erne

t an

d 40

96 b

it tim

es f

or 1

Gb/

s E

ther

net.

We

will

tal

k ab

out t

he re

ason

whe

n w

e di

scus

s G

igab

it E

ther

net i

n S

ectio

n 2.

3.3.

12

. W

ait f

or th

e ba

ck-o

ff tim

e an

d at

tem

pt to

retra

nsm

it

Tran

smit

star

t

Ass

embl

e fra

me

Hal

f dup

lex

and

Car

rier s

ense

d?

yes no

Wai

t int

erfra

me

gap

Star

t tra

nsm

issi

on

Hal

f dup

lex

and

Col

lisio

n de

tect

ed?

Tran

smis

sion

don

e?

Tran

smis

sion

OK

.

yes

no

Send

jam

Incr

emen

t atte

mpt

s

Too

man

y at

tem

pts?

ye

s

Abo

rt tra

nsm

issi

on

Com

pute

bac

koff

Wai

t bac

koff

time

2. 3.

4.

5. 6. 7.

8. 9. 10.

11.

12.

no

yes

no

1.

32

The

rece

ptio

n flo

w is

illu

stra

ted

in F

ig. 2

.12.

We

list t

he p

roce

dure

bel

ow:

Fi

gure

2.1

2 Fr

ame

rece

ptio

n flo

w

1.

The

arri

val o

f a fr

ame

is d

etec

ted

by th

e ph

ysic

al la

yer o

f the

rece

iver

.

2. T

he r

ecei

ver

deco

des

the

rece

ived

sig

nal,

pass

ing

the

data

exc

ept

the

prea

mbl

e an

d S

FD, u

p to

the

MAC

sub

laye

r. 3.

The

rece

ivin

g pr

oces

s go

es o

n as

long

as

the

rece

ived

sig

nal i

s co

min

g. W

hen

the

sign

al c

ease

s, th

e in

com

ing

fram

e is

trun

cate

d to

an

octe

t bou

ndar

y.

4. I

f the

fram

e si

ze is

too

smal

l (le

ss th

an 5

12 b

its),

it is

thou

ght o

f as

a co

llisio

n fra

gmen

t and

dro

pped

.

Don

e w

ith e

rror

s

Prop

er o

ctet

bou

ndar

y?

yes

no

Fram

e de

caps

ulat

ion

Rec

eptio

n O

K

8.

9.

Rec

eive

star

t

Star

t rec

eivi

ng

Rec

eivi

ng d

one?

no

yes

Fram

e to

o sm

all?

(c

ollis

ion

fragm

ent)

yes

no

Add

ress

reco

gniz

ed?

no

Fram

e to

o lo

ng?

yes

yes

Valid

FC

S?

no

no

1.

2. 3. 4. 5. 6.

7.

Page 17: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

33

5. I

f the

des

tinat

ion

addr

ess

is n

ot fo

r the

rece

iver

, the

fram

e is

dro

pped

. 6.

If t

he fr

ame

is to

o lo

ng, i

t is

drop

ped

and

the

erro

r is

reco

rded

for m

anag

emen

t st

atis

tics.

7.

If t

he fr

ame

has

an in

corre

ct F

CS

, it i

s dr

oppe

d an

d th

e er

ror i

s re

cord

ed.

8. I

f the

fram

e si

ze d

oes

not m

eet a

n in

tege

r num

ber o

f oct

ets,

it is

dro

pped

and

th

e er

ror i

s re

cord

ed.

9. I

f eve

ryth

ing

is O

K, t

he fr

ame

is d

ecap

sula

ted

and

the

field

s ar

e pa

ssed

up

to

the

MA

C c

lient

. C

SMA

/CD

: Ope

n So

urce

Impl

emen

tatio

n C

an c

ollis

ion

caus

e ba

d pe

rfor

man

ce?7

Th

e te

rm c

ollis

ion

soun

ds t

errib

le!

How

ever

, co

llisio

n is

par

t of

the

nor

mal

ar

bitra

tion

mec

hani

sm o

f CS

MA

/CD

. It d

oes

not c

ome

from

a s

yste

m m

alfu

nctio

n.

Fran

kly,

col

lisio

n ca

n ca

use

a ga

rble

d fra

me,

but

it

is n

ot a

s ba

d be

caus

e of

co

llisi

on d

etec

tion.

A tr

ansm

issi

on c

an s

top

if a

collis

ion

is d

etec

ted.

Bef

ore

furth

er

anal

ysis

of

was

ted

bit

times

bec

ause

of

a co

llisio

n, w

e fir

st a

nsw

er a

crit

ical

qu

estio

n: w

here

a c

ollis

ion

can

occu

r.

We

mod

el th

e fra

me

trans

mis

sion

in F

ig. 2

.13.

Fi

gure

2.1

3 C

ollis

ion

dete

ctio

n w

ith p

ropa

gatio

n de

lay

S

uppo

se s

tatio

n A

trans

mits

a m

inim

um f

ram

e of

64

byte

s, a

nd t

he

prop

agat

ion

befo

re th

e fra

me

arriv

es a

t sta

tion

B is

t. W

ith c

arrie

r sen

se, s

tatio

n B

is

like

ly t

o tra

nsm

it be

fore

t.

Furth

er s

uppo

se s

tatio

n B

tra

nsm

its ju

st a

t tim

e t,

whi

ch r

esul

ts in

a c

ollis

ion.

The

col

lisio

n ta

kes

anot

her

time

t to

be

prop

agat

ed

back

to s

tatio

n A

. If s

tatio

n A

finis

hes

trans

mitt

ing

the

min

imum

fram

e be

fore

the

roun

d-tri

p tim

e 2t

, it h

as n

o w

ay to

sch

edul

e a

retra

nsm

issi

on, a

nd th

e fra

me

is

7 I

t was

a q

uest

ion

once

ask

ed o

n th

e ne

wsg

roup

com

p.dc

om.la

ns.e

ther

net.

I lik

e th

e hi

lario

us a

nsw

er fr

om

Ric

h Se

ifert,

“Ye

s. M

y ol

d To

yota

nev

er q

uite

per

form

ed th

e sa

me

afte

r I h

it th

at tr

ee.”

34

lost

. For

CS

MA

/CD

to fu

nctio

n no

rmal

ly, th

e ro

und-

trip

time

shou

ld b

e le

ss th

an

the

time

to tr

ansm

it a

min

imum

fram

e. It

mea

ns th

e C

SM

A/C

D m

echa

nism

lim

its

the

exte

nt b

etw

een

two

stat

ions

in

a co

llisio

n do

mai

n. T

his

limita

tion

caus

es

diffi

culty

in h

alf-d

uple

x G

igab

it E

ther

net d

esig

n. W

e w

ill ta

lk m

ore

abou

t thi

s is

sue

whe

n w

e in

trodu

ce G

igab

it E

ther

net.

Bec

ause

the

min

imum

siz

e is

64

byte

s, it

al

so m

eans

a c

ollis

ion

mus

t occ

ur d

urin

g th

e fir

st 6

4 by

tes

for f

ram

es o

f any

siz

e un

der

the

dist

ance

lim

itatio

n. I

f m

ore

than

64

byte

s ha

ve b

een

trans

mitt

ed,

the

collis

ion

is n

ot p

ossi

ble

to o

ccur

und

er n

orm

al o

pera

tion

beca

use

of c

arrie

r sen

se

by o

ther

sta

tions

.

If w

e al

so ta

ke th

e 32

-bit

jam

into

con

side

ratio

n, th

e ac

tual

num

ber o

f bits

in a

fra

me

that

hav

e be

en tr

ansm

itted

plu

s th

e ja

m c

anno

t be

mor

e th

an 5

11 b

its. W

hy?

If m

ore

than

512

bits

, the

rece

iver

will

thin

k of

thes

e bi

ts a

s a

fram

e, ra

ther

than

a

collis

ion

fragm

ent

(See

Ste

p 4

in t

he r

ecep

tion

flow

). Th

eref

ore,

the

max

imum

nu

mbe

r of w

aste

d bi

t tim

es is

511

+ 6

4 (fr

om th

e pr

eam

ble)

+ 9

6 (fr

om th

e IF

G) =

67

1. T

his

is o

nly

a sm

all p

ortio

n fo

r a la

rge

fram

e. In

add

ition

, we

mus

t em

phas

ize

it is

the

wor

st c

ase.

For

mos

t col

lisio

ns, t

hey

occu

r dur

ing

the

prea

mbl

e be

caus

e th

e di

stan

ce b

etw

een

two

trans

mitt

ing

stat

ions

is

not

that

far

. In

thi

s ca

se,

the

num

ber

of w

aste

d bi

t tim

es is

onl

y 64

(fro

m th

e pr

eam

ble)

+ 3

2 (fr

om th

e ja

m)

+ 96

(fro

m t

he I

FG)

= 19

2. W

e w

ill di

scus

s m

ore

on t

he p

erfo

rman

ce i

ssue

on

Sec

tion

2.6.

M

axim

um F

ram

e R

ate

How

man

y fra

mes

can

a t

rans

mitt

er (

rece

iver

) tra

nsm

its (

rece

ives

) in

a

seco

nd?

That

’s a

n in

tere

stin

g qu

estio

n, e

spec

ially

whe

n yo

u de

sign

or a

naly

ze a

pa

cket

pro

cess

ing

devi

ce, s

ay a

sw

itch.

You

are

inte

rest

ed in

kno

win

g ho

w m

any

fram

es a

sec

ond

your

dev

ice

may

nee

d to

pro

cess

. Fr

ame

trans

mis

sion

beg

ins

with

a 7

-byt

e P

ream

ble

and

a 1-

byte

SFD

, as

we

have

see

n in

the

trans

mis

sion

flow

. Int

uitiv

ely,

to r

each

the

max

imum

num

ber

of

fram

es p

er s

econ

d, a

ll fra

mes

sho

uld

be o

f min

imum

siz

e, i.

e. 6

4 by

tes.

Do

not

forg

et th

at th

ere

is a

n IF

G o

f 12

byte

s (=

96

bits

) be

twee

n tw

o su

cces

sive

fram

e tra

nsm

issi

ons.

Tot

ally,

a f

ram

e tra

nsm

issi

on o

ccup

ies

(7+1

+64+

12)*

8 =

672

bit

times

. In

a 1

0 M

b/s

syst

em,

the

max

imum

num

ber

of f

ram

es p

er s

econ

d is

th

eref

ore

10 *

106 /

672

= 14

880.

Thi

s va

lue

is re

ferre

d to

as

max

imum

fram

e ra

te.

Fu

ll-du

plex

MA

C

Ear

ly E

ther

net u

ses

coax

ial c

able

s as

the

trans

mis

sion

med

ia. M

ost o

f the

m

are

late

r rep

lace

d by

twis

ted

pairs

bec

ause

of e

asie

r man

agem

ent.

A tw

iste

d pa

ir ca

ble

conn

ects

a s

tatio

n an

d a

conc

entra

tion

devi

ce, s

uch

as a

hub

or s

witc

h. T

his

Page 18: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

35

topo

logy

bec

omes

a v

ery

popu

lar o

ne. F

or p

opul

ar 1

0BA

SE

-T a

nd 1

00B

AS

E-T

X,

a w

ire p

air i

n a

twis

ted

pair

cabl

e is

ded

icat

ed to

eith

er tr

ansm

ittin

g or

rece

ivin

g8 . A

collis

ion

is t

hus

defin

ed b

y pe

rcei

ving

rec

eive

d si

gnal

on

the

rece

ive

pair

whi

le

trans

mitt

ing.

How

ever

, thi

s is

inef

ficie

nt e

noug

h. S

ince

the

med

ium

is d

edic

ated

, w

hy d

oes

it ne

ed “a

rbitr

atio

n” to

be

used

? In

199

7, th

e IE

EE

802

.3x

Task

For

ce a

dded

full-

dupl

ex o

pera

tion

in E

ther

net.

That

is, t

rans

mis

sion

and

rece

ptio

n ca

n pr

ocee

d at

the

sam

e tim

e. N

ote

that

in fu

ll du

plex

mod

e, th

ere

is n

o ca

rrier

sen

se o

r col

lisio

n de

tect

ion

beca

use

they

are

not

ne

eded

. The

re is

no

“mul

tiple

acc

ess”

on

a de

dica

ted

med

ium

. The

refo

re, C

S, M

A,

and

CD

, al

l di

sapp

ear!

This

is

a qu

ite s

igni

fican

t ch

ange

to

Eth

erne

t be

caus

e E

ther

net w

as m

ost k

now

n fo

r its

CS

MA

/CD

. We

sum

mar

ize

thre

e co

nditi

ons

that

sh

ould

be

satis

fied

to ru

n fu

ll-du

plex

Eth

erne

t: 1.

Th

e tra

nsm

issi

on m

ediu

m m

ust b

e ca

pabl

e fo

r tra

nsm

ittin

g an

d re

ceiv

ing

on

both

end

s w

ithou

t int

erfe

renc

e.

2.

The

trans

mis

sion

med

ium

sho

uld

be d

edic

ated

for

exa

ctly

tw

o st

atio

ns,

form

ing

a po

int-t

o-po

int l

ink.

3.

B

oth

stat

ions

sho

uld

be a

ble

to a

nd b

e co

nfig

ured

in fu

ll-du

plex

mod

e.

Not

e th

at t

he I

EE

E 8

02.3

Sta

ndar

d ex

plic

itly

rule

s ou

t th

e po

ssib

ility

of

runn

ing

full-

dupl

ex m

ode

on a

repe

ater

hub

. The

ban

dwid

th in

the

hub

is s

hare

d,

not

dedi

cate

d.

Thre

e ty

pica

l sc

enar

ios

of

full-

dupl

ex

trans

mis

sion

ar

e th

e st

atio

n-to

-sta

tion

link,

the

stat

ion-

to-s

witc

h lin

k, a

nd th

e sw

itch-

to-s

witc

h lin

k.

Full-

dupl

ex E

ther

net i

s an

impa

ct. I

t in

effe

ct d

oubl

es th

e ba

ndw

idth

bet

wee

n tw

o st

atio

ns. I

t als

o lif

ts th

e di

stan

ce li

mita

tion

beca

use

of C

SM

A/C

D. T

his

is v

ery

impo

rtant

fo

r hi

gh-s

peed

E

ther

net,

as

we

will

disc

uss

it in

S

ectio

n 2.

3.3.

N

owad

ays,

virt

ually

all

Eth

erne

t int

erfa

ces

supp

ort f

ull d

uple

x. B

oth

inte

rface

s ca

n pe

rform

aut

o-ne

gotia

tion

to d

eter

min

e w

heth

er f

ull d

uple

x is

sup

porte

d by

bot

h pa

rties

. If y

es, b

oth

will

oper

ate

in fu

ll du

plex

bec

ause

of h

ighe

r effi

cien

cy.

Ethe

rnet

flow

con

trol

Fl

ow c

ontro

l in

the

Eth

erne

t de

pend

s on

the

dup

lex

mod

e. I

n ha

lf-du

plex

m

ode,

if

the

rece

iver

can

not

affo

rd m

ore

inco

min

g fra

mes

, it

coul

d tra

nsm

its

carri

er, s

ay a

ser

ies

of 1

010…

.10,

on

the

shar

ed m

ediu

m u

ntil

it ca

n af

ford

mor

e fra

mes

. Th

e ca

rrie

r w

ill be

se

nsed

by

th

e tra

nsm

itter

, m

akin

g it

defe

r its

su

bseq

uent

tran

smis

sion

. Thi

s te

chni

que

is c

alle

d fa

lse

carr

ier.

The

rece

iver

als

o ca

n fo

rce

a co

llisio

n w

hene

ver a

ny fr

ame

trans

mis

sion

is d

etec

ted.

Thi

s fo

rces

the

trans

mitt

er to

bac

k of

f and

resc

hedu

le it

s tra

nsm

issi

on. T

his

tech

niqu

e is

refe

rred

8 In

100

0BA

SE-T

, tra

nsm

issi

on a

nd r

ecep

tion

can

happ

en s

imul

tane

ousl

y in

a p

air.

Arb

itrat

ion

is s

till n

ot

nece

ssar

y at

the

cost

of s

ophi

stic

ated

DSP

circ

uits

to se

para

te th

e tw

o si

gnal

s.

36

to a

s fo

rce

colli

sion

. The

se tw

o te

chni

ques

are

col

lect

ivel

y ca

lled

back

pre

ssur

e.

How

ever

, ba

ck p

ress

ure

is v

oid

in f

ull d

uple

x m

ode

beca

use

CSM

A/C

D is

ig

nore

d. I

EEE

802.

3 sp

ecifi

es a

PAU

SE

fram

e to

do

flow

con

trol i

n fu

ll du

plex

m

ode.

The

rec

eive

r ex

plic

itly

send

s a

PAU

SE

fra

me

to a

sk f

or a

sto

p. U

pon

rece

ivin

g th

e PA

USE

fra

me,

the

tra

nsm

itter

sto

ps t

rans

mitt

ing

imm

edia

tely.

The

PA

US

E f

ram

e ca

n ca

rry a

fie

ld,

paus

e_tim

e, t

o te

ll th

e tra

nsm

itter

how

lon

g it

shou

ld s

top.

Stil

l, m

ore

ofte

n th

an n

ot, p

ause

_tim

e is

set

to b

e th

e m

axim

um a

nd

anot

her P

AU

SE

fram

e w

ith p

ause

_tim

e =

0 is

sen

t to

the

trans

mitt

er to

tell

it th

at it

ca

n co

ntin

ue w

hen

the

rece

iver

can

acc

ept m

ore

fram

es.

Flow

con

trol

is o

ptio

nal

in t

he E

ther

net.

It ca

n be

ena

bled

by

the

user

or

thro

ugh

auto

-neg

otia

tion.

IE

EE

802

.3 S

tand

ard

prov

ides

an

optio

nal

subl

ayer

be

twee

n M

AC

and

LLC

, na

mel

y M

AC

Con

trol

subl

ayer

. M

AC

Con

trol s

ubla

yer

defin

es M

AC

Con

trol f

ram

es to

pro

vide

rea

l-tim

e m

anip

ulat

ion

of M

AC

sub

laye

r op

erat

ion.

The

PAU

SE

fram

e is

a k

ind

of M

AC

Con

trol f

ram

e. In

fact

, it i

s th

e on

ly

one

kind

def

ined

to d

ate.

Fl

ow C

ontr

ol: O

pen

Sour

ce Im

plem

enta

tion

2.3.

3 N

ew b

lood

in th

e E

ther

net

In

nova

tions

alw

ays

com

e in

the

cyb

ersp

ace.

Eth

erne

t is

no

exce

ptio

n. I

n re

cent

yea

rs,

Eth

erne

t ha

s bo

oste

d its

elf

into

the

line

of

giga

bit

netw

orki

ng.

As

soon

as

the

stan

dard

cam

e ou

t in

1998

and

199

9, a

new

stu

dy g

roup

sta

rted

to

stud

y th

e 10

Gig

abit

tech

nolo

gy, w

hich

turn

ed in

to th

e IE

EE

802

.3ae

Tas

k Fo

rce.

A

t the

tim

e of

writ

ing,

the

10 G

igab

it E

ther

net i

s in

the

Dra

ft st

age

so fa

r an

d is

ex

pect

ed to

be

appr

oved

as

the

Stan

dard

in 2

002.

Ano

ther

new

Tas

k Fo

rce,

the

IEEE

802

.3ah

9 , w

as o

rgan

ized

in

July

200

1. I

t ha

s st

arte

d to

stip

ulat

e a

new

st

anda

rd,

Eth

erne

t Fi

rst

Mile

, in

the

ir fir

st m

eetin

g in

Oct

ober

, 20

01.

This

new

st

anda

rd e

ven

push

es t

he E

ther

net

into

the

sub

scrib

er l

ine

mar

ket.

In t

his

subs

ectio

n, w

e w

ill ta

ke y

ou in

to th

e fu

ture

wor

ld o

f Eth

erne

t. G

igab

it Et

hern

et

The

IEE

E 8

02.3

div

ided

the

stip

ulat

ion

of G

igab

it E

ther

net

into

tw

o Ta

sk

Forc

es, 8

02.3

z an

d 80

3.3a

b. T

heir

phys

ical

spe

cific

atio

ns a

re li

sted

in T

able

2.4

. Ta

sk F

orce

s Sp

ecifi

catio

n na

me

Des

crip

tion

1000

BASE

-CX

25 m

2-p

air S

hiel

ded

Twis

ted

Pai

rs (S

TP) w

ith 8

B/1

0B e

ncod

ing

IEE

E 8

02.3

z (1

998)

1000

BA

SE

-SX

Mul

ti-m

ode

fiber

of s

hort-

wav

e la

ser w

ith 8

B/1

0B e

ncod

ing

9 T

he IE

EE 8

02.3

nam

es it

s new

Tas

k Fo

rce

in a

n al

phab

etic

al o

rder

. Afte

r IEE

E 80

2.3z

, the

subs

eque

nt

new

Tas

k Fo

rces

are

nam

ed 8

02.3

aa, 8

02.3

ab, a

nd so

on.

Page 19: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

37

10

00BA

SE-L

X M

ulti-

or s

ingl

e-m

ode

fiber

of l

ong-

wav

e la

ser w

ith 8

B/1

0B

enco

ding

IEE

E 8

02.3

ab (1

999)

10

00BA

SE-T

10

0 m

4-p

air C

ateg

ory

5 ( o

r bet

ter)

Uns

hiel

ded

Twis

ted

Pai

rs

(UTP

) with

8B

1Q4.

Tabl

e 2.

4 P

hysi

cal s

peci

ficat

ions

of G

igab

it E

ther

net

A

diffi

culty

in G

igab

it E

ther

net

desi

gn is

the

dis

tanc

e re

stric

tion

indu

ced

by

CS

MA

/CD

, as

intro

duce

d in

Sec

tion

2.3.

2. F

or 1

0 M

b/s

and

100

Mb/

s E

ther

net,

this

wou

ld n

ot b

e a

prob

lem

. The

lim

itatio

n is

abo

ut 2

00 m

for c

oppe

r con

nect

ion

in 1

00 M

b/s

Eth

erne

t, w

hich

is e

noug

h fo

r m

ost c

onfig

urat

ions

. The

lim

itatio

n is

ev

en h

ighe

r for

10

Mb/

s E

ther

net.

How

ever

, Gig

abit

Eth

erne

t is

ten

times

fast

er to

tra

nsm

it a

fram

e th

an 1

00 M

b/s

Eth

erne

t, m

akin

g th

e di

stan

ce re

stric

tion

ten

times

sh

orte

r. A

rest

rictio

n of

ab

out

20

m

is

unac

cept

able

fo

r m

any

netw

ork

depl

oym

ents

. Th

e IE

EE

802

.3 S

tand

ard

appe

nds

a se

ries

of e

xten

sion

bits

afte

r a

fram

e.

The

exte

nsio

n bi

ts c

an b

e an

y no

n-da

ta s

ymbo

ls i

n th

e ph

ysic

al l

ayer

. Th

is

tech

niqu

e, c

alle

d ca

rrie

r ext

ensi

on, i

n ef

fect

ext

ends

the

leng

th o

f a fr

ame

with

out

chan

ging

the

min

imum

fram

e si

ze. T

heir

leng

th, a

s sp

ecifi

ed in

the

Stan

dard

, is

4096

bits

– fr

ame

size

. The

ext

ensi

on b

its a

re fo

r CS

MA

/CD

pur

pose

onl

y, a

nd w

ill be

dis

card

ed s

ilent

ly b

y th

e re

ceiv

er.

Alth

ough

car

rier

exte

nsio

n ad

dres

ses

the

prob

lem

, the

dat

a th

roug

hput

can

be

low

bec

ause

the

trans

mis

sion

cha

nnel

is m

ostly

occ

upie

d by

the

exte

nsio

n bi

ts

if th

e fra

mes

are

sho

rt. T

he s

olut

ion

is to

allo

w th

e tra

nsm

itter

to tr

ansm

it th

e ne

xt

fram

e, if

any

, w

ithou

t ex

tens

ion

bits

, by

fill

ing

the

IFG

with

car

rier.

Bec

ause

the

IF

G b

etw

een

two

succ

essi

ve f

ram

es i

s oc

cupi

ed w

ith c

arrie

r, th

e tra

nsm

issi

on

chan

nel i

s no

t rel

inqu

ishe

d by

the

trans

mitt

er. T

he tr

ansm

itter

can

tran

smit

one

or

mor

e fra

mes

follo

win

g th

e fir

st fr

ame,

as

long

as

it ha

s m

ore,

up

to a

lim

it. T

his

tech

niqu

e is

cal

led

fram

e bu

rstin

g. T

he s

cena

rio i

s de

pict

ed i

n Fi

g. 2

.14.

The

m

axim

um le

ngth

in th

e bu

rstin

g is

655

36 b

its.

Firs

t fra

me

with

ext

ensi

on b

its

IFG

Fr

ame

2 IF

G

Fram

e 3

IFG

Fram

e n

Fi

gure

2.1

4 Fr

ame

burs

ting

B

oth

carri

er e

xten

sion

and

fra

me

burs

ting

com

plic

ates

the

MA

C d

esig

n.

Bes

ides

, the

thro

ughp

ut is

not

goo

d de

spite

the

solu

tions

. In

cont

rast

, ful

l dup

lex

Eth

erne

t doe

s no

t nee

d C

SM

A/C

D a

t all,

mak

ing

thes

e so

lutio

ns u

nnec

essa

ry. I

ts

impl

emen

tatio

n is

sim

pler

and

the

thro

ughp

ut is

muc

h hi

gher

. Why

do

we

both

er

38

to im

plem

ent h

alf-d

uple

x G

igab

it E

ther

net i

f it i

s no

t nec

essa

ry?

As

the

adva

nce

of

AS

IC t

echn

olog

y, s

witc

hed

netw

orks

are

no

long

er m

uch

mor

e ex

pens

ive

than

sh

ared

net

wor

ks.

For

the

depl

oym

ent

of G

igab

it E

ther

net,

it is

the

per

form

ance

ra

ther

tha

n th

e co

st t

hat

is o

f co

ncer

n. T

he m

arke

t ha

s pr

oved

the

fai

lure

of

half-

dupl

ex E

ther

net.

Onl

y fu

ll du

plex

Eth

erne

t pro

duct

s ex

ist o

n th

e m

arke

t. 10

Gig

abit

Ethe

rnet

Ju

st li

ke M

oore

’s la

w s

tatin

g th

e po

wer

of m

icro

proc

esso

rs d

oubl

es e

very

18

mon

ths,

the

spee

d of

Eth

erne

t has

als

o gr

own

expo

nent

ially

in re

cent

yea

rs. N

ot

long

afte

r 100

Mb/

s E

ther

net S

tand

ard

was

app

rove

d in

199

5 w

ill w

e so

on s

ee th

e 10

Gig

abit

Eth

erne

t Sta

ndar

d co

mes

out

in 2

002.

Fig

. 2.1

5 lis

ts th

e tim

etab

le o

f th

is n

ew s

tand

ard.

N

ote

that

com

mer

cial

pro

duct

s ha

ve e

mer

ged

in th

e m

arke

t in

2001

, bef

ore

the

final

app

rova

l of t

he s

tand

ard.

st

udy

grou

p

IEEE

802

.3ae

802.

3 ba

llot

sp

onso

r bal

lot

s

tand

ard

19

99

20

00

2

001

200

2 Fi

gure

2.1

5 Th

e tim

etab

le o

f the

10

Gb/

s E

ther

net S

tand

ard

Th

e ne

w 1

0 G

igab

it E

ther

net i

s de

velo

ped

by th

e IE

EE

802

.3ae

Tas

k Fo

rce

and

bear

s th

e fo

llow

ing

feat

ures

: Fu

ll du

plex

onl

y: T

he I

EE

E p

eopl

e le

arne

d a

less

on f

rom

the

dev

elop

men

t of

G

igab

it E

ther

net.

Now

, on

ly f

ull d

uple

x m

ode

is in

the

10 G

igab

it E

ther

net.

Hal

f du

plex

mod

e is

no

long

er c

onsi

dere

d.

Opt

ical

fibe

r on

ly: U

nlik

e G

igab

it E

ther

net,

it is

diff

icul

t to

trans

mit

at 1

0 G

igab

it ov

er c

oppe

r wire

s. O

nly

optic

al fi

bers

are

use

d as

the

trans

mis

sion

med

ia.

Com

patib

ility

with

pas

t st

anda

rd:

The

fram

e fo

rmat

and

the

MA

C o

pera

tions

re

mai

n un

chan

ged,

mak

ing

the

inte

rope

rabi

lity

with

exi

stin

g pr

oduc

ts ra

ther

eas

y.

Mov

e to

war

d th

e W

AN

mar

ket:

Sin

ce G

igab

it E

ther

net

has

mov

ed t

owar

d th

e M

AN

mar

ket,

10 G

igab

it E

ther

net

will

go f

urth

er in

to t

he W

AN m

arke

t. O

n on

e ha

nd, t

he lo

nges

t tar

get d

ista

nce

in th

e ne

w s

tand

ard

is a

imed

at 4

0 km

. On

the

othe

r ha

nd,

a W

AN P

HY

is d

efin

ed t

o in

terfa

ce w

ith t

he e

xist

ing

SO

NE

T in

frast

ruct

ure.

We

will

talk

mor

e ab

out t

he W

AN P

HY

belo

w.

Bec

ause

SO

NE

T is

stil

l a

wid

espr

ead

WAN

tec

hnol

ogy

and

the

OC

-192

op

erat

es a

t a

rate

ver

y cl

ose

to 1

0 G

igab

it, t

he I

EEE

802

.3ae

com

es w

ith a

n op

tiona

l WAN

PH

Y be

side

s th

e LA

N P

HY.

Not

e th

at b

oth

PH

Ys

have

the

sam

e tra

nsm

issi

on m

edia

, and

hen

ce th

e sa

me

trans

mis

sion

dis

tanc

e. T

he d

iffer

ence

is

that

the

WAN

PH

Y ha

s a

WA

N In

terfa

ce S

ubla

yer

(WIS

) in

the

Phy

sica

l Cod

ing

Page 20: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

39

Sub

laye

r (P

CS

). Th

e W

IS is

a fr

amer

that

map

s an

Eth

erne

t fra

me

into

a S

ON

ET

payl

oad.

Thi

s m

akes

atta

chin

g E

ther

net

to S

ON

ET

devi

ces

easy

. Th

ere

is n

o re

quire

men

t tha

t the

WAN

PH

Y sh

ould

be

depl

oyed

in th

e W

AN. I

n a

WAN

of p

ure

Eth

erne

t, on

ly th

e LA

N P

HY

is n

eede

d.

The

phys

ical

spe

cific

atio

ns o

f the

10

Gig

abit

Eth

erne

t are

list

ed T

able

2.5

.

Phy

sica

l med

ium

Fi

ber t

ype

Targ

et d

ista

nce

(m)

850

nm s

eria

l M

ulti

mod

e 65

13

10 n

m W

WD

M

Mul

ti m

ode

300

1310

nm

WW

DM

S

ingl

e m

ode

10,0

00

1310

nm

ser

ial

Sin

gle

mod

e 10

,000

13

10 n

m s

eria

l S

ingl

e m

ode

40,0

00

Tabl

e 2.

5 P

hysi

cal s

peci

ficat

ions

in th

e 10

Gig

abit

Eth

erne

t Et

hern

et in

the

Firs

t Mile

W

e ha

ve E

ther

net d

omin

ant i

n th

e LA

N. W

e ex

pect

Eth

erne

t will

dom

inat

e in

th

e W

AN. W

e en

joy

broa

d ba

ndw

idth

bot

h in

the

LAN

and

WAN

. How

ever

, wha

t do

you

hav

e w

hen

you

wan

t to

acce

ss to

the

Inte

rnet

at h

ome?

You

’ve

got c

hoic

es

of tr

aditi

onal

mod

ems,

AD

SL,

cab

le m

odem

s, a

nd s

o on

. Stil

l, th

ese

tech

nolo

gies

ar

e sl

ow a

nd e

xpen

sive

. The

seg

men

t of s

ubsc

riber

acc

ess

netw

ork,

ofte

n al

so

calle

d th

e fir

st m

ile o

r la

st m

ile,

beco

mes

the

bot

tlene

ck.

As

the

popu

latio

n of

su

bscr

iber

acc

ess

netw

ork

grow

s ve

ry r

apid

ly, t

he p

oten

tial

mar

ket

beco

mes

hi

ghly

not

icea

ble.

A

new

effo

rt in

the

new

IEE

E 8

02.3

ah E

ther

net i

n th

e Fi

rst M

ile (

EFM

) Ta

sk

Forc

e is

sta

rting

to d

efin

e a

new

sta

ndar

d fo

r thi

s m

arke

t. Th

e ex

pect

ed ti

met

able

is

list

ed in

Fig

. 2.1

6.

stud

y gr

oup

IE

EE

802

.3ah

8

02.3

bal

lot

spon

sor b

allo

t st

anda

rd

2001

2

002

2

003

Figu

re 2

.16

The

timet

able

of E

ther

net i

n th

e Fi

rst M

ile S

tand

ard

Eth

erne

t is

a ve

ry m

atur

e an

d re

liabl

e te

chno

logy

. Hig

h vo

lum

e of

Eth

erne

t de

vice

s ha

s be

en e

xist

ent i

n th

e m

arke

t for

yea

rs, m

akin

g E

ther

net v

ery

chea

p. If

E

ther

net

coul

d be

eve

ryw

here

, no

pro

toco

l co

nver

sion

is

need

ed,

whi

ch a

lso

help

s to

red

uce

the

tota

l cos

t. A

ll in

all,

the

sta

ndar

d is

exp

ecte

d to

pro

vide

a

chea

per

and

fast

er te

chno

logy

in th

e po

tent

ially

bro

ad fi

rst m

ile m

arke

t. E

ther

net

is g

oing

tow

ard

the

goal

to

be u

biqu

itous

. Th

e de

velo

pmen

t go

als

of t

he n

ew

stan

dard

incl

ude

the

follo

win

g:

40

New

topo

logi

es: T

he re

quire

men

ts fo

r sub

scrib

er a

cces

s ne

twor

k in

clud

e po

int t

o po

int

on f

iber

, po

int

to m

ultip

oint

on

fiber

, an

d po

int

to p

oint

on

copp

er.

The

stan

dard

aim

s at

mee

ting

thes

e re

quire

men

ts.

New

PH

Ys: I

nevi

tabl

y, th

is s

tand

ard

need

s to

def

ine

new

PH

Ys.

The

cur

rent

goa

ls

are

ex

tend

ing

tem

pera

ture

rang

e fo

r the

cur

rent

100

0BA

SE

-X

ex

tend

ing

the

dist

ance

lim

itatio

n to

at

leas

t 10

km

long

for

the

cur

rent

10

00B

AS

E-X

of s

ingl

e-m

ode

optic

al fi

ber.

de

finin

g a

new

PH

Y fo

r Pas

sive

Opt

ical

Net

wor

k (P

ON

) to

at le

ast 1

0 km

lo

ng f

or s

ingl

e-m

ode

fiber

at

1 G

b/s

or m

ore.

A P

ON

is

a po

int

to

mul

tipoi

nt o

ptic

al l

ink.

The

ter

m “

pass

ive”

mea

ns n

o co

mpo

nent

s in

a

PO

N n

eeds

ele

ctric

al p

ower

exc

ept a

t the

end

s. A

fan-

out o

f at l

east

16

is

expe

cted

.

defin

ing

a ne

w P

HY

for

non-

load

ed v

oice

gra

de c

oppe

r at

10

Mb/

s or

m

ore

for

at l

east

250

0 ft.

To

achi

eve

this

goa

l, se

vera

l pr

opos

als,

in

clud

ing

VDSL

, 10

0BAS

E-C

U,

10BA

SE-T

4,

are

still

com

petin

g to

be

com

e th

e st

anda

rd. J

ust w

atch

it!

Far-

end

Ope

ratio

ns, A

dmin

istr

atio

n, a

nd M

aint

enan

ce (O

AM

): Th

e re

liabi

lity

is

very

im

porta

nt i

n su

bscr

iber

acc

ess

netw

ork.

For

eas

y O

AM

, th

e st

anda

rd w

ill de

fine

new

met

hods

of

rem

ote

failu

re i

ndic

atio

n, r

emot

e lo

opba

ck,

and

link

mon

itorin

g.

A cr

itica

l po

int

to s

ucce

ss i

s tim

e to

mar

ket.

To s

peed

up

the

stan

dard

izat

ion

proc

ess,

a p

ossi

ble

way

is t

o le

vera

ge e

xist

ing

stan

dard

s fo

r th

e P

HY,

as

wha

t IE

EE 8

02.3

did

for

100

BASE

-X a

nd 1

000B

ASE

-X.

100B

ASE

-X u

ses

a PH

Y m

odifi

ed fr

om th

e FD

DI S

tand

ard,

and

100

0BA

SE

-X h

as it

s P

HY

from

the

Fibe

r C

hann

el S

tand

ard.

For

Eth

erne

t in

the

Firs

t Mile

, som

e ca

ndid

ates

, say

VD

SL,

are

un

der

cons

ider

atio

n. H

owev

er,

sinc

e th

e st

anda

rdiz

atio

n pr

oces

s is

stil

l in

its

be

ginn

ing,

we

do n

ot k

now

wha

t the

cho

ice

will

be in

the

final

sta

ge.

The

stud

y gr

oup

just

clo

sed

its ta

sk a

nd th

e fir

st m

eetin

g of

IEE

E 8

02.3

ah w

ill

be

held

in

O

ctob

er

2001

. Fo

r m

ore

info

rmat

ion,

se

e th

e w

eb

site

at

ht

tp://

ww

w.ie

ee80

2.or

g/3/

efm

/inde

x.ht

ml.

2.

3.4

Eth

erne

t sw

itch

N

etw

ork

adm

inis

trato

rs u

sual

ly h

ave

the

need

to c

onne

ct s

epar

ate

LAN

s in

to

an in

terc

onne

cted

net

wor

k. T

he re

ason

for i

nter

conn

ectio

n m

ay b

e ex

tend

ing

the

exte

nt o

f a L

AN

or

adm

inis

trativ

e pu

rpos

es. A

n in

terc

onne

ctio

n de

vice

ope

ratin

g in

the

dat

a-lin

k la

yer

is c

alle

d a

MA

C

brid

ge,

or

sim

ply

brid

ge.

A br

idge

Page 21: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

41

inte

rcon

nect

s LA

Ns

as i

f th

ey w

ere

in t

he s

ame

LAN

. Its

ope

ratio

n ha

s be

en

stan

dard

ized

in t

he I

EE

E 8

02.1

D S

tand

ard.

We

will

intro

duce

the

ins

and

outs

be

low.

A

lmos

t all

brid

ges

are

trans

pare

nt b

ridge

s. A

brid

ge is

tran

spar

ent b

ecau

se

all

stat

ions

on

the

inte

rcon

nect

ed L

AN

s ar

e un

awar

e of

its

exi

sten

ce.

The

trans

mitt

ing

stat

ion

sim

ply

tags

the

dest

inat

ion

MA

C a

ddre

ss a

nd s

ends

it o

ut a

s if

the

dest

inat

ion

wer

e on

the

sam

e LA

N. T

he b

ridge

will

aut

omat

ical

ly fo

rwar

d th

is

fram

e. A

noth

er c

ateg

ory

of b

ridge

s is

sou

rce-

rout

ing

brid

ges,

whi

ch i

s m

ostly

fo

und

in T

oken

Rin

g an

d so

met

imes

in

FDD

I. Th

e st

atio

n sh

ould

dis

cove

r th

e ro

ute

and

tag

forw

ardi

ng in

form

atio

n in

the

fra

me

to in

stru

ct t

he b

ridge

how

to

forw

ard.

As

the

Eth

erne

t dom

inat

es th

e LA

N m

arke

t, th

is c

ateg

ory

is s

eldo

m s

een,

so

we

intro

duce

onl

y tra

nspa

rent

brid

ge in

this

sub

sect

ion.

Th

e br

idge

has

por

ts to

whi

ch e

ach

LAN

is c

onne

cted

. Eac

h po

rt op

erat

es in

pr

omis

cuou

s m

ode,

whi

ch m

eans

it re

ceiv

es e

very

fram

e on

the

LAN

atta

ched

to

it, n

o m

atte

r w

hat t

he d

estin

atio

n ad

dres

s is

. If t

he fr

ame

has

to b

e fo

rwar

ded

to

othe

r por

ts, t

he b

ridge

will

do it

acc

ordi

ngly.

B

ridge

Ope

ratio

n Th

e m

yste

ry is

how

the

brid

ge k

now

s it

shou

ld fo

rwar

d th

e in

com

ing

fram

e an

d to

whi

ch p

ort

it sh

ould

for

war

d. W

e illu

stra

te t

he b

ridge

ope

ratio

n w

ith F

ig.

2.17

bel

ow.

Fi

gure

2.1

7 B

ridge

ope

ratio

n Th

e br

idge

kee

ps a

n ad

dres

s ta

ble,

als

o ca

lled

forw

ardi

ng ta

ble,

to s

tore

the

map

ping

of M

AC

add

ress

to p

ort n

umbe

r. In

itial

ly, th

e ad

dres

s ta

ble

is b

lank

. The

br

idge

kno

ws

noth

ing

abou

t the

loca

tion

of s

tatio

ns. S

uppo

se S

tatio

n 1

with

MA

C

Stat

ion

2

Stat

ion

1

Stat

ion

2 en

try h

ere!

42

addr

ess

00-3

2-12

-12-

6d-a

a tra

nsm

its a

fra

me

to S

tatio

n 2

with

MA

C a

ddre

ss

00-1

c-6f

-12-

dd-3

e. B

ecau

se S

tatio

n 1

is c

onne

cted

to

Por

t 3

of t

he b

ridge

, th

e br

idge

will

rece

ive

the

fram

e fro

m P

ort 3

. By

chec

king

the

sour

ce a

ddre

ss fi

eld

of

the

fram

e, t

he b

ridge

lear

ns t

he M

AC

add

ress

00-

32-1

2-12

-6d-

aa is

loca

ted

on

the

segm

ent

Por

t 3

is c

onne

cted

to.

It

keep

s th

e fa

ct i

n th

e ad

dres

s ta

ble.

H

owev

er, i

t stil

l doe

s no

t kno

w w

here

the

dest

inat

ion

addr

ess

00-1

c-6f

-12-

dd-3

e is

lo

cate

d. T

o m

ake

sure

the

dest

inat

ion

can

rece

ive

the

fram

e, it

sim

ply

broa

dcas

t to

eve

ry p

ort o

ther

than

the

port

from

whi

ch th

e fra

me

com

es. S

uppo

se s

ome

time

late

r, St

atio

n 2

trans

mits

a fr

ame

to s

omew

here

. The

brid

ge w

ill le

arn

its a

ddre

ss

com

es fr

om P

ort 2

and

will

keep

this

fact

in th

e ad

dres

s ta

ble

as w

ell.

Sub

sequ

ent

fram

es d

estin

ed t

o St

atio

n 2

will

be f

orw

arde

d to

Por

t 2

only.

No

broa

dcas

t is

ne

cess

ary.

Thi

s gr

eatly

sav

es th

e ba

ndw

idth

of a

ll ot

her

segm

ents

and

red

uces

th

e pr

obab

ility

of c

ollis

ions

. Of c

ours

e, if

Sta

tion

2 al

way

s ke

eps

sile

nt, t

he b

ridge

w

ill no

t kno

w w

here

it is

and

eve

ry fr

ame

dest

ined

to S

tatio

n 2

will

be b

road

cast

. Th

is s

ituat

ion

is u

nlik

ely

to h

appe

n. A

typi

cal s

cena

rio is

that

Sta

tion

2 re

spon

ds

som

ethi

ng w

hen

afte

r rec

eivi

ng a

fram

e de

stin

ed to

it. T

he b

ridge

can

lear

n w

here

St

atio

n 2

is fr

om th

e re

spon

se.

Som

etim

es, a

sta

tion

may

be

mov

ed to

ano

ther

loca

tion

or re

mov

ed, m

akin

g its

ent

ry in

the

addr

ess

tabl

e st

ale.

To

conq

uer t

his

prob

lem

, an

agin

g m

echa

nism

is

app

lied.

If a

sta

tion

has

not b

een

hear

d fo

r a g

iven

per

iod

of ti

me,

its

entry

will

be e

xpire

d. S

ubse

quen

t fra

mes

des

tined

to

it w

ill be

flo

oded

aga

in u

ntil

its

exis

tenc

e is

rele

arne

d.

In c

ase

that

the

dest

inat

ion

addr

ess

is a

mul

ticas

t or b

road

cast

add

ress

, the

br

idge

will

forw

ard

the

fram

e to

all

ports

exc

ept t

he s

ourc

e. It

is w

aste

ful t

o flo

od

the

fram

e, h

owev

er. T

o ad

dres

s th

e pr

oble

m, t

he IE

EE

802

.1D

Sta

ndar

d sp

ecifi

es

a G

MR

P, s

hort

for G

AR

P M

ultic

ast R

egis

tratio

n P

roto

col.

It is

a s

ubse

t of G

ener

ic

Attr

ibut

e R

egis

tratio

n P

roto

col (

GA

RP

). W

hen

this

pro

toco

l is

enab

led,

the

brid

ge

can

regi

ster

the

requ

irem

ent f

rom

the

inte

nded

rec

eive

rs o

f mul

ticas

t add

ress

es.

The

regi

stra

tion

info

rmat

ion

will

be p

ropa

gate

d am

ong

brid

ges,

and

thu

s al

l in

tend

ed re

ceiv

ers

are

iden

tifie

d. If

ther

e is

no

mul

ticas

t dem

and

on a

giv

en p

ath,

a

mul

ticas

t pr

unin

g is

per

form

ed t

o cu

t of

f th

is p

ath.

Thr

ough

thi

s m

echa

nism

, m

ultic

ast a

ddre

sses

are

forw

arde

d to

onl

y th

ose

path

s in

whi

ch th

ere

are

inte

nded

re

ceiv

ers.

N

ote

that

in F

ig. 2

.17,

ther

e is

a d

evic

e ca

lled

repe

ater

hub

, or

ofte

n si

mpl

y hu

b. T

his

devi

ce i

s a

Laye

r 1

devi

ce,

whi

ch m

eans

it

sim

ply

rest

ores

sig

nal

ampl

itude

and

tim

ing,

pro

paga

tes

sign

al to

all

othe

r po

rts o

ther

than

the

port

the

fram

e co

mes

fro

m,

but

know

s no

thin

g ab

out

the

fram

e. A

fter

all,

fram

es a

re

noth

ing

mor

e th

an a

ser

ies

of e

ncod

ed b

its to

the

phys

ical

laye

r.

Page 22: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

43

Cut

-thro

ugh

vs. S

tore

-and

-For

war

d R

ecal

l tha

t th

e de

stin

atio

n ad

dres

s (D

A)

field

is t

he f

irst

field

in t

he f

ram

e ex

cept

the

Pre

ambl

e an

d S

FD fi

elds

. By

look

ing

up th

e D

A in

the

addr

ess

tabl

e,

the

brid

ge c

an d

eter

min

e w

here

to

forw

ard

the

fram

e. T

he b

ridge

can

sta

rt to

fo

rwar

d th

e fra

me

out

of t

he d

estin

atio

n po

rt be

fore

the

fra

me

is r

ecei

ved

com

plet

ely.

Suc

h op

erat

ion

is c

alle

d cu

t-thr

ough

. O

n th

e co

ntra

ry,

if th

e br

idge

on

ly f

orw

ard

afte

r th

e fra

me

is r

ecei

ved

com

plet

ely,

its

ope

ratio

n is

cal

led

stor

e-an

d-fo

rwar

d.

Aha

! The

title

of t

his

subs

ectio

n is

“Eth

erne

t sw

itch,

” but

we

are

talk

ing

abou

t br

idge

so

far.

Wha

t is

goin

g on

? Th

ere

is a

his

toric

al r

easo

n. It

is ti

me

to te

ll th

e an

swer

. Bef

ore

1991

, the

dev

ice

is c

alle

d br

idge

, bot

h in

the

IEE

E S

tand

ard

and

in

the

mar

ket.

Ear

ly b

ridge

s w

ere

all i

mpl

emen

ted

in s

tore

-and

-forw

ard

man

ner.

In

1991

, Kal

pana

Cor

pora

tion

mar

kete

d th

e fir

st c

ut-th

roug

h br

idge

, und

er th

e na

me

“sw

itch”

to

diffe

rent

iate

the

mse

lves

fro

m s

tore

-and

-forw

ard

brid

ges.

It

decl

ared

lo

wer

late

ncy

beca

use

of th

e cu

t-thr

ough

ope

ratio

n. A

rgum

ents

wer

e ra

ised

then

am

ong

prop

onen

ts

of

stor

e-an

d-fo

rwar

d an

d cu

t-thr

ough

ap

proa

ches

. W

e su

mm

ariz

e th

e co

mpa

rison

s of

thes

e tw

o m

echa

nism

s in

Tab

le 2

.6.

St

ore-

and-

forw

ard

Cut

-thro

ugh

Tran

smitt

ing

time

Tran

smit

a fra

me

afte

r re

ceiv

ing

com

plet

ely

May

tran

smit

a fra

me

befo

re re

ceiv

ing

com

plet

ely10

Late

ncy

Slig

htly

larg

er la

tenc

y M

ay h

ave

slig

htly

sm

alle

r lat

ency

Bro

adca

st/M

ultic

ast N

o pr

oble

m fo

r br

oadc

ast o

r m

ultic

ast

fram

es

Gen

eral

ly n

ot p

ossi

ble

for

broa

dcas

tor

mul

ticas

t fra

mes

Erro

r che

ckin

g C

an c

heck

FC

S in

tim

e M

ay b

e to

o la

te to

che

ck F

CS

Pop

ular

ity

Mos

tly fo

und

in th

e m

arke

t Le

ss p

opul

ar in

the

mar

ket

Tabl

e 2.

6 C

ompa

rison

s of

sto

re-a

nd-fo

rwar

d an

d cu

t-thr

ough

B

ridge

vs.

Sw

itch

Follo

win

g K

alpa

na’s

con

vent

ion,

brid

ges

are

mar

kete

d un

der

the

nam

e “s

witc

h,”

no m

atte

r th

eir

oper

atio

n is

sto

re-a

nd-fo

rwar

d or

cut

-thro

ugh.

On

the

othe

r ha

nd,

the

nam

e is

stil

l “b

ridge

” in

the

IE

EE

Sta

ndar

d. T

he I

EE

E 8

02.3

St

anda

rd e

xplic

itly

unde

rline

s th

at th

e tw

o te

rms

are

syno

nym

s. D

espi

te u

nder

the

nam

e “s

witc

h,”

mos

t sw

itche

s pr

ovid

e on

ly s

tore

-and

-forw

ard,

or

both

tha

t ar

e

10

If t

he L

AN

of t

he o

utgo

ing

port

or th

e ou

tput

que

ue is

occ

upie

d by

oth

er fr

ames

, a fr

ame

still

can

not b

e fo

rwar

ded

even

in a

cut

-thro

ugh

switc

h.

44

conf

igur

able

toda

y. T

here

is re

ally

no

sign

ifica

nt b

enef

it in

the

cut-t

hrou

gh d

esig

n,

as c

ompa

red

in F

ig.

2.20

. W

e st

art

to u

se t

he t

erm

“sw

itch”

whe

n co

nven

ient

be

low.

In fa

ct, t

he te

rm “

switc

h” is

so

wid

ely

used

on

devi

ces

mak

ing

forw

ardi

ng

deci

sion

bas

ed o

n th

e in

form

atio

n fro

m u

pper

laye

rs. T

hat’s

why

we

see

L3 s

witc

h,

L4 s

witc

h, a

nd L

7 sw

itch

toda

y.

Span

ning

Tre

e Pr

otoc

ol

As

the

topo

logy

of a

brid

ged

netw

ork

beco

mes

larg

e an

d co

mpl

ex, n

etw

ork

adm

inis

trato

rs m

ay in

adve

rtent

ly c

reat

e a

loop

in t

he t

opol

ogy.

Thi

s si

tuat

ion

is

unde

sira

ble

beca

use

fram

es c

an c

ircul

ate

arou

nd th

e lo

op a

nd th

e ad

dres

s ta

ble

may

bec

ome

unst

able

. For

exa

mpl

e, c

onsi

der t

he fo

llow

ing

disa

ster

. Sup

pose

two

2-po

rt sw

itche

s fo

rm a

loop

and

a s

tatio

n br

oadc

asts

a fr

ame

onto

the

loop

. Eac

h sw

itch

will

for

war

d th

e br

oadc

ast f

ram

e to

the

othe

r up

on r

ecei

ving

it, m

akin

g it

circ

ulat

e ar

ound

the

loop

inde

finite

ly.

The

abov

e si

tuat

ion

is u

ndes

irabl

e. T

o ad

dres

s th

e pr

oble

m,

IEE

E 8

02.1

D

stip

ulat

es a

Spa

nnin

g Tr

ee P

roto

col (

STP

) to

elim

inat

e lo

ops

in a

brid

ged

netw

ork.

Fo

r its

sim

plic

ity i

n im

plem

enta

tion,

alm

ost

all

switc

hes

supp

ort

this

pro

toco

l. D

espi

te th

is, t

he s

peci

ficat

ion

take

s 51

pag

es in

the

stan

dard

doc

umen

t. W

e on

ly

expl

ain

the

prin

cipl

e of

STP

ope

ratio

n w

ith th

e ex

ampl

e in

Fig

. 2.1

8. T

his

exam

ple

is a

littl

e co

mpl

ex. W

e lis

t the

pro

cedu

re b

elow

. For

ser

ious

rea

ders

who

inte

nd

lear

n th

e de

tails

, we

enco

urag

e th

em to

read

the

stan

dard

.

Figu

re 2

.18

A br

idge

d ne

twor

k w

ith lo

ops

1.

Ini

tially

, ea

ch s

witc

h an

d po

rt is

ass

igne

d an

ide

ntifi

er.

The

iden

tifie

r is

co

mpo

sed

of a

man

agea

ble

prio

rity

valu

e an

d sw

itch

addr

ess

(or p

ort n

umbe

r fo

r po

rt id

entif

ier).

For

sim

plic

ity,

we

use

1 to

7 a

s th

e id

entif

iers

in

this

Page 23: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

45

illus

tratio

n.

2. E

ach

link

is s

peci

fied

a co

st.

As

a ru

le o

f th

umb,

the

cos

t ca

n be

inve

rsel

y pr

opor

tiona

lly to

the

link

spee

d. F

or s

impl

icity

, we

assu

me

all l

ink

cost

s ar

e 1

here

. 3.

The

sw

itch

with

the

lea

st id

entif

ier

serv

es a

s th

e ro

ot.

It is

ele

cted

thr

ough

ex

chan

ging

fram

es o

f con

figur

atio

n in

form

atio

n am

ong

switc

hes.

4.

Eac

h LA

N is

con

nect

ed to

a p

ort o

f som

e sw

itch

in a

n ac

tive

topo

logy

. The

por

t w

hich

the

LA

N r

ecei

ves

fram

es f

rom

the

dire

ctio

n of

the

roo

t an

d tra

nsm

its

fram

es to

war

d th

e ro

ot is

cal

led

the

Des

igna

ted

Por

t (D

P). T

his

switc

h is

cal

led

the

Des

igna

ted

Brid

ge (T

he s

tand

ard

refe

rs to

a s

witc

h as

a b

ridge

). Th

e po

rt th

at th

e sw

itch

rece

ives

fram

es fr

om th

e ro

ot is

cal

led

the

Roo

t Por

t (R

P).

5. P

erio

dica

lly,

conf

igur

atio

n in

form

atio

n is

pro

paga

ted

dow

n fro

m t

he r

oot

on

Brid

ge P

roto

col

Dat

a U

nit

(BP

DU

). Th

e de

stin

atio

n ad

dres

s of

BP

DU

is

a re

serv

ed m

ultic

ast

addr

ess

for

switc

hes,

01-

80-C

2-00

-00-

00.

The

BP

DU

fra

me

cont

ains

info

rmat

ion

such

as

the

root

iden

tifie

r, th

e tra

nsm

ittin

g sw

itch

iden

tifie

r, th

e tra

nsm

ittin

g po

rt id

entif

ier,

and

the

path

cos

t fro

m th

e ro

ot.

6. E

ach

switc

h m

ay c

onfig

ure

itsel

f by

com

putin

g th

e in

form

atio

n ca

rried

in th

e re

ceiv

ed B

PDU

s. T

he c

onfig

urat

ion

rule

s ar

e If

the

switc

h fin

ds it

self

can

prov

ide

a lo

wer

pat

h co

st b

y co

mpa

ring

with

the

path

cos

t adv

ertis

ed in

BP

DU

s, it

will

atte

mpt

to b

e a

desi

gnat

ed b

ridge

by

trans

mitt

ing

BP

DU

s w

ith lo

wer

pat

h co

st.

In c

ase

of a

mbi

guity

, e.g

., eq

ual p

ath

cost

, the

sw

itch

or p

ort w

ith th

e le

ast

iden

tifie

r is

sele

cted

as

the

desi

gnat

ed b

ridge

(por

t).

If th

e sw

itch

finds

itse

lf ha

s lo

wer

iden

tifie

r th

an th

at o

f the

cur

rent

roo

t, it

will

atte

mpt

to

beco

me

the

new

roo

t by

tra

nsm

ittin

g B

PD

Us

in w

hich

the

ro

ot id

entif

ier i

s th

at o

f its

elf.

Not

e th

at th

e sw

itch

will

not f

orw

ard

inco

min

g B

PD

Us,

but

may

cre

ate

new

B

PD

Us

to c

arry

new

sta

tes

to o

ther

s.

7. A

ll po

rts o

ther

than

DP

s an

d R

Ps

are

bloc

ked.

A b

lock

ed p

ort i

s no

t allo

wed

to

forw

ard

or re

ceiv

e da

ta fr

ames

. How

ever

, it k

eeps

list

enin

g to

BP

DU

s to

see

if

it ca

n be

act

ive

agai

n.

The

resu

lt is

as

indi

cate

d in

Fig

. 2.1

8. T

he r

eade

rs a

re e

ncou

rage

d to

trac

e th

e pr

oced

ure

them

selv

es. T

he p

roto

col i

s so

use

ful t

hat i

t dyn

amic

ally

upd

ates

th

e sp

anni

ng tr

ee a

ccor

ding

to p

ossi

ble

topo

logi

cal c

hang

es.

Virt

ual L

AN

O

nce

a de

vice

is c

onne

cted

to

a LA

N,

it be

long

s to

tha

t LA

N.

That

is,

the

depl

oym

ent o

f LA

Ns

is c

ompl

etel

y de

term

ined

by

phys

ical

con

nect

ivity

. In

som

e

46

appl

icat

ions

, we

need

to b

uild

logi

cal c

onne

ctiv

ity o

n to

p of

phy

sica

l dep

loym

ent.

For e

xam

ple,

we

may

nee

d so

me

ports

in a

sw

itch

belo

ng to

one

LAN

, and

oth

er

ports

bel

ong

to a

noth

er.

Furth

er,

we

may

nee

d po

rts a

cros

s m

ultip

le s

witc

hes

belo

ngin

g to

the

sam

e LA

N, a

ll ot

her

ports

bel

ongi

ng to

ano

ther

LA

N. G

ener

ally,

w

e ne

ed fl

exib

ility

in th

e ne

twor

k de

ploy

men

t. Vi

rtual

LA

N (

VLA

N)

addr

esse

s th

e ab

ove

prob

lem

by

prov

idin

g lo

gica

l gr

oupi

ng o

f LA

Ns.

Adm

inis

trato

rs c

an s

impl

y w

ork

with

man

agem

ent t

ools

with

out

chan

ging

ph

ysic

al

conn

ectiv

ity.

Add

ition

ally,

w

ith

VLA

N

sepa

ratio

n,

we

can

incr

ease

sec

urity

and

sav

e ba

ndw

idth

bec

ause

tra

ffic,

par

ticul

arly

mul

ticas

t an

d br

oadc

ast

traffi

c, is

con

fined

to

the

VLA

N t

he t

raffi

c be

long

s to

. For

exa

mpl

e, a

br

oadc

ast f

ram

e or

a fr

ame

with

an

unkn

own

unic

ast d

estin

atio

n ad

dres

s w

ill be

se

en o

n al

l por

ts o

f a

switc

h w

ithou

t V

LAN

. It

still

may

con

sum

e ba

ndw

idth

on

unin

tend

ed p

orts

and

mal

icio

us u

sers

can

mon

itor

it. B

y di

vidi

ng t

he p

orts

of

a sw

itch

into

sev

eral

VLA

Ns,

the

fra

mes

men

tione

d ab

ove

will

be c

onfin

ed t

o a

VLA

N. We

give

a p

ract

ical

exa

mpl

e be

low

to

mak

e th

e re

ader

s ap

prec

iate

the

us

eful

ness

of

VLA

N.

Con

side

r w

e ha

ve t

wo

IP s

ubne

ts:

140.

113.

88.0

and

14

0.11

3.24

1.0.

Eac

h ha

s se

vera

l st

atio

ns.

If w

e w

ant

to c

onne

ct t

hese

tw

o IP

su

bnet

s w

ith a

rout

er, w

e m

ay d

eplo

y th

e ne

twor

k in

the

man

ner d

epic

ted

in F

ig.

2.19

.

Fi

gure

2.1

9 a

rout

er d

eplo

ymen

t with

out V

LAN

If w

e co

nfig

ure

the

switc

h w

ith tw

o V

LAN

s in

stea

d, o

nly

one

switc

h is

nee

ded.

Th

e ro

uter

is c

onne

cted

to a

por

t tha

t bel

ongs

to tw

o V

LAN

s, a

nd is

con

figur

ed

with

two

IP a

ddre

sses

, one

for

each

sub

net.

The

rout

er in

this

situ

atio

n is

cal

led

the

one-

arm

ed ro

uter

, as

illust

rate

d in

Fig

. 2.2

0.

Page 24: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

47

Now

aday

s, m

any

switc

hes

have

the

abilit

y to

ser

ve a

s a

norm

al ro

uter

. The

y ca

n fo

rwar

d fra

mes

bas

ed o

n la

yer

3 in

form

atio

n. S

ome

of th

em a

lso

impl

emen

t ro

utin

g pr

otoc

ols

(See

Cha

pter

3 fo

r rou

ting

prot

ocol

s). W

ith V

LAN

, adm

inis

trato

rs

can

arbi

traril

y gr

oup

ports

int

o se

vera

l IP

sub

nets

. Th

is i

s ve

ry c

onve

nien

t fo

r ne

twor

k ad

min

istra

tion.

Fo

r th

e im

porta

nce

of V

LAN

, th

e IE

EE

802

.1Q

Sta

ndar

d sp

ecifi

es a

set

of

prot

ocol

s an

d al

gorit

hms

to s

uppo

rt th

e V

LAN

ope

ratio

n. T

his

stan

dard

des

crib

es

the

arch

itect

ural

fra

mew

ork

for

VLA

N in

res

pect

of

conf

igur

atio

n, d

istri

butio

n of

co

nfig

urat

ion

info

rmat

ion,

and

rel

ay.

The

first

is s

elf-e

xpla

nato

ry.

The

seco

nd is

co

ncer

ned

with

met

hods

that

allo

w th

e di

strib

utio

n of

VLA

N m

embe

rshi

p am

ong

VLA

N-a

war

e sw

itche

s. T

he th

ird d

eals

with

how

to c

lass

ify a

nd fo

rwar

d in

com

ing

fram

es, a

nd th

e pr

oced

ure

to m

odify

the

fram

es b

y ad

ding

, cha

ngin

g, r

emov

ing

tags

. We

will

soon

dis

cuss

the

conc

ept o

f tag

bel

ow.

Figu

re 2

.20

a on

e-ar

med

rout

er

The

IEE

E 8

02.1

Q S

tand

ard

does

not

enf

orce

the

way

how

fra

mes

are

as

soci

ated

to

VLA

Ns.

The

VLA

N m

embe

rshi

p ca

n be

bas

ed o

n po

rts,

MA

C

addr

esse

s, I

P su

bnet

s, p

roto

cols

, an

d ap

plic

atio

ns.

Eac

h fra

me

can

asso

ciat

e w

ith a

tag

that

bea

rs t

he id

entif

ier

of a

VLA

N s

o th

at t

he s

witc

h ca

n id

entif

y its

V

LAN

ass

ocia

tion

quic

kly

with

out c

ompl

icat

ed fi

eld

clas

sific

atio

n. T

he ta

g sl

ight

ly

chan

ges

the

fram

e fo

rmat

, how

ever

. The

form

at o

f a ta

gged

fram

e is

dep

icte

d in

Fi

g. 2

.2111

. Not

e th

at th

ere

are

12 b

its in

the

VLA

N id

entif

ier.

Giv

ing

one

iden

tifie

r is

rese

rved

unu

sed

and

anot

her o

ne is

use

d to

indi

cate

a p

riorit

y ta

g (s

ee b

elow

),

11

Not

e th

at V

LAN

is n

ot c

onfin

ed to

Eth

erne

t. Th

e st

anda

rd a

lso

appl

ies t

o ot

her L

AN

stan

dard

s, sa

y To

ken

Rin

g. H

owev

er, s

ince

Eth

erne

t is t

he m

ost p

opul

ar, w

e di

scus

s Eth

erne

t fra

me

here

.

48

a m

axim

um n

umbe

r of 4

094

(i.e.

, 212

-2) V

LAN

s ar

e al

low

ed.

Prio

rity

If th

e lo

ad in

a L

AN

is h

igh,

the

user

s w

ill pe

rcei

ve la

rger

late

ncy.

How

ever

, so

me

voic

e or

vi

deo

appl

icat

ions

ar

e tim

e-se

nsiti

ve.

Thei

r qu

ality

w

ill be

de

terio

rate

d w

ith la

rger

late

ncy.

Tra

ditio

nally

, LA

N te

chno

logy

sol

ves

the

prob

lem

w

ith o

ver-p

rovi

sion

ing.

Tha

t is

, pr

ovid

ing

mor

e ba

ndw

idth

tha

n ne

eded

. Th

is

solu

tion

is fe

asib

le b

ecau

se h

igh

band

wid

th is

inex

pens

ive

in L

AN

. But

in c

ase

of

shor

t-ter

m c

onge

stio

n, th

e tra

ffic

may

tem

pora

rily

exce

ed th

e av

aila

ble

band

wid

th.

Hig

her p

riorit

y ca

n be

ass

igne

d to

fram

es o

f crit

ical

app

licat

ions

to g

uara

ntee

they

re

ceiv

e be

tter s

ervi

ce.

Eth

erne

t inh

eren

tly d

oes

not h

ave

the

prio

rity

mec

hani

sm. A

s of

IEE

E 8

02.1

p,

whi

ch w

as la

ter

inte

grat

ed in

to I

EE

E 8

02.1

D,

a pr

iorit

y va

lue

can

be o

ptio

nally

as

sign

ed to

an

Eth

erne

t fra

me.

Thi

s va

lue

is a

lso

carri

ed in

the

tagg

ed fr

ame,

as

illust

rate

d in

Fig

. 2.2

1.

A ta

gged

fram

e ha

s fo

ur m

ore

byte

s ad

ded

into

it. T

hey

are

a ty

pe fi

eld

of tw

o by

tes

that

indi

cate

s a

VLA

N p

roto

col t

ype

(the

valu

e =

0x81

00) a

nd a

tag

cont

rol

info

rmat

ion

field

of a

noth

er tw

o by

tes.

The

latte

r is

furth

er d

ivid

ed in

to th

ree

field

s:

prio

rity,

Can

onic

al F

orm

at In

dica

tor (

CFI

), an

d V

LAN

iden

tifie

r. N

ote

that

a ta

gged

fra

me

does

not

nec

essa

rily

carry

VLA

N in

form

atio

n. T

he ta

g ca

n on

ly c

onta

in th

e pr

iorit

y of

the

fram

e, w

hich

was

def

ined

in IE

EE

802

.1p.

The

VLA

N id

entif

ier h

elps

th

e sw

itch

to id

entif

y th

e V

LAN

to w

hich

the

fram

e be

long

s. A

sw

itch

can

easi

ly

iden

tify

the

VLA

N m

embe

rshi

p th

roug

h th

is fi

eld.

The

CFI

fiel

d lo

oks

mys

terio

us. I

t is

a o

ne-b

it fie

ld th

at in

dica

tes

whe

ther

the

poss

ible

MA

C a

ddre

sses

car

ried

in th

e M

AC

dat

a is

in C

anon

ical

form

at. W

e do

not

go

into

the

deta

il of

Can

onic

al fo

rm

here

. Th

e in

tere

sted

rea

ders

are

ref

erre

d to

Cla

use

9.3.

2 in

the

IE

EE

802

.1Q

do

cum

ent.

Pre

ambl

eS

FD

DA

S

A

VLA

N

prot

ocol

ID

Tag

cont

rol

T/L

Dat

a FC

S

byte

s 7

1

6

6

2

2

2

42 –

150

0

4

pr

iorit

yC

FIVL

AN

iden

tifie

r

bits

3

1

12

Fi

gure

2.2

1 Fo

rmat

of a

tagg

ed fr

ame

B

ecau

se th

ere

are

thre

e bi

ts in

the

prio

rity

field

, eig

ht p

riorit

ies

are

allo

wed

in

Page 25: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

49

the

prio

rity

mec

hani

sm. T

he s

ugge

sted

map

ping

of p

riorit

y va

lues

to tr

affic

type

s in

the

stan

dard

is li

sted

in T

able

2.7

. By

iden

tifyi

ng th

e ta

g va

lues

, the

sw

itch

is

able

to

clas

sify

the

inco

min

g va

lues

and

arra

nge

appr

opria

te q

ueue

ser

vice

s to

m

eet t

he u

ser’s

dem

and.

P

riorit

y Tr

affic

type

1

Bac

kgro

und

2 Sp

are

0(de

faul

t) B

est e

ffort

3 E

xcel

lent

effo

rt 4

Con

trolle

d lo

ad

5 <

100

ms

late

ncy

and

jitte

r 6

< 10

ms

late

ncy

and

jitte

r 7

Net

wor

k co

ntro

l Ta

ble

2.7

sugg

este

d m

appi

ng o

f prio

rity

valu

es a

nd tr

affic

type

s Li

nk A

ggre

gatio

n Th

e fin

al is

sue

we

wou

ld li

ke to

intro

duce

in th

is s

ectio

n is

link

agg

rega

tion.

M

ultip

le li

nks

can

be a

ggre

gate

d as

if t

hey

wer

e a

pipe

of

larg

er c

apac

ity.

For

exam

ple,

use

rs c

an a

ggre

gate

two

giga

bit l

inks

into

a tw

o gi

gabi

t lin

k if

larg

er li

nk

capa

city

is d

esire

d. T

hey

do n

ot h

ave

to w

ait

for

ten

giga

bit

Eth

erne

t pr

oduc

ts.

Eve

n if

new

pro

duct

s co

me

out,

it m

ay b

e no

t ec

onom

ical

to

buy

them

. Li

nk

aggr

egat

ion

brin

gs fl

exib

ility

in n

etw

ork

depl

oym

ent.

Link

agg

rega

tion

was

orig

inal

ly a

tech

niqu

e of

Cis

co, d

ubbe

d E

ther

Cha

nnel

, or

ofte

n re

ferre

d to

as

Por

t Tr

unki

ng,

and

was

lat

er s

tand

ardi

zed

in t

he I

EE

E

802.

3ad

in 2

000.

The

ope

ratio

n is

not

con

fined

to li

nks

betw

een

switc

hes.

Lin

ks

betw

een

switc

h an

d st

atio

n, a

nd b

etw

een

stat

ion

and

stat

ion

can

also

be

aggr

egat

ed. T

he p

rinci

ple

of o

pera

tion

is s

impl

e: th

e tra

nsm

itter

dis

tribu

tes

fram

es

amon

g ag

greg

ated

link

s, a

nd th

e re

ceiv

er c

olle

cts

thes

e fra

mes

. How

ever

, som

e di

fficu

lties

com

plic

ate

the

desi

gn. F

or e

xam

ple,

con

side

r the

cas

e in

whi

ch a

long

fra

me

is fo

llow

ed b

y se

vera

l sho

rt fra

mes

. If t

he lo

ng fr

ame

is d

istri

bute

d to

one

lin

k, a

nd t

he s

hort

fram

es a

re d

istri

bute

d to

ano

ther

. Th

e re

ceiv

er w

ill re

ceiv

e th

ese

fram

es o

ut o

f or

der.

Alth

ough

an

uppe

r la

yer

prot

ocol

, su

ch a

s TC

P ca

n de

al w

ith o

ut o

f ord

er fr

ames

, it i

s le

ss e

ffici

ent t

o do

so.

The

ord

erin

g of

fram

es in

a

flow

mus

t be

mai

ntai

ned

in th

e da

ta-li

nk la

yer.

A flo

w m

ay n

eed

to m

ove

from

on

e lin

k to

ano

ther

for

wel

l lo

ad-b

alan

cing

or

beca

use

of l

ink

failu

re.

To m

eet

thes

e re

quire

men

ts, a

Lin

k A

ggre

gatio

n C

ontro

l Pro

toco

l (LA

CP

) is

desi

gned

. For

de

tails

, we

refe

r the

read

ers

to C

laus

e 43

in th

e IE

EE

802

.3 S

tand

ard.

2.4

Wire

less

link

s

Wire

less

link

s ar

e ap

peal

ing

to m

any

peop

le. W

ith w

irele

ss li

nks,

peo

ple

are

50

free

from

the

cons

train

ts o

f wire

s he

re a

nd th

ere,

whi

ch m

ay b

e in

conv

enie

nt o

r to

o ex

pens

ive

to d

eplo

y. H

owev

er, w

irele

ss li

nks

feat

ure

diffe

rent

cha

ract

eris

tics

from

wire

d lin

ks,

impo

sing

spe

cial

req

uire

men

ts o

n th

e pr

otoc

ol d

esig

n. W

e lis

t th

ese

char

acte

ristic

s be

low

: Le

ss re

liabi

lity:

Sig

nals

are

pro

paga

ted

with

out p

rote

ctio

n on

the

air,

mak

ing

the

trans

mis

sion

ea

sily

im

paire

d by

ou

tsid

e in

terfe

renc

e,

path

lo

ss,

mul

ti-pa

th

dist

ortio

n, e

tc. O

utsi

de in

terfe

renc

e co

mes

from

nea

rby

wire

less

sig

nal s

ourc

es.

Mic

row

ave

oven

s an

d B

luet

ooth

dev

ices

are

pos

sibl

e so

urce

s be

caus

e th

ey a

ll op

erat

e in

the

unlic

ense

d IS

M (I

ndus

trial

, Sci

entif

ic, a

nd M

edic

al) b

and.

Pat

h lo

ss

is a

ttenu

atio

n th

e si

gnal

und

ergo

es a

s it

prop

agat

es o

n th

e ai

r. Th

e at

tenu

atio

n is

w

orse

bec

ause

the

sig

nal

is i

nher

ently

dis

tribu

ted

over

the

air

rath

er t

han

conc

entra

ted

on a

wire

d lin

k. M

ulti-

path

dis

torti

on re

sults

from

del

ayed

par

ts o

f the

si

gnal

bec

ause

the

y tra

vel

thro

ugh

diffe

rent

pat

hs t

o th

e re

ceiv

er.

Ther

e ar

e po

ssib

ly d

iffer

ent p

aths

in th

e tra

nsm

issi

on b

ecau

se p

arts

of t

he s

igna

l bou

nce

off

phys

ical

obs

tacl

es o

n th

e w

ay.

Mor

e m

obili

ty: B

ecau

se th

ere

is n

o w

ire th

at li

mits

the

mob

ility

of a

sta

tion,

the

netw

ork

topo

logy

may

var

y dy

nam

ical

ly. N

ote

that

mob

ility

and

wire

less

diff

eren

t co

ncep

ts a

lthou

gh th

ey a

re o

ften

refe

rred

to to

geth

er. W

irele

ss is

not

nec

essa

ry

for

mob

ility.

For

exa

mpl

e, a

mob

ile s

tatio

n ca

n be

car

ried

to a

loca

tion

and

then

pl

ugge

d to

a w

ired

netw

ork.

Mob

ility

is a

lso

not

nece

ssar

y fo

r w

irele

ss.

For

exam

ple,

tw

o hi

gh

build

ings

ca

n co

mm

unic

ate

with

w

irele

ss

rela

y de

vice

s be

caus

e a

wire

bet

wee

n th

em is

too

expe

nsiv

e. T

his

is n

ot u

ncom

mon

in n

etw

ork

depl

oym

ent.

Le

ss p

ower

: A m

obile

sta

tion

is o

ften

batte

ry p

ower

ed. S

tatio

ns m

ay s

omet

imes

be

put

int

o sl

eep

to s

ave

pow

er.

Tran

smitt

ers

shal

l bu

ffer

the

data

unt

il th

e re

ceiv

er a

wak

ens

to re

ceiv

e th

em.

Less

sec

urity

: Dat

a pr

opag

ated

on

the

air

are

easi

ly e

aves

drop

ped.

All

stat

ions

w

ithin

the

tra

nsm

issi

on r

ange

can

lis

ten

to t

he d

ata.

Opt

iona

l en

cryp

tion

and

auth

entic

atio

n m

echa

nism

s ar

e pr

ovid

ed t

o ke

ep t

he d

ata

mor

e se

cure

fro

m

outs

ide

thre

ats.

In

this

sec

tion,

we

will

intro

duce

two

notic

eabl

e w

irele

ss li

nk p

roto

cols

: IEE

E 80

2.11

and

Blu

etoo

th. T

he fo

rmer

has

bec

ome

the

stan

dard

of w

irele

ss L

AN

, and

th

e la

tter

is d

esig

ned

for

shor

t-ran

ge c

onne

ctiv

ity.

We

will

conc

lude

thi

s se

ctio

n w

ith t

he c

ompa

rison

of

thes

e tw

o te

chno

logi

es a

nd d

iscu

ss t

heir

coex

iste

nce

issu

es.

2.

4.1

Bas

ics

of IE

EE

802

.11

Page 26: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

51

Evol

utio

n Th

e IE

EE

802

.11

Wor

king

Gro

up w

as e

stab

lishe

d in

199

0. I

ts g

oal

is t

o de

velo

p M

ediu

m A

cces

s C

ontro

l (M

AC

) met

hod

and

phys

ical

laye

r spe

cific

atio

ns

to m

eet t

he re

quire

men

ts o

f wire

less

loca

l are

a ne

twor

k. T

he p

roce

ss w

as s

o lo

ng

that

the

first

ver

sion

of s

tand

ards

did

not

app

ear u

ntil

1997

. Ini

tially

, thr

ee k

inds

of

PH

Ys,

in

frare

d,

Dire

ct

Seq

uenc

e S

prea

d S

pect

rum

(D

SS

S),

and

Freq

uenc

y-H

oppi

ng

Spr

ead

Spe

ctru

m

(FH

SS

), ar

e sp

ecifi

ed

to

allo

w

trans

mis

sion

at 1

Mb/

s an

d 2

Mb/

s. S

prea

d sp

ectru

m te

chni

ques

are

inte

nded

to

mak

e si

gnal

rob

ust

to o

utsi

de i

nter

fere

nce.

It

was

lat

er r

evis

ed i

n 19

99.

Two

amen

dmen

ts,

802.

11a

and

802.

11b

are

also

sta

ndar

dize

d in

tha

t ye

ar.

IEE

E

802.

11b

exte

nds

the

DS

SS

syst

em u

p to

a h

ighe

r da

ta r

ate

at 5

.5 M

b/s

and

11

Mb/

s. IE

EE

802

.11a

spe

cifie

s a

new

Orth

ogon

al F

requ

ency

Div

isio

n M

ultip

lexi

ng

(OFD

M)

oper

atin

g at

5 G

Hz

band

, as

opp

osed

to

2.4

GH

z ba

nd i

n pr

evio

us

stan

dard

s. T

he d

ata

rate

is in

crea

sed

sign

ifica

ntly

up

to 5

4 M

b/s.

How

ever

, the

se

two

stan

dard

s ar

e no

t co

mpa

tible

. IE

EE

802

.11b

pro

duct

s op

erat

ing

at 1

1 M

b/s

has

been

pop

ular

in th

e m

arke

t. S

ome

vend

ors,

say

Inte

l, ha

s st

arte

d to

mar

ket

IEE

E 8

02.1

1a p

rodu

cts.

At

the

time

of t

his

writ

ing,

IE

EE

802

.11

proj

ects

und

er

deve

lopm

ent

have

rea

ched

802

.11i

. S

ome

maj

or o

nes

of t

hem

are

802

.11e

for

Q

oS, 8

02.1

1g fo

r hig

her d

ata

rate

at 2

.4 G

Hz

band

, and

802

.11i

for s

ecur

ity. T

he

deve

lopm

ent i

s st

ill ve

ry a

ctiv

e so

far.

B

uild

ing

Blo

cks

The

basi

c bu

ildin

g bl

ock

of a

n 80

2.11

LA

N is

a B

asic

Ser

vice

Set

(B

SS)

. A

BS

S is

com

pose

d of

sta

tions

cap

able

of M

AC

and

PH

Y th

at c

onfo

rm to

the

IEE

E

802.

11 S

tand

ard.

A m

inim

um B

SS

con

tain

s on

ly tw

o st

atio

ns. A

sta

ndal

one

BS

S is

ca

lled

an In

depe

nden

t BS

S (

IBS

S), o

r m

ore

ofte

n th

an n

ot, r

efer

red

to a

s an

Ad

hoc

netw

ork

beca

use

this

typ

e is

ofte

n fo

rmed

with

out

plan

ning

in

adva

nce.

M

ultip

le B

SS

s ca

n be

con

nect

ed th

roug

h a

Dis

tribu

tion

Sys

tem

(D

S).

The

IEE

E

802.

11 S

tand

ard

does

not

man

date

wha

t the

DS

sho

uld

be. E

ther

net n

etw

ork

is

the

DS

we

can

find

mos

t ofte

n. A

DS

and

a B

SS

are

con

nect

ed th

roug

h an

Acc

ess

Poi

nt (A

P).

Suc

h an

ext

ende

d ne

twor

k st

ruct

ure

is c

alle

d an

Infra

stru

ctur

e. T

hese

bu

ildin

g bl

ocks

are

illu

stra

ted

in F

ig. 2

.22.

Th

e la

yerin

g in

the

IE

EE

802

.11

is d

epic

ted

in F

ig.

2.23

. As

we

have

m

entio

ned,

the

IEE

E 8

02.1

1 P

HY

s co

nsis

t of i

nfra

red,

DS

SS

, FH

SS

, and

OFD

M.

Abo

ve th

em is

the

MA

C s

ubla

yer,

whi

ch w

e w

ill in

trodu

ce s

oon.

We

will

focu

s on

th

e IE

EE

802

.11

MA

C in

this

sec

tion.

For

issu

es o

n P

HY,

we

enco

urag

e in

tere

sted

re

ader

s to

ref

er t

o th

e re

sour

ces

liste

d in

Sec

tion

2.7

or s

earc

h m

ore

on t

he

Inte

rnet

.

52

Figu

re 2

.22

IEE

E 8

02.1

1 bu

ildin

g bl

ocks

802.

2 LL

C

802.

11 M

AC

Dat

a-lin

k la

yer

FHS

S D

SS

S

IR

OFD

M

Phys

ical

la

yer

802.

11 M

AC

des

ign

shal

l tak

e ca

re o

f thi

s ca

se.

FH

SS: F

requ

ency

Hop

ping

Spr

ead

Spec

trum

DS

SS

: Dire

ct S

eque

nce

Spre

ad S

pect

rum

OFD

M: O

rthog

onal

Fre

quen

cy D

ivis

ion

Mul

tiple

xing

IR: I

nfra

red

Figu

re 2

.23

Laye

ring

in th

e IE

EE

802

.11

2.

4.2

IEE

E 8

02.1

1 M

AC

An o

bvio

us d

istin

ctio

n be

twee

n th

e IE

EE 8

02.1

1 M

AC a

nd t

he I

EEE

802.

3 M

AC,

a ty

pica

l re

pres

enta

tive

of w

ired

netw

ork,

is

that

col

lisio

n de

tect

ion

is

diffi

cult

to im

plem

ent.

The

cost

of f

ull-d

uple

x R

F is

hig

her a

nd th

ere

are

pote

ntia

lly

hidd

en s

tatio

ns th

at m

ake

collis

ion

dete

ctio

n fa

il. T

he la

tter i

s kn

own

as th

e hi

dden

te

rmin

al p

robl

em,

as w

e illu

stra

ted

in F

ig.

2.24

. Th

eref

ore,

the

rec

eive

r sh

ould

Page 27: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

53

resp

ond

with

an

ackn

owle

dgm

ent

if th

e FC

S i

s co

rrec

t. Th

is i

s th

e po

sitiv

e ac

know

ledg

men

t mec

hani

sm a

s w

e ha

d m

entio

ned

in S

ectio

n 2.

1.3.

In F

ig. 2

.24,

Sta

tion

A an

d St

atio

n C

can

not h

ear e

ach

othe

r bec

ause

they

are

lo

cate

d ou

t of

eac

h ot

her’s

tra

nsm

issi

on r

ange

. H

owev

er,

if th

ey b

oth

trans

mit

data

to S

tatio

n B

sim

ulta

neou

sly,

a c

ollis

ion

will

occ

ur a

t Sta

tion

B. T

hus,

the

IEE

E

Fi

gure

2.2

4 Th

e hi

dden

term

inal

pro

blem

The

IEE

E

802.

11

MA

C

allo

cate

s ch

anne

ls

with

tw

o m

ajor

fu

nctio

ns:

Dis

tribu

ted

Coo

rdin

atio

n Fu

nctio

n (D

CF)

and

Poi

nt C

oord

inat

ion

Func

tion

(PC

F).

The

DC

F is

man

dato

ry t

hat

all I

EE

E 8

02.1

1 co

nfor

man

t st

atio

ns s

houl

d fo

llow.

Th

e P

CF

is p

erfo

rmed

in a

n in

frast

ruct

ure

netw

ork.

Bot

h co

ordi

natio

n fu

nctio

ns

can

coex

ist w

ithin

the

sam

e B

SS

. Th

e ph

iloso

phy

behi

nd D

CF

is k

now

n as

Car

rier S

ense

Mul

tiple

Acc

ess

with

C

ollis

ion

Avoi

danc

e (C

SM

A/C

A).

Alth

ough

the

mos

t not

icea

ble

diffe

renc

e fro

m th

e E

ther

net

MA

C i

s th

e co

llisio

n av

oida

nce,

the

CS

MA

/CA

mec

hani

sm h

as m

ore

diffe

renc

es th

an th

at.

The

sam

e as

CS

MA

/CD

, a

stat

ion

mus

t lis

ten

befo

re t

rans

mitt

ing.

If

som

e st

atio

n is

tran

smitt

ing,

the

trans

mis

sion

will

be d

efer

red

until

the

chan

nel i

s fre

e.

Onc

e th

e ch

anne

l is

clea

r, th

e st

atio

n w

ill w

ait f

or a

sho

rt pe

riod

of ti

me,

kno

wn

as

inte

rfram

e sp

ace

(IFS

), be

fore

the

trans

mis

sion

. Not

e th

at d

urin

g th

e tim

e of

last

tra

nsm

issi

on, t

here

are

odd

s th

at m

ultip

le s

tatio

ns a

re w

aitin

g to

tran

smit.

If th

ey

all a

re a

llow

ed to

tran

smit

afte

r IFS

, it i

s ve

ry li

kely

to re

sult

in a

col

lisio

n. T

o av

oid

poss

ible

col

lisio

ns,

the

stat

ions

hav

e to

wai

t a

rand

om b

acko

ff tim

e be

fore

54

trans

mis

sion

. The

per

iod

is d

eter

min

ed w

ith th

e fo

rmul

a:

Bac

koff

time

= R

ando

m v

alue

× s

lot t

ime

In th

e ab

ove

form

ula,

the

rand

om v

alue

is s

elec

ted

rand

omly

from

the

rang

e fro

m 0

to C

W. C

W s

tand

s fo

r Con

tent

ion

Win

dow

, ran

ging

from

CW

min

to C

Wm

ax.

CW

min

, CW

max

, and

the

slot

tim

e, d

epen

d on

the

PH

Y ch

arac

teris

tics.

Initi

ally,

C

W is

set

to C

Wm

in. T

he b

acko

ff tim

e is

dec

reas

ed b

y on

e sl

ot ti

me

if th

e ch

anne

l is

free

for a

n IF

S p

erio

d; o

ther

wis

e, th

e tim

e is

sus

pend

ed. W

hen

it fin

ally

reac

hes

zero

, the

sta

tion

star

ts to

tran

smit.

Thr

ough

the

abov

e pr

oced

ure,

col

lisio

ns c

an

be re

duce

d si

gnifi

cant

ly. W

e su

mm

ariz

e th

e C

SM

A/C

A pr

oced

ure

in F

ig. 2

.25.

Fi

g 2.

25 C

SM

A/C

A flo

w c

hart

Unl

ike

colli

sion

det

ectio

n, w

hich

can

sto

p tra

nsm

issi

on i

mm

edia

tely

if

a co

llisio

n is

det

ecte

d, th

ere

is n

o w

ay fo

r a s

tatio

n to

find

that

the

fram

e it

trans

mits

is

im

paire

d un

til n

o ac

know

ledg

emen

t is

rec

eive

d. T

he c

ost

of c

ollis

ion

is

sign

ifica

nt if

a lo

ng fr

ame

is tr

ansm

itted

. An

optio

nal r

efin

emen

t to

redu

ce th

e co

st

is a

n ex

plic

it R

TS/C

TS m

echa

nism

. B

efor

e tra

nsm

ittin

g a

fram

e, th

e tra

nsm

itter

no

tifie

s al

l sta

tions

with

in it

s tra

nsm

issi

on r

ange

with

a R

eque

st t

o S

end

(RTS

). Th

e re

ceiv

er re

spon

ds w

ith a

Cle

ar to

Sen

d (C

TS) f

ram

e, w

hich

is a

lso

notic

ed b

y al

l sta

tions

with

in it

s tra

nsm

issi

on r

ange

. B

oth

RTS

and

CTS

fra

mes

car

ry th

eir

dura

tion

field

s, te

lling

the

othe

r sta

tions

to w

ait f

or a

ctua

l dat

a fra

me

trans

mis

sion

an

d its

ack

now

ledg

emen

t. Th

is p

roce

dure

is il

lust

rate

d in

Fig

. 2.

31.

Dur

ing

the

rese

rved

per

iod,

the

othe

r sta

tions

inhi

bit t

heir

own

trans

mis

sion

and

do

not n

eed

to p

erfo

rm c

arrie

r se

nse

phys

ical

ly. T

here

fore

, th

is m

echa

nism

is

also

cal

led

Page 28: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

55

virtu

al c

arrie

r sen

se. T

his

mec

hani

sm h

as a

noth

er a

dvan

tage

. In

Fig

2.26

, C a

nd

D c

anno

t se

nse

trans

mis

sion

fro

m e

ach

othe

r. If

they

bot

h in

tend

to

trans

mit

sim

ulta

neou

sly,

a c

ollis

ion

will

occu

r. Th

e R

TS/C

TS m

echa

nism

can

avo

id t

his

situ

atio

n. N

ote

that

this

mec

hani

sm is

onl

y ap

plic

able

to u

nica

st fr

ame.

In c

ase

of

mul

ticas

t and

bro

adca

st, m

ultip

le C

TSs

from

the

rece

iver

s w

ill re

sult

in a

col

lisio

n.

Sim

ilarly

, the

ack

now

ledg

emen

t fra

me

will

not b

e re

spon

ded

in c

ase

of m

ultic

ast

or b

road

cast

.

Fi

gure

2.2

6 R

TS/C

TS m

echa

nism

Th

e P

CF

is e

xerc

ised

by

a P

oint

Coo

rdin

ator

(P

C)

that

res

ides

in t

he A

P w

ithin

eac

h B

SS

. P

erio

dica

lly,

the

PC

tra

nsm

its a

bea

con

fram

e to

ann

ounc

e a

Con

tent

ion-

Free

Per

iod

(CFP

). E

very

sta

tion

with

in t

he B

SS

is

awar

e of

the

be

acon

fram

e an

d ke

eps

sile

nt d

urin

g C

FP. T

he o

nly

stat

ion

is a

llow

ed to

tran

smit

whe

n it

is p

olle

d by

the

PC

. Hen

ce, t

he P

C h

as th

e au

thor

ity to

det

erm

ine

who

can

tra

nsm

it. T

he p

ollin

g se

quen

ce is

left

unsp

ecifi

ed in

the

stan

dard

. Th

e D

CF

and

PC

F ca

n co

exis

t in

the

sce

nario

illu

stra

ted

in F

ig.

2.27

. Th

e D

CF

imm

edia

tely

follo

ws

CFP

, ent

erin

g a

perio

d ca

lled

Con

tent

ion

Per

iod

(CP)

. N

orm

ally,

the

PC

tran

smits

a b

eaco

n fra

me

with

a C

FP r

epet

ition

per

iod,

but

the

perio

d m

ay b

e de

laye

d if

the

chan

nel h

appe

ns to

be

busy

at t

he e

nd o

f the

CP.

Figu

re 2

.27

DC

F an

d P

CF

coex

iste

nce

The

IEE

E 8

02.1

1 de

fines

the

MAC

fram

e fo

rmat

as

depi

cted

in F

ig. 2

.28.

56

Fi

gure

2.2

8 IE

EE

802

.11

fram

e fo

rmat

The

fram

e fo

rmat

is

gene

ral.

Cer

tain

fra

me

type

may

con

tain

a s

ubse

t of

th

ese

field

s. W

e ca

tego

rize

the

fram

es in

to th

ree

type

s:

1. C

ontro

l fra

mes

: RTS

, CTS

, AC

K, e

tc.

2. D

ata

fram

es: c

arry

ing

norm

al d

ata

3. M

anag

emen

t fra

mes

: Bea

con,

etc

. To

fully

cov

er th

ese

type

s re

quire

s de

ep u

nder

stan

ding

of e

very

IEE

E 8

02.1

1 op

erat

ion.

The

read

ers

can

refe

r to

the

stan

dard

itse

lf fo

r det

ails

.

2.4.

3 B

luet

ooth

tech

nolo

gy

Lo

ok a

t the

cab

les

behi

nd y

our c

ompu

ter.

Ther

e ar

e pl

enty

of t

hem

. Bes

ides

th

ose

conn

ectin

g co

mpu

ter p

erip

hera

ls, w

e al

so h

ave

cabl

es to

con

nect

diff

eren

t ki

nds

of c

able

s. T

hese

cab

les

are

so c

umbe

rsom

e th

at it

is b

ette

r to

get

rid

of

them

. Blu

etoo

th,

nam

ed a

fter

a D

anis

h ki

ng i

n th

e te

nth

cent

ury,

is

the

very

te

chno

logy

des

igne

d to

rep

lace

cab

les

conn

ectin

g el

ectro

nic

devi

ces.

Bet

wee

n th

e de

vice

s ar

e sh

ort-r

ange

, us

ually

with

in 1

0 m

, ra

dio

links

. To

mak

e su

re t

he

prol

ifera

tion

of t

his

new

tec

hnol

ogy,

the

dev

elop

men

t go

al a

ttem

pts

to in

tegr

ate

man

y fu

nctio

ns in

a s

ingl

e ch

ip a

nd re

duce

s th

e pr

ice

of a

chi

p be

low

five

dol

lars

ev

entu

ally.

Blu

etoo

th is

a r

athe

r ne

w te

chno

logy

. In

1998

, fiv

e m

ajor

com

pani

es,

Eric

sson

, N

okia

, IB

M,

Tosh

iba,

and

Int

el,

coop

erat

e to

cre

ate

it. A

Blu

etoo

th

Spe

cial

Int

eres

t G

roup

(B

luet

ooth

SIG

), co

mpo

sed

of m

any

com

pani

es,

was

fo

rmed

late

r to

prom

ote

and

defin

e th

e ne

w s

tand

ard.

B

luet

ooth

dev

ices

ope

rate

at t

he 2

.4 G

Hz

ISM

ban

d, th

e sa

me

as m

ost I

EE

E 80

2.11

dev

ice

usin

g fre

quen

cy h

oppi

ng. T

he fr

eque

ncy

band

ran

ges

from

2.4

00

GH

z to

2.4

835

GH

z, w

ithin

whi

ch a

re 7

9 ch

anne

ls o

f 1 M

Hz

for f

requ

ency

hop

ping

. B

elow

and

abo

ve t

hese

cha

nnel

s ar

e gu

ard

band

s of

2 M

Hz

and

3.5

MH

z,

resp

ectiv

ely.

An

obse

rvan

t re

ader

may

im

med

iate

ly h

ave

notic

ed t

he p

ossi

ble

inte

rfere

nce

prob

lem

if

devi

ces

of I

EE

E 8

02.1

1 an

d B

luet

ooth

are

clo

se.

The

coex

iste

nce

prob

lem

is a

big

issu

e. W

e w

ill ta

lk m

ore

abou

t thi

s in

the

end

of th

is

Page 29: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

57

subs

ectio

n.

The

basi

c Bl

ueto

oth

topo

logy

is il

lust

rate

d in

Fig

. 2.2

9. L

ike

BSS

in th

e IE

EE

802.

11, t

wo

or m

ore

devi

ces

shar

ing

the

sam

e ch

anne

l for

m a

pic

onet

. But

unl

ike

an IB

SS

, in

whi

ch a

ll st

atio

ns a

re c

reat

ed e

qual

, the

re a

re o

ne m

aste

r and

sla

ves

in a

pic

onet

. The

mas

ter h

as th

e au

thor

ity, s

ay d

ecid

ing

the

hopp

ing

sequ

ence

, to

cont

rol c

hann

el a

cces

s in

the

pico

net.

The

slav

es c

an b

e ei

ther

act

ive

or p

arke

d. A

m

aste

r con

trols

up

to s

even

act

ive

slav

es a

t the

sam

e tim

e. P

arke

d sl

aves

do

not

com

mun

icat

e, b

ut th

ey s

till k

eep

sync

hron

ized

with

the

mas

ter

and

can

beco

me

activ

e as

the

mas

ter d

eman

d. If

a m

aste

r des

ired

to c

omm

unic

ate

with

mor

e th

an

seve

n sl

aves

, it t

ells

one

or

mor

e ac

tive

slav

es to

ent

er in

to th

e pa

rk m

ode,

and

th

en i

nvite

s th

e de

sire

d pa

rked

sla

ves

to b

e ac

tive.

For

mor

e de

vice

s to

co

mm

unic

ate

sim

ulta

neou

sly,

mul

tiple

pic

onet

s ca

n ov

erla

p to

for

m a

lar

ger

scat

tern

et. I

n Fi

g. 2

.29

belo

w, w

e se

e tw

o pi

cone

ts fo

rm a

sca

ttern

et w

ith a

brid

ge

node

. The

brid

ge n

ode

can

be a

sla

ve in

bot

h pi

cone

ts o

r be

the

mas

ter

in o

ne

pico

net.

It pa

rtici

pate

s in

bot

h pi

cone

ts in

a m

anne

r of t

ime-

divi

sion

. Som

etim

es, i

t is

par

t of o

ne p

icon

et, a

nd s

omet

imes

, it b

elon

gs to

ano

ther

.

pico

net

scat

tern

et

Figu

re 2

.29

The

Blu

etoo

th to

polo

gy

For

Blu

etoo

th d

evic

es t

o co

mm

unic

ate,

the

y m

ust

be a

war

e of

eac

h ot

her.

Any

inqu

iry p

roce

dure

is d

esig

ned

for

each

dev

ice

to d

isco

ver t

he o

ther

dev

ices

, fo

llow

ed b

y a

page

pro

cedu

re t

o bu

ild u

p a

conn

ectio

n. I

nitia

lly,

all

Blue

toot

h de

vice

s ar

e by

def

ault

in s

tand

by m

ode.

A B

luet

ooth

inte

nd to

com

mun

icat

e w

ill try

to

broa

dcas

t an

inqu

iry w

ithin

its

cove

rage

are

a. T

he d

evic

es a

roun

d it

may

re

spon

d th

e in

quiry

with

info

rmat

ion

abou

t the

mse

lves

, suc

h as

add

ress

es, i

f the

y w

ould

lik

e to

. U

pon

rece

ivin

g th

ese

resp

onse

s, t

he i

nqui

rer

know

s in

form

atio

n ab

out s

urro

undi

ng d

evic

es a

nd b

ecom

e th

e m

aste

r in

the

pico

net.

Oth

er d

evic

es

beco

me

the

slav

es.

Afte

r in

quiry

, th

e m

aste

r se

nds

a un

icas

t m

essa

ge t

o th

e de

stin

atio

n de

vice

. The

des

tinat

ion

resp

onds

with

an

ackn

owle

dgem

ent a

nd th

us

a co

nnec

tion

is e

stab

lishe

d. T

his

is c

alle

d a

page

pro

cedu

re. S

ome

time

late

r, a

slav

e ca

n ru

n th

e sa

me

page

pro

cedu

re, a

nd th

e ro

le o

f the

mas

ter a

nd s

lave

will

58

be

exch

ange

d.

The

proc

ess

is

illust

rate

d in

Fi

g.

2.30

. N

ote

that

m

ultip

le

resp

onse

s fro

m a

n in

quiry

may

resu

lt in

a c

ollis

ion.

The

rece

ivin

g de

vice

s sh

ould

de

fer t

he re

spon

ses

for a

rand

om b

acko

ff tim

e.

Fi

gure

2.3

0 In

quiry

and

Pag

e pr

oced

ure

A pi

cone

t cha

nnel

is d

ivid

ed in

to ti

me

slot

s of

625

µs

each

in w

hich

diff

eren

t ho

ppin

g fre

quen

cy o

ccup

ies.

The

slo

t tim

e is

a re

cipr

ocal

of t

he h

op ra

te, w

hich

is

1600

hop

s/s.

The

se s

lots

are

tim

e m

ultip

lexe

d w

ith th

e sa

me

hopp

ing

sequ

ence

by

the

com

mun

icat

ing

mas

ter a

nd s

lave

. At t

he d

ata

rate

of 1

Mb/

s, e

ach

slot

can

id

eally

car

ry d

ata

of 6

25 b

its. H

owev

er, s

ome

inte

rval

s w

ithin

a s

lot a

re r

eser

ved

for

frequ

ency

hop

ping

and

sta

biliz

atio

n. U

p to

366

bits

can

be

carri

ed in

a s

lot.

Nor

mal

ly, e

ach

slot

car

ries

a B

luet

ooth

fram

e. A

fram

e ha

s fie

lds

of a

cces

s co

de

of 7

2 bi

ts, h

eade

r inf

orm

atio

n of

54

bits

, and

the

payl

oad

of v

aria

ble

leng

th. W

ith

payl

oad

of o

nly

366

– 72

– 5

4 =

240

bits

(30

byt

es)

carri

ed in

a t

ime

slot

tha

t id

eally

car

ries

625

bits

, the

effi

cien

cy is

not

goo

d. T

o im

prov

e ef

ficie

ncy,

a fr

ame

can

occu

py u

p to

five

con

secu

tive

slot

s.

A B

luet

ooth

con

nect

ion

has

two

optio

ns i

n em

ploy

ing

the

time

slot

s to

co

mm

unic

ate.

The

firs

t is

the

Syn

chro

nous

Con

nect

ion-

Orie

nted

link

(S

CO

link

), w

hich

res

erve

s tim

e sl

ots

regu

larly

for

time-

boun

ded

info

rmat

ion,

suc

h as

voi

ce.

For

exam

ple,

a te

leph

one-

grad

e vo

ice

has

a sa

mpl

e ra

te o

f 8 K

Hz,

eac

h sa

mpl

e ge

nera

ting

one

byte

. In

othe

r wor

ds, a

byt

e is

gen

erat

ed e

very

0.1

25 m

s. B

ecau

se

a fra

me

can

carry

30

byte

s in

eac

h sl

ot, o

ne s

lot s

houl

d be

rese

rved

to c

arry

voi

ce

ever

y 3.

75 m

s. E

ach

time

slot

has

a le

ngth

625

µs,

mea

ning

one

out

of s

ix s

lots

is

rese

rved

. Th

e se

cond

opt

ion

is t

he A

sync

hron

ous

Con

nect

ion-

Less

lin

k (A

CL

link)

. Ti

me

slot

s ar

e al

loca

ted

on d

eman

d ra

ther

than

bei

ng re

serv

ed. T

he m

aste

r is

in

Page 30: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

59

char

ge o

f th

e al

loca

tion

to o

ne o

r m

ultip

le s

lave

s. I

n th

is w

ay,

collis

ions

fro

m

slav

es a

re a

void

ed a

nd t

he m

aste

r ca

n co

ntro

l th

e Q

ualit

y of

Ser

vice

(Q

oS)

requ

irem

ent i

n th

e lin

k.

The

prot

ocol

sta

ck in

the

Blu

etoo

th s

peci

ficat

ion

is d

epic

ted

in F

ig. 2

.31.

We

desc

ribe

the

func

tion

of e

ach

mod

ule

shor

tly o

n th

e rig

ht o

f the

figu

re. W

e le

ave

the

deta

il to

the

spe

cific

atio

n. R

eade

rs c

an d

ownl

oad

it fro

m t

he U

RL

give

n in

S

ectio

n 2.

7.

Fi

gure

2.3

1 Th

e B

luet

ooth

pro

toco

l sta

ck

B

luet

ooth

and

the

IEE

E 8

02.1

1 ar

e de

sign

ed fo

r diff

eren

t pur

pose

s. T

he IE

EE

80

2.11

inte

nds

to b

e a

wire

less

LA

N s

tand

ard,

whi

le B

luet

ooth

is d

esig

ned

for t

he

wire

less

per

sona

l are

a ne

twor

k (w

irele

ss P

AN

, or

WPA

N).

A co

mpa

rison

is li

sted

in

Tab

le 2

.8 b

elow

. C

urre

ntly,

the

IEE

E 8

02.1

5 W

PAN

Wor

king

Gro

up a

nd th

e B

luet

ooth

SIG

are

co

oper

atin

g to

impr

ove

the

Blu

etoo

th S

tand

ard.

Mor

eove

r, Ta

sk G

roup

2 in

the

IE

EE

802

.15

focu

ses

on a

ddre

ssin

g th

e co

exis

tenc

e pr

oble

m b

ecau

se o

f pos

sibl

e in

terfe

renc

e. A

lthou

gh t

here

are

arg

umen

ts a

s to

the

suc

cess

of

the

Blu

etoo

th,

man

y pe

ople

exp

ect o

ptim

istic

ally

coe

xist

ence

of t

hese

two

stan

dard

s.

I

EE

E 8

02.1

1 B

luet

ooth

Freq

uenc

y 2.

4 G

Hz

(802

.11,

802

.11b

) 5

GH

z

(80

2.11

a)

2.4G

Hz

Dat

a ra

te

1, 2

Mb/

s (8

02.1

1)

5.5,

11

Mb/

s (8

02.1

1b)

54 M

b/s

(802

.11a

)

1 M

b/s

Ran

ge

roun

d 10

0 m

w

ithin

10

m

Pow

er c

onsu

mpt

ion

high

er

(with

1W

, us

ually

30 –

100

mW

) lo

wer

(1

mW

–10

0 m

W,

usua

lly a

bout

1m

W)

60

PH

Y sp

ecifi

catio

n In

frare

d

OFD

M

FH

SS

D

SSS

FH

SS

MAC

D

CF

PCF

Slo

t allo

catio

n

Pric

e hi

gher

lo

wer

Maj

or a

pplic

atio

n W

irele

ss L

AN

Shor

t-ran

ge c

onne

ctio

n

Tabl

e 2.

8 A

com

paris

on o

f Blu

etoo

th a

nd IE

EE 8

02.1

1

2.5

Dev

ice

driv

ers

2.5.

1 A

n in

trodu

ctio

n to

dev

ice

driv

ers

One

of

the

mai

n fu

nctio

ns o

f an

ope

ratin

g sy

stem

is t

o co

ntro

l I/O

dev

ices

. Th

e I/O

par

t in

the

oper

atin

g sy

stem

can

be

stru

ctur

ed to

four

laye

rs a

s fo

llow

s.

Not

e th

at th

e in

terru

pt h

andl

er c

an a

lso

be th

ough

t as

part

of th

e dr

iver

.

Fi

gure

2.

Stru

ctur

e of

I/O

softw

are

A

ll th

e de

vice

-dep

ende

nt c

odes

are

em

bedd

ed i

n th

e de

vice

driv

ers.

The

de

vice

driv

ers

issu

e co

mm

ands

to

the

devi

ce r

egis

ters

and

che

ck i

f th

ey a

re

carri

ed o

ut p

rope

rly.

Thus

, th

e ne

twor

k de

vice

driv

er i

s th

e on

ly p

art

of t

he

oper

atin

g sy

stem

tha

t kn

ows

how

man

y re

gist

ers

the

netw

ork

adap

tor

has

and

wha

t the

y ar

e us

ed fo

r. In

gen

eral

term

s, th

e jo

b of

a d

evic

e dr

iver

is to

acc

ept a

bstra

ct re

ques

ts fr

om

the

devi

ce-in

depe

nden

t so

ftwar

e ab

ove

it, a

nd t

o ha

ndle

the

se r

eque

sts

by

issu

ing

com

man

ds to

dev

ice

regi

ster

s. A

fter c

omm

ands

hav

e be

en is

sued

, one

of

two

situ

atio

ns w

ill ha

ppen

. O

ne i

s th

at t

he d

evic

e dr

iver

blo

cks

itsel

f un

til t

he

inte

rrupt

co

mes

in

to

un

bloc

k it.

Th

e ot

her

is

that

th

e op

erat

ion

finis

hes

imm

edia

tely,

so

the

driv

er d

oes

not n

eed

to b

lock

.

Use

r pro

cess

es

Dev

ice-

inde

pend

ent O

S so

ftwar

e

Dev

ice

driv

er

Inte

rrup

t han

dler

s

Dev

ice

I/O re

ply

I/O re

ques

t

I/O

func

tions

I/O c

alls

, spo

olin

g

Nam

ing,

pro

tect

ion,

allo

catio

n

Setu

p de

vice

regi

ster

s, ch

eck

stat

us

Wak

eup

driv

er w

hen

I/O c

ompl

eted

Perf

orm

I/O

ope

ratio

ns

Page 31: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

61

2.5.

2 H

ow to

writ

e a

devi

ce d

river

in L

inux

Bef

ore

a de

vice

driv

er c

an c

omm

unic

ate

with

a d

evic

e, it

mus

t in

itial

ize

the

envi

ronm

ent

so t

hat

ever

ythi

ng g

ets

read

y. T

he a

ctio

n of

ini

tializ

atio

n in

clud

es

prob

ing

I/O p

orts

for

com

mun

icat

ing

with

dev

ice

regi

ster

s, a

nd p

robi

ng IR

Qs

for

corre

ctly

inst

allin

g th

e in

terru

pt h

andl

er.

Pr

obe

Har

dwar

e Th

e m

etho

d of

pro

bing

har

dwar

e in

a d

river

is d

iffer

ent a

ccor

ding

to th

e ty

pes

of b

us a

rchi

tect

ure.

PC

I de

vice

s ar

e au

tom

atic

ally

con

figur

ed a

t bo

ot t

ime.

The

de

vice

driv

er, t

hen,

mus

t be

able

to a

cces

s co

nfig

urat

ion

info

rmat

ion

in th

e de

vice

in

ord

er to

com

plet

e th

e in

itial

izat

ion.

Thi

s ha

ppen

s w

ithou

t the

nee

d to

per

form

an

y pr

obin

g.

How

ever

, th

e de

vice

dr

iver

s fo

r IS

A de

vice

s ha

ve

to

prob

e th

emse

lves

. Le

t’s s

ee th

e P

CI d

evic

es fi

rst.

In L

inux

ker

nel v

ersi

on 2

.4, t

he I/

O p

orts

of P

CI

devi

ces

have

bee

n in

tegr

ated

in th

e ge

neric

res

ourc

e m

anag

emen

t. W

e ca

n us

e th

e fo

llow

ing

func

tions

to g

et th

e I/O

por

ts o

f a d

evic

e in

the

devi

ce d

river

: un

sign

ed lo

ng p

ci_r

esou

rce_

star

t(str

uct p

ci_d

ev *d

ev, i

nt b

ar);

stru

ct r

esou

rce

*req

uest

_reg

ion

(uns

igne

d lo

ng s

tart

, un

sign

ed l

ong

len,

ch

ar* n

ame)

; vo

id re

leas

e_re

gion

(uns

igne

d lo

ng s

tart

, un

sign

ed lo

ng le

n);

Firs

t, w

e us

e pc

i_re

sour

ce_s

tart(

) to

get

the

bas

e ad

dres

s. T

hen,

we

use

requ

est_

regi

on()

to

re

serv

e th

e I/O

po

rts.

Fina

lly,

the

driv

er

shou

ld

call

rele

ase_

regi

on()

to

rele

ase

the

ports

whe

n it

finis

hes.

As

far

as i

nter

rupt

s ar

e co

ncer

ned,

PC

I is

eas

y to

han

dle.

By

the

time

Linu

x bo

ots,

the

firm

war

e ha

s al

read

y as

sign

ed a

uni

que

inte

rrupt

num

ber

to t

he d

evic

e co

nfig

urat

ion

regi

ster

na

med

PC

I_IN

TER

RU

PT_L

INE,

whi

ch is

one

byt

e w

ide.

We

can

use

the

follo

win

g fu

nctio

n to

get

the

IRQ

num

ber o

f a d

evic

e in

the

devi

ce d

river

: in

t pci

_rea

d_co

nfig

_byt

e(st

ruct

pci

_dev

*dev

, int

whe

re, u

8 *p

tr);

The

whe

re a

rgum

ent s

houl

d be

PC

I_IN

TER

RU

PT_

LIN

E, a

nd th

e pt

r arg

umen

t is

the

poin

ter t

o th

e IR

Q n

umbe

r. N

ow,

let’s

look

at

the

ISA

devi

ces.

If

we

wan

t to

get

the

I/O

por

ts o

f an

IS

A de

vice

in a

dev

ice

driv

er, t

he fo

llow

ing

proc

edur

e m

ust b

e do

ne:

1. in

t che

ck_r

egio

n(un

sign

ed lo

ng s

tart

, uns

igne

d lo

ng le

n); T

his

func

tion

is

used

to s

ee if

a ra

nge

of p

orts

are

ava

ilabl

e fo

r allo

catio

n.

2. T

his

prob

e ro

utin

e pr

obe_

hard

war

e() i

s to

mak

e su

re th

e de

vice

exi

sts.

It is

not

pr

ovid

ed b

y th

e ke

rnel

, but

inst

ead

it m

ust b

e im

plem

ente

d by

driv

er w

riter

s.

62

3. U

se re

ques

t_re

gion

() to

act

ually

allo

cate

the

ports

. 4.

Use

rele

ase_

regi

on()

to re

leas

e th

e po

rts w

hen

it fin

ishe

s.

If w

e w

ant t

o ge

t the

IRQ

num

ber

of a

n IS

A de

vice

in th

e de

vice

driv

er, w

e ca

n us

e th

e fo

llow

ing

func

tions

: un

sign

ed lo

ng p

robe

_irq

_on(

void

); in

t pro

be_i

rq_o

ff(un

sign

ed lo

ng);

The

func

tion

prob

e_irq

_on(

) ret

urns

a b

it m

ask

of u

nass

igne

d in

terr

upts

. The

dr

iver

mus

t pr

eser

ve t

he r

etur

ned

bit

mas

k an

d pa

ss it

to

prob

e_irq

_off(

) la

ter.

Afte

r pr

obe_

irq_o

n(),

the

driv

er s

houl

d ar

rang

e fo

r its

dev

ice

to g

ener

ate

at le

ast

one

inte

rrupt

. A

fter

the

devi

ce h

as r

eque

sted

an

inte

rrupt

, th

e dr

iver

cal

ls

prob

e_irq

_off(

), pa

ssin

g as

ar

gum

ent

the

bit

mas

k pr

evio

usly

re

turn

ed

by

prob

e_irq

_on(

). Th

e fu

nctio

n pr

obe_

irq_o

ff()

retu

rns

the

num

ber

of t

he in

terru

pt

that

was

issu

ed a

fter p

robe

_irq

_on(

). In

terr

upt H

andl

ing

Dat

a tra

nsfe

rred

to o

r fro

m h

ardw

are

devi

ce m

ight

exp

erie

nce

dela

y fo

r som

e re

ason

. The

refo

re, t

he d

evic

e dr

iver

sho

uld

buffe

r th

ese

data

for

a w

hile

. A g

ood

buffe

ring

mec

hani

sm is

inte

rrup

t-driv

en I/

O, w

hich

mea

ns th

e in

put b

uffe

r is

fille

d at

inte

rrupt

tim

e by

an

inte

rrupt

han

dler

and

is c

onsu

med

by

the

proc

ess

late

r. S

imila

rly,

the

outp

ut b

uffe

r is

fille

d by

the

pro

cess

and

is c

onsu

med

at

inte

rrup

t tim

e by

an

inte

rrupt

han

dler

late

r. Fo

r the

mos

t par

t, a

devi

ce d

river

onl

y ne

eds

to

regi

ster

an

inte

rrup

t han

dler

for

its d

evic

e, a

nd h

andl

e th

em p

rope

rly w

hen

they

ar

rive.

We

use

follo

win

g fu

nctio

ns t

o re

gist

er (

inst

all)

and

free

(uni

nsta

ll) a

n in

terru

pt h

andl

er.

#inc

lude

<lin

ux/s

ched

.h>;

in

t re

ques

t_irq

(uns

igne

d in

t, vo

id*

(int,

void

*,

stru

ct p

t_re

gs *

), un

sign

ed

long

, con

st c

har *

,voi

d *)

; vo

id fr

ee_i

rq (u

nsig

ned

int ,

voi

d*);

Whe

n an

inte

rrupt

hap

pens

, a s

erie

s of

eve

nts

liste

d in

Fig

ure

1 m

ay o

ccur

in

the

syst

em.

1. H

ardw

are

stac

ks p

rogr

am c

ount

er, e

tc.

2. H

ardw

are

load

s a

new

pro

gram

cou

nter

from

the

inte

rrupt

vec

tor.

3. A

ssem

bly

lang

uage

pro

cedu

re s

aves

regi

ster

s.

4. A

ssem

bly

lang

uage

pro

cedu

re s

ets

up a

new

sta

ck, a

nd c

alls

a C

pro

cedu

re to

do

the

actu

al w

ork

of p

roce

ssin

g th

e in

terru

pt.

5. C

lang

uage

pro

cedu

re h

andl

es a

ctua

l int

erru

pt r

outin

e, w

akes

up

the

proc

ess,

m

ay c

all s

ched

ule(

), an

d fin

ally

retu

rns

to th

e as

sem

bly

lang

uage

.

Page 32: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

63

6. A

ssem

bly

lang

uage

pro

cedu

re s

tarts

up

curre

nt p

roce

ss.

Item

3 to

6 b

elon

g to

the

ISR

pro

cess

, and

Item

5 is

the

inte

rrupt

han

dler

.Old

ve

rsio

ns o

f th

e Li

nux

kern

el t

ook

grea

t pa

ins

to d

istin

guis

h be

twee

n “fa

st”

and

“slo

w” i

nter

rupt

s. F

ast i

nter

rupt

s ar

e th

ose

that

can

be

hand

led

very

fast

, whe

reas

sl

ow o

nes

will

take

muc

h lo

nger

tim

e. I

n fu

nctio

n re

ques

t_irq

(),

the

“flag

s”

argu

men

t can

be

set t

o S

A_I

NTE

RR

UP

T fo

r ins

tallin

g a

fast

han

dler

. How

ever

, in

mod

ern

kern

els,

fas

t an

d sl

ow i

nter

rupt

s ar

e al

mos

t th

e sa

me.

Bel

ow a

re t

he

com

paris

ons

betw

een

fast

and

slo

w in

terru

pts:

Func

tions

Fa

st in

terr

upt

Slo

w in

terr

upt

Dis

able

int

erru

pt r

epor

ting

in

the

mic

ropr

oces

sor

whe

n th

e ha

ndle

r run

s Ye

s N

o

Dis

able

in

terru

pt

bein

g se

rvic

ed

in

the

inte

rrupt

co

ntro

ller

whe

n th

e ha

ndle

r ru

ns

Yes

Yes

Cal

l re

t_fro

m_s

ys_c

all()

afte

r th

e IS

R

finis

hes.

N

o Ye

s

Figu

re 2

. Com

pare

bet

wee

n fa

st a

nd sl

ow in

terr

upts

The

job

of a

n in

terru

pt h

andl

er d

oes

the

follo

win

g im

porta

nt th

ings

:

Con

side

r the

mea

ning

of t

he in

terru

pt

W

ake

up th

e pr

oces

s w

aitin

g th

e in

terru

pt to

be

com

plet

ed

If

part

of t

he s

ervi

ce r

outin

e ta

kes

time,

we

can

use

the

“bot

tom

hal

f” m

echa

nism

to h

andl

e, w

hich

will

be d

iscu

ssed

late

r.

Ther

e ar

e so

me

rest

rictio

ns o

n w

hat

an in

terru

pt h

andl

er c

an d

o be

caus

e it

runs

at t

he in

terru

pt ti

me.

An

inte

rrupt

han

dler

can

not t

rans

fer d

ata

to o

r fro

m th

e us

er s

pace

, be

caus

e it

does

not

exe

cute

in

the

cont

ext

of a

pro

cess

. A

lso,

it

cann

ot d

o an

ythi

ng th

at w

ill m

ake

itsel

f sle

ep, s

uch

as c

allin

g sl

eep_

on()

. The

re

are

thre

e ar

gum

ents

pas

sed

to a

n in

terru

pt h

andl

er:

irq,

dev_

id,

and

regs

. Th

e in

terru

pt n

umbe

r, in

t irq

, can

be

used

as

a lo

g m

essa

ge. T

he s

econ

d ar

gum

ent,

void

*de

v_id

, is

a po

inte

r to

the

devi

ce. W

hen

we

use

shar

ed in

terr

upts

(e.g

., tw

o in

terr

upt h

andl

ers

shar

e an

IRQ

num

ber)

, the

sha

red

hand

ler

can

use

dev_

id to

re

cogn

ize

its o

wn

inte

rrup

t. Th

e la

st a

rgum

ent,

stru

ct p

t_re

gs *r

egs,

is ra

rely

use

d.

It ho

lds

the

proc

esso

r con

text

bef

ore

the

proc

esso

r ent

ers

inte

rrupt

han

dler

, so

it ca

n us

ed fo

r mon

itorin

g an

d de

bugg

ing.

O

ne o

f the

mai

n pr

oble

ms

with

inte

rrupt

han

dlin

g is

how

to p

erfo

rm lo

ng ta

sks

64

with

in a

n in

terru

pt h

andl

er. T

here

is o

ften

muc

h w

ork

to d

o in

resp

onse

to a

dev

ice

inte

rrupt

, but

inte

rrupt

han

dler

s ne

ed to

com

plet

e qu

ickl

y an

d no

t kee

p in

terru

pts

too

long

. O

bvio

usly,

the

se t

wo

will

con

flict

with

eac

h ot

her.

Linu

x re

solv

es t

his

prob

lem

by

split

ting

the

inte

rrupt

han

dler

into

two

halv

es. O

ne is

top

half,

whi

ch is

th

e ro

utin

e th

at a

ctua

lly r

espo

nds

to th

e in

terru

pt. A

nd, i

t is

also

the

one

that

we

use

requ

est_

irq()

to re

gist

er w

ith. T

he o

ther

one

is b

otto

m h

alf.

It ha

ndle

s th

e pa

rt th

at ta

kes

time

of a

task

. And

it is

sch

edul

ed b

y th

e to

p ha

lf to

be

exec

uted

at a

sa

fer

time,

whi

ch m

eans

the

requ

irem

ent o

f exe

cutio

n tim

e is

not

so

criti

cal.

The

Linu

x ke

rnel

has

tw

o di

ffere

nt m

echa

nism

s th

at m

ay b

e us

ed t

o im

plem

ent

botto

m-h

alf p

roce

ssin

g. T

hey

are

BH

(al

so c

alle

d bo

ttom

hal

f) an

d ta

skle

ts. T

he

BH

impl

emen

tatio

n is

the

olde

r on

e, a

nd it

is im

plem

ente

d w

ith ta

skle

ts in

ker

nel

2.4.

Tas

klet

s w

ere

intro

duce

d in

the

2.3

deve

lopm

ent s

erie

s, a

nd th

ey a

re n

ow th

e pr

efer

red

way

to d

o bo

ttom

-hal

f pro

cess

ing.

Des

pite

this

, tas

klet

s ar

e no

t por

tabl

e to

ear

lier k

erne

ls. S

o, if

the

porta

bilit

y is

a c

once

rn, B

H is

pre

fera

ble.

Th

e fo

llow

ing

func

tions

are

use

ful f

or u

sing

task

lets

: D

ECLA

RE_

TASK

LET(

nam

e, fu

nctio

n, d

ata)

; ta

skle

t_sc

hedu

le(s

truc

t tas

klet

_str

uct *

t);

For e

xam

ple,

if y

ou w

rite

a fu

nctio

n fu

nc()

to b

e us

ed a

s a

botto

m-h

alf r

outin

e.

The

first

ste

p is

to d

ecla

re th

e ta

skle

t by

DEC

LAR

E_TA

SKLE

T(ta

sk,fu

nc,0

) whi

ch

task

is th

e na

me

give

n to

the

task

let.

Then

you

hav

e to

sch

edul

e th

e ta

skle

t by

task

let_

sche

dule

(&ta

sk).

The

actu

al ta

skle

t rou

tine,

task

, will

be e

xecu

ted

shor

tly

at th

e sy

stem

’s c

onve

nien

ce. A

s m

entio

ned

earli

er, t

his

rout

ine

perfo

rms

the

bulk

of

the

wor

k of

han

dlin

g th

e in

terru

pt.

In th

e B

H im

plem

enta

tion,

if y

ou w

ant t

o sc

hedu

le a

bot

tom

hal

f for

run

ning

, yo

u ca

n us

e th

e fu

nctio

n be

low

: vo

id m

ark_

bh(in

t nr)

; H

ere,

nr i

s th

e nu

mbe

r of t

he B

H to

be

activ

ated

. In

the

olde

r BH

impl

emen

tatio

n,

mar

k_bh

() w

ould

set

a b

it in

a b

it m

ask,

allo

win

g th

e co

rresp

ondi

ng b

otto

m-h

alf

hand

ler

to

be

foun

d qu

ickl

y at

ru

ntim

e.

In

mod

ern

kern

els,

it

just

ca

lls

task

let_

hi_s

ched

ule(

), lik

e ta

skle

t_sc

hedu

le,

to s

ched

ule

the

botto

m-h

alf

rout

ine

for e

xecu

tion.

N

ow, t

he la

st is

sue

we

wan

t to

disc

uss

in in

terru

pt h

andl

ing

is r

ace

cond

ition

. Th

e in

terru

pt-d

riven

I/O

int

rodu

ces

the

prob

lem

of

sync

hron

izin

g co

ncur

rent

ac

cess

to s

hare

d da

ta it

ems

and

all t

he is

sues

rela

ted

to ra

ce c

ondi

tion.

Sin

ce a

n in

terru

pt c

an h

appe

n at

any

tim

e, it

can

cau

se th

e in

terru

pt h

andl

er to

be

exec

uted

in

the

mid

dle

of a

n ar

bitra

ry p

iece

of d

river

cod

e. T

here

fore

, a d

evic

e dr

iver

that

is

wor

king

with

inte

rrup

ts (

In fa

ct, i

t’s th

e m

ost c

ase)

mus

t be

very

con

cern

ed w

ith

race

con

ditio

ns. I

n Li

nux,

ther

e ar

e m

any

tech

niqu

es to

pre

vent

dat

a co

rrupt

ion,

Page 33: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

65

but w

e on

ly in

trodu

ce th

e m

ost c

omm

on o

ne: U

sing

spi

nloc

ks to

enf

orce

mut

ual

excl

usio

n.

Spin

lock

s ar

e re

pres

ente

d by

the

typ

e sp

inlo

ck_t

. Th

ere

are

a nu

mbe

r of

fu

nctio

ns (a

ctua

lly m

acro

s) w

orki

ng w

ith s

pinl

ocks

: vo

id s

pin_

lock

(spi

nloc

k_t *

lock

); vo

id s

pin_

lock

_irq

save

(spi

nloc

k_t *

lock

, uns

igne

d lo

ng fl

ags)

; vo

id s

pin_

lock

_irq

(spi

nloc

k_t *

lock

); vo

id s

pin_

lock

_bh(

spin

lock

_t *l

ock)

; vo

id s

pin_

unlo

ck(s

pinl

ock_

t *lo

ck);

void

spi

n_un

lock

_irq

rest

ore(

spin

lock

_t *l

ock,

uns

igne

d lo

ng fl

ags)

; vo

id s

pin_

unlo

ck_i

rq(s

pinl

ock_

t *lo

ck);

void

spi

n_un

lock

_bh(

spin

lock

_t *l

ock)

; Th

e sp

in_l

ock(

) sp

ins

(bus

y-w

ait)

to a

cqui

re t

he g

iven

lock

. U

pon

retu

rnin

g fro

m s

pin_

lock

(), t

he c

alle

r ow

ns th

e lo

ck. T

he s

pin_

lock

_irq

save

() a

lso

acqu

ires

the

lock

. In

addi

tion,

it d

isab

les

inte

rrupt

s on

the

loca

l pro

cess

or a

nd s

tore

s th

e cu

rren

t in

terr

upt

stat

e in

ar

gum

ent

flags

. Th

e sp

in_l

ock_

irq()

ac

ts

like

spin

_loc

k_irq

save

(), e

xcep

t tha

t it d

oes

not s

ave

the

curre

nt in

terru

pt s

tate

. The

sp

in_l

ock_

bh()

obt

ains

the

give

n lo

ck a

nd p

reve

nts

the

exec

utio

n of

bot

tom

hal

ves.

Th

ose

unlo

ck fu

nctio

ns a

re th

e co

unte

rpar

ts o

f the

var

ious

lock

ing

prim

itive

s. T

he

spin

_unl

ock(

) unl

ocks

the

give

n lo

ck.

The

spin

_unl

ock_

irqre

stor

e()

unlo

cks

the

give

n lo

ck a

nd e

nabl

es i

nter

rupt

s de

pend

ing

on th

e fla

gs v

alue

, whi

ch s

houl

d co

mes

from

spi

n_lo

ck_i

rqsa

ve()

. The

sp

in_u

nloc

k_irq

() u

nloc

ks t

he g

iven

lock

and

ena

bles

inte

rrupt

s un

cond

ition

ally.

Th

e sp

in_u

nloc

k_bh

() u

nloc

ks th

e gi

ven

lock

and

ena

bles

bot

tom

-hal

f pro

cess

ing.

In

eac

h ca

se,

you

shou

ld m

ake

sure

tha

t lo

ck f

unct

ions

to

be e

xecu

ted

befo

re

unlo

ck f

unct

ions

, an

d th

ey a

re a

ll pa

ired.

Oth

erw

ise,

ser

ious

dis

orde

r m

ay

happ

en.

Com

mun

icat

e w

ith H

ardw

are

thro

ugh

I/O P

orts

A

fter

prob

ing

hard

war

e, t

he d

evic

e dr

iver

can

obt

ain

the

I/O p

orts

and

use

th

em in

its

activ

ities

. Mos

t har

dwar

e di

ffere

ntia

tes

betw

een

8-bi

t, 16

-bit,

and

32-

bit

ports

. Th

eref

ore,

a C

pro

gram

mus

t ca

ll di

ffere

nt f

unct

ions

to

acce

ss p

orts

of

diffe

rent

siz

es.

The

Linu

x ke

rnel

def

ines

the

fol

low

ing

func

tions

to

acce

ss I

/O

ports

.

unsi

gned

inb

(uns

igne

d po

rt);

void

out

b (u

nsig

ned

char

bye

, uns

igne

d p

ort);

Th

e in

b() r

eads

byt

e (8

-bit)

por

t, w

hile

the

outb

() w

rites

byt

e po

rt.

66

unsi

gned

inw

(uns

igne

d po

rt);

void

out

w (u

nsig

ned

char

bye

, uns

igne

d p

ort);

Th

e in

w()

read

s 16

-bit

port,

whi

le th

e ou

tw()

writ

es 1

6-bi

t por

t. un

sign

ed in

l (un

sign

ed p

ort);

vo

id o

utl (

unsi

gned

cha

r bye

, uns

igne

d p

ort);

Th

e in

l() re

ads

32-b

it po

rt, w

hile

the

outl(

) writ

es 3

2-bi

t por

t. In

add

ition

to

the

sing

le-s

hot

in a

nd o

ut o

pera

tions

, th

ere

are

strin

g op

erat

ions

su

ppor

ted

in L

inux

: vo

id in

sb (u

nsig

ned

port

, voi

d *a

ddr,

unsi

gned

long

cou

nt);

void

out

sb (u

nsig

ned

port

, voi

d *a

ddr,

unsi

gned

long

cou

nt);

The

insb

() r

eads

cou

nt b

ytes

from

byt

e po

rt, a

nd s

tore

s th

ese

byte

s to

mem

ory

star

ting

at t

he a

ddre

ss a

ddr.

The

outs

b()

writ

es c

ount

byt

es lo

cate

d at

mem

ory

addr

ess

addr

to b

yte

port.

vo

id in

sw (u

nsig

ned

port

, voi

d *a

ddr,

unsi

gned

long

cou

nt);

void

out

sw (u

nsig

ned

por

t, vo

id *a

ddr,

unsi

gned

long

cou

nt);

Thei

r ope

ratio

ns a

re s

imila

r to

the

abov

e fu

nctio

ns, e

xcep

t the

por

t is

a 16

-bit

port.

vo

id in

sl (u

nsig

ned

port

, voi

d *a

ddr,

unsi

gned

long

cou

nt);

void

out

sl (u

nsig

ned

por

t, vo

id *a

ddr,

unsi

gned

long

cou

nt);

Thei

r ope

ratio

ns a

re s

imila

r to

the

abov

e fu

nctio

ns, e

xcep

t the

por

t is

a 32

-bit

port.

2.

5.3

Linu

x O

pen

Sour

ce Im

plem

enta

tion:

A N

etw

ork

Dev

ice

Driv

er

In

this

sec

tion,

we

use

a re

al-w

orld

net

wor

k de

vice

driv

er in

Lin

ux, n

e2k-

pci,

as

an e

xam

ple.

A n

etw

ork

devi

ce d

river

is u

sed

to b

e a

“brid

ge” b

etw

een

the

netw

ork

inte

rface

car

d (N

IC) a

nd th

e pr

otoc

ol d

river

(e.g

., TC

P/IP

pro

toco

l sta

ck).

Als

o, th

e in

terru

pt-d

riven

I/O

is a

pplie

d he

re. W

hen

a N

IC re

ceiv

es p

acke

t, it

notif

ies

the

OS

by

int

erru

ptin

g th

e C

PU

. Th

en,

the

inte

rrupt

han

dler

tra

nsfe

rs t

he i

ncom

ing

pack

ets

from

NIC

mem

ory

to s

yste

m m

emor

y, p

roce

sses

the

pack

et, a

nd fi

nally

pu

shes

it

into

the

ker

nel

queu

e to

be

hand

led

by t

he b

otto

m-h

alf

rout

ine

(e.g

. TC

P/IP

pro

toco

l st

ack)

. W

hen

the

kern

el g

ets

a pa

cket

to

be s

ent

out,

it fir

st

pass

es th

e pa

cket

to th

e N

IC d

river

. The

n th

e dr

iver

will

pro

cess

the

pack

et, s

uch

as fi

lling

the

MA

C a

ddre

ss in

to th

e pa

cket

. Fin

ally,

the

driv

er tr

ansf

ers

the

pack

et

from

sys

tem

mem

ory

to N

IC m

emor

y. A

fter

the

pack

et is

tran

smitt

ed c

ompl

etel

y,

the

NIC

will

inte

rrupt

the

CP

U to

not

ify th

e O

S. E

very

tim

e th

e in

terru

pt h

andl

er

finis

hes

an in

terru

pt, i

t will

ackn

owle

dge

the

NIC

by

writ

ing

som

e m

essa

ges

to th

e N

IC re

gist

ers.

In

Lin

ux 2

.4,

ther

e ar

e tw

o im

porta

nt d

ata

stru

ctur

es w

hich

are

sk_

buff

and

Page 34: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

67

net_

devi

ce u

sed

in a

NIC

driv

er. T

he s

k_bu

ff st

ruct

ure

repr

esen

ts a

pac

ket,

whi

le

the

net_

devi

ce s

tand

s fo

r a

netw

ork

devi

ce. W

e sh

ow th

at w

here

thes

e tw

o da

ta

stru

ctur

es lo

cate

in L

inux

in F

ig. 2

.

In F

ig.

2, t

he N

IC d

river

get

s a

fram

e fro

m N

IC,

then

it a

lloca

tes

the

spac

e of

sk

_buf

f to

hold

this

fram

e in

the

field

“dat

a” o

f sk_

buff.

Afte

rwar

d, th

is fr

ame

“live

s”

in th

e ke

rnel

by

the

figur

e of

sk_

buff.

The

sk_

buff

stru

ctur

e is

def

ined

in h

eade

r file

<l

inux

/skb

uff.h

>, a

nd th

e fo

llow

ing

Tabl

e 2.

exp

lain

s m

ajor

fiel

ds o

f sk_

buff.

Fiel

d M

eani

ng

head

po

inte

r to

the

star

t of s

k_bu

ff

data

po

inte

r to

the

star

t of “

actu

al d

ata”

(pac

ket)

tail

poin

ter t

o th

e en

d of

“act

ual d

ata”

(pac

ket)

end

poin

ter t

o th

e en

d of

sk_

buff

dev

devi

ce th

at p

acke

ts a

rrive

on

or le

ave

by.

len

leng

th o

f “ac

tual

dat

a” (p

acke

t)

pkt_

type

pa

cket

cla

ss

h tra

nspo

rt la

yer h

eade

r

nh

netw

ork

laye

r hea

der

mac

lin

k la

yer h

eade

r

Reg

ardi

ng t

he t

rans

latio

n be

twee

n ne

t_de

vice

stru

ctur

e an

d lo

cal

(not

a d

ata

stru

ctur

e) ,

it m

eans

mos

t fie

lds

of n

et_d

evic

e ge

t val

ues

in N

IC d

river

and

thes

e va

lues

are

gen

erat

ed in

NIC

driv

er lo

cally

. The

net

_dev

ice

stru

ctur

e is

def

ined

in

head

er fi

le <

linux

/net

devi

ce.h

>, a

nd T

able

2. l

ists

mai

n fie

lds

of n

et_d

evic

e.

Ker

nel

sk_b

uff

net_

devi

ce

NIC

driv

er

sk_b

uff

fram

e ne

t_de

vice

lo

cal

NIC

Figu

re 2

. Loc

atio

n of

sk_

buff

and

net_

devi

ce

Tabl

e 2.

sk_b

uff s

truct

ure

68

B

efor

e a

driv

er c

an tr

ansm

it an

d re

ceiv

e pa

cket

s, it

mus

t do

the

initi

aliz

atio

n st

uff w

hich

con

tain

s “re

gist

ry o

f an

inte

rrupt

han

dler

” an

d “p

robe

har

dwar

e”. W

e ca

n us

e re

ques

t_irq

( ) to

regi

ster

an

inte

rrupt

han

dler

. How

ever

, thi

s dr

iver

ser

ves

for

PC

I ne

twor

k de

vice

so

it do

n’t

have

to

do t

he r

eal

prob

ing

actio

n. T

he

fund

amen

tal

job

of a

NIC

driv

er i

s to

del

iver

pac

kets

bet

wee

n ke

rnel

and

a

netw

ork

devi

ce.

Hen

ce,

we

illust

rate

pac

ket

trans

mis

sion

and

rec

eptio

n w

ith

ne2k

-pci

NIC

driv

er in

the

Fig.

2 a

nd F

ig. 2

.

Fiel

d M

eani

ng

Nam

e de

vice

nam

e

base

_add

r de

vice

I/O

add

ress

irq

devi

ce IR

Q n

umbe

r

dev_

addr

ha

rdw

are

addr

ess

mtu

in

terfa

ce M

TU v

alue

hard

_sta

rt_xm

it tra

nsm

issi

on s

ervi

ce

Tabl

e 2.

net

_dev

ice

stru

ctur

e

kern

el(in

terr

upt h

andl

er)

ei_i

nter

rupt

(TX

) ei

_sta

rt_xm

it

(RX

) ei

_rec

eive

ei_t

x_in

tr

NIC

1. d

ev->

hard

_sta

rt_xm

it

2. n

e2k_

pci_

bloc

k_ou

tput

3. N

S83

90_t

rigge

r_se

nd

4. a

n in

terru

pt o

ccur

s

5.

6.7.

NS

8390

_trig

ger_

send

8.

net

if_w

ake_

queu

e

Figu

re 2

. pac

ket t

rans

mis

sion

Page 35: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

69

In th

e pa

cket

tran

smis

sion

pha

se, w

hen

the

kern

el w

ants

to s

end

a pa

cket

, it c

alls

tra

nsm

issi

on

serv

ice

rout

ine

dev-

>har

d_st

art_

xmit(

)

whi

ch

is

actu

ally

im

plem

ente

d by

ne2

k-pc

i and

nam

ed e

i_st

art_

xmit(

).

ei_s

tart_

xmit(

) f

irst

uses

ne

2k_p

ci_b

lock

_out

put(

) w

hich

mov

es p

acke

ts f

rom

sys

tem

mem

ory

to N

IC

mem

ory,

then

cal

ls N

S83

90_t

rigge

r_se

nd( )

that

trig

gers

the

NIC

to p

ush

pack

ets

out.

As

the

pack

et tr

ansm

issi

on is

com

plet

ed, N

IC is

sues

an

inte

rrup

t to

caus

e th

e ke

rnel

’s a

ttent

ion.

Con

sequ

ently

, th

e ke

rnel

cal

ls t

he c

orre

spon

ding

int

erru

pt

hand

ler

whi

ch is

reg

iste

red

usin

g re

ques

t_irq

( )

in in

itial

izat

ion

step

, an

d he

re it

m

eans

ei_

inte

rrup

t( ).

ei_i

nter

rupt

( ) e

xam

ines

wha

t the

inte

rrupt

mea

ns, b

ecau

se

this

is a

n in

terru

pt o

f tra

nsm

issi

on c

ompl

ete,

it c

alls

ei_

tx_i

ntr(

) to

che

ck fo

r err

or

and

then

tri

gger

th

e ne

xt

pack

et

to

be

sent

. Fi

nally

, ei

_tx_

intr(

)

calls

ne

tif_w

ake_

queu

e( )

to te

ll th

e ke

rnel

that

it c

an g

o on

to tr

ansm

it pa

cket

s.

In th

e pa

cket

rece

ptio

n ph

ase,

as

long

as

the

NIC

rece

ive

a pa

cket

, it c

ause

s an

in

terru

pt t

o te

ll th

e ke

rnel

tha

t so

me

pack

et h

as a

rrive

d. T

hen

the

kern

el c

alls

ei

_int

erru

pt(

) to

hand

le th

is in

terru

pt. e

i_in

terru

pt(

) fin

ds o

ut th

at th

is in

terru

pt is

du

e to

a p

acke

t rec

eptio

n, s

o it

calls

ei_

rece

ive(

) to

get

it o

ut o

f the

NIC

’s b

uffe

r. ei

_rec

eive

( ) c

alls

ne2

k_pc

i_bl

ock_

inpu

t( ) t

o m

ove

the

pack

et fr

om N

IC m

emor

y to

sys

tem

mem

ory,

then

it c

alls

net

if_rx

( ) to

enq

ueue

this

pac

ket i

n so

me

kern

el’s

qu

eue

to b

e pr

oces

sed

by n

etw

orki

ng s

yste

m w

hich

is li

ke b

otto

m-h

alf r

outin

e to

do

the

long

ish

task

s.

kern

el

(inte

rrupt

han

dler

)

ei_i

nter

rupt

(TX

) ei

_sta

rt_xm

it

(RX

) ei

_rec

eive

ei_t

x_in

tr

NIC

1. a

n in

terru

pt

occu

rs

2.

3.

4. n

e2k_

pci_

bloc

k_in

put

5. n

etif_

rx

Figu

re 2

. pac

ket r

ecep

tion

70

2.6

Pitfa

lls a

nd fa

llaci

es

Ethe

rnet

per

form

ance

(util

izat

ion

in h

alf-d

uple

x an

d fu

ll-du

plex

mod

e)

R

esea

rche

rs a

re in

tere

sted

in t

he m

axim

um c

hann

el u

tiliz

atio

n of

Eth

erne

t un

der

extre

mel

y he

avy

load

, de

spite

tha

t th

e si

tuat

ion

is u

nlik

ely

to h

appe

n.

Com

pute

r si

mul

atio

n, m

athe

mat

ical

ana

lysi

s, a

nd r

eal-w

orld

mea

sure

men

t, ar

e po

ssib

le a

ppro

ache

s to

obt

ain

the

valu

e. U

nlik

e si

mpl

e m

echa

nism

s su

ch a

s A

LOH

A,

slot

ted

ALO

HA

, an

alyz

ing

full

set

of C

SM

A/C

D m

athe

mat

ical

ly is

ver

y di

fficu

lt. A

s ea

rly a

s th

e in

vent

ion

of th

e ex

perim

enta

l Eth

erne

t at t

he X

erox

lab,

B

ob M

etca

lfe a

nd D

avid

Bog

gs h

ad p

ublis

hed

a pa

per

that

rep

orte

d a

max

imum

of

abo

ut 3

7 pe

rcen

t cha

nnel

util

izat

ion

the

Eth

erne

t can

reac

h w

ith th

eir s

impl

ified

m

odel

. U

nfor

tuna

tely,

the

val

ue h

as b

een

cite

d ov

er y

ears

, ev

en t

houg

h th

e E

ther

net

tech

nolo

gy h

as b

een

alm

ost

diffe

rent

fro

m t

he e

xper

imen

tal o

ne s

ince

th

e D

IX S

tand

ard.

Diff

eren

t FC

S,

diffe

rent

pre

ambl

e, d

iffer

ent

addr

ess

form

at,

diffe

rent

PH

Y, a

nd s

o on

– e

xcep

t tha

t the

spi

rit o

f CS

MA

/CD

was

res

erve

d, le

t al

one

the

sim

plifi

ed m

odel

tha

t is

diff

eren

t fro

m a

rea

l-wor

ld s

ituat

ion.

Bes

ides

, 25

6 st

atio

ns a

re a

ssum

ed i

n th

e sa

me

collis

ion

dom

ain,

whi

ch i

s un

likel

y to

ha

ppen

in th

e re

al w

orld

. A

late

r pa

per

publ

ishe

d by

Dav

id B

oggs

et

al.

in 1

988

tried

to

clar

ify t

he

pitfa

lls. T

hey

perfo

rmed

a re

al-w

orld

test

ing

on a

10

Mb/

s E

ther

net s

yste

m w

ith 2

4 st

atio

ns b

y flo

odin

g fra

mes

con

stan

tly. I

t sho

wed

the

utiliz

atio

n is

mor

e th

an 9

5%

with

the

max

imum

fram

e an

d ab

out 9

0% w

ith th

e m

inim

um fr

ame12

und

er s

tress

te

stin

g. It

sho

wed

Eth

erne

t per

form

ance

is ra

ther

sat

isfa

ctor

y.

As

switc

hes

beco

me

mor

e po

pula

r, m

ulti-

segm

ent n

etw

orks

are

div

ided

into

m

any

indi

vidu

al c

ollis

ion

dom

ains

. Th

e si

tuat

ion

of m

any

stat

ions

in

the

sam

e co

llisio

n do

mai

n is

fur

ther

red

uced

. S

ince

the

adv

ent

of f

ull-d

uple

x op

erat

ion,

th

ere

is n

o re

stric

tion

impo

sed

by C

SM

A/C

D a

t al

l. B

oth

side

s of

a l

ink

can

trans

mit

as fa

st a

s it

can

do. F

or a

sw

itch

that

affo

rds

max

imum

fram

e ra

te a

nd

data

cap

acity

, it i

s ca

lled

a w

ire-s

peed

or n

on-b

lock

ing

switc

h.

Ano

ther

inte

rest

ing

prob

lem

that

mig

ht b

e of

con

cern

is th

at th

e da

ta fi

eld

in

the

Eth

erne

t fra

me

is n

ot “

long

” en

ough

. Com

pare

d w

ith o

ther

tech

nolo

gies

, say

To

ken

Rin

g, w

hich

has

dat

a fie

ld o

f 452

8 by

tes

at 4

Mb/

s an

d 18

173

byte

s at

16

or

100

Mb/

s, t

he d

ata

field

is

only

150

0 by

tes

out

of 1

518

byte

s of

a m

axim

um

12

Bog

g’s

pape

r cou

nts

over

head

s in

hea

der,

traile

r, an

d IF

G, in

to u

tiliz

atio

n. H

ence

, one

hun

dred

per

cent

ut

iliza

tion

is a

ssum

ed if

ther

e is

no

colli

sion

des

pite

thos

e ov

erhe

ads i

n hi

s pap

er.

Page 36: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

71

unta

gged

fra

me.

Peo

ple

may

be

susp

icio

us t

hat

the

perc

enta

ge o

f no

n-da

ta

over

head

s, i

nclu

ding

hea

der

info

rmat

ion,

tra

iler,

and

IFG

, is

lar

ger

than

oth

er

tech

nolo

gies

. Th

ere

is a

his

toric

al r

easo

n w

hy th

e E

ther

net f

ram

e is

not

so

long

. Eth

erne

t w

as in

vent

ed m

ore

than

20

year

s ag

o. M

emor

y w

as e

xpen

sive

at t

hat t

ime.

The

bu

ffer

mem

ory

for

fram

es w

as q

uite

lim

ited

in s

ize

on th

ose

days

. It m

ade

sens

e to

des

ign

a fra

me

that

is n

ot to

o lo

ng, a

nd n

or is

the

data

fiel

d.

Thin

gs a

re n

ot t

hat

bad

as t

hey

look

! Fo

r la

rge

data

tra

nsfe

r su

ch a

s FT

P tra

ffic,

whi

ch te

nds

to tr

ansf

er w

ith lo

ng fr

ames

, the

dat

a fie

ld c

an o

ccup

y as

hig

h as

150

0 /

(151

8+8+

12)

= 97

.5%

of

the

chan

nel b

andw

idth

. Th

e ov

erhe

ads

are

quite

low

! It

is h

ardl

y to

im

prov

e th

is v

alue

sig

nific

antly

by

incr

easi

ng t

he

max

imum

fram

e si

ze.

Col

lisio

n do

mai

n, b

road

cast

dom

ain,

and

VLA

N

Th

e fir

st tw

o te

rms

are

ofte

n co

nfus

ed fo

r stu

dent

s w

ho fi

rst l

earn

Eth

erne

t. A

collis

ion

dom

ain

is a

rang

e of

net

wor

k in

whi

ch m

ore

than

one

tran

smis

sion

at t

he

sam

e tim

e re

sults

in a

col

lisio

n. F

or e

xam

ple,

a r

epea

ter

hub

and

the

stat

ions

at

tach

ed t

o it

form

a c

ollis

ion

dom

ain.

In

cont

rast

, a

switc

h ex

plic

itly

sepa

rate

s co

llisio

n do

mai

n fro

m o

ne p

ort t

o an

othe

r. In

oth

er w

ords

, a tr

ansm

issi

on fr

om a

sh

ared

LA

N a

ttach

ed t

o on

e po

rt w

ill no

t re

sult

in a

col

lisio

n w

ith a

noth

er

trans

mis

sion

from

the

LAN

bel

ongi

ng to

ano

ther

por

t. H

owev

er, w

hen

a fra

me

has

a br

oadc

ast a

ddre

ss a

s th

e de

stin

atio

n, a

sw

itch

will

still

forw

ard

to a

ll po

rts b

ut t

he s

ourc

e. T

he r

ange

of

netw

ork

that

the

br

oadc

ast

traffi

c ca

n re

ach

is a

bro

adca

st d

omai

n. S

omet

imes

, w

e ne

ed t

o co

nfin

e th

e br

oadc

ast

traffi

c fo

r se

curit

y re

ason

or

band

wid

th s

avin

g. A

VLA

N

appr

oach

sep

arat

es b

road

cast

dom

ains

from

one

VLA

N to

ano

ther

. It i

s a

logi

cal

sepa

ratio

n fro

m p

hysi

cal c

onne

ctiv

ity. A

dev

ice

prov

idin

g hi

gh-la

yer

conn

ectiv

ity,

such

as

a ro

uter

, is

need

ed to

con

nect

two

or m

ore

sepa

rate

VLA

Ns.

5-4-

3 ru

le a

nd m

ulti-

segm

ent n

etw

orks

It is

sai

d th

at E

ther

net

follo

ws

the

5-4-

3 ru

le.

It so

unds

eas

y to

rem

embe

r. H

owev

er, t

he ru

le is

not

as

sim

ple

as it

sou

nds.

Bes

ides

, the

rule

is a

ctua

lly o

ne o

f th

e co

nser

vativ

e ru

les

that

val

idat

e th

e co

rrect

ness

of

10 M

b/s

mul

ti-se

gmen

t E

ther

net n

etw

orks

. It i

s no

t a la

w th

at e

very

Eth

erne

t dep

loym

ent s

houl

d fo

llow.

Le

t’s g

o to

the

deta

il.

As

we

men

tione

d, t

he r

ound

-trip

pro

paga

tion

time

in a

col

lisio

n do

mai

n

72

shou

ld n

ot b

e to

o lo

ng fo

r pro

per o

pera

tion.

Diff

eren

t tra

nsm

issi

on m

edia

and

the

num

ber

of r

epea

ter

hubs

offe

r di

ffere

nt d

elay

s, h

owev

er.

As

a qu

ick

guid

e fo

r ne

twor

k ad

min

istra

tors

, the

IEE

E 8

02.3

Sta

ndar

d of

fers

two

Tran

smis

sion

Sys

tem

M

odel

s. T

rans

mis

sion

Sys

tem

Mod

el 1

is a

set

of

conf

igur

atio

ns t

hat

mee

t th

e ab

ove

requ

irem

ents

. In

oth

er w

ords

, if

you

follo

w t

hese

con

figur

atio

ns,

your

ne

twor

k w

ill w

ork

prop

erly.

Som

etim

es,

you

may

nee

d to

dep

loy

your

net

wor

k ot

her

than

the

con

figur

atio

ns i

n Tr

ansm

issi

on S

yste

m M

odel

1.

You

have

to

calc

ulat

e yo

urse

lf if

your

net

wor

k is

qua

lifie

d fo

r th

e re

quire

men

ts. T

rans

mis

sion

S

yste

m M

odel

2 o

ffers

a s

et o

f cal

cula

tion

aids

to y

ou. F

or e

xam

ple,

it te

lls y

ou th

e de

lay

valu

e of

a s

egm

ent o

f a c

erta

in m

ediu

m ty

pe.

In C

laus

e 13

“S

yste

m c

onsi

dera

tions

for

mul

ti-se

gmen

t 10

Mb/

s ba

seba

nd

netw

orks

,” th

e S

tand

ard

has

the

follo

win

g ru

le in

the

Tran

smis

sion

Sys

tem

Mod

el

1:

“Whe

n a

trans

mis

sion

pat

h co

nsis

ts o

f fou

r rep

eate

r set

s an

d fiv

e se

gmen

ts,

up t

o th

ree

of t

he s

egm

ents

may

be

mix

ing

and

the

rem

aind

er m

ust

be l

ink

segm

ents

.” –

cite

d fro

m th

e S

tand

ard.

Th

is is

the

face

of t

he w

ell-k

now

n 5-

4-3

rule

. Not

e th

e de

finiti

ons

of m

ixin

g se

gmen

ts a

nd li

nk s

egm

ents

. A m

ixin

g se

gmen

t is

a m

ediu

m o

n w

hich

ther

e ar

e m

ore

than

two

phys

ical

inte

rface

s. A

link

seg

men

t is

a fu

ll-du

plex

-cap

able

med

ium

be

twee

n ex

actly

two

phys

ical

inte

rface

s. P

eopl

e of

ten

refe

r to

a lin

k se

gmen

t as

a se

gmen

t w

ithou

t P

Cs,

but

it is

not

a p

reci

se d

escr

iptio

n. T

he r

ule

mea

ns if

you

co

nfig

ure

your

net

wor

k th

is w

ay, i

t can

wor

k.

As

mor

e an

d m

ore

segm

ents

ope

rate

in fu

ll-du

plex

mod

e, th

e si

gnifi

canc

e of

th

is r

ule

is b

ecom

ing

min

or. H

owev

er, i

t is

ofte

n ov

erem

phas

ized

by

thos

e le

ft in

th

e hi

stor

y.

Big

-End

ian

and

Littl

e-En

dian

Th

ose

who

are

fam

iliar

with

net

wor

k pr

ogra

mm

ing

may

be

conf

used

with

B

ig-E

ndia

n an

d Li

ttle-

End

ian.

The

y kn

ow n

etw

ork

byte

ord

er,

such

as

that

of

Inte

rnet

Pro

toco

l (IP

), us

es B

ig-E

ndia

n by

te o

rder

ing.

How

ever

, ou

r te

xt in

thi

s ch

apte

r de

scrib

es t

he E

ther

net

trans

mits

dat

a in

Litt

le-E

ndia

n or

der.

Is t

here

a

cont

radi

ctio

n?

Con

side

r a

four

-byt

e w

ord

and

let

us d

enot

e ea

ch b

yte

by b

3b2b

1b0

with

de

crea

sing

ord

er o

f sig

nific

ance

. Her

e ar

e tw

o op

tions

in s

torin

g it

in m

emor

y:

1. S

tore

b3 i

n th

e lo

wes

t byt

e ad

dres

s, a

nd b

2 in

the

seco

nd lo

wes

t byt

e ad

dres

s,

and

so o

n.

2. S

tore

b3

in t

he h

ighe

st b

yte

addr

ess,

and

b2

in t

he s

econ

d hi

ghes

t by

te

addr

ess,

and

so

on.

Page 37: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

73

The

form

er is

kno

wn

as th

e B

ig-E

ndia

n by

te o

rder

, and

the

latte

r is

know

n as

th

e Li

ttle-

End

ian

byte

ord

er. T

he o

rder

ing

varie

s w

ith th

e C

PU

and

OS

on

a ho

st.

This

resu

lts in

inco

nsis

tenc

y w

hen

trans

mitt

ing

som

e m

ulti-

byte

dat

a, s

ay in

tege

rs,

over

the

netw

ork.

To

keep

the

cons

iste

ncy,

a n

etw

ork

byte

ord

erin

g is

enf

orce

d.

The

mos

t po

pula

r ne

twor

k la

yer

prot

ocol

, In

tern

et P

roto

col,

uses

Big

-End

ian

orde

ring.

Wha

teve

r th

e ho

st b

yte

orde

ring

is, t

he d

ata

shou

ld b

e co

nver

ted

into

ne

twor

k by

te o

rder

ing

befo

re tr

ansm

ittin

g an

d th

en b

e tu

rned

bac

k in

to h

ost b

yte

orde

ring

upon

rece

ipt,

if th

ere

mig

ht b

e an

inco

nsis

tenc

y.

That

’s th

e bu

sine

ss o

f Int

erne

t Pro

toco

l. Th

e da

ta-li

nk la

yer p

roto

col r

ecei

ves

data

to

be t

rans

mitt

ed f

rom

the

upp

er la

yer

prot

ocol

s by

te b

y by

te.

Wha

t by

te

orde

ring

on th

e up

per l

ayer

pro

toco

ls is

of n

o co

nseq

uenc

e to

the

data

-link

laye

r pr

otoc

ol.

The

data

-link

la

yer

prot

ocol

is

co

ncer

ned

with

bi

t or

derin

g in

tra

nsm

issi

on, n

ot b

yte

orde

ring.

E

ther

net

uses

Litt

le-E

ndia

n bi

t or

derin

g. I

t tra

nsm

its t

he le

ast

sign

ifica

nt b

it fir

st a

nd th

e m

ost s

igni

fican

t bit

last

in b

yte

trans

mis

sion

. Con

vers

ely,

Tok

en R

ing

or F

DD

I tra

nsm

its th

e m

ost s

igni

fican

t bit

first

and

the

leas

t sig

nific

ant b

it la

st in

by

te tr

ansm

issi

on. T

hey

are

know

n to

use

Big

-End

ian

bit o

rder

ing.

The

y sh

ould

no

t be

conf

used

with

byt

e or

derin

g.

2.7

Furt

her r

eadi

ngs

Gen

eral

issu

es

A

ndre

w S

. Tan

enba

um, ”

Com

pute

r Net

wor

ks,”

Third

Edi

tion,

Pre

ntic

e H

all,

1996

. Th

is t

extb

ook

intro

duce

s ge

nera

l co

mpu

ter

netw

orki

ng c

once

pts

in a

bo

ttom

-up

appr

oach

, fro

m p

hysi

cal l

ayer

s to

app

licat

ion

netw

orks

.

W

illiam

Sta

lling

s, “

Dat

a an

d C

ompu

ter

Com

mun

icat

ions

,” S

ixth

Edi

tion,

P

rent

ice

Hal

l, 20

00.

This

boo

k fo

cuse

s a

little

mor

e on

com

mun

icat

ions

, be

side

s co

mpu

ter

netw

orks

.

Larry

L.

Pete

rson

and

Bru

ce S

. D

avie

, “C

ompu

ter

Net

wor

ks:

A sy

stem

ap

proa

ch,”

Sec

ond

Edi

tion,

Mor

gan

Kau

fman

n, 2

000.

It

is a

new

er te

xtbo

ok in

com

pute

r ne

twor

ks. I

t cov

ers

new

topi

cs s

uch

as

wire

less

LAN

and

VP

N.

PPP

W

. Sim

pson

, “Th

e Po

int-t

o-P

oint

Pro

toco

l (P

PP

),” R

FC 1

661,

Jul

y 19

94.

The

RFC

doc

umen

t def

ines

PP

P.

L.

Mam

akos

, K

. Li

dl,

J. E

varts

, D

. C

arre

l, D

. S

imon

e, R

. W

heel

er,

”A

met

hod

for t

rans

mitt

ing

PP

P ov

er E

ther

net,”

RFC

251

6, F

ebru

ary

1999

74

The

RFC

doc

umen

t def

ines

PP

PoE

.

G.

McG

rego

r, “T

he

PP

P In

tern

et

Pro

toco

l C

ontro

l P

roto

col

(IPC

P),”

R

FC13

32, M

ay 1

992.

Th

e R

FC d

ocum

ent d

efin

es IP

CP.

And

rew

Sun

, “U

sing

and

Man

agin

g P

PP,

” O’re

illy, 1

999.

Th

e ha

nds-

on b

ook

intro

duce

s pr

actic

al P

PP

oper

atio

n on

Uni

x.

Ethe

rnet

Ric

h S

eife

rt, “G

igab

it E

ther

net,”

Add

ison

Wes

ley,

199

8.

Ric

h S

eife

rt is

coa

utho

r of

the

IEE

E 80

2.1

and

802.

3 St

anda

rd. H

is b

ook

char

acte

rizes

tec

hnic

al a

ccur

acy

and

mar

ket

insi

ght.

It is

a m

ust

if yo

u ho

pe to

get

into

tech

nica

l det

ails

of G

igab

it E

ther

net w

ithou

t bei

ng fe

d up

w

ith th

e de

taile

d bu

t bor

ing

wor

ding

in th

e St

anda

rd.

R

ich

Sei

fert,

“The

Sw

itch

book

,” Jo

hn &

Wile

y, 2

000.

Th

is b

ook

cove

rs a

full

disc

ussi

on o

f sw

itche

s. Y

ou w

ill fin

d gr

eat d

etai

ls in

S

TP, V

LAN

, lin

k ag

greg

atio

n, e

tc. i

n hi

s bo

ok.

C

harle

s E

. Spu

rgeo

n, “E

ther

net:

The

Def

initi

ve G

uide

,” O

’Rei

lly, 2

000.

M

r. Sp

urge

on is

an

expe

rienc

ed n

etw

ork

arch

itect

. Th

is b

ook

intro

duce

s th

e E

ther

net f

rom

an

adm

inis

trativ

e po

int v

iew.

ISO

/IEC

Sta

ndar

d 88

02-3

, “C

arrie

r se

nse

mul

tiple

acc

ess

with

col

lisio

n de

tect

ion

(CS

MA

/CD

) ac

cess

met

hod

and

phys

ical

lay

er s

peci

ficat

ions

,” 20

00 E

ditio

n.

This

is th

e St

anda

rd d

ocum

ent.

As

of A

pril

15, 2

001,

all

of th

e IE

EE

802

St

anda

rds

has

been

fre

ely

avai

labl

e on

ht

tp://

stan

dard

s.ie

ee.o

rg/g

etie

ee80

2/.

10

Gig

abit

Eth

erne

t A

llianc

e, “

10 G

igab

it E

ther

net

Tech

nolo

gy O

verv

iew

: W

hite

pap

er,”

http

://w

ww.

10ge

a.or

g, S

epte

mbe

r 200

1.

This

w

hite

pa

per

is

publ

ishe

d by

10

G

igab

it A

llianc

e,

a te

chni

cal

cons

ortiu

m in

tend

ing

to p

ush

the

next

gen

erat

ion

10 G

igab

it E

ther

net.

H

owar

d Fr

azie

r, “E

ther

net t

akes

on

the

first

mile

,” IT

Pro

fess

iona

l, vo

l. 3,

is

sue

4, J

uly-

Aug

. 200

1.

Mr.

Fraz

ier i

s ch

air o

f IE

EE

802

.3ah

. He

desc

ribes

the

futu

re p

ersp

ectiv

e of

E

ther

net o

n th

e fir

st m

ile in

this

arti

cle.

How

ard

Fraz

ier,

“E

ther

net

in t

he f

irst

mile

tut

oria

l,” I

EE

E 8

02.3

EFM

st

udy

grou

p, h

ttp://

ww

w.ie

ee80

2.or

g/3/

efm

/pub

lic/ju

l01/

tuto

rial/i

ndex

.htm

l, Ju

ly 2

001.

Th

is is

a tu

toria

l pro

vide

s by

the

IEE

E 8

02.3

ah T

ask

Forc

e.

IS

O/IE

C S

tand

ard

1580

2-3,

“M

edia

Acc

ess

Con

trol

(MA

C)

Brid

ges,”

19

98 E

ditio

n.

Page 38: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

75

It is

the

MA

C b

ridge

Sta

ndar

d, a

lso

avai

labl

e on

the

web

site

men

tione

d ab

ove.

IEE

E 8

02.1

Q, “

Virtu

al B

ridge

d Lo

cal A

rea

Net

wor

ks,”

1998

Edi

tion.

It

is th

e V

LAN

brid

ge S

tand

ard,

als

o av

aila

ble

on th

e w

eb s

ite m

entio

ned

abov

e.

Dev

ice

Driv

ers

A

. R

ubin

i and

J.

Cor

bet,

“Li

nux

Dev

ice

Driv

ers,”

Sec

ond

Edi

tion,

O’

reilly

, 200

1.

This

is

an e

xcel

lent

boo

k th

at t

each

es y

ou h

ow t

o w

rite

Linu

x de

vice

dr

iver

s.

Wire

less

Pro

toco

ls

A

NS

I/IE

EE

Sta

ndar

d 80

2.11

, “

Wire

less

LA

N M

ediu

m A

cces

s C

ontro

l (M

AC

) and

Phy

sica

l Lay

er (P

HY

) Spe

cific

atio

n,”

1999

Edi

tion.

It

is th

e w

irele

ss L

AN

Sta

ndar

d, a

lso

avai

labl

e on

the

web

site

men

tione

d ab

ove.

P.

Bre

nner

, “A

Te

chni

cal

Tuto

rial

on

the

IEE

E

802.

11

Pro

toco

l,”

http

://w

ww

.sss

-mag

.com

/pdf

/802

_11t

ut.p

df.

It is

a g

ood

tuto

rial d

ocum

ent o

f IE

EE

802

.11.

Blu

etoo

th

SIG

, “

Spec

ifica

tion

of

the

Blu

etoo

th

Sys

tem

,” V

er.

1.1,

ht

tp://

ww

w.bl

ueto

oth.

com

/dev

elop

er/s

peci

ficat

ion/

spec

ifica

tion.

asp,

Fe

b 20

01

.It is

the

stan

dard

doc

umen

t of t

he B

luet

ooth

.

P. B

hagw

at, “

Blu

etoo

th: T

echn

olog

y fo

r Sho

rt-R

ange

Wire

less

App

s,” I

EE

E

Inte

rnet

Com

putin

g, v

ol. 5

, iss

ue 3

, pp.

96-

103,

May

/Jun

e 20

01.

It is

a g

ood

tuto

rial p

aper

of t

he B

luet

ooth

. 2.

8 Ex

erci

ses

H

ands

-on

exer

cise

s 1.

Rea

d th

e tw

o do

cum

ents

and

see

how

the

IE

EE

Sta

ndar

ds c

omes

out

. W

rite

a su

mm

ary

of th

e st

anda

rdiz

atio

n pr

oces

s.

[1]

10

Gig

abit

Eth

erne

t A

llianc

e,”1

0 G

igab

it E

ther

net

Tech

nolo

gy

Ove

rvie

w: W

hite

pap

er,”

http

://w

ww.

10ge

a.or

g, S

epte

mbe

r 200

1.

[2] h

ttp://

ww

w.ie

ee80

2.or

g/3/

efm

/pub

lic/s

ep01

/age

nda_

1_09

01.p

df.

2. Y

ou m

ay d

ownl

oad

IEE

E 8

02 S

tand

ards

at

http

://st

anda

rds.

ieee

.org

/get

ieee

802/

.

Writ

e do

wn

the

deve

lopm

ent

goal

s of

the

fol

low

ing

proj

ects

: 80

2.1w

, 80

2.3a

c, 8

02.1

5, 8

02.1

6, a

nd 8

02.1

7.

3. F

ind

the

MA

C

addr

ess

of

your

ne

twor

k in

terfa

ce

card

. C

heck

76

http

://st

anda

rds.

ieee

.org

/rega

uth/

oui/o

ui.tx

t to

com

pare

its

OU

I w

ith t

hat

has

been

regi

ster

ed.

4. U

se S

niffe

r or

sim

ilar

softw

are

to f

ind

out

how

man

y ki

nds

of “

prot

ocol

ty

pes”

in

the

“Typ

e” f

ield

of

the

Eth

erne

t fra

mes

you

cap

ture

. W

hat

trans

port/

appl

icat

ion

laye

r pro

toco

ls, i

f any

, do

they

bel

ong

to?

5. F

ind

out w

heth

er y

our n

etw

ork

inte

rface

car

d is

ope

ratin

g in

hal

f-dup

lex

or

full-

dupl

ex m

ode.

6.

Tra

ce th

e so

urce

in o

ne o

f the

follo

win

g pr

otoc

ols:

1.

HD

LC

2. P

PP

oE

3.

wire

less

LA

N

4

. Blu

etoo

th.

Exp

lain

the

purp

ose

of e

ach

maj

or fu

nctio

n of

the

prot

ocol

impl

emen

tatio

n yo

u tra

ce a

nd d

raw

a f

low

cha

rt w

ith t

he f

unct

ion

nam

es t

o sh

ow t

he

exec

utio

n flo

w.

7. A

fter

mak

e ke

rnel

and

cho

ose

som

e dr

iver

s to

be

mod

ular

ized

, ho

w d

o w

e co

mpi

le d

river

, ins

tall

driv

er, a

nd ru

n th

ese

mod

ules

? P

leas

e al

so w

rite

one

smal

l m

odul

e. S

how

wha

t co

mm

ands

are

nee

ded

to c

ompi

le a

nd

inst

all i

t. H

ow d

o yo

u sh

ow y

our m

odul

e ha

s be

en s

ucce

ssfu

lly in

stal

led?

(H

int:

read

insm

od(8

), rm

mod

(8),

and

lsm

od(8

).)

8. A

pac

ket’s

life

: tes

t how

muc

h tim

e a

pack

et s

pend

s on

the

driv

er ,

DM

A ,

and

CS

MA

/CD

ada

pter

. (yo

u ca

n us

e“rd

tscl

l”de

fined

in <

asm

/msr

.h>

to

get t

he p

ast C

PU c

lock

cyc

le. )

9.

Writ

ten

exer

cise

s 1.

We

know

32-

bit

IPv4

add

ress

es m

ay b

e no

t en

ough

. A

re 4

8-bi

t M

AC

ad

dres

ses

enou

gh?

Dis

cuss

it.

2. R

ead

RFC

1071

and

RFC

1624

to

see

how

IP

chec

ksum

is

com

pute

d.

Pra

ctic

e w

ith th

e tri

vial

blo

cks

of w

ords

by

hand

.

0x36

f7

0x

f670

0x21

48

0x8

912

0x

2345

0x

7863

0x

0076

Wha

t if t

he fi

rst w

ord

abov

e is

cha

nged

into

0x3

6f6?

R

FCs

dow

nloa

ded

from

ftp:

//ftp

.csi

e.nc

tu.e

du.tw

/pub

/Doc

umen

ts/R

FC/.

3. C

ompu

te th

e C

RC

cod

e gi

ven

the

mes

sage

110

1010

011

and

the

patte

rn

1001

1. V

erify

the

code

is c

orre

ct.

4. W

hy a

re t

he d

estin

atio

n ad

dres

s fie

ld u

sual

ly l

ocat

ed i

n th

e he

ad o

f a

fram

e, a

nd th

e FC

S fi

eld

loca

ted

in th

e ta

il of

a fr

ame?

5.

Wha

t ar

e th

e ad

vant

ages

and

dis

adva

ntag

es i

f w

e m

ake

the

min

imum

E

ther

net f

ram

e la

rger

? 6.

Sup

pose

dat

a pa

yloa

d is

pre

pend

ed w

ith 4

0 by

tes

of IP

and

TC

P he

ader

s in

a fr

ame.

How

man

y bi

ts o

f dat

a pa

yloa

d ca

n be

car

ried

in th

e 10

0 M

b/s

Page 39: Token bus (802.4) Token ring (802.5) DQDB (802.6) …speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn_writeup/2-in-1-old/... · and hence wireless links are preferred. We choose one typical

77

Eth

erne

t if e

ach

fram

e is

a m

axim

um u

ntag

ged

fram

e?

7. S

houl

d a

switc

h re

com

pute

a n

ew F

CS

of a

n in

com

ing

fram

e be

fore

it is

fo

rwar

ded?

8.

The

re is

an

optio

nal p

riorit

y ta

g in

the

Eth

erne

t fra

me,

but

it is

not

ofte

n em

ploy

ed. W

hy?

9.

Why

doe

s no

t Eth

erne

t im

plem

ent a

com

plic

ated

flow

con

trol m

echa

nism

su

ch a

s sl

idin

g-w

indo

w?

10. W

hat h

appe

ns if

you

r net

wor

k in

terfa

ce c

ard

runs

in fu

ll-du

plex

mod

e in

a

shar

ed n

etw

ork?

11

. Sho

uld

each

por

t in

a sw

itch

have

its

own

MA

C a

ddre

ss?

Dis

cuss

it.

12. S

uppo

se e

ach

entry

in th

e ad

dres

s ta

ble

of a

sw

itch

need

s to

rec

ord

the

MA

C a

ddre

ss, 8

-bit

of p

ort n

umbe

r, an

d 2-

bit o

f agi

ng in

form

atio

n. W

hat i

s th

e m

inim

um m

emor

y si

ze if

the

tabl

e ca

n re

cord

409

6 en

tries

? 13

. Sup

pose

bit

stuf

fing

with

0 is

use

d af

ter

5 co

nsec

utiv

e 1’

s. A

ssum

ing

the

prob

abilit

ies

of 0

’s a

nd 1

’s in

the

bit s

tream

are

equ

al a

nd th

e oc

curre

nces

ar

e ra

ndom

, wha

t is

the

trans

mis

sion

ove

rhea

d of

the

bit s

tuffi

ng s

chem

e?

(Hin

t: Fo

rmul

ate

a re

curs

ive

form

ula

f(n)

to fi

nd th

e ex

pect

ed n

umbe

r of

ov

erhe

ad b

its in

an

n-bi

t stri

ng fi

rst.)

14

. Writ

e a

sim

ulat

ion

prog

ram

to

verif

y th

e nu

mer

ical

ans

wer

abo

ve i

s co

rrec

t. 15

. In 1

000B

AS

E-X

, a

fram

e of

64

byte

s is

firs

t bl

ock

code

d w

ith 8

B/1

0B

befo

re tr

ansm

ittin

g. S

uppo

se th

e pr

opag

atio

n sp

eed

is 2

x108 . W

hat i

s th

e fra

me

“leng

th” i

n “m

eter

”? (S

uppo

se th

e ca

ble

is 5

00 m

long

.) 16

. Wha

t is

the

pro

babi

lity

of t

wo

stat

ions

tak

ing

5 m

ore

trial

s to

res

olve

co

llisi

ons

afte

r th

ey h

ave

the

first

col

lisio

n? (

Supp

ose

only

tw

o st

atio

ns

are

in th

e co

llisio

n do

mai

n.)

17. W

hat i

s th

e m

axim

um n

umbe

r of f

ram

es a

sw

itch

of 1

6 Fa

st E

ther

net (

100

Mb/

s) p

orts

may

dea

l with

if e

ach

port

oper

ates

in fu

ll-du

plex

mod

e?

18. A

CP

U e

xecu

tes

inst

ruct

ions

at 8

00 M

IPS

. Dat

a ca

n be

cop

ied

64 b

its a

t a

time,

with

eac

h 64

-bit

wor

d co

pied

cos

ting

six

inst

ruct

ions

. If a

n in

com

ing

fram

e ha

s to

be

copi

ed tw

ice,

how

muc

h bi

t rat

e, a

t mos

t, of

a li

ne c

an th

e sy

stem

han

dle?

(A

ssum

e th

at a

ll in

stru

ctio

ns r

un a

t th

e fu

ll 80

0-M

IPS

ra

te.)

19

. A fr

ame

of 1

500

byte

s tra

vel t

hrou

gh 5

sw

itche

s al

ong

the

path

. Eac

h lin

k ha

s a

band

wid

th o

f 100

Mb/

s, a

leng

th o

f 100

m, a

nd p

ropa

gatio

n sp

eed

of 2

x108 m

/sec

. Ass

umin

g th

e qu

euei

ng a

nd p

roce

ssin

g de

lay

of 5

ms

at

each

sw

itch,

wha

t is

the

appr

oxim

ate

end-

to-e

nd d

elay

for t

his

pack

et.

20. O

ne o

ut o

f n fr

ames

of 1

000

byte

s su

ffers

from

an

erro

r on

aver

age

if th

e

78

bit e

rror r

ate

is 1

0-6.

Wha

t is

n?

21. C

ome

up w

ith a

que

stio

n an

d do

it y

ours

elf.